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Abstract

The Large Hadron Collider, which is currently under construction at CERN
near Geneva, will collide protons with a center-of-mass energy of 14 TeV.
This high energy offers the possibility to discover particles with masses on
the TeV scale. Bunches of 1.15 x 10! protons will cross at a rate of 40 MHz.
23 proton-proton collisions will happen at every bunch-crossing, which results
in a total proton-proton interaction rate of almost one GHz. The biggest part
of these interactions do not contain new physics but mostly QCD background.
Therefore the detectors dedicated to discovery physics, such as ATLAS, need
to select the ~ 100 bunch-crossings with the biggest discovery potential out
of the 40 x 10° bunch-crossings per second.

In case of the ATLAS experiment this reduction will be achieved on a three
level trigger system. The first level trigger runs on custom hardware, the
two higher trigger levels run as software algorithms on farms of hundreds of
commodity PCs. The second level trigger will run at a rate of up to 100 kHz
on a subset of the event data (16 kB in average) and the third level trigger
will run at a rate of around 3 kHz on the full event data (1.2 MB in average).
The DataCollection subsystem is a part of the data acquisition system and
has to provide the event data for the second level trigger (1.6 GB/s), for the
third level trigger (3.6 GB/s) and in case of selected events to mass storage
(~ 120 MB/s). The event data is obtained from 144 or 1600 data sources
(depending on an open choice on the architecture of the data acquisition
system).

This thesis explains the infrastructure which is needed to fulfill the demand-
ing task of the DataCollection subsystem, focusing on the software aspects.
In addition, performance studies on the DataCollection software and studies
on the open choice in the architecture are presented.
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Chapter 1

Introduction

The ATLAS (A Toroidal LHC ApparatuS) experiment [WEBO01] is a multi-
purpose detector for the Large Hadron Collider [WEB02]. Both are currently
under construction at the European Laboratory for Particle Physics (CERN)
near Geneva, Switzerland.

In the year 2007 the Large Hadron Collider (LHC) at CERN will collide
protons at a center of mass energy of 14 TeV. This opens new experimental
possibilities on the TeV energy scale. It will allow to validate theoretical pre-
dictions such as the Higgs-mechanism or Supersymmetry, by looking for the
existence of the respective Higgs and SUSY particles. The LHC will acceler-
ate protons in bunches of 1.5 x 10'!. The bunches will cross at four collision
points at a rate of 40 MHz. On average 23 proton-proton interactions will
occur per bunch-crossing.

At one of the four collision points the ATLAS experiment [WEBO01] is being
constructed. The experiment is designed as a multi-purpose experiment to
exploit the full discovery potential of the LHC. One of the main challenges of
the experiment (on the level of the detector, the trigger system and the offline
data analysis) is to handle the enormous rate of proton-proton interactions
(~ 10° per second). Given the fact that the biggest part of those interactions
are background and do not contain new physics, ATLAS wants to cope with
this challenge by applying a three-level trigger system, consisting of the Level
1 trigger, the Level 2 trigger and the Event-filter. The trigger system will
select ~ 100 bunch-crossings per second with the biggest discovery potential.
The Level 1 trigger runs on custom-built hardware, whereas the Level 2 trig-
ger and the Event-filter are implemented as software processes runs on farms
of hundreds of commodity PCs. The algorithms run on parts (Level 2) or
on the full (Event-filter) event data. The Level 2 runs at the Level 1 accept
rate of up to 100 kHz (technical limitation of the Level 1 trigger) and needs
to be supplied with 16 kB in average per event (data rate of 1.6 GB/s). The



Event-filter runs at the Level 2 accept rate of 3 kHz and needs to be supplied
with full event of the size of 1.2 MB (3.6 GB/s data rate).

After an event is accepted by Level 1, its data is passed to the data acqui-
sition system (DAQ). The DAQ system handles all data movements, until
the event is eventually written to mass storage [ATLO03]. Two components of
the Dataflow system provide this part of the DAQ functionality: the Read-
out Subsystem (ROS) and the DataCollection subsystem. The ROS houses
Read-out Buffers (ROBs), which receive data fragments of Level 1 accepted
events via the Read-out Links (ROLs) and stores them until each event is
either rejected by Level 2 or fully built and ready to be sent to the Event-
filter. It is an open architectural choice how the ROS will be designed in the
final DAQ system for ATLAS.

The task of the DataCollection subsystem is

e to transport and to make available parts of the events (Regions of
Interest) to the Level 2 trigger by obtaining the data from the ROS

e to build the Level 2 accepted events completely by obtaining the event
data from the ROS, and to make those events accessible to the Event-
filter

e to make Event-filter accepted events available to mass storage

The DataCollection subsystem will obtain the event data from 144 - 1600
data sources (depending on the ROS architecture) and deliver it to several
hundred destinations.

In order to fulfill these tasks network infrastructure connecting the data
sources and the destinations and a CPU /software infrastructure steering the
flow of data is needed. As link technology Gigabit Ethernet has been chosen.
As CPU/software infrastructure software applications running on commodity
PCs driven by the Linux operating system were implemented: the ATLAS
TDAQ DataCollection Software [WEBO03].

This thesis will first give a short overview of the discovery potential of the
LHC, of the ATLAS physics goals and of the detector layout. After a short
discussion of the trigger system the DataCollection subsystem will be de-
scribed in detail. A short chapter will be dedicated to the Gigabit Ethernet
network topology. The architecture of the DataCollection software and its
components will be explained. Based on this the discussion on the design
of the Event-building (EB) applications will be described. Finally a detailed
performance study on the EB applications and the EB system will be pre-
sented, together with a comparative study on the performance of the EB
assuming two different options of the ROS architecture.



The reader of this thesis should be aware of the very frequent use of acronyms.
These acronyms and other specific expressions throughout the text are spelled
out in the glossary at the end.



Chapter 2

The Large Hadron Collider

The Large Hadron Collider (LHC) is a proton-proton accelerator, which is
currently under construction at CERN in Geneva and will be operational in
the year 2007 [WEBO02].

The LHC will collide protons at a center of mass energy of 14 TeV. The
luminosity will be 0.12 x 10%* cm™2s™! at startup (low luminosity) and will
increase to the design value of 1 x 10** cm™?s™! (high luminosity). The high
luminosity corresponds to a proton-proton collision rate of 1 x 10° per second,
which can be compared with the current rate at Tevatron' of 2.1 x 107 per
second at a peak luminosity of 4.2 x 10** cm 25~ [WEBO05).

At high luminosity the protons will be grouped in bunches of 1.15 x 10!,
which will cross at a rate of 4 x 10”. This means that on average 23 proton-
proton interactions will occur per bunch crossing. This effect is called pile-up
and is a challenge for the experiments installed at LHC, because they detect
about 23 events within the same bunch-crossing.

Fig. 2.1 shows the cross sections of pp-interactions [DEN90]: QCD processes
are dominating. Events containing new physics are very rare: under the
assumption that the Higgs-Boson has a mass of 150 GeV, one proton-proton
interaction out of 10'° creates this particle. This fact explains why the LHC
needs to provide such a high luminosity. In addition this fact forces the
experiments, which are constructed at LHC and are dedicated to discover new
physics, to apply a restrictive but efficient online event selection (Trigger).
This is crucial in order not to store an enormous amount of events without
discovery potential, which would lead to the storage of non-manageable and
non-analyzable data volumes.

LA proton anti-proton collider operating at Fermilab [WEB04].
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Figure 2.1: The cross sections of proton-proton interactions. The gap of
the cross sections between the Tevatron energies and the LHC energies are

caused by slight differences in the cross-sections of pp and pp collisions
8



Chapter 3

The ATLAS Physics (Goals

In the list below, the main physics goals of ATLAS are mentioned with a
brief description of the theoretical motivations behind them [WEBO6].

e Higgs discovery: the existence of the Higgs Boson is motivated by the
electro-weak symmetry breaking. The fundamental question is why the
W and Z bosons are massive, while photons are massless. The Higgs
mechanism, which postulates the existence of the Higgs boson, is an
explanation for this phenomenon.

e SUSY discovery: Super-symmetry is a theoretical extension of the Stan-
dard Model. For every elementary particle p with spin s it postulates
a partner particle p with spin s — %, a fermion to every boson and
a boson to every fermion. This extension of the Standard Model is
mainly motivated by two reasons: the first motivation is, that without
the existence of SUSY particles the Higgs mass would diverge. The
second motivation is, that the coupling constants for the electroweak,
the strong and the gravitational forces do not converge on high energy
scales without the existence of super-symmetric particles.

e Collecting samples of B-hadron decays. Studying the decays of the
B allows to determine the angles of the unitarity triangle, describing
the CP-violation. The B production is not an exclusive feature of
the LHC, B-factories are currently operational e.g. at SLAC. However,
due to the high luminosity of the accelerator LHC, a multi-purpose
detector could collect a huge amount of B-decay samples. In addition
some heavy B-mesons e.g. B2 are exclusively produced at LHC and
Tevatron.

Due to these physics motivations, the multi-purpose detector should be de-
signed in such a way, that it is sensitive to the decay products of the Higgs,

9
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Figure 3.1: Feynman diagrams for decay channels of the Standard Model
Higgs boson. The lepton [ is either an electron, muon or tau. The observation
of hadronic decays of the Higgs boson in the ATLAS detector is extremely
challenging due to the irreducible QCD background

SUSY particles and B-hadrons.

3.1 Higgs Discovery

The Feynman diagrams in figure 3.1 show the most promising decay channels
of the Higgs particle, which may be produced via various mechanisms at LHC
proton-proton collisions [DEN90).

Studying these five decay channels, one can derive a big part of the re-
quirements on the ATLAS detector. The branching ratios of the different
channels depend on the Higgs mass [ATL99].

e In order to detect the three H — 7~ decay channels, electromagnetic
calorimetry is needed. The electromagnetic calorimeter must have a
high resolution, in order to be able to distinguish the electromagnetic
showers caused by the Higgs decay photons from the showers caused
by 7° — v decays (QCD background).

e The fourth diagram represents various leptonic decay channels, e.g.
H — eeee, H — ppee and H — pppp. In order to detect the first

10



channel, excellent electromagnetic calorimetry is needed again. In ad-
dition, track identification is needed to be able to distinguish electro-
magnetic showers caused by electrons from those caused by photons.
As in the two other channels decay products are muons, muon spec-
troscopy is required.

e The last diagram shows neutrinos among the decay products: H —
eveeVe, H — pv,eve and H — pv,pv,. The neutrinos are not seen
by the detector, but they carry unobserved energy. Therefore a good
overall calorimetry is needed (electromagnetic and hadronic) to identify
missing transverse energy Er.

3.2 SUSY Discovery

Two possible SUSY decays are drawn in Fig. 3.2. These decays are possible
under the assumption that the R-parity! is conserved, which means that
if super-symmetric particles decay, the lightest super-symmetric particle is
always produced at the end of the decay chain. Under the assumption that
the lightest super-symmetric particle is a neutralino x!, it will carry out
energy, leaving the detector without interacting. So the detection of missing
Er will be the most important signature for the discovery of SUSY particles.
This means that a hermetic calorimetry is the key to the discovery of SUSY
particles.

l q
~ i q
l 2 A g g{g ,
X3 X1

Figure 3.2: Two possible SUSY decays in ATLAS in case of R-parity con-
servation: a simple slepton decay into a lepton, a Z and the lightest super-
symmetric particle 9 and a cascade decay of a gluino into quarks (jets), a
Z and a x?

IR-parity is a parity operation on the number of SUSY particles. An interaction in-
volving an odd number of SUSY particles always has to result in an odd number of SUSY
particles, an interaction involving an even number of SUSY particles always has to result
in a even number of SUSY particles (0 included).

11
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3.3 B-Physics

In Fig. 3.3 an example of the decay of a BY is shown. The decay pattern in
the detector is drawn in Fig. 3.4. In order to be sensitive to such a decay
pattern and to be able to identify the flavor of the B-meson at production
time, track reconstruction close to the beam-pipe is crucial. This is one of
the reasons why an inner tracking with vertex detection is required.

3.4 Detector Requirements

The incomplete set of examples above and other physics goals described in
[ATL99] lead to the following requirements on the layout of ATLAS as a
multi-purpose experiment for the LHC:

e Very good electromagnetic calorimetry for electron and photon iden-
tification and measurements, complemented by full-coverage hadronic
calorimetry for accurate jet and missing transverse energy measure-
ments.

