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Chapter 1

Introduction and summary

Two notorious problems have been plaguing the theory of gravitational collapse for
decades. The first one is the occurrence of singularities. The classical collapse of a gravi-
tating system leads inevitably to a singularity [Pen65, Haw67, HP70], cf. also [HE73]. The
consequence is that the classical theory breaks down because the structure of the singu-
larity contradicts the basic principles of the theory such as the equivalence principle. But
there is some hope that a future quantum theory of gravity (or at least of gravitational
collapse) will avoid the singularities of its classical counterpart.

The second problem is the so-called black hole information paradox. The semi-classical
analysis of fields near a black hole by Hawking [Haw75] has led to the surprising conclusion
that black holes evaporate by emitting radiation that is thermal. This implies the violation
of basic principles of quantum mechanics. As an idealization, the initial quantum state
of the collapsing system can be viewed as a pure state. But since it is thermal, the
radiation does not depend on the detailed structure of the body that collapsed to form
the black hole. Thus, the pure initial state evolves into a mixed state, by this violating
the unitarity and time reversal symmetry of quantum theory. In other words, it is, in
principle, impossible to reconstruct the initial state from the final state. Also, even if
the initial state were precisely known, it would be impossible to predict with certainty
what the final quantum state will be. Moreover, the pure initial state has zero entropy,
but at the end, according to Hawking, its entropy is of the order of M2

m2
Pl
, where M is the

total mass of the system and mPl is the Planck mass. The entropy can be interpreted
as a measure for the information lost during the evolution. If unitarity does not hold
anymore, then also the energy seems to fail to be conserved [BSP84]. For these reasons
Hawking conjectured [Haw76, Haw82] that quantum theory breaks down in the case of
black holes and that the information is lost in principle in quantum gravity, summarized
in the quotation: “God not only plays dice, He sometimes throws the dice where they
cannot be seen.”

This conjecture has led to a great controversy, mainly between the bulk of the relativists
defending Hawking’s position on one side and particle physicists that adhered to a unitary
time evolution on the other. Particle physicists abhorred the idea to reject one of the basic
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2 Chapter 1. Introduction and summary

principles of quantum mechanics and came up with various ideas to explain the appar-
ent paradox or to modify Hawking’s calculations, e.g. [BSP84, tH90, CGHS92, Gid92].
But all of these approaches are either highly improbable or suffer from conceptual de-
fects. There is an abundance of reviews on the controversy and its tentative solutions,
e.g. [Pre92, Gid95]. Most recently, at the GR17 conference in Dublin, Hawking surprised
the community by announcing that he has disproved his own conjecture and that unitarity
is preserved after all. But since his calculations have not been published yet at the time
this thesis is written, we do not know how he obtained his results. So the controversy still
remains unsettled.

Hawking’s results on evaporating black holes are only plausible as long as the semi-
classical approach is valid. This seems to be not the case near the singularity, where a
more fundamental modification of the classical theory due to quantum effects is expected
to occur. If the semi-classical approximation near the singularity is rejected, then one is
forced to look for a different kind of approximative scheme, since there seems to be no
hope for a satisfactory full quantum theory of gravity in the near future. The attempts
of the Berne group led by P. Háj́ıček are based on the use of simplified models, where a
non-perturbative quantum theory can be explicitly constructed. The main reason to use
simplified models is that they strongly simplify technicalities: such systems are easier to
reduce and to quantize and, nevertheless, still possess some of the important qualitative
features of the full theory. Simplified models lead to a kind of effective theory of gravity.
An infinite number of degrees of freedom that are unimportant for the problem can be
safely frozen such that one obtains a quantum theory rather than a quantum field theory
after quantization. Of course, the thus simplified theory must still have the right (semi-)
classical limit.

The use of simplified models has led to some promising results. The quantum theory
of a single spherically symmetric self-gravitating null thin shell constructed by Háj́ıček
and Kiefer in [HK01, Háj01] seems to describe some important features of the collapse
sufficiently well and yields the surprising conclusion that, in contrast to the classical
collapse, the thus defined quantum system does not form a singularity but always bounces
at the centre and returns to the same asymptotic region it originated from! So it seems
that unitarity is preserved and that no black hole forms. Some quantum systems can even
be squeezed such that a significant part of them lies under their Schwarzschild horizon
and still they reappear. The Schwarzschild radius of such quantum systems is hence a
mixture of white and black hole states, and the colour of the horizon gradually changes
from black to white in the course of the evolution of the system.