12



High-precision muon momentum measurements, with the capability to
guarantee accurate measurements at the highest luminosity using the
external muon spectrometer alone.

Efficient tracking at high luminosity for high py lepton-momentum
measurements, electron-photon identification, 7-lepton and heavy fla-
vor identification (e.g. b jet tagging), and full event reconstruction
capability at low luminosity.

Almost full azimuthal angle detection coverage and a large polar angle
coverage

Triggering and measurement of particles at low pr threshold, providing
high efficiencies for most physics processes at LHC.

13



Chapter 4

The ATLAS Detector

The layout of the ATLAS detector (Fig. 4.1) tries to fulfill the requirements
which were explained in the previous chapter. The main reference to the
ATLAS detector layout is [ATL99]. The detector can be split into the magnet
system and three detector subsystems:

e the inner detector (tracker)
e the calorimeter (electromagnetic and hadronic)

e the muon spectrometer

4.1 The Magnet System

The magnet system consists of three superconducting components: the cen-
tral solenoid, the end cap toroids and the barrel toroid. The central solenoid
provides the magnetic field for the inner detector, with a central field of 2.0
T and a peak field of 2.6 T. The solenoid is placed inside the calorimeters due
to cost constraints. However, it is problematic to put the magnet inside the
calorimeter because the introduced material may compromise the calorime-
ter performance. This is the reason why the central solenoid and the LAr
calorimeter are housed in the same vacuum vessel, which allows two vacuum
walls to be saved. The barrel toroid provides the magnetic field for the muon
spectrometer in the barrel region, with a peak field of 3.9 T. It consists of
three toroids of eight coils each. The coils are housed in individual cryostats
and therefore the support structure of the cryostat has to take up the forces
between the toroids. The end cap toroids provide the magnetic field for the
muon spectrometers in the end cap region with a peak field of 4.1 T. They
are housed in one single cryostat per end cap and therefore the cold support

14
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Figure 4.2: The ATLAS inner detector

structure has to take up the forces between the eight coils which are assem-
bled radially and symmetrically around the beam axis. The magnet system
is cooled with the forced flow of 4.5 K helium.

4.2 The Inner Detector

The purpose of the inner detector is tracking for lepton-momentum measure-
ments, electron-photon identification and 7 and heavy flavor identification
e.g. b-tagging. A schematic view of the inner detector is drawn in Fig. 4.2.

The resolution of the inner-detector must be very high close to the vertex
area and can be a bit less precise at larger radii. The constraints are that as

16



little material as possible should be put in front of the calorimeter and that
the inner tracker must cope with a very harsh radiation environment. AT-
LAS has chosen a combination of high resolution detectors at the inner radii
and continuous tracking elements at the outer radii. Close to the vertex re-
gion three layers of a semiconductor pixel detector with high granularity are
installed to identify displaced vertices originating from decays of short-lived
particles like B-mesons and taus. Around the pixel detector the semiconduc-
tor tracker consisting of silicon micro-strips will be installed. It provides four
precision space points per track which allows track finding and momentum
measurements. The third layer of the inner detector is the straw tube tracker
(TRT). It provides continuous track following with 36 points per track, while
introducing only a small amount of material into the detector. In addition,
the TRT improves the electron identification of the detector by the detection
of transition-radiation photons in the xeon gas of the tubes.

The resolution achieved by the pixel detector, as measured in the ATLAS
standard coordinate system?!, is 12 ym in R¢ and 66pm in z, respectively 77
pm in R for the end-cap disks. The SCT provides a resolution of 16 ym in
R¢ and 580 pum in z respectively in R for the end-cap wheels. The TRT will
achieve a resolution of 170 pum.

4.3 The Calorimeters

The purpose of the calorimeter is the measurement of hadronic and elec-
tromagnetic showers and the measurement of missing transverse energy Er,
especially for SUSY discovery. The calorimeter system consists of an inner
electromagnetic and an outer hadronic calorimeter (see Fig. 4.3).

The electromagnetic calorimeter is built with accordion-shaped lead absorbers
and liquid Argon (LAr) scintillating material in the barrel region and in
the end-cap region. The calorimeter consists of three layers with different
granularities: the innermost layer is called preshower detector and designed
for enhancing the particle identification (/7% e/ separation). In the low
pseudo-rapidity? region |n| < 2.5 its granularity is Anp x A¢ = 0.003 x 0.01.
The middle and outside layers provide a coarser granularity only (0.025x 0.25
and 0.05 x 0.025), but fulfill the requirements for electromagnetic jet recon-
struction and missing energy measurements. In the high pseudo-rapidity
region |n| > 2.5 the electromagnetic calorimeter consists of two layers only,

IR is radius in the plane perpendicular to the beam axis; ¢ is the azimuthal angle
around the beam axis; z is the beam axis

2The pseudo-rapidity is defined as 7 = —Intan g, where 6 is the polar angle from the
z direction

17
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both providing a resolution of 0.1 x 0.1.

The hadronic calorimeter is split into different subsystems applying differ-
ent technologies. In the barrel region a tile calorimeter will be installed
with iron absorbers and plastic scintillator as active material. The hadronic
calorimeter in the end-cap will be based on copper absorbers and LAr as ac-
tive material. A particularly challenging detector is the forward calorimeter
close to the beam pipe, due to the high radiation level in this region. The
absorber material in the first of the three FCAL sections is copper, in the
other two sections tungsten. LAr serves as sensitive medium in the whole
FCAL.

The thickness of the hadron calorimeter is an important parameter, because
the calorimeter should contain the hadronic shower well in order to provide
an adequate missing Fp measurement and to avoid punch-through to the
muon system. A thickness of 11 X (hadronic interaction lengths) was cho-
sen to meet the containment requirements.

4.4 The Muon Spectrometer

The purpose of the muon spectrometer is the high-precision muon momentum
measurement and to provide fast trigger information on muon tracks for the
Level 1 trigger. Therefore the muon spectrometer is split into four parts: in
a trigger and a detection system, each in the barrel and end-cap region (see
Fig. 4.4). The spectrometry is based on the magnetic deflection of muon
tracks. The necessary magnetic field is provided by the barrel toroid which
provides a field which is mostly orthogonal to the muon tracks.

In the barrel region the muon spectrometer is designed as three cylinders,
called stations. In the inner-most station 2x4 sensitive layers of Cathode
Strip Chambers (CSC) will be installed, the two outer stations are based
on 2x3 layers of Monitored Drift Tubes (MDT). CSCs are MWPCs with
segmentation and read-out of the cathode strips. The trigger system consists
of Resistive Plate Chambers (RPCs). The chambers are mounted on both
sides of the inner MDT station and inside the outer MDT station. The
end-cap spectrometer applies four disks of MDTs as trackers and Thin Gap
Chambers (TGC) as trigger elements. TGCs are similar to CSCs, but the
anode wire pitch is larger than the cathode-anode distance.

19
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Chapter 5

The ATLAS Trigger and Data
Acquisition System

The ATLAS Trigger and Data Acquisition System (TDAQ) can be divided
in two tightly coupled parts: the Trigger system and the Data Acquisition
(DAQ). The Trigger system selects events at three levels: Level 1, Level 2
and Event-filter. With this strategy the ATLAS experiment plans to handle
the enormous background of non-interesting physics related to minimum bias
and QCD related processes, which occur with every bunch crossing at LHC
(see chapter 2). The interaction rate of ~ 10° per second (the LHC bunch
crossing rate is 4x107 per second, but about 23 proton-proton interactions
happen per bunch crossing) is cut down by the three trigger levels to ~ 102
per second, selecting those interactions which are most promising to detect
new physics.

The DAQ system must provide event data to the Level 2 trigger and the
Event-filter and must make the data available to the mass storage system.
Therefore it is mainly defined by the needs of the trigger system:.

5.1 Level 1 Trigger

The Level 1 Trigger runs at the bunch crossing rate of 40 MHz and has to
take its decisions in less than 2.5 us. It bases its decision on the muon and
the calorimeter system of the ATLAS detector. Simple but fast selection
algorithms are executed by custom-built hardware. The calorimeter trigger
processor can identify various pr thresholds of electromagnetic clusters, jets
and missing transverse energy. The muon trigger identifies pr thresholds of
muons. For both the muon and the calorimeter trigger only coarse informa-
tion is available. The central trigger processor compares these results with
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a global trigger menu. The Level 1 trigger does not only provide a binary
decision: the calorimeter and muon trigger processors communicate to the
Region of Interest builder (RoIB) those detector elements which contain in-
teresting signatures. The RolB collects this information and forwards it to
the Level 2 trigger.

5.2 Level 2 Trigger

The Level 2 trigger generally takes its decision based on subsets of the event
data, the so-called Regions of Interest (Rols). It receives the description of
the Rols from the RolIB. Based on this information, the Level 2 is able to re-
quest the subset of the event data it needs to take its decision. In a first step
Level 2 verifies the Level 1 decision, by using the fine-grained information
(event data) of the calorimeters and the muon spectrometer. If this confir-
mation succeeds, more complex processing may take place such as shower
shape analysis, track finding and track matching. For every subsequent step
Level 2 can request the necessary event data e.g. from the inner detector.
As the complete event data is accessible for Level 2, even a full subdetector
scan may happen on this trigger level in extreme cases. The Level 2 trigger
is implemented as software algorithms running on farms of custom PCs (a
few hundred) running Linux. The algorithms will be built upon the same
software framework as the offline reconstruction in order to allow consistency
checks.

5.3 Event-Filter

After a positive Level 2 decision, the Event-filter receives completely built
events and therefore can base its decision on the full event information. Like
Level 2, the Event-filter is implemented as software algorithms running on
farms of custom PCs (many hundred) and, also like Level 2, the algorithms
will be built upon the same framework as the offline reconstruction.

5.4 Trigger Rates

The architecture of the trigger system and trigger rates on the different levels
define the performance requirements on the DAQ system as the transport
infrastructure. The data supply for the Level 2 trigger must work at Level 1
accept rate and the data supply for the Event-filter must work at the Level
2 accept rate. The working values are an accept rate of 100 kHz for Level 1
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(technical limitation of the Level 1 system) and an accept rate on Level 2 of 3
kHz. These rates are estimates and still under study, but they are sufficiently
accurate for the initial design of the DAQ.

However, in later phases of the experiment the trigger strategy may change,
either due to new physics needs or due to an unsatisfactory Level 2 efficiency
for certain physics processes. With a different trigger strategy the trigger
rates may change significantly: the Level 2 trigger may become more open
and the Event-filter rate may increase by a large factor.

5.5 The Data Acquisition System

The architecture of the DAQ system is to a large extent defined by the trigger
scheme. The DAQ needs to provide event data for the Level 2 Trigger, the
Event-filter and finally for mass-storage. An overview of the whole TDAQ
system is drawn in Fig. 5.1.

Event data is pushed into the pipeline memories of the on-detector elec-
tronics at the LHC bunch-crossing rate. When the Level 1 accepts a bunch-
crossing, the data is pushed to the Read-out Drivers (ROD), which are off-
detector. Then the data is sent via the Read-out Links (ROLs) to the Read-
out Buffers (ROBs), which are housed by the Read-out Subsystem (ROS).
Simultaneously the RolB is processing the Level 1 information and sending
a Rol description to the Level 2 Supervisor.

The Level 2 Supervisor assigns this event to a processor in one of the Level 2
farms, a Level 2 Processing Unit. Via the switching network the Level 2 Pro-
cessing Unit requests and receives the Rol data it needs for the processing.
It takes a decision and reports it to the Level 2 Supervisor. None of the raw
event data is output from the Level 2 Processing Unit.

The Level 2 Supervisor forwards the decision to the Dataflow Manager. In
case of a Level 2 reject, the Data-flow Manager issues a clear to all ROSs via
the switching network. In case of a Level 2 accept, the Dataflow Manager
assigns the event to an Event-builder node. The Event-builder node asks
for the data fragment of the assigned event from all ROS, builds the event
and sends it on request to an Event-filter farm. In addition is notifies the
Data-flow Manager that the event is fully built, which then can be cleared
from the ROS.

In case the event is rejected by the Event-filter, it is deleted. In case it is
accepted, it is sent to the Event-storage node, which makes it available to
the mass storage system.

The dashed Boxes in Fig 5.1 contain all the elements of the Dataflow system.
The DataCollection subsystem comprises all the elements of the Dataflow
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system except the ROS and the hardware part of the RoIB. The mandate of
DataCollection is

e to transport and to make available parts of the events (Regions of
Interest) to the Level 2 trigger

e to build the Level 2 accepted events completely and to make those
events accessible to the Event-filter

e to make Event-filter accepted events available to mass storage

5.6 Requirements on Data Collection

Based on the trigger rates in the early phase of ATLAS, there are two kinds
of performance requirements DataCollection has to fulfill. The first are rate
requirements (Rol collection rate and EB rate). The second kind are band-
width requirements (total Level 2 input and total event builder throughput).
The Level 1 rate is 100 kHz and the average Rol size is 16 kB. Therefore the
total input that Level 2 DataCollection must provide is 1.6 GB/s. As the
events are stored in the ROBs during the Level 2 processing, none of the raw
event data is output from Level 2.

The EB rate is 3 kHz and the average event size is 1.2 MB. Therefore the
total throughput of the Event Builder is 3.6 GB/s.

An overview on the system parameters is given in the second chapter of
[ATLO3].
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Chapter 6

The DataCollection Subsystem

As explained in the previous chapter, the DataCollection subsystem trans-
ports regions-of-interest (Rol) data from the ROS to the Level 2 trigger and
full events from the ROS to the Event-filter. In addition it makes Event-
filter accepted events available to mass storage. This functionality is dis-
tributed among six software applications running on commodity PCs oper-
ated by Linux and interconnected with a Gigabit Ethernet local area network
(LAN). A common approach to design and implementation was chosen, which
leads to the design and implementation of a common DataCollection software
framework, providing a suite of common services (e.g. Message-passing and
Application control). The design and the implementation of the DataCollec-
tion framework is based on C++ and the standard template library (STL)
[JOS99]. The DataCollection applications are multi-threaded and built on
top of the common framework.

6.1 DataCollection Applications

The DataCollection functionality is distributed among six software applica-
tions: the Level 2 supervisor (L2SV), the Level 2 processing unit (L2PU),
the pseudo ROS (pROS), the Dataflow manager (DFM), the Subfarm-input
(SFI) and the Subfarm-output (SFO).

6.1.1 Level 2 Supervisor

The L2SV receives a Level 1 decision containing geometry information of
Rols from the RolB. It distributes events to be processed within a part of the
Level 2 farm consisting of many L.2PUs by assigning events to L2PUs chosen
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according to a load-balancing algorithm. After processing at the L2PU the
L2SV receives the Level 2 decisions, which it forwards to the DEM. The role
of the L2SV is described more precisely in [DC-09]. There will be ~ 10 L2SVs
in the TDAQ system.

6.1.2 Level 2 Processing Unit

The L2PU receives a Level 1 decision from the L2SV. It requests the Rol
data it needs for processing from multiple ROSs. After the Level 2 decision
is taken, it reports it to the L2SV. For accepted events it additionally sends
a more detailed Level 2 result to the pROS.

The DataCollection framework provides the basic services needed by the
Level 2 algorithms. The decision-taking Level 2 algorithms are beyond the
scope of the DataCollection software, but the L2PU builds the basis for them.
A more precise description of the interface between the Level 2 algorithms
and the DataCollection subsystem is given below and in [DC-19]. There will
be in the order of 200 L2PUs in the TDAQ system.

6.1.3 Pseudo ROS

The pROS is the logical interface between the Level 2 and the Event-filter.
It receives detailed Level 2 results from the L2PUs and takes part in the EB
as a common ROS. It ensures that the detailed Level 2 result becomes a part
of the fully built event and therefore is accessible for the algorithms running
in the Event-filter. The detailed requirements and the design of the pROS
are described in [DC-34] and [DC-41]. There will be one pROS in the TDAQ
system.

6.1.4 Dataflow Manager

The DFM is responsible for the load balancing and the bookkeeping for the
EB. It receives the Level 2 decisions from the L2SV and forwards the Level 2
rejects to all instances of the ROS to ensure the deletion of these events.
For every Level 2 accept the DFM assigns a Subfarm-input (SFI) for EB. As
soon as an event is fully built, the DFM is notified by the SFI in charge. It
then deletes the event from the ROS. The task of the DFM is described more
precisely in [DC-10]. There will be one DFM in the TDAQ system.
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6.1.5 Subfarm-input

The SFT fulfills the major part of the EB functionality and therefore could
also be called the Event-builder node. It gets an event assigned by the DFM
and requests the event fragments from all instances of the ROS. As soon as
all fragments of a given event have arrived at the SFI, it notifies the DFM.
The fully built event is stored and made accessible to the Event-filter. As
soon as the transfer of an event to the Event-filter is completed, it is deleted
from the SFI memory. The role of the SFI in the system is more precisely
described in [DC-16]. Limited by the Gigabit Ethernet bandwidth, there
will be 25 SFIs per kHz of EB rate (every SFI contributing 40 Hz), so 75
instances will be needed to reach the initial 3 kHz EB rate.

6.1.6 Subfarm-output

The SFO receives events accepted by the Event-filter. It buffers them in files
held on a local disk. These files are then available to be transfered to the
mass storage system. The requirements on the SFO are specified in [DC-38].
There will be in the order of 20 SFOs in the TDAQ system.

6.2 Interaction between the components

The interactions between the components of the DataCollection are exclu-
sively transmitted via the network. The whole of these interactions is called
message flow and described in [DC-12].

The message flow is shown in Fig. 6.1 and explained in the text below
following the numbering scheme in the Figure. The convention follows the
sequence of interactions in the running system, which is shown in Fig. 6.2.
The indicated message rates are calculated for the whole system and not for
single instances of the applications.

1. L2SV — L2PU: A Level 1 result containing the Rol information is sent
to a L2PU. This information allows the Level 2 processing on an event
to start. This message occurs at the Level 1 accept rate of 100 kHz.

2. L2PU — ROS: Requests for the Rol data, which is needed by the
running Level 2 algorithm, are sent to the corresponding ROSs. This
message occurs at a rate of 800 or 1600 kHz, depending on an open
architectural choice (see section 6.3.1).

3. ROS — L2PU: The Rol data (fragments of the full event data) is sent
back to the L2PU. The rate of this message is the same as the rate of
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Figure 6.1: Message flow. This figure should be mapped on Fig. 5.1 showing
the TDAQ architecture. The Event-filter and the SFO is missing in this
figure, because these components do not take part in the message flow, but
communicate via a specific Event-filter input/output protocol [DC-35].

the Rol requests.

4. L2PU — L2SV: The Level 2 decision including additional information
like the Level 1 trigger type and the Level 2 trigger type is sent to the
L2SV. This message occurs at the Level 1 accept rate of 100 kHz as
well.

5. L2PU — pROS: The detailed Level 2 result, containing information
on how the decision was derived, is sent to the pROS. This interaction
happens at the Level 2 accept rate of around 3 kHz.

6. L2SV — DFM: The L2SV collects a group of Level 2 decisions and
forwards them to the DFM. This grouping strategy is applied to reduce
the message rate at the level of the applications and in the network.
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10.

11.

With an assumed grouping of around 300 decisions, the rate of this
message is 330 Hz.

. DFM — SFI: The assignment of an event to be built is sent to an SFI.

This message occurs at the Level 2 accept rate of 3 kHz.

SFI — ROS(/pROS): Requests for the event data are sent to the ROSs
(and the pROS). This message occurs at a rate of 432 or 4800 kHz,
depending on an open architectural choice (see section 6.3.1).

. ROS(/pROS) — SFI: Event data flows into the SFI. The rate of this

message is the same as the rate of the requests.

SFI — DFM: An “End of Event” (EoE) message is sent to the DFM
after an event is completely built. This message-rate is the same as the
Level 2 accept rate of 3 kHz.

DFM — ROS: A message containing the identifiers of the events to be
deleted is sent the ROS (in case of a negative Level 2 decision or after
the EoE message arrived). For this interaction the strategy of grouping
to reduce the message rate is applied, as for the communication between
the L2SV and the DFM. With a grouping of 300 the rate is reduced to
330 Hz.

Note that the message flow between the ROS and the DataCollection
involves event data messages and that the traffic pattern is request-reply:
for every data request message issued by a L2PU or an SFI and sent to a
ROS, an event fragment message travels in the opposite direction through the
network. This traffic pattern is an important paradigm in the DataCollection
architecture as it allows the management of the traffic flowing through the
network with a very high granularity. This issue is called traffic shaping and
is of major importance and one of the main achievements of the author’s EB

studies. It will be discussed in section 9.3.

6.3 Interfaces

The DataCollection subsystem interfaces to four neighboring systems:

e the Read-out Subsystem (ROS), where it obtains the event data from

e the High Level Trigger infrastructure in the L2PU, which requests Rol

data
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e the Event-filter, which takes full events from the SFI and returns a
reduced number of them to the SFO

e the Online Software (OnlineSW), which provides infrastructure for run
control, system monitoring, event monitoring, configuration databases
and other common services of the ATLAS TDAQ system.

6.3.1 Read-out Subystem

The ROS receives detector data via the Read-out Link (ROL) and buffers it
in the ROBs. It makes the buffered data available for the Rol collection (for
the Level 2 trigger) and for EB. In case an event is rejected by Level 2 or
after it is fully built if it is accepted by Level 2, the ROS is allowed to release
it from the ROBs, following a clear message issued by DataCollection. The
role of the ROS in the TDAQ system is more precisely described in [CRA02].
The ROS has been and still is the subject of a controversial discussion in
the ATLAS TDAQ community, as there are two main possibilities how the
ROLs (via the ROBs) could be connected to the DataCollection subsystem
(for Rol collection and EB):

e Bus-based ROS: A few ROBs (12 is the current base-line assumption
for the TDR [ATLO03]) are plugged on a PCI Bus of an industrial PC
and the data can be sent to DataCollection via the Network interface
card (NIC) of this PC. This approach requires complex and performant
software running on the PC. A schematic view on the bus-based ROS
is shown in Fig. 6.3.

e Switch-based ROS: The ROBs can be read out directly via Fast or
Gigabit Ethernet switching network. The role of the ROS PC is re-
stricted to powering the ROB and to configuration and monitoring. A
schematic view on the switch-based ROS is shown in Fig. 6.4.

In the bus-based ROS approach 12 ROLs are concentrated in one ROS.
This means that 12 fragments of each event arrive at a ROS. In the case
of EB, the ROS merges these arriving fragments to a bigger ROS fragment
and sends it via the Gigabit-Ethernet network to the requesting SFI. This
means that the event is already partially built on the level of the ROS, this
is called staged Event-building or concentration. This stage in the EB helps
the SFI performance as the ROS takes a part of the workload for EB. On the
other hand, this solution has serious drawbacks: all the data for EB (and for
Level 2 as well) needs to be moved via the PCI bus, all the transactions need
to be managed by the CPU and finally the data has to leave the ROS PC
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via two NICs (one for Rol collection, one for EB) to the Gigabit Ethernet
network. If one wanted to increase the EB rate beyond ~ 3 kHz, one of these
three elements would become a bottleneck. As every single event has to pass
every ROS, such a bottleneck would be very serious and prevent any further
upgrade of the ATLAS data taking, triggering and physics capabilities. This
is the major reason why the Bern group is proposing a switch-based ROS
architecture, where every ROL is connected to a Gigabit-Ethernet link via the
ROB, thus avoiding the possible bottlenecks in the ROS PC. This solution
means that there is no staging in the EB and the SFI has to collect 12 times
more fragments from 12 times more data sources, which obviously leads to
more CPU occupancy and could potentially lead to a scalability problem
(reading event data from 1600 different sources!).

To provide a basis for the decision switch-based vs. bus-based, our Bern
group launched a measurement program dedicated to address the questions:

e Can the SFI perform building events out of 1600 data fragments coming
from 1600 data sources?

e Does staged EB really help the SFI to perform better?

e In which scenario will we have a more advantageous traffic pattern in
the network? Is it easier to route many small or fewer big messages
through the network?

e In which scenario can we control the traffic in the network better?
e Which scenario shows a better scalability! to large system scales?

A large part of the measurements presented in chapter 10 are dedicated to
answer the questions which are raised above and to prove that the choice of a
switch-based ROS architecture is feasible and viable. If one can demonstrate,
that the SFI performance and the EB system performance in a switch-based
ROS scenario is the same as in the bus-based scenario or at least compa-
rable, the switch-based ROS is a viable solution to the bottleneck problems
mentioned above.

In the case of the L2PU the question of performance is much less relevant,
as the L2PU will in average ask for two ROB fragments per ROS only and
not for full ROS fragments. Therefore a L2PU doing Rol collection shows
practically the same performance for both scenarios.