The construction of the quantum theory required the solution of several conceptual prob-
lems commonly associated with the quantization of gravity. The exclusive use of gauge-
invariant quantities as observables in the quantum theory successfully addresses the issue
of diffeomorphism invariance. Asymptotically flat models, which are suitable to describe
the collapse, allow the definition of a complete set of gauge-invariant quantities that are
also integrals of motion, the so-called Dirac observables. The physical problem can thus
be viewed at as a scattering system where every relevant question can be answered by a
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measurement in the asymptotically flat region of spacetime. In the case of the spherically
symmetric shells the Dirac observables can, however, also be found without relying on its
asymptotic properties. The computation of the algebra of Dirac observables required the
specification of a gauge. This has been obtained by the so-called Kuchař-decomposition
[Kuc71], where the canonical variables describing the system are neatly split into physical
degrees of freedom (the Dirac observables), embeddings (gauge degrees of freedom) and
their momenta. The existence of such a decomposition has been shown to exist for a wide
class of models by Háj́ıček and Kijowski in [HK00]. In the course of their work the im-
portant notions of background manifold and covariant gauge fixing have been introduced,
cf. [Háj00a]. The issues and results of this approach are collected and discussed in detail
in [Háj03].

The question what is the metric outside of the shell in the quantum theory remains
unanswered. It is an intricate question because the metric components are not gauge
invariant and must be expressed solely in terms of invariant quantities by some means,
which may be not feasible. It thus seems to be a more promising idea to obtain the
information about the outside geometry by introducing a second (test) shell that probes
the field of the first one. The classical analysis of the system containing two or more
shells has been done by Háj́ıček and Kouletsis [HK02a, HK02b, KH02]. Finding the
corresponding quantum theory seems to be a non-trivial task. Work is being done on this
topic by Háj́ıček and Minassian.

The second important question is the motivation for the present work. Consider the
following hypothetical scenario: A quantum system with large (i.e. astrophysical) energy
— of course a single null shell is hardly an adequate description of such a system —
collapses and re-expands after a huge scattering time. The black hole phase is so long that
Hawking radiation becomes important and therefore influences the scattering time. Only
when the black hole becomes very small the change of horizon colour takes place such that
only a tiny remnant of the system reemerges. Such a process does not necessarily violate
unitarity and may be compatible with astronomical observations. So it is interesting to
know when the shell does reappear after the collapse.

The model we are using to compute the scattering times is again a single spherically
symmetric null thin shell surrounded by its own gravitational field. In order to incorporate
the reflection a spherically symmetric, perfectly reflecting mirror with some positive radius
is placed at the centre.

The main findings of this work are summarized in the following paragraph: We found
that the time delay, a quantity used in the quantum theory of scattering processes, can-
not be defined for our model because the infrared divergence at infinity common to all
Coulomb-like potentials (to which also gravity belongs) cannot be removed by any suitable
regularization. The question was then, what time we wanted to consider as the scattering
time of our quantum system and how it could be defined in a gauge-invariant way. The
sojourn time seems to be a good candidate. It can be interpreted as the mean value of the
operator associated with the proper scattering time measured by an ideal clock carried
along by an observer at a constant radius between his two encounters with the shell. We
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found quantities that can be associated with the scattering time that are gauge-invariant
and thus can be represented by self-adjoint operators. In order to obtain the true degrees
of freedom of the model we adapted the canonical reduction program by Háj́ıček, Kiefer
and Kouletsis [HK01, HK02b, KH02] to our model. This required the construction of a
specific gauge. This gauge has the beautiful property that it also can be used for the
perturbative approach by DeWitt [DeW63]. We thus have proven an existence theorem
for a suitable gauge that is compatible with DeWitt’s methods for our model. We have
constructed the quantum theory in which the shells are represented by wave packets and
the scattering time by a self-adjoint operator the expectation value of which is the sojourn
time. Explicit and numeric calculations of the sojourn time have shown that it displays a
rather surprising behaviour: It is finite for wave packets of finite extension even if the cor-
responding classical scattering time diverges! And it, furthermore, remains well-defined
and finite when a significant part of the packet falls under its Schwarzschild horizon. A
minor flaw in the calculation is, however, that one of the designated classical observables
is not represented by a self-adjoint operator in our quantum theory. But the quantum
theory itself is nevertheless well-defined, and the main results do not seem to depend
significantly on the corrections that would have to be done to incorporate a self-adjoint
operator representing this observable.

The program of this thesis is given by the following summary of the chapters.

Chapter 2: In this chapter we summarize the most important results in our context of
the quantum theory of scattering processes. A precise definition of the sojourn time is
given, and several ways to define the time delay are presented. The problems concerning
the time delay appearing in the case of the Coulomb potential are pointed out.

Chapter 3: The definition of massive and null self-gravitating thin shells is given. Then,
a spherically symmetric mirror centered at R = 0 is introduced, such that the in- and
outgoing shell trajectories are glued together in a unique way. The (proper) scattering
time of the shell measured by an observer at a fixed radius is computed.

Chapter 4: In this chapter it is discussed why the sojourn time is chosen as the measured
quantity instead of the time delay and why the mean value of the operator representation
of the scattering time can be interpreted as the sojourn time. The scattering time is newly
constructed such that it is a gauge invariant.

Chapter 5: The space of solutions of our system is determined and the distinction
between singular and regular gauges is pointed out.

Chapter 6: The central-regular (CR) gauge is constructed using an interpolation. By
this the difficulties with the canonical theory at the inner boundary of space-time induced
by the mirror are removed.