For both the L2PU and the SFI the mechanics for obtaining event data are

1As the ATLAS TDAQ system is large, consisting of many hundred PCs, scalability
in various areas is one of the major concerns. One of these areas is the scalability of Rol
collection and EB.
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the same: each application requests event data from ROS PCs or from the
ROBs (depending on the ROS scenario), sending a request message and re-
ceiving event fragments. So in any case the traffic pattern of Rol collection
and EB is request-reply.

6.3.2 Level 2 High-Level Trigger

The interface between DataCollection and the Level 2 High-level Trigger
(HLT) is located inside the L2PU application [DC-19]. The same software
process runs the Level 2 trigger algorithms and the Rol collection. The
interface between the selection software and the DataCollection is provided
by the HLT infrastructure group. The interface has to deal with the following
conversions:

e Level 1 result: the Level 1 result including a description of the Rol
arrives via the network and is dispatched by DataCollection. This
information is converted by the Byte-stream converter? to an Event-
data model® object and is forwarded to the selection software.

e Data request: based on the Rol description, contained in the Level
1 result, the physics selection software requests data. The selection
software is aware of the detector description and therefore knows the
identifiers of those ROBs it needs data from. The DataCollection soft-
ware can then resolve the corresponding network address and request
the data from the ROS, which stores and makes available the event
data while the Level 2 trigger is processing. The same mechanism
takes place in the case of subsequent data requests of the algorithm.

e Event data: The incoming event data is dispatched by the DataCol-
lection software layer. It is forwarded to the HLT infrastructure as a
byte-stream. Before the selection software can access the information
contained in the byte-stream, it has to be translated by the so-called
byte-stream converter into Event-data model objects.

e Level 2 result: after the selection software has taken the Level 2 de-
cision, a detailed record about the processing steps and the decision
criteria applied is passed to the HLT infrastructure. It is converted

2The L2PU receives the event data from the network as a byte-stream. In order to make
the event data meaningful for the trigger algorithms a conversion to objects according to
the Event-data model has to take place.

3The Event-data model defines objects, which were identified in the detector, such as
showers in the calorimeters or clusters or tracks in the inner detector.
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from an object to a byte-stream. The detailed Level 2 result is then
forwarded by DataCollection via the network to the pROS application.
A briefer Level 2 Result, containing the decision, the Level 1 trigger
type and the Level 2 trigger type only, is sent by DataCollection to the
Level 2 supervisor.

6.3.3 Event-Filter

The interface between the SFI and the Event-filter and between the Event-
filter and the SFO is the Event-filter input/output protocol (EFIO) [DC-35].
It is based on the TCP protocol (see appendix B) and designed to transfer
big data blocks (1.2 MB event size) at a low rate (in the order of 40 Hz). The
fully built events are sent as byte-streams from the SFIs to the Event-filter
and, in case an event is accepted by the Event-filter, from the Event-filter to
the SFO.

6.3.4 Online Software

The OnlineSW (OnlineSW) is the software used to configure, control and
monitor the TDAQ system [WEBO07]. The DataCollection has to interface
to the OnlineSW for all services it relies on. These services are run control,
configuration database, system monitoring, event monitoring and message
reporting. These interfaces to OnlineSW are described more precisely in
chapter 8.
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Chapter 7

The DataCollection Network

7.1 Network Topology

The different DataCollection applications and the ROSs need to be intercon-
nected with a network to exchange messages between each other. Given the
performance requirements on DataCollection, the requirements on maintain-
ability and cost constraints, Gigabit Ethernet is the only technology which
is currently being investigated, after an thorough evaluation of various tech-
nologies (e.g. Fiber Channel, ATM and SCI). The Gigabit Ethernet network
has to be set up in such a topology that no connection becomes a bottle-
neck. In case there is a bottleneck in the topology and more data tries to
flow through a connection than this connection can absorb, buffers in the
network switches will fill up and overflow. Therefore the switch must drop
data packets, which are then lost. This problem is referred to as congestion
in the switch.

In the switch-based ROS scenario, there is one kind of main data producer in
the network and two kinds of main data consumer. The data producers are
the ROBs (housed in ROSs, but connected to the network), which send out
data fragments on request. The data consumers are the Level 2 processing
unit and the SFI, both applications request the data individually. The fun-
damental difference between the L2PU and the SFI is, that the SFI is fully
dedicated to EB and therefore should be able to drive the capability of a
Gigabit-Ethernet link, whereas the L2PU spends most of its CPU resources
processing trigger algorithms and the collection of the Rol data uses only a
small fraction of it.

The easiest approach would be to connect all the data sources and all the data
absorbers to one big central switch. However, this approach is not feasible as
switches with the requested number of ports (more than 2000) do not exist.
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Therefore additional switching layers need to be foreseen in the network, the
so-called concentrator and deconcentrator switches: one can connect a few
ROBs (e.g. 16) to a concentrator switch and connect it via an up-link to
a central switch. From the other end one can connect L2PUs indirectly to
the central switch via deconcentrator switches, because the required input
bandwidth into a L2PU of ~ 8 MB/s is far below the Gigabit-Ethernet band-
width. This approach is not valid for the SFI, because, as mentioned above,
an SFI should drive the capability of one Gigabit Ethernet link. Therefore
already connecting two SFIs to a deconcentrator switch would make the link
between the deconcentrator switch and the central switch a bottleneck. This
means that the SFIs will need to be connected directly to a central switch.
In order to reduce the size of the central switch, individual central switches
for Rol collection and for EB may be installed. This means that both the
Level 2 and the EB switch need to be connected to each ROB concentrator
switch. This scenario (shown in Fig. 7.1) is the most probable in the begin-
ning of the experiment [DC-59]. In later stages of the experiment, additional
EB switches could be added to the system allowing the EB rate to increase
above 3 kHz (see below).

Another implementation option could be to use both central switches for

mixed traffic and not to separate Rol collection and EB traffic. Rol collection
and EB traffic have different patterns: EB requests data from all data sources
in an almost equally distributed traffic pattern, whereas Rol collection will
ask for a lot of data from certain data sources, but will never or rarely touch
other data sources. Therefore mixing the non-uniform Rol collection and the
uniform EB traffic would allow to load the switches in a more balanced way.
With the proposed “almost bottleneck-free” architecture [BEC03b], the sys-
tem can grow continuously by adding more central switches with either
L2PUs attached to them (again via deconcentrator switches) or SFIs. Espe-
cially adding more central switches for the EB and adding more SFIs will be
an interesting option if physics needs require a bigger Event-filter capacity
and therefore the EB rate needs to be increased.
Even with a very carefully designed network topology, switch buffers may fill
up due to short-time traffic fluctuations (short-time congestion). Therefore
it is important to control and restrict the number of messages in the network
with a fine granularity to avoid buffer overflows and reduce message loss.
The restriction of the total number of Ethernet frames in the network to an
upper limit is implemented on the application level, e.g. in the SFI. Such
strategies to control the traffic in the network are called traffic shaping and
will be discussed in section 9.3.
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7.2 The Link Technology: Gigabit Ethernet

The link technology of the DataCollection network is exclusively based on
Gigabit Ethernet [SIN97].

Gigabit Ethernet has the following key specifications, which are important
for the DataCollection system:

e Line speed: 1000 MBits per second

e Maximum data fragment size (frame size): 1518 Bytes

Copper or fiber cables as physical connections

Full duplex: sending and receiving of data do not interfere

Flow control: an overloaded receiver can send an “XOFF” message to
the sender to stop the transmission of more data. The receiver resumes
with an “XON” message.

A parameter which plays a key role in all DataCollection performance studies
(see chapter 10) is the maximum data fragment size or frame size of Ether-
net. As specified above, its maximum size is 1518 Bytes, but due to necessary
header information in the front of every message, the effective payload per
frame available for DataCollection is ~ 1460 bytes. This means that inde-
pendent of the message size the data sources send out, the receivers (L2PU
and SFI) will always get the data in pieces of 1460 Bytes and need to merge
these fragments to a full message. This fact is of particular interest for EB,
because the size of the data fragments sent via the ROLs to the ROBs are for
most of the ATLAS sub-detectors of the size of ~ 1000 Bytes (see chapter 2
of [ATLO03]).
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Chapter 8

The DataCollection Software
Framework

The framework provides an ensemble of common functionalities to the Data-
Collection applications. These services include Message-passing, Application
Control, Error Reporting, Configuration Database, System Monitoring, OS
Abstraction Layer, Event-formatting and Time-stamping. A part of these
framework packages (e.g. Application Control) needs to interface to the com-
mon TDAQ control software services, provided by the OnlineSW ensemble.
A global view on the DataCollection software framework is given in [DC-01],
[DC-43] and [HAEO03].

As the DataCollection framework is designed and implemented in an object
oriented language (C++), specific terms like class, object or inheritance will
occur in this chapter. These terms are explained in appendix D.

8.1 Message-Passing

The Message-passing layer is responsible for the transfer of event data and
control messages in between DataCollection components and between Data-
Collection components and the ROS [DC-08], [DC-13]. The control mes-
sages ensure the proper movement of the data. The DataCollection Message-
passing imposes no structure on the data to be exchanged, except a four-byte
alignment of the byte-stream. It allows the transfer of data blocks of up to 64
kB size with a best-efforts guarantee. For efficiency reasons this layer does no
re-transmission or acknowledgment of data. This choice has allowed the API*
to be implemented over a range of technologies (see appendix B) without im-

L Application programming interface: the interface between different modules of soft-
ware
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posing an unnecessary overhead or the duplication of existing functionality,
e.g. in the case of TCP/IP. The API supports the sending of both unicast?
and multicast® messages. The latter may be emulated to the DataCollection
application code in case the underlying protocol does not support multicast,
e.g. for TCP/IP.

The architecture of the Message-passing layer is shown in Fig. 8.1. The
Port class is the central interface for sending data. Every message, which
is sent or received, is handled by a Port object. All user data has to be
part of a Buffer object to enable it to be sent to or received from a Port.
The Buffer interface allows for addition of user-defined memory locations
without involving copying. The Provider class is an internal interface from
which different protocol and technology-specific implementations inherit. It
creates and holds the Port objects. Multiple Provider objects can be active
at any given time allowing the concurrent use of different protocols. To
date providers implementing TCP/IP, UDP/IP and raw Ethernet exist. The
design is open for more protocols to be added at any future time.

As the Message-passing layer itself does not guarantee the reliable delivery
of messages via the network (except if running a reliable underlying network
protocol e.g. TCP/IP), the DataCollection application code has to imple-
ment strategies to avoid message loss and to recover from eventual packet
loss. We have mainly observed message loss in input buffers of switches and
in the Linux kernel input buffer. A large part of this loss can be avoided by
limiting the number of outstanding requests in a request-reply traffic pattern.
This traffic shaping will be extensively discussed in section 9.3.

More information about the DataCollection Message-passing can be found
in [DC-08], [DC-13] and [DC-21].

8.2 Application Control

The ATLAS TDAQ system consists of applications running distributed among
many hundreds of computers. Therefore a hardware? and software infrastruc-
ture is needed to control those applications, which is called run control. The
run control interface is responsible for translating state transition commands
(e.g. start or stop), issued by a run controller, into commands internal to
a DataCollection application. This run control interface is called applica-
tion control and is inherent in every DataCollection application. It controls
activities which are implemented by the application developer and which

2Sending a message to one single network destination
3Sending a message to multiple network destinations
A control network beside e.g. the DataCollection network
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follow the state transition commands. The application’s functionality is im-
plemented in the activities, which are therefore the main building bricks of
the DataCollection applications. Examples of activities will be presented in
chapter 9. The requirements on the DataCollection application control are
documented in [DC-06].

8.3 Error Reporting

The Error Reporting package allows the logging of error and debug messages
either to standard output, standard error or to the message reporting system
(MRS) provided by the OnlineSW. Each DataCollection software package
can define its own set of error messages and error codes. Error logging can
be enabled/disabled on a per package basis. Furthermore, debug messages
and error messages are treated logically differently, so the debug message
could go to standard output while all normal application logs go to MRS.
The user only interfaces via a set of macros to the Error Reporting system.
This allows the optimization of the applications at compile time by compiling
debug messages out of the DataCollection code in case they are not needed.
More details about the Error Reporting, implemented by the author, are
available in [DC-04], [DC-15] and [DC-20].

8.4 Configuration Database

All DataCollection applications obtain their configuration parameters from
the configuration database provided by the Online SW. The access layer to
the configuration database allows the underlying implementation to change
without implying changes to the application. The application’s view of the
database is hidden by configuration objects which access the database, pro-
viding a more convenient way to access configuration information. The con-
figuration objects themselves are created by a code generator, which parses®
the configuration database schema file. See [DC-03], [DC-11] and [DC-52]
for more details.

8.5 System Monitoring

This part of the framework allows every DataCollection application to make
arbitrary information available to some outside client. In practice this in-
frastructure is used to publish operational statistics like counters or rates.

5to parse: a program interprets a text file.
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The package makes this information available in various different ways, in-
cluding the OnlineSW. The system monitoring services are implemented and
attached to the DataCollection applications as activities. Detailed documen-
tation about the system monitoring is available in [DC-05] and [DC-33].

8.6 OS Abstraction Layer

The Operating system (OS) abstraction layer consists of packages hiding all
OS specific interfaces. E.g. the threads package hides the details of the under-
lying POSIX [GAL95] thread interface, which could be replaced by another
implementation without propagating the changes to the application code.
The requirements on the OS Abstraction layer are spelled out in [DC-02].

8.7 Event-Format

This package supports formatting event data according to the structure spec-
ified in [BEE98]. The ATLAS full event data is structured in Subdetector-
fragments, which are then divided into ROS-fragments, which are again di-
vided into further subfragments. Every fragment contains a header and a
number of subfragments. The Event-format library links the event frag-
ments to their header information and their subfragments. In addition the
Event-format library needs to provide the tools to navigate through the event
structure.

As the data fragments of a given event are not necessarily residing in a con-
tinuous memory space, but distributed among several buffers in memory, the
Event-format library must be aware of how the event fragments are stored.
This awareness is implemented in so-called Storage types. One important
example is the I/O vector storage type. This storage type avoids copying
when sending out an event which is distributed to many places in memory:
it allows for scatter-gather send operations. A vector of pairs of pointers and
sizes of data fragments (a so called I/O vector) are handed over to the op-
erating system in one single system call. This strategy avoids copying data
in the memory without increasing the number of system calls. It will be
discussed in section 9.3.

8.8 Event-Storage

The Event-storage library is responsible for writing events to disk. Usually it
is used by the SFO, but it can also be used by the SFI when a setup without
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Event-filter is operated. The package allows the data of a run to be split into
different files of a defined size. The requirements of the Event-storage library
are described in [DC-37].

8.9 Time-Stamping

The Time-stamping library provides hooks to resolve the timing behavior of
the software. Two dedicated implementations exist. The first one is based
on NetLogger [TIE02] and used to understand the timing behavior of a dis-
tributed system [DC-32]; the second provides fine-grained time resolution
to understand the timing behavior inside a single application [DC-48]. The
output of both implementations satisfies the NetLogger format and therefore
the NetLogger visualization tool can be used to analyze the data generated
by both of them. An example of results achieved with the Time-stamping
library is shown in chapter 10.

8.10 Multi-threading

Modern operating systems (e.g. Linux or Windows 2000) support multi-
tasking. Multi-tasking means that a user can run multiple processes on one
computer in parallel. The so-called scheduler of the operating system assigns
time slices on the CPU(s) to the different tasks.

Multi-threading is a lightweight version of Multi-tasking. In Multi-tasking
the different tasks are well shielded from each other and they have separate
memory areas assigned. This is not the case for multiple threads, which share
the same memory area. This concept has the advantage that switching and
passing of information between different threads is easier and faster. It allows
a complex program structure to be broken up into simpler logical blocks. The
disadvantage of this concept is that, due to the usage of a common memory
area, the threads can interfere, which may lead to slowdown, memory leakage
or even to crashes of programs.

Multi-threading is a central design paradigm of the DataCollection software.
It allowed the design of applications to be kept simple by breaking up the
functionality into well-contained functional blocks. The performance of the
DataCollection applications also benefits from this paradigm, especially when
running on dual-CPU machines, because both processors can be fully loaded
running threads in parallel.

46



DC Application

Activity Activity Activity Activity

. cC
Message Passing s |:-2| 2|_.2|20
RS|cs|0E|SE|SQ
S5|2E|5a|cE |2t
° > LU S = ®
TCP | UDP | /2% |50 08| ¢8| 5|50
Ethernet| < S

OS Layer

Figure 8.2: An overview of the DataCollection framework architecture

8.11 Composition of DataCollection applica-
tions

A DataCollection application (e.g. L2SV or SFI) is a program which is built
upon the DataCollection framework. The main building blocks of an appli-
cation are the activities. An activity is a module inside the application which
obeys the state transition commands of the external run control. Internally,
an activity runs one or multiple threads, which execute a part of the appli-
cation’s functionality. For the implementation of the functionality and for
more generic services (e.g. Error Reporting) the framework functionality is
accessible for the application developer.

To summarize: a DataCollection application is a collection of activities. Ac-
tivities benefit from all framework services and implement the application’s
functionality. This architecture is drawn in Fig. 8.2 and will be illustrated
with examples in chapter 9.
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Chapter 9

The Design of the Event
Building Applications

The EB applications are the DFM, the SFI and partly the SFO. These ap-
plications are DataCollection applications as generically described in section
8.11. The sequence of interactions between the applications (except the SFO)
is drawn in Fig. 6.2. The author made major contributions to the design and
implementation of all three EB applications.

9.1 Design of the Dataflow Manager

The DFM receives Level 2 decisions from the L2SVs. It assigns every Level
2 accepted event to an SFI for EB and receives an EoE message when the
event is built. It clears Level 2 rejected and built events from the ROSs. Its
design is drawn in Fig. 9.1 and documented in [DC-23].

There is almost no parallelism in the task of the DFM: either it receives a
Level 2 decision from the L2SV or an EoE message from the SFI. In both cases
the program has to access the EB bookkeeping facility, the load-balancer.
Therefore there is no reason to split the main task into different threads,
because the threads would interfere, locking each other on the bookkeeping
facility. However, there are independent service threads, e.g. for timeout or
system monitoring, which access the load-balancer not at all or only at a low
rate (~ 10 Hz).

The bulk of the work is done in the Input activity. This activity takes all
the action needed for treating the incoming messages: in case of an incom-
ing Level 2 decision it assigns an event to an SFI using the Load Balancer
algorithm. In case of an ’end-of-event’ message the event is removed from
the load-balancer. In addition, Level 2 rejected and built events are passed
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Figure 9.1: Schematic view of the DFM design

to the output handler to be deleted from the ROS. Under certain conditions
the Input activity may receive busy/non-busy messages from individual SFIs:
these SFIs are then taken out of/put into the load-balancing.

The Timeout activity in the DFM scans at a low rate through all events held
by the load-balancer. It identifies events which were assigned to an SFI, but
for which no EoE message was received. This may lead to a reassignment of
this particular event to an SFI for EB. This events are marked as possibly
duplicated in their header to catch the case the event was built but the EoE
message was delayed or lost.

9.2 Design of the Subfarm-input

The SFI application provides the main part of the EB functionality. There-
fore it is the most complex EB application, running different independent
tasks in parallel:

e Dispatching incoming messages from the network
e Requesting event fragments from the ROSs

e Identifying event fragments and building events
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Figure 9.2: Schematic view of the SFI design

e Re-asking for missing event fragments
e Sending the events to the Event-filter

e Providing events for monitoring

Each of the subsets of the SFI functionality are implemented in a specific
activity. The activities directly involved in EB and their interactions are
drawn in Fig. 9.2. The SFI design document is [DC-44].

9.2.1 Input Activity

Dispatching incoming messages from the network is done by the Input activ-
ity. It puts the received messages into a DataCollection buffer (see section
8.1). In case the incoming message is an event assignment from the DFM,
the event identifier is put into a queue to the Request activity. In case it
is an event fragment from the ROS, the buffer is kept and a pointer to the
buffer is put in a queue to the Event-assembly activity.

9.2.2 Request Activity

The Request activity sends a data request for each event to every ROS. In
order not to overload the network and the Input activity, the number of
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outstanding requests at any given time is limited. This measure is called
traffic-shaping and discussed in section 9.3.

9.2.3 Event-Assembly Activity

The Event-assembly activity identifies the incoming event fragments: it reads
the event identifier and the data source from the message header. This allows
the fragment to be put into a fragment directory. As soon as all fragments of
a given event have arrived, they can be put in the event structure using the
Event-format library, described in section 8.7. The events are not copied to
a continuous memory space, but the pointers to the DataCollection Buffers,
where the event fragments reside, are held in the order specified by the event
format.

9.2.4 Event-Handler Activity

The Event-handler activity controls the EFIO server in the SFI. For every
connection to an Event-filter a EFIO Handler is created. The EFIO Handler
retrieves pointers to events from a queue and sends them out sequentially on
request of the Event-filter.

9.2.5 Event-Sampler Activity

The Event-sampler activity is the interface of the SFI to the event monitoring
facility of the OnlineSW. It keeps events ready to be sent out on the request
of an external monitoring client.

9.2.6 Service Activities

In addition, there are a couple of service activities implemented:

e The Timeout activity identifies missing fragments of events and reports
them to the Request activity for a re-ask.

e Two other activities are needed for the system monitoring. These two
activities are not SFI specific and therefore a part of the DataCollection
framework (see chapter 8).

9.3 Evolution of the Subfarm-Input Design

The SFI design, which is described above, is the result of a long evolution
process. The evolution was heavily driven by performance measurements and
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optimizations in a very short feed-back loop: the author worked on a pow-
erful testbed, running the SFI against FPGA and ALTEON ROS emulators
(appendix A). There were several strategies to be chosen and problems to be
identified and solved in order to provide performant and efficient SFI code.
A chronological summary of the evolution of the SFI design is presented in
[GADO3].

9.3.1 General Strategy

There are two relevant rates in the dynamics of the SFI application: the
event rate and the fragment rate. The target value for the event rate on an
SFI is in the order of 40 Hz. As an event consists of 1600 fragments from as
many ROBs, the fragment rate is 64 kHz. For every event fragment which
arrives at the SFI a request was sent out before. Therefore the total message
rate on the SFI is 128 kHz. The obvious strategy to meet these requirements
is to do as many operations as possible (even heavy operations) with the
event rate, e.g. preparing the structure for the full event or composing the
queue of all fragment requests for a given event. The operations which occur
at the aforementioned high fragment rate (like unpacking a ROS-Fragment,)
should be very lightweight and fully optimized.

9.3.2 Multi-threading

Currently, high end PCs are typically SMP dual processor devices. The
two processors are driven by the same operating system and share the same
memory space. As multiple threads within the same process can run on
different CPUs, multi-threading allows both CPUs of the PC to be loaded
and to exploit the available computing power fully.

9.3.3 Advanced STL Memory Allocators

The DataCollection applications are heavily based on the STL [JOS99], which
provides data containers such as vectors or maps. STL has its own memory
management dealing with its own memory pool. There is a global pool for a
process, which is shared between the threads. To avoid memory corruption,
the pool is locked for all the other threads whenever a thread is accessing
it. If another thread needs to access the memory pool at the same time,
it is blocked until the first thread has unlocked the memory pool. If such
jams of threads occur frequently, this results in a big performance loss of
the application. To avoid this, the so-called pthread allocator can be used,
which is using an independent memory pool for each thread. Applying the
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pthread allocator boosted the performance of the SFI by more than a factor
of two. However, the pthread allocator may have a serious drawback: as
there is no flush mechanism between the multiple memory pools, a memory
leak may occur if memory requested in one thread is systematically released
in a different thread. Therefore DataCollection has implemented a more
advanced allocator, which uses a memory pool per thread as well, but with
a flush mechanism between the different memory pools via a global pool.
As the global pool may be accessed by different threads, it needs to be
locked as well. Due to the memory buffering in the thread-owned memory
pools, accessing the global pool happens at a low rate only and therefore
the probability that one thread blocks another thread is much smaller. No
performance loss due to thread jams is observed.

9.3.4 Advanced Buffer Pools

It is the nature of the SFI that it has to buffer event data until each event
has completely arrived and can be built. The buffer space for the event
fragments is the memory of the SFI PC. A process can request this memory
dynamically from the operating system and must return it when it does not
need it anymore. As this procedure is quite CPU time consuming, it was
decided to allocate the needed buffer memory once and to re-use it for the
whole lifetime of the process.