Chapter 7: The Hamiltonian action for a spherical null thin shell and its gravitational
field (the LWF action, cf. [LWF98]) is adapted to include the spherical mirror. The
canonical reduction of the action is performed using the methods developed by Háj́ıček,
Kiefer and Kouletsis and the CR gauge that has been constructed in the preceding chapter.
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The true degrees of freedom are identified, they are the shell energy E and its asymptotic
advanced time v.

Chapter 8: In this chapter a well-defined quantum theory and a self-adjoint operator
representing the scattering time are constructed. Analytical and numerical computations
of the sojourn time using a special type of wave packets are made. The rather surprising
results are discussed and illustrated by diagrams.

Chapter 9: A brief introduction into DeWitt’s [DeW63] method of small disturbances
is given. Then, an existence theorem for a suitable gauge (the CR gauge) for DeWitt’s
method is stated. The dynamics of the shell and the metric disturbance on the background
is determined and the effect of infinitesimal gauge transformations on it is computed.

Chapter 10: The main results and problems found in this thesis are discussed, followed
by some suggestions for further research.

A series of appendices containing material that is either too lengthy and technical for the
main text or not about the main topics of this thesis completes this work.

Unless otherwise defined, we use units for which c = G = ~ = 1 throughout this
thesis. The metrics have signature −2, the Minkowski metric being given by ηµν =
diag(1,−1,−1,−1).
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Chapter 2

Time delay in scattering theory

2.1 Quantum scattering theory

We summarize the most important features of the quantum theory of non-relativistic
potential scattering of a structure-less particle. We first write down the relevant ideas of
the time-dependent approach and state the basic definitions. In the second subsection we
introduce the main aspects of the time-independent setting, an approach more familiar
to most physicists. This short introduction is, of course, in no way complete, but the
appropriate references are given in the text.

2.1.1 Time-dependent setting

A mathematically precise framework of this approach to scattering theory is given in
[AJS77] and [RS79]. This introduction follows in some parts roughly [Mar81]. We first
define the basic notions of non-relativistic time-dependent potential scattering theory.

Scattering states

Let H be a Hilbert space of quantum states generated by the self-adjoint operators Ĥ
and Ĥ0, being, respectively, the free (or unperturbed) and the total Hamiltonian, where
Ĥ = Ĥ0+ V̂ . The operator V̂ is defined as the multiplication by the function V (~x), which
is the potential. The spectrum of Ĥ0 is clearly absolutely continuous: M∞(Ĥ0) = H. In
the domain of Ĥ are scattering states ψ ∈ M∞(Ĥ) as well as bound states φb ∈ M0(Ĥ).
We suppose thatM∞(Ĥ) = Hac andM0(Ĥ) = Hp, i.e. the set of scattering states of Ĥ

is exactly the subspace of absolute continuity Hac of H and, moreover,M0(Ĥ), the set of
the bound states, is equal to the subspace Hp ⊂ H belonging to the pure point spectrum

of Ĥ. The two spaces Hac and Hp are orthogonal. These assumptions are satisfied if the
potential verifies V = V1 + V2, V1 ∈ L2(R3) and V2 essentially bounded (i.e. ∃M < ∞,

7
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|V2(~x)| ≤ M almost everywhere ∀~x ∈ R3). This applies in particular to the important
case of the Coulomb potentials Vc =

γ

r
, r = |~x|, γ ∈ R. One simply has to put V1 = Vcχr,

V2 = Vc − V1, where χr(~x) = 1 as |~x| ≤ r and 0 otherwise, r ∈ (0,∞).

The asymptotic condition and the scattering operator

The free and total time evolutions, two continuous unitary one-parameter groups on H
corresponding to the two Hamiltonians, are given by Ut = e−iĤ0t and Vt = e−iĤt. The
wave or Møller operators Ω̂± are defined by the asymptotic condition

lim
t→−∞

∥∥∥(V ∗t Ut − Ω̂−)φ
∥∥∥ = 0,

lim
t→∞

∥∥∥(V ∗t Ut − Ω̂+)φ
∥∥∥ = 0, (2.1)

for the states φ ∈ H. We suppose that they are complete, i.e. Range Ω̂− = Range Ω̂+ =
Hac. An equivalent definition is

Ω̂±
.
= s− lim

t→±∞
V ∗t Ut, (2.2)

where the strong limit s−lim is defined implicitly by eq. (2.1). Ω̂− transforms an incoming
state φin into a scattering state ψ = Ω̂−φin. The same happens if one operates with Ω̂+ on
an outgoing state φout. ψ is unique for a given incoming state. Asymptotic completeness
holds if for each ψ there is a (free) outgoing state φout to which the scattering state
converges in the far future. The so-called intertwining relation ĤΩ̂± = Ω̂±Ĥ0 is satisfied.
This property is transmitted to the corresponding evolution: VtΩ̂± = Ω̂±Ut. The wave
operators are isometries: Ω̂±Ω̂

∗
± = Ω̂∗±Ω̂± = Î, where Î is the unit operator. The time

evolution of a scattering state ψt corresponding to an incoming state φin reads hence
ψt = VtΩ̂−φin, whereas the time evolution of the free incoming state is given by φt = Utφin.
The Møller operators Ω̂± exist and are complete for potentials falling off at infinity as
1

r1+ε
, ε > 0, so called short-range potentials. There exists a generalization to a broader

class of potentials, including the Coulomb case, that belongs to the class of the long-range
potentials, which we will treat in the next section.

The scattering operator Ŝ is defined by Ŝ
.
= Ω̂∗+Ω̂−. It is unitary and conserves the

energy, i.e. [Ŝ, Ĥ0] = 0; it therefore also commutes with the free evolution. Ŝ transforms
an incoming free state φin into an outgoing one: φout = Ŝφin.

It follows from the asymptotic condition and the completeness, that the evolving scattering
state behaves asymptotically in time as

lim
t→−∞

‖ψt − φt‖ = 0,

lim
t→∞
‖ψt − Ŝφt‖ = 0. (2.3)
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We observe that in the remote past the total evolution is approximated by the unperturbed
one and that in the far future the difference between the scattering and the outgoing state
is arbitrarily small.

Spectral representations

Some important operators can be brought in a special form, the so-called diagonal form
in the spectral representation of a particular operator. A spectral representation is a
particular representation of the Hilbert space in which the operators in question appear as
multiplication operators [JM65, JM66, AJS77]. We denote the spectral variable belonging
to Ĥ0 by λ, the energy of a particular state. The spectrum Λ of the free Hamiltonian
Ĥ0, where λ ∈ Λ, is continuous. Let Ĉ be a set of operators commuting with Ĥ0 and
c the corresponding spectral variables. We then can denote a state in this particular
representation by |λ, c〉. Let B̂ be another bounded linear operator with [B̂, Ĥ0] = 0
which possesses an integral representation

B̂ =

∫ ∞

−∞

dt U ∗t ÂUt. (2.4)

Then the matrix elements of B̂ in the spectral representation with respect to Ĥ0 read
[JM67].

〈λ, c| B̂|λ′, c′〉 = δ(λ− λ′)〈c|B(λ)|c′〉 (2.5)

with

〈c|B(λ)|c′〉 = 2π〈λ, c| Â|λ, c′〉. (2.6)

We call the operator B(λ) on the energy shell or on-shell. It will be shown in the next
section that the scattering and the time delay operators are examples of operators which
can be brought on-shell.

2.1.2 Time-independent setting

We very briefly introduce the basic ideas of the stationary formalism of scattering theory.
We omit proofs as well as the discussion of cross sections and the perturbation theory.
For a more accurate treatment we refer to the abundant literature (e.g. [Far73, New66,
GW64]).
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The Asymptotic Condition

We consider the scattering by a potential V (~x). Let Ĥ0 = − 1
2m
4 and Ĥ = Ĥ0 + V̂ (~x)

on the Hilbert space H = L2(R3), where 4 is the Laplacian in R3 and L2(R3) is the
space of square integrable functions on R3. The potential is assumed to be such that
eigenfunctions ψ(~k, ~x) given by the stationary solutions of the Schrödinger equation

(
− 1

2m
4+ V̂ (~x)− λ

)
ψ(~k, ~x) = 0, λ =

k2

2m
, k = |~k| (2.7)

exist. These eigenfunctions are required to be scattering states with the following asymp-
totic spatial behaviour as |~x| = r →∞,

ψ(~k, ~x)
r→∞' ei

~k·~x + f(λ, ~ω~x, ~ω~k)
eikr

r
, (2.8)

where ~ω~x
.
= ~x

r
, ~ω~k

.
=

~k
k
are the angles of ~x and ~k, respectively, and f(λ, ~ω~x, ~ω~k) is the

scattering amplitude. This is the asymptotic condition in the time-independent setting.
According to eq. (2.8), ψ(~k, ~x) is an outgoing plane wave modified by a spherical wave.
The correction to the plane wave depends on the energy of the ingoing wave and on the
scattering angle. These stationary states with infinite extension are of course by no means
a physically realistic description of a particle scattered by a potential. We will therefore,
later in this section, also discuss spatially localized wave packets and their asymptotic
behaviour.

The Lippmann-Schwinger equation

We introduce the Lippmann-Schwinger equation and the definition of the Møller operators
in the time-independent setting. For scattering by a short-range potential we can write
the scattering states as follows (η > 0):

ψ±
.
= φin + (λ− Ĥ ∓ iη)−1 V̂ φin. (2.9)

After some algebraic manipulations we obtain the so-called Lippmann-Schwinger equation

ψ± = φin + (λ− Ĥ0 ∓ iη)−1 V̂ ψ±. (2.10)

This equation is equivalent to an integral equation whose solution behaves asymptotically
as a plane wave plus an ingoing (− sign) and outgoing (+ sign) wave (cf. eq. (2.8)),
respectively. By using the relation ψ± = Ω̂±φin we can define the Møller operators