These preallocated buffers need to be managed by a buffer pool, which knows
which buffers are available and which buffers are occupied, to avoid memory
corruption. As only one thread at a time can be allowed to request a buffer
from or return it to the pool, the pool must be locked while the operation is
happening. This may lead to threads blocking each other, which results in
performance loss, as already discussed for the STL allocators. The chosen
solution is similar to the one for the STL allocator problem: a buffer sub-pool
per thread with a flush mechanism to the global pool was implemented: a
thread which is using all the buffers in its sub-pool can request new buffers
from the global pool, a thread which releases more buffers than it requests
returns empty buffers from its sub-pool to the global pool. In a stably running
system the balance is neutral. Accessing the global pool happens at a low
rate only and therefore the probability that one thread blocks another is low.

9.3.5 Traffic-Shaping

Sending out an event request to a ROS takes ~ 6u s, while dispatching an
incoming message, identifying it and putting it into the event structure takes
~ 20u s. In case the Request activity runs uncorrelated to the other activities
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of the SFI it will overload the application. As more data will flow into the
PC than the application can absorb, the operating system will drop event
fragments from its kernel buffers. Many different approaches have been tried
to throttle the rate of the Request activity. The final solution to this prob-
lem was to limit the number of outstanding requests, blocking the Request
activity when the threshold is reached via a Semaphore! mechanism between
the Input activity and the Request activity. This mechanism is called credit
based traffic-shaping and it is one of the author’s main breakthroughs while
working on the EB system.

This mechanism not only protects the SFI against overloading itself, but it
also helps stabilize the whole EB system to a large extent. Limiting the
number of outstanding requests on the level of a single SFI means to limit
the number of messages in the whole EB system with a very fine granularity
on a per ROS fragment level. If this limit is set at a safe value no buffers in
switches will overflow and messages will only be lost very rarely. In addition,
thanks to the credit based traffic-shaping the system becomes self-regulated:
whenever problems in the network occur and switch buffers start filling up,
the latency of a request-reply transaction will increase. Therefore the request
rate on the SFI will automatically slow down and the network can recover.
As soon as the network has recovered, the latency in the request-reply traffic
will decrease and the request rate will go back to the maximum.

9.3.6 Scatter-Gather Send

The SFI receives ~ 1600 event fragments and has to send out the full event
in a continuous TCP byte stream. The most naive and simple approach
would be to put all the 1600 fragments into a continuous memory space and
to ship it out. The disadvantage of this simple solution is that the SFI needs
to copy internally a lot of data until all the fragments are in the continuous
memory space. Therefore the paradigm chosen to fulfill this task is the so-
called Scatter-gather Send. This means that, after an event fragment has
arrived at the SFI and has been put into a DataCollection buffer, it is not
moved in memory until it is sent out. A key tool to achieve the scatter-
gather send is the IOVector storage type of the event-format library, which
was already briefly discussed above (see section 8.7). The IOVector storage
type holds pointers to the event fragments and the fragment sizes. On request
it produces an 1/O vector (a vector of pointers to event fragments and their
sizes) in the order specified by the Event-format library. This vector can

LA synchronization mechanism between two or more threads (see in the glossary).
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then be passed to the operating system via two system calls?. The operating
system then sends the elements of the vector in the correct order to the
network. On the other end the receiver gets the event as a continuous byte
stream.

9.3.7 Inter-Thread Communication

As explained in section 8.10, the communication between multiple threads is
lighter and faster than that for multiple processes. Despite this fact, inter-
thread communication can slow down the performance of an application sig-
nificantly. Two such problems were identified and solved in the SFI:

e In order to implement the credit based traffic-shaping, a counting mech-
anism between the Request activity (sending out fragment request) and
the Input activity (receiving the requested fragments) is needed. This
mechanism is based on a so-called counting Semaphore. For every re-
quest issued the counting semaphore is decreased, for every received
fragment it is increased. If there are no credits left, the Request activ-
ity blocks on the semaphore until it is increased by the Input activity.
This switching of the semaphore takes ~ 6us. This problem was solved
by grouping the Semaphore switches: a switch signifies not one credit
but n credits. This means whenever the Request activity unblocks on
the semaphore it is allowed to send out n data requests. Accordingly
the Input-thread does not increment the Semaphore before it has re-
ceived n event fragments.

e The Input activity dispatches messages and the Event-assembly activity
does the logical EB. Between the two activities a queue to hand over
pointers to DataCollection buffers (where the data fragments reside)
is used. As dispatching the message takes more time than doing the
logical EB, this queue is emptied frequently and the Event-assembly
activity blocks on the queue. Whenever a fragment is put into the
queue by the Input activity, the Event-assembly activity wakes up and
does the necessary processing. Blocking and waking up the underlying
thread of the activity takes a significant amount of CPU resources.
This amount is so large, that applying optimizations to the Event-
assembly activity, and therefore provoking more block-wakeup cycles,
slowed down the application in total. Therefore the queue grouping

2As 1024 IOVector elements can be passed to the operating system within one system
call in maximum, two system calls are needed to send out an event consisting of 1600
fragments.
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was introduced: the Event-assembly activity does not wake up before
n entries are waiting in the queue.

9.4 Design of the Subfarm-output

The SFO is a simple application receiving events from the Event-filter and
writing them to disk. This task can be split into two disjunct jobs:

e Reading the events sent by Event-filters from the network and putting
them into an internal buffer (memory of the PC)

e Taking the events from the internal buffer and writing them to disk

The design of the SFO is very simple and drawn in Fig. 9.3. The first part
of the functionality is provided by EFIO-Handlers in the Input Activity. An
EFIO-Handler is a thread serving one TCP connection to an Event-filter
node, therefore there is one handler for every Event-filter node the SFO
receives data from. The EFIO Handler serves the events sequentially, reads
them from the network connection to the Event-filter and stores them in the
internal buffer of the SFO.

The second part of the SFO functionality is provided by the Event-storage
activity. It writes events sequentially, which are stored in the internal buffer,
to the local hard disk using the Event-storage library.
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Chapter 10

A Study on the Event Building
Performance

Two kinds of tests were provided to validate the performance of the EB
system:

e Application tests to evaluate the performance and the scalability of an
isolated component

e System tests to evaluate the performance and the scalability of multiple
components

Both application and system tests were needed to validate and develop views
on the ROS architecture.

EB performance measurements were reported in a number of notes and publi-
cations: [DC-60], [LEV03], [HAE03], [GADO03], [BEC03a] and [LEH03|. The
author provided all the performance measurements presented except for the
DFM application tests.

The tests were exclusively performed on the so-called wedding-list testbed,
which was built for Dataflow performance studies [WEBO03]. The testbed
consisted of 36 dual-CPU PCs. They were equipped with Intel XEON pro-
cessors with a clock frequency of 2.0, 2.2 or 2.4 GHz, with Intel e1000 Gigabit
Ethernet NICs and with 1 GB RAM. The operating system was Linux with
the kernel version 2.4.9 for SMP machines. The PCs were interconnected
with Gigabit Ethernet via two BATM T6 switches(see appendix C). For
specific measurements two PCs were interconnected back-to-back!. For run
control and system monitoring they were interconnected with a secondary
network in order not to interfere with the DataCollection message flow on

!Back-to-back means that the Gigabit Ethernet NICs of two PCs are directly connected
with an Ethernet cable, without having a switch in between.
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Figure 10.1: DFM test setup

the primary network. As test equipment a dedicated tester program for the
DFM and hardware ROS emulators were employed (see Appendix A). The
emulators were interconnected with the PCs either directly via a BATM T6
central switch or via BATM T5 concentrator switches and a BATM T6 cen-
tral switch. The terms central switch and concentrator switch are explained
in section 7.1.

10.1 Event-building Application Tests

10.1.1 Dataflow Manager Performance

The main aim of the DFM application tests was to determine the maximum
EB rate the DFM can handle and to investigate the scalability of the appli-
cation. Scalability is important, because the DFM will need to handle a big
system with ~ 75 SFIs and hundreds of events being built concurrently. The
DFM is not expected to be the bottleneck in the system, but measurements
were needed to confirm this expectation and to determine the maximum rate
the DFM can sustain.

DFM Test Setup

The DFM application tests were mainly performed on a two node-system,
connected back-to-back. On one node the DFM application ran and on the
other node a specific DFM tester application was deployed. The CPU clock
speed of the tester PC and of the DFM PC was 2.2 GHz. The schema of the
test setup is drawn in Fig. 10.1

The tester application emulated the behavior of the L2SV and of a config-
urable number of SFIs. It sent Level 2 decision messages and EoE messages
to the DFM. The Level 2 decision messages were grouped (the strategy of
grouping Level 2 decision is explained in section 6.2) and there was always
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one Level 2 accept per message. The delay (in number of events) between a
Level 2 accept and the corresponding EoE message determines the number of
concurrently built events in the EB system. The DFM sent all its messages to
the network without having real SFIs connected as destinations. This means
that the messages sent by the DFM could not be delivered to any destination
and were dropped in the network. Therefore a connectionless protocol? was
used for the message-passing.

The measurements were done in such a way that the tester program slowly
ramped up its speed until the DFM could not handle the message rate any
more and started losing Level 2 decision messages and EoE messages. This
immediately triggered a bunch of WARNINGS (timeouts in case of the EoE
messages or EoEs of unknown events in case of the Level 2 decision message).
The DFM was modified to stop at the first such warning and the speed which
was reported last could be identified as the maximum rate the DFM can sus-
tain. This test procedure ensures that the DFM is the bottleneck in the test
system and therefore its performance can be assessed. If the tester applica-
tion or the back-to-back connection were the bottleneck, the DFM would not
issue any WARNINGS, as it could handle all incoming messages.

In order to validate this test procedure, comparative cross-check measure-
ments with small EB systems (e.g. one tester, one DFM, one software ROS
emulator and up to eight SFIs interconnected with the T6 switch) were suc-
cessfully provided.

DFM Test Results and Discussion

The measurements done for the DFM were mainly dedicated to assessing the
scalability of the application. The number of concurrently built events and
the number of SFIs in the EB system were varied and their effect on the SFI
performance was studied. An additional varied setting, were the grouping
factors of the Level 2 decision message and the clear message. The idea of

2DataCollection uses two connectionless protocols: raw Ethernet and UDP (User Data-
gram Protocol: see appendix B). Sending messages to non-existing destinations has some
technical particularities: for raw Ethernet frames it means that the messages were sent to
a non existing Ethernet (MAC) address. For UDP the situation is slightly more compli-
cated: a dummy UDP receiver was needed, listening and receiving messages on a given
port. This was necessary in order to prevent arp messages being exchanged through the
network between the NICs, which otherwise would corrupt the result. As UDP is IP-based
and we ran an IP over Ethernet system, the IP address resolution protocol (arp) was in-
volved to resolve the destination’s address. If this fails, arp feeds the failure back to the
sender. UDP will then suppress the next outgoing message but send the following one.
This means that without a dummy receiver only around 50% of the messages would be
sent out by the DFM and the DFM performance would be overestimated.

99



grouped messages is explained in section 6.2. The measurements done for
the DFM were:

e EB rate vs number of SFIs. Every SFI builds 2 events concurrently.
The measurement was done using the UDP and the raw Ethernet pro-
tocols and with a grouping factor of the Level 2 decision message of
100 and 300. The grouping factor of the clear message was 300.

e EB rate vs number of SFIs. The total number of concurrently built
events was constant. The grouping factors were 100 for the Level 2
decision and 300 for the clear message. The UDP network protocol
was used.

e EB rate vs number of concurrently built events. The number of SFIs
was constant. The grouping factors were 100 for the Level 2 decision
and 300 for the clear message. The UDP network protocol was used.

e EB rate vs CPU speed of the PC running the DFM. The UDP network
protocol was used.

e In addition the DFM was time-stamped to investigate how much time
the application spent on given actions.

EB rate vs number of SFIs, two events per SFI concurrently built
The results presented in Fig. 10.2 show that the scaling behavior of the DFM
is almost flat: around 10% performance drop was observed, increasing the
number of SFIs from 1 to 200 (thus increasing the number of concurrently
built events from 2 to 400). For a grouping factor of 300 the message rate
between the L2SV and the DFM is a factor of three lower, which explains
the better performance of this scenario. The raw Ethernet protocol performs
better than the UDP protocol. This result is consistent with the Linux
network performance study presented in [DC-54].

EB rate vs number of SFIs, number of concurrently built events
constant Keeping the number of concurrently built events (400) constant,
but varying the number of emulated SFIs, the DFM performance drops by
3% when going from one to 200 SFIs (Fig. 10.3).