Ω̂±
.
= Î + (λ− Ĥ ∓ iη)−1 V̂ . (2.11)
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Notice that in the preceding section about the time-dependent formalism we always de-
noted the ingoing scattering state ψ− simply by ψ. We also define the transition operator
T̂ given by T̂

.
= V̂ Ω̂−. The scattering amplitude can be hence written as follows:

f(φin → φout) = −
m

2π
〈φout| T̂ |φin〉. (2.12)

We assume that the ingoing state has the wave vector ~k and the outgoing one ~̀:

φin = φ~k, φout = φ~̀, (2.13)

with |~k| .= k = `
.
= |~̀|. Then we can rewrite the scattering amplitude,

f(~k → ~̀) = −4π2m〈~̀| T̂ |~k〉 = −4π2

k
〈λ`, ~ω~̀| T̂ |λk, ~ω~k〉. (2.14)

The scattering matrix element between these two states reads

S~̀~k
.
= 〈φ~̀| Ŝ|φ~k〉 = 〈ψ+~̀ |ψ−~k 〉 = δ(~̀− ~k)− 2πiδ(λ` − λk)〈φ~̀| T̂ |φ~k〉. (2.15)

This result is valid at least for short-range potentials.

Wave packets

This paragraph follows closely the treatment in [Far73]. Since a plane wave with sharply
defined energy is not a realistic description of a particle we now introduce wave packets.
The wave packet for a free particle shall be given by

ϕ̄(~x, t) =
1

(2π)
3
2

∫
d~k C(~k, t)ei

~k·~x, (2.16)

where

C(~k, t) = C(~k)e−iλkt (2.17)

is an energy- and time-dependent contour function. The free wave packet can be also
written as

ϕ̄(~x, t) =

∫
d~k C(~k)ϕk(~x) e

−iλkt, (2.18)
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where we have introduced the normalized eigenstates

ϕk(~x)
.
=

ei
~k·~x

(2π)
3
2

(2.19)

of the momentum operator ~̂P . The probability to find the particle with the wave vector ~k
in the volume element d~k of ~k-space is P (~k) = |C(~k)|2 and is constant in time. It follows

that the contour functions satisfies
∫
d~k |C(~k)|2 = 1. As t→ ±∞, the wave packet tends

to zero: ϕ̄(~x, t)→ 0. Hence, the probability to find the particle in any finite region tends
to zero in the remote past and far future, respectively.

The scattering wave function of a single non-relativistic structure-less particle can be
described by the wave packet

ψ̄(t)
.
=

∫
d~k C(~k)ψ−~k e

−iλkt. (2.20)

It is free in the remote past and in the far future:

ψ̄(t)
t→−∞' ϕ̄in(t) =

∫
d~k C(~k)ϕ~k e

−iλkt,

ψ̄(t)
t→∞' ϕ̄out(t) =

∫
d~̀D(~̀)ϕ~̀ e

−iλ`t, (2.21)

where ϕ̄in(t) and ϕ̄out(t) are the initial and the final wave packets, respectively. C(~k) is
the initial momentum amplitude; the final momentum amplitude is given by

D(~̀) =

∫
d~k S~̀~k C(~k). (2.22)

Inserting the formula for the scattering matrix elements, eq. (2.15), we obtain after some
manipulations, that

D(~̀) = C(~̀) + ∆(~̀), (2.23)

where

∆(~̀)
.
=

i`

2π

∫
d~ω~k C(`~ω~k) f(`~ω~k → ~̀) (2.24)

is the change produced in the momentum amplitude by the collision. We observe that
the amount of scattering increases with the scattering amplitude. For a well collimated
ingoing beam, the shape of the final wave packet is approximately

ϕ̄out = ϕ̄in + ψ̄s, (2.25)
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where the outgoing scattered wave ψ̄s is given by

ψ̄s ≈
1√
2πir

∫ ∞

0

`d` |∆(`~ω~x)| ei`r−iλ`t+iarg∆(`~ω~x). (2.26)

Partial wave analysis

After this short deviation we again consider a wave function with fixed energy for the sake
of simplicity. The results can be taken over to wave packets rather straightforwardly.

First we have to record how the stationary solutions behave in time. The time evolution
of the ingoing scattering state (here we again omit the − sign) reads explicitly

ψt(~x) =
1

(2π)
3
2

∫
d3k ψ(~k, ~x) e−i

k2

2m
t φ(~k). (2.27)

ψ(~k, ~x)
.
= (2π)

3
2 〈~x| Ω̂−|~k〉 is the kernel of the Møller operator. If the potential is spherically

symmetric, V (~x) = V (r), then the kernel has a development in radial partial waves

ψ(~k, ~x) = 4π
∑

l,m

il
ul(k, r)

kr
〈ω~x|l,m〉 〈l,m|ω~k〉. (2.28)

Here, 〈ω~x|l,m〉 = Y m
l (ω~x) is the normalized spherical harmonic and ul(k, r) is the regular

solution of the radial equation

(
− d2

dr2
+
l(l + 1)

r2
+ 2mV (r)− 2mk2

)
ul(k, r) = 0 (2.29)

that has the asymptotic behaviour

ul(k, r)
r→∞' 1

2i

(
Sl(λ) e

i(kr−l π
2
) − e−i(kr−l π2 )

)
(2.30)

as r goes to infinity.

Sl(λ) = eiδl(λ) (2.31)

is the scattering matrix element associated with the angular momentum l and the corre-
sponding phase shift δl(λ). We observe that the effect of the potential is a phase shift of
the scattering wave. This phase shift is dependent on the angular momentum and the
energy of the ingoing state, as well as on the strength and the shape of the potential.
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2.1.3 Short- and long-range potentials

It turns out to be useful to divide the potentials into two distinct groups: short-range
and long-range potentials. We will call a potential V (~x) short-range, if it falls off faster
than r−1−ε as r tends to infinity, where ε > 0. Otherwise it will be called long-range.
The hard sphere and square well potentials belong clearly to the first group, whereas the
Coulomb and the gravitational potential belong to the second. For a long range potential
it is not possible to define the wave operators in the usual way, and the time delay in
the standard definition becomes infinite. Possible ways to solve these problems will be
proposed in section 3 of this chapter.

2.2 The time delay

The time delay is an important theoretical concept, although it is usually too small to
be directly measurable in experiments. In this section we give various definitions of the
quantity time delay and the associated operator. A clear and comprehensive review of
various aspects of the time delay is [Mar81]. It also includes an extensive list of references.

2.2.1 A heuristic definition

The time delay can be considered as the difference between the time spent by a particle
within the region of the interaction and the time that it would have spent there without
the interaction. What follows in this subsection is a heuristic definition of the time delay
based on the time-independent approach to quantum scattering theory that has been
introduced in the previous chapter.

The Eisenbud-Wigner formula

We analyse the scattered wave far away from the scattering centre for large positive times.
From eq. (2.3) it follows that

ψt(~x)
t→∞' 1

(2π)
3
2

∫
d3k ei(

~k·~x− k2

2m
t) (Ŝφ)(~k). (2.32)

Its radial components with angular momentum l behave asymptotically as

ψlt(r)
t→∞' 1

i
√
2π

1

r

∫
kdk

(
ei(kr−

k2

2m
t+δl(λ)) − (−1)le−i(kr+ k2

2m
t)
)
φl(k), (2.33)

where we have used the asymptotic form (2.30) of the free radial function u0l (k, r). ψ
l
t(r)

differs perceptibly from zero only for those values of (r, t) for which the arguments of
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the exponentials in eq. (2.33) are stationary with respect to energy variations, where we
assume that φl(k) is real. As r and t are both positive in our considerations, the second
term does not contribute to such variations. The first term produces a contribution if
the energy derivative of the exponential vanishes (this is in fact the stationary phase
argument)

d

dk

(
kr − k2

2m
t+ δl(λ)

)
= 0. (2.34)

This is equivalent to

r = v(t− τl(λ)), τl(λ)
.
=

d

dλ
δl(λ), (2.35)

where v = k
m

is the free radial velocity. Since the phase shift δl(λ) vanishes in the case
of free motion, we can interpret τl(λ) as the time delay suffered by the radial wave in
the presence of the potential. eq. (2.35) is called the Eisenbud-Wigner formula [Eis48],
[Wig55].

Resonances and the time delay

There is a noteworthy relation between the time delay and the width Γ of the resonance
belonging to a particular angular momentum l. If the S-matrix Sl(λ) has a pole just below
the real axis which corresponds to a resonance at the energy λ0 and of width Γ > 0, then
one can approximate the S-matrix by

Sl(λ) ≈
α(λ)

λ0 − iΓ− λ
(2.36)

for λ ≈ λ0. Here, α(λ) is some slowly varying function of the energy. The time delay
hence obtains a Breit-Wigner-like form

τl(λ) = =
(
d

dλ
lnSl(λ)

)
≈ Γ

(λ− λ0)2 + Γ2
, λ ≈ λ0. (2.37)

Therefore, τl(λ0) =
1
Γ
is the lifetime of the resonance.

Remarks

In principle, the quantity ’time delay’ is measurable. The measurement is although in the
most cases not feasible in experiments because the delay is usually very small. Suppose
that in an experiment one can measure the time delay of a scattering process. Then it
will give a complementary piece of information to the determination of the scattering
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amplitude. Namely, by the Eisenbud-Wigner formula one then can calculate the phase
shift which is closely related to the scattering amplitude. In fact, the scattering operator
and the time delay contain the same information, although from very complementary
points of view.

2.2.2 The time delay of Jauch-Marchand

The definition due to Jauch and Marchand is based on the time-dependent setting of
scattering theory. It goes back to an idea of Goldberger and Watson [GW64]. The concept
of this approach to time delay has been written down in [JM67] and refined involving
advanced mathematical techniques in [JSM72], see also [BO75] for a slight modification.
A proof using somewhat different methods is given in [Mar76].

Jauch and Marchand associate a self-adjoint operator with the observable time delay.
Their mathematically precise, abstract formalism uses only simple operator identities
such as the intertwining property or the relation between the wave operators and the
scattering matrix. Moreover, it avoids the use of eigenfunction expansions. It is therefore
also valid for more general problems for which such an expansion does not exist. Another
advantage of their method is that it works for all types of wave packets. A drawback is
that the restriction on the potentials for which their approach is valid is stronger than for
other definitions.

The basic concept entering in the definition of the time delay is that of the sojourn time.
The following treatment loosely follows the article by Martin [Mar81].

The sojourn time

The introduction of the quantity sojourn time in relation with time delay first appeared
in [Smi60] and in [GW64]. Jauch and Marchand formulated a precise formulation of the
concept in the article [JM67].

First, we define the projection operator P̂ , that projects into a subspace P̂H of states of
H. The probability of finding the state ψt = Utψ, where ψ ∈ Hac in P̂H at the time t is

〈ψt| P̂ |ψt〉 = |P̂ψt|2 (2.38)

and the total mean time spent there is given by

∫ ∞

−∞

dt |P̂ψt|2. (2.39)

This quantity is called sojourn (or residence, or transit) time of the state ψt in the
subspace P̂H. It can be finite or infinite depending on the state and the projection. In
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potential scattering we take P̂ = P̂Σ, where Σ is a bounded subset of R3 and the projection
acts on a state as follows:

(P̂Σφ)(~x) = χΣ(~x)φ(~x), χΣ
.
=

{
1, ~x ∈ Σ

0, ~x 6∈ Σ
. (2.40)

The sojourn time of a free state φ is therefore given by

T 0Σ(φ) =

∫ ∞

−∞

dt |P̂ φt|2 =
∫ ∞

−∞

〈φ|U ∗t P̂ΣUt|φ〉dt, (2.41)

whereas that of a scattering state ψ = Ω̂−φ corresponding to the same incoming state φ
reads

TΣ(φ) =

∫ ∞

−∞

dt |P̂ψt|2 =
∫ ∞

−∞

〈φ| Ω̂∗−V ∗t P̂ΣVtΩ̂−|φ〉dt. (2.42)

There is a mathematical issue: T 0Σ(φ) and TΣ(φ) shall be finite for a significant amount of
state vectors φ ∈ H, i.e. a dense subset. This imposes conditions on the interaction. The
finiteness of the free sojourn time T 0Σ(φ) can be expected for finite regions Σ in the case
of scattering states. For bound states, of course, the quantity is infinite. If the explicit
form of the time development of the free kernel (for t 6= 0),

(Utφ)(~x) =

(
m

2πi|t|

) 3
2
∫
d3y eim

|~x−~y|2

2t φ(~y), (2.43)

and its behaviour at large times, cf. [AJS77], are used, then the integrand in (2.41) can
be estimated:

|P̂ φt|2 =
(

m

2π|t|

)3 ∫

Σ

d3x

∣∣∣∣
∫
d3y eim

|~x−~y|2

2t φ(~y)

∣∣∣∣
2

≤ |Σ|
(

m

2π|t|

)3
‖φ‖21, (2.44)

where ‖φ‖1 =
∫
d3x |φ(~x)| is the norm in L1(R3). We observe that |P̂ φt|2 falls off as |t|−3

at large t if φ ∈ L1(R3)∩L2(R3). Thus, the finiteness of T 0Σ(φ) holds at least for the dense
set of φ ∈ L1(R3) ∩ L2(R3) ⊂ L2(R3).

The finiteness of the sojourn time TΣ(φ) of scattering states is not so obvious. It is based
on the asymptotic behaviour of the scattering states. One can show that the quantity
TΣ(φ) is finite if

1. |ψt − φt| ∈ L1(−∞, 0),
2. |P̂ΣŜφt| and |ψt − Ŝφt| ∈ L1(0,∞). (2.45)
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The two conditions are fulfilled if the asymptotic condition is sufficiently well satisfied
and if Ŝ has some smoothness in its energy dependence (see the article by Martin [Mar81]
and the references stated therein). There are mathematically more advanced methods to
show the finiteness of sojourn time for a broad class of potentials: the operator V̂ has
to be Ĥ0-bounded (i.e. |V̂ φ| ≤ α|φ| + β|Ĥ0φ| for some α ≥ 0, β ≥ 0,∀φ ∈ H), the wave
operators Ω̂± have to exist and the state vectors are to be members of a dense subset D of
Hac, with D = {φ ∈ Hac |φ has compact support onΛ} (Λ is the spectrum of H0). This
holds in particular for potentials decaying faster than the Coulomb potential. For details
cf. the references mentioned above.