EB rate vs number of concurrently built events, number of SFIs
constant The number of emulated SFIs in the system was kept constant
at a value of 50. The number of events in the EB system was varied from 3
to 800. Fig. 10.4 shows the result: a performance drop of 4% was observed.
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EB rate vs CPU speed As shown in Fig. 10.5, the DFM performance
scales linearly with the CPU speed. This means that the DFM performance
is purely CPU bound. This behavior is not surprising, because the DFM
sends and receives system messages of limited size and no big data messages.
At the observed rate of 25 kHz on a 2.4 GHz CPU both the input and the
output bandwidths of the DFM are 1.7 MB/s, which is far below the Gigabit
Ethernet capabilities.

Time-Stamps A typical example of a time-stamp evaluation is shown in
Fig. 10.6. The time the DFM spends on an incoming EoE message was
measured. Adding up this result with results from other time-stamp mea-
surements (e.g. receiving a Level 2 decision) allowed the calculation of the
EB rate the DFM should be able to sustain. This calculation agreed with
the rate measurements presented in this section.

The same procedure was successfully applied for the SFI application as well.

Summary and Conclusions The presented results show that the DFM
performance is one order of magnitude above the ATLAS requirements (an
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Figure 10.5: DFM performance versus CPU speed

EB rate of 3 kHz)for all measured scenarios. Therefore we conclude that the
DFM will not be the bottleneck for the ATLAS EB system. Neither will the
DFM be the limit for the SFI Application tests and EB system tests, which
will be described below.

The test results show that the DFM scales very well for both varied parame-
ters, the number of concurrently built events and the number of SFIs. As all
the DFM internal data structures used for the event bookkeeping are built
using STL container classes, this shows that the scalability of STL is sufficient
for our requirements in the case of the DFM. In addition, the measurements
show that the implementation of the DataCollection Message-passing is scal-
able, as communicating to more than 10? destinations (on the level of the
software, it is not important whether those destinations really exist or are
'ghost’ destinations as for this series of measurements) does not result in a
big performance penalty.

The question of bus-based vs switch-based ROS has no implication on the
DFM, as in the message-flow (see section 6.2) the DFM either exchanges
unicast messages with the L2SVs and the SFIs or multicast messages with
the ROSs (one single send operation to reach all the destinations).
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Figure 10.6: Time-stamp evaluation of the DFM receiving an EoE message.
There two main peaks, one at 2.5 us and one at 12.5 us. They represent two
different cases: due to the grouping of the clear messages (see section 6.2), a
received EoE message may or may not trigger a clear message to be sent to
the ROSs. This means that composing a clear message and sending it to the
network takes 10 ps. The two tails at 8 and 18 us are caused by the Linux
operating system which occasionally interrupts and delays the execution of
the DFM process.
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10.1.2 Subfarm-Input Performance

The main aim of the SFT performance tests was to determine the EB rate a
single SFI can sustain and the bandwidth of event data it can absorb.

As the SFT requests and receives the event data from the ROS, differences in
the SFI performance between the bus-based ROS scenario and the switch-
base ROS scenario can be expected. A switch-based ROS architecture means
that every SFI reads data from many more data sources than in a bus-based
scenario (one point of access from the EB system per ROL vs. a concentra-
tion of 12 ROLs via a PCI BUS). Advocating the switch-based ROS scenario
requires showing that reading small data fragments from many sources does
not result in a performance problem on the level of the SFI.

In order to understand the aim, the setup and the results of the SFI measure-
ments, it is important to understand the two ROS implementation scenarios,
which are described in section 6.3.1, and some technicalities of Gigabit Ether-
net explained in section 7.2, especially the significance of the Ethernet frame.

SFI Test Setup

The setup for the SFI application tests was significantly more complex than
in the case of the DFM tests. A DFM assigns events to the SFI. For event
data sources ALTEON or FPGA emulators were deployed (see appendix A).
The inter-connection to the DFM and the data sources was done via a Giga-
bit Ethernet network: the ALTEON emulators were connected directly to the
central switch as shown in Fig. 10.7, whereas the FPGA emulators were con-
nected via an additional layer of concentrator switches as drawn in Fig. 10.8.
Optionally, depending on the test scenario, there was an additional back-
to-back Gigabit Ethernet connection between the SFI and an Event-filter
emulator. This allows the SFT to be run in full through-put mode, request-
ing and receiving event fragments from the ROS emulators and sending them
to the Event-filter emulator. The SFI, the DFM and the Event-filter emula-
tor ran on the fastest available PCs in the testbed (2.4 GHz clock frequency).
As the event data sources were hardware ROS emulators for all tests, the raw
Ethernet protocol was used exclusively.

A technical particularity worth noting is the so-called alias operation mode
of the FPGA and ALTEON ROS emulators. In the switch-based ROS sce-
nario there will be 1600 data sources in the TDAQ system. The number
of available ROS emulators was smaller and therefore a realistic number of
data sources and realistic event sizes needed to be emulated. The solution
was to give no static identity to the ROS emulators, but enable them to act
as multiple ROSs. So every emulator was contributing multiple fragments to
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Figure 10.7: SFI test setup: the SFI is connected to 16 ALTEON ROS emu-
lators via a central switch. It is also connected back-to-back to an emulation
of the Event-filter.
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Figure 10.8: SFT test setup: the SFI is connected to two sets of 32 FPGA
ROS emulators via a central switch and a concentrator switch. It is also
connected back-to-back to an emulation of the Event-filter.
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a given event.

SFI Test Results and Discussion

The measurements done with the SFI were:

e Keeping the number of emulated data sources constant and varying
the event size. This means that the size of the single fragments were
varied from almost 0 (minimal header information) to a full Ethernet
frame. This measurement was provided running against the FPGA
ROS emulators acting as 1600 data sources.

e Keeping the event size constant at 2.2 MB? and varying the number of
emulated data sources. This means a variation of the data fragment size
the ROS emulators serve. Varying the fragment size from one to eight
Ethernet frames by keeping the total event size constant effectively
compares a ROS concentrating one ROL with a ROS concentrating
eight ROLs*. This comparison quantifies the difference in performance
on the level of a single SFI running in a switch-based or in a bus-
based ROS scenario. Because this test required the ability of the ROS
emulator to send multiframe messages, the ALTEON emulators were
used for this test.

EB Performance vs. Event Size The results of the first measurement
varying the event size while keeping the number of fragments constant are
shown in Fig. 10.9. Two sets of data points are plotted: the message rate
the SFI sustains and the bandwidth of event data the SFI absorbs. One
observes that the SFI is message rate limited, and that this limit is only
weakly dependent on the event size. The SFI performance in this setup is
purely CPU limited, as the measured maximum input bandwidth into the
SFI is 80 MB/s or around 64% of the Gigabit Ethernet line speed.

SFI EB and throughput performance vs. ROS concentration factor
The plot in Fig. 10.10 shows two series of measurements: the SFI doing
input only and the SFI doing throughput to the Event-filter for different
ROS concentration factors. Quantifying the effect of staging the EB with a

3 At the time these measurements were provided, the working assumption on the ATLAS
event size was ~ 2 MB. 2.2 MB became an established value for the measurements because
it corresponds to 1600 full Ethernet frames

4At the time these measurements were provided, the working assumption was that a
bus-based ROS concentrates eight ROLs. The current working assumption is that a ROS
concentrates 12 ROLs.
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bus-based ROS as described above, a performance gain of 30% in EB rate is
seen, going from a ROS concentration factor of 1 (1600 sources, single frame

messages) to 8 (200 source, 8 frame messages)®.

Summary and Conclusions The first measurement shows that the SFI
performance is event fragment rate limited and that this limit is almost in-
dependent of the fragment size (varied within one Ethernet frame). As men-
tioned above, the measurement shows that the SFI performance is purely
limited by its CPU resources.

The second measurement shows a disadvantage in performance for the switch-
based ROS scenario. This disadvantage is expected to disappear with faster
CPUs, as the Input/Output limitation of the network will then determine
the speed of the SFI. The maximum bandwidth which was seen in this mea-
surement was 95 MB/s: in this case the CPUs of the SFI PC were not
fully loaded anymore, which indicates that the network I/O limit has been
reached, whereas in the other cases the CPUs were fully loaded. Therefore
with faster CPUs all the data points on the plot will move from the CPU
limited area to the network I/O limited area.

The performance difference between an SFI doing EB only and an SFI doing
throughput is significant (35 Hz vs 25 Hz EB rate) and not yet understood.
It seems that there is no parallelism when handling two NICs concurrently,
one for EB and one for data output to the Event-filter. The results of addi-
tional investigations suggest that the NIC drivers are not the problem and
that probably the Linux kernel excludes the handling of two NICs by two
CPUs in parallel. Tests with more modern Linux SMP kernels need to be
provided in the future.

10.1.3 Conclusions Drawn from The Application Tests

The EB application tests show, that:

e The DFM performance is sufficient for EB system tests and even for
the full ATLAS experiment

e The SFI performance is promising. Depending on the scenario, an SFI
can absorb 80 - 95 MB event data per second. The SFI does not reach
the ultimate goal of fully exploiting the Gigabit Ethernet capabilities,

5The gain in input bandwidth was not 30% but only 19%. This is explained with the
difference of event size due to the different number of headers (200 vs 1600 ROS headers
per event)
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but it drives a big fraction of the Gigabit Ethernet bandwidth. There-
fore it can be applied for system tests which are relevant for the EB of
the final ATLAS experiment.

Therefore the application tests show that the DFM and the SFI are ready to
perform valid EB system tests.

10.2 Event Building System Tests

The upper limit of the EB performance is defined by the standalone per-
formance of the DFM and the standalone performance of the SFI. It is an
upper limit only because running many SFIs in an EB system could lead to
interference effects and therefore disturb and slow each other down. Such
interference effects could occur on the level of the data sources, because they
have to treat request from multiple SFIs, or in the central switch. There-
fore it is important to investigate the performance of an EB system varying
the number of SFIs. Ideally, every SFI which is added to the EB system
contributes the same EB rate as it would drive standalone, without any in-
terference occurring between the single SFls. Plotting the EB rate versus
the number of SFIs should show a linear, scalable behavior.

An interesting question arises in the context of the two different ROS ar-
chitecture scenarios: whether routing big multi-frame messages (bus-based
ROS) or small single-frame messages (switch-based ROS) through the net-
work will show the same scalability behavior or if there will be more inter-
ference observed in the first case. This question will be discussed below.

10.2.1 EB System Test Setup

The setup for EB system tests was very similar to the setup for SFI applica-
tion tests. The differences were:

e More than one SFI in the system, all running on 2.4 GHz PCs. The
maximum number of available 2.4 GHz PCs was eight.

e In order to operate a uniform system, the SFIs did EB only. There was
no output to the Event-filter and the events were deleted from the SFI
memory after they were completely built.

A schematic view on the EB test setup is show in Fig. 10.11.
There were two sets of measurements done:
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Figure 10.11: EB test setup: n SFIs are connected to 16 data sources via a
Gigabit Ethernet switch.

e 1600 fragments per event were collected. The fragment size was one
Ethernet frame. No Ethernet flow control was needed to run this setup
stably. This measurement reflects the switch-based ROS scenario.

e 200 fragments per event were collected. The fragment size was eight
Ethernet frames. Ethernet flow control was needed to run the setup
stably. This case reflects the bus-based ROS scenario.

For both scenarios the number of SFIs in the system was increased and the
total EB rate was measured. As the event size was 2.2 MB for all measure-
ments, the total EB bandwidth is proportional to the total EB rate.

10.2.2 EB System Test Results and Discussion

The results for the two scenarios studied are both presented in Fig. 10.12.
In the case of the bus-based ROS scenario, a linear scaling behavior was
observed up to eight SFIs. The maximum EB rate achieved was 350 Hz
(17% of the ATLAS EB rate) with eight SFIs, each contributing ~ 44 Hz.
The speed of the SFI was not exactly uniform due to different NICs. In the
case of the switch-based ROS scenario, the scaling was also linear, but the
overall performance was lower.