The time delay

The difference between the sojourn times of the scattering and the free states in Σ

τΣ(φ)
.
= TΣ(φ)− T 0Σ(φ) (2.46)

is the delay in Σ due to the interaction. τΣ(φ) is therefore the time delay for the region
Σ and the incoming state φ. As the limit Σ → R3 is taken, both sojourn times TΣ(φ)
and T 0Σ(φ) diverge, but it is expected that the difference (2.46) remains finite. This is the
case if the interaction is sufficiently short-ranged. Thus, if the limit exists, then the time
delay of the scattering process with incoming state φ reads

τ(φ)
.
= lim

Σ→R3
τΣ(φ). (2.47)

In terms of operators one can also write

τ̂
.
= lim

Σ→R3

∫ ∞

−∞

dt U ∗t

[
Ω̂∗−P̂ΣΩ̂− − P̂Σ

]
Ut, (2.48)

where the operator τ̂ is related to the quadratic form τ(φ) by the equation τ(φ) = 〈φ| τ̂ |φ〉.
τ̂ is a uniquely defined, bounded and self-adjoint linear operator. In the passage to the
operator definition the intertwining relation VtΩ̂− = Ω̂−Ut has been used. There are
various methods to show the existence of the limit (2.47). In this section we will briefly
show the results based on the time-dependent setting. For the other methods we refer to
the literature [Mar81].

We use the asymptotic condition (2.1) to show that the time delay τ(φ), if it exists,
depends on the Ŝ-operator alone. We will state two assertions which connect the time
delay with the scattering operator. The proof of them is given in [Mar81]. Assume that
the conditions (2.45) hold. Then, whenever the limit exists, it holds that

τ(φ) = lim
Σ→R3

∫ ∞

0

dt 〈φt| (Ŝ∗P̂ΣŜ − P̂Σ)|φt〉. (2.49)
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The limit (2.47) exists if (2.45) are satisfied and φ has compact support on Λ. Moreover,
in this case, the time delay is related to the energy derivative of the Ŝ-operator by

τ(φ) = −i〈φ| Ŝ∗ dŜ
dĤ0

|φ〉. (2.50)

This is the Eisenbud-Wigner formula in terms of operators. τ̂ evidently commutes with
Ĥ0. Eq. (2.50) is independent of the representation; it is in principle a general functional
relation between τ̂ and Ŝ. A proof of eq. (2.50) is given in [AJS77], Prop. 7. 14.

Both the scattering and the time delay operator can be brought to the form of operators
on the energy shell [JM66]:

〈λ, l,m| Ŝ|λ′, l′,m′〉 = δ(λ− λ′)〈l,m|S(λ)|l′,m′〉,
〈λ, l,m| τ̂ |λ′, l′,m′〉 = δ(λ− λ′)〈l,m| τ(λ)|l′,m′〉, (2.51)

〈l,m| τ(λ)|l′,m′〉 = 2π lim
Σ→R3

〈λ, l,m| (Ω̂∗−P̂ΣΩ̂− − P̂Σ)|λ, l′,m′〉.

Here l is the spectral variable corresponding to ~̂L2 and m that to L̂3. If the potential is
spherically symmetric and {Σ} is a sequence of spheres centered at the origin, and if the
limit exists, then the energy shell components of the time delay operator are given by the
Eisenbud-Wigner formula (2.35):

τ(λ) = −iS∗(λ) d
dλ
S(λ) =

d

dλ
δ(λ). (2.52)

It has been shown [JSM72] that the eq. (2.50) holds for potentials decaying faster than
1

r3+ε
as r tends to infinity. Weaker conditions are discussed in [Mar81]. For spherical

potentials the weakest condition is V (r)
r→∞' 1

r
5
2+ε

.

2.2.3 Other formulations of the time delay

We write down the most important features of some other definitions of the time delay.

The time-independent formulation of time delay

This method is due to Smith [Smi60]. It is based on the time-independent description of
scattering processes. One considers the stationary state solution of the time-independent
Schrödinger equation for a fixed energy λ. Then one calculates the excess number of
particles near the scattering centre after subtracting the number that would have been
there without the interaction. The time delay is then given by this excess or defect
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number divided by the incoming (or outgoing) flux of particles at a large distance R from
the scattering centre. The time delay for a specific angular momentum and energy is
given by

τl(λ) = lim
R→∞

1

R

∫ 2R

R

dR′
∫ R′

0

r2dr

[
4π

Fin
|ψ−l (r, k)|2 −

2

vr2

]
, (2.53)

where the incoming flux is Fin = 2
km

and the velocity of the incoming particles is given
by v = k

m
. The average limit in the first integral is in order to get rid of oscillatory terms

in R. A way to remove the rather unphysical averaging is given in a paper by Bollé and
Osborn [BO75]. In the same paper they carefully show that the method of Smith and
the time-dependent one are in fact equivalent. A brief summary of the main results is
also given in the article by Martin [Mar81]. This definition of the time delay holds for
potentials fulfilling the condition (2.8).

Lavine’s formula for the time delay

Lavine’s formula [Lav73] gives the connection between the time delay τ and the potential
V (~x) in scattering theory. The method is closely related to the geometric approach to
scattering which will be briefly introduced in the next paragraph.

We first give the definition of an important operator in this context: the generator of
dilations

D̂ =
1

2i

(
~̂X · ~∇