As already indicated when discussing the EB system test results we have to
distinguish the two fundamentally different cases:
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Figure 10.12: EB scalability for 200 (upper data series) and 1600 (lower data
series) data sources

e routing big data fragments from few data sources to the SFIs (bus-
based ROS)

e routing small data fragments from many data sources to the SFIs
(switch-based ROS)

The first case showed a slightly better performance than the second, because
the single SFIs gain from the staged EB, as was shown in the previous sec-
tion 10.1.2. However, routing big data fragments through the network has
serious implications on the traffic pattern: The switching network shows an
extremely high reliability in message delivery in the case of small data frag-
ments. The SFIs had to take recovery action on a very low rate only (one out
of 10% event fragments was re-asked), and the system ran in a stable condi-
tion. In the case of big messages, the scalable behavior of the network ends
when running more than four SFIs. The rate of message loss becomes high,
and the system falls into an unstable condition. As the system becomes un-
stable, the rate of packet loss is not quantifiable. The problem was overcome
by applying the Ethernet flow control mechanism, which issues back-pressure
on the sender if buffers in the switch become overloaded. The scalability plot
for the bus-based ROS scenario was obtainable only by applying Ethernet
flow control. As flow control is a feature of Gigabit Ethernet, it is reasonable
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to apply it. However, the need to rely on flow control, as was the case for
the bus-based ROS measurement, is problematic. Flow control blocks ports
of the switch. If it is frequently applied in a running system one gives up the
most important scalability feature of the switch: being non-blocking. This
would lead to a non-scalability in the system. Such questions need to be
further and carefully studied in the future.
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Chapter 11

Conclusions and Outlook

After having implemented, tested and measured the DataCollection Software,
especially the EB part of it, the following conclusions can be drawn:

e Thanks to the framework approach, it was possible to develop the
DataCollection software within two years, including extended testing.

e The framework approach will ease future maintenance of the software.

e The performance of the applications built on top of the framework is
promising and sufficient for ATLAS, even with today’s hardware.

e The scalability behavior of the EB system is promising (linear scaling
up to eight SFIs).

e The advantage to the SFI performance of the bus-based ROS approach
over the switch-based ROS approach is ~ 30%, due to the shortage of
CPU resources in the SFI PC. This shortage will vanish with faster
CPUs. As the PCs serving as SFIs at the startup of ATLAS are
expected to have 8 GHz CPUs [ATLO03] and the presented measure-
ments were performed on 2.4 GHz CPUs, the SFI performace will be
the same in both scenarios, limited by the Gigabit Ethernet link into
the SFI. Therefore ATLAS should profit from the advantages of the
switch-based ROS architecture which were discussed in section 6.3.1.
In addition there is a risk that the bus-based ROS approach may not
scale, because in this case the EB system relies fully on Ethernet flow
control.

e The performance of the ROB communicating to the network (switch-
based ROS scenario) needs to be carefully assessed in the future. If this
performance is insufficient, the advantages of the switch-based ROS
scenario will vanish.
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The development process of the DataCollection software is not finished. Our
experience with the software and feedback from users (especially at ATLAS
test-beam) will lead to a further evolution and improvement of the software.
This process will be influenced by the decision on the ROS scenario (bus-
based vs switch-based), which the ATLAS TDAQ collaboration has to take
at the end of the year 2004.
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Appendix A
ROS Emulators

For the functional and performance tests of the DataCollection software we
needed to send emulated detector data to the DataCollection network. The
sources sending Event Fragments were three kinds of emulators.

A.1 SW ROS Emulator

The SW ROS emulator (ROSE) is a full DataCollection application, built on
top of the framework. It provides dummy or preloaded data after receiving a
data request message from the SFI or the L2PU (see section 6.2). In addition
it counts the number of clears it gets from the DFM. The SW ROS emulator
was not used for EB performance tests, but it was needed for the development
of the EB applications and for functional tests.

A.2 FPGA ROS Emulator

The FPGA ROS emulator [LEV03] is a hardware device: an FPGA drives a
Fast Ethernet! port. Is uses the raw Ethernet protocol of the DataCollection
message passing. After receiving a data request message the emulator sends
out a fully formatted variable-sized ROS fragment. The size is determined by
a field in the header of the DataCollection message. The minimum payload
size is 4 Bytes, the maximum payload size is 1460 Bytes.

'Ethernet protocol as for Gigabit Ethernet, but the line speed is limited to 100 MBits
per second.
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A.3 ALTEON ROS Emulator

The ALTEON emulator [LEV03] is a programmable Gigabit Ethernet NIC.
It implements the same functionality as the FPGA emulators. In addition,
it is able to send out multiframe messages up to a total size of 64 kB and
counts the clear messages it gets from the DFM.
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Appendix B

Network Protocols

The DataCollection Message-passing is able to exchange messages using three
different network protocols: TCP/IP, UDP/IP and Raw Ethernet. A popular
reference for network protocols is [STE9S|.

B.1 UDP/IP: User Datagram Protocol

UDP is a simple non-reliable protocol. It sends messages from the source to
the destination. At the destination a checksum is recalculated and compared
with the one calculated at the sender. If the checksums differ, the message
will be dropped. As it is a connectionless protocol, there is no feedback to
the sender whether the message was valid and has arrived at the destination.
Therefore the protocol is not reliable and reliability, if required, has to be
added on the application level. The addressing and routing of messages is
based on the Internet Protocol (IP). In our specific case, running UDP in a
pure Ethernet LAN, the Address Resolution Protocol (arp) is used. IP and
arp are explained in section B.4.

Despite its non-reliability, UDP is very adequate to the purpose of the
DataCollection, since in a well-dimensioned LAN and operating applications
which implement an effective traffic-shaping strategy, message loss can be
minimized. The big advantage of UDP is, that it is scalable because the
application does not need to serve many connections in parallel, but many
sources can send messages to the same port of the destination.

B.2 TCP/IP: Transmission Control Protocol

TCP provides more services and is significantly more complex that UDP.
It establishes a connection between two communication partners. Between
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these two partners a byte-stream flows. Reliability is provided by confirming
every packet which arrives at the destination and retransmitting the data
if no acknowledgment arrives at the source. In addition, TCP provides flow
control: the protocol always tells its peer how many bytes of data it is willing
to accept from it.

The reliability of TCP may be helpful for system messages in the DataCollec-
tion network, as reliability for this kind of messages is vital. However, TCP
is not appropriate for EB or Rol Collection due to the following reasons:

e An application has to hold an open connection to all its communication
partners in parallel. This is possible in a small system but does not
scale.

e AsTCP is a byte stream, a partner to partner communication is blocked
if a piece of this stream is missing due to packet loss. The transmission
can be continued only after the recovery mechanism has acted and the
missing piece arrived.

e On the arrival of all transmitted network packets, the reception has to
be acknowledged by the destination. In a request-reply traffic scenario
as in Rol collection or EB, the acknowledgment for the request is added
to the reply message, but the acknowledgment for the reply has to be
sent as a single message over the network. This means that in case
of running TCP the number of messages in the network is 50% higher
compared to the case of a connectionless protocol.

e TCP hides problems in the LAN communication rather than solving
them. If a part of the network is a bottleneck or if a destination is over-
loaded, TCP will nevertheless deliver all data to the destination, but
the recovery mechanism will take CPU power at source and destination
and the network will be loaded with a lot of additional messages.

More detailed explanations about the usage of TCP/IP in the DataCollection
environment are given in [DC-62].

B.3 Raw Ethernet

Raw Ethernet is a low-level protocol accessing directly the facilities of the
Ethernet network technology. As the DataCollection network is a pure Eth-
ernet LAN] it is possible to operate with this low-level protocol without using
higher-level protocols like IP. As this is easier to implement on the level of
the hardware ROS emulators than UDP or TCP, it was chosen to run the
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biggest part of the DataCollection performance tests. However, on a Linux
operated PC a user needs to have privileged status to be able to run raw
Ethernet, which makes it more difficult to maintain in a future system than
standard protocols like UDP or TCP.

B.4 Underlying Protocols: IP and arp

The Internet Protocol is responsible for routing and delivering messages
through a network. In addition, it is responsible for splitting the messages
into fragments of the maximum supported size of the underlying network
technology (e.g. Ethernet) at the sender and to reconstruct the messages at
the receiver.

The address resolution protocol is responsible for resolving MAC-addresses
if IP runs over Ethernet. arp looks for a host with the given IP address, this
host will reply with its MAC-address. This allows IP to hand over the mes-
sage fragments to the underlying Ethernet protocol with the MAC-address
of the destination.
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Appendix C

Ethernet Switches

Switches route the network traffic from one physical connection to the others.
If one wants to push the throughput of a LAN close to the bandwidth spec-
ifications of the underlying Ethernet technology, one needs to set up a fully
switched network topology. Fully switched means, that no physical network
connections are shared between multiple senders and therefore no collisions
can occur (multiple senders transmitting to the same physical connection at
the same time). If one wants to connect a set of PCs with a fully switched
network, one needs to connect every PC directly to a switch.

The task of an Ethernet switch is to receive an Ethernet frame from an input
port, to look up the destination in the header of the frame, to look up in
an internal address table which output port corresponds to the destination’s
address and to send the frame to this port. While there are ongoing lookups
or short-time peaks in the traffic to some destination, the switch must buffer
Ethernet frames after receiving them from the input port and before sending
them to the output port.

In case of random traffic (every source sending randomly but equally dis-
tributed to every destination), the switch ideally should be able to absorb
data at line speed at every input port and to serve data at line speed to every
output port (in case of Gigabit Ethernet the line speed is 1 GBit/s).

If the traffic is non-random, switch buffers may fill up and overflow. This is
for example the case if:

e many senders transmit data to a few or even a single destination.

e 1 senders transmit bursts of m Ethernet frames' to the same destina-
tion, even if the overall traffic pattern is well balanced.

!The experience gained from the EB system tests described in section 10.2.2 indicates
n>4Am>4
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If such a case occurs, Ethernet flow control (see section 7.2) issues XOFF
commands to the senders, which stops them transmitting any data. As soon
as the buffers have recovered from the overflow, an XON is issued to the
senders, which then can resume. If flow control is disabled or if the XOFF
commands are issued too late, the overflowing buffers need to drop frames,
which leads to message loss.

C.1 BATM T5

The BATM T5 switch [WEBO08] was used as a concentrator switch (see section
7.1) when running tests against FPGA emulators (see appendix A). The
switch is equipped with 48 Fast Ethernet ports and two Gigabit Ethernet
ports. It distributed incoming requests from the two Gigabit ports to the
48 Fast Ethernet ports and concentrated event data coming from the Fast
Ethernet ports to the two Gigabit ports.

C.2 BATM T6

The BATM T6 switch [WEBO08] was used as a central switch for Level 2 and
EB (see section 7.1). It was equipped with 31 Gigabit Ethernet ports.
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Appendix D

Glossary

D.1 Specific Terms

Class

Inheritance

Kernel

Semaphore

Method

Object

Pointer

To parse

Template

Description on which the creation of objects is based.

Creating specific classes based on more general classes.
The features of the general classes (base classes) are prop-
agated to the specific classes.

The essential part of Linux or other operating systems,
responsible for resource allocation, low-level hardware in-
terfaces, security etc.

A semaphore offers a thread the ability to query the num-
ber of resources available, e.g. credits for traffic-shaping.

An internal function of the class working on members of
this class

Objects are miniature programs, consisting of both func-
tions (methods) and variables (data members). Every ob-
ject is described by a class.

A pointer in C++ is an address describing the location of
a data structure. Working with pointers allows memory
copies to be avoided, which helps to gain performance.

A program interprets a text file
A template is a set of statements in which one or more

types are parametric.
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Traffic-shaping

Virtual Method

Regulating the network traffic in such a way, that no con-
nections become a bottleneck and no buffers overflow.

Methods of the base class which are called in case the
inherited class does not own a method of the same name.

D.2 Acronyms

API
arp
CPU
DAQ
DFM
EB
EFIO
EoE
HLT

LAN

LAr
LHC
MAC
0S
NIC
ROB

Application Programming Interface

Address Resolution Protocol (IP over Ethernet)
Central processing unit

Data Acquisition

Dataflow manager

Event-building

Event-filter input/output

End-of-event

High-level trigger: common term for Level 2 and Event-
filter as the algorithms on both trigger levels are will run
as software processes on PCs

Internet Protocol

Local Area Network: A local area network is a group
of computers and associated devices within a small ge-
ographic area e.g. in a building.

Liquid Argon

Large Hadron Collider

Medium access control: the device address in Ethernet
Operating System

Network Interface Card

Read-out Buffer
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Rol Region of interest

RolB Region of Interest Builder

ROL Read-out Link

SCT Semi-conductor Tracker

SFI Subfarm-input

SFO Subfarm-output

SMP Symmetric Multiprocessing

STL C++ Standard Template Library

TDAQ Trigger and Data Acquisition system

TRT Transition Radiation Tracker (Straw Tube Tracker)
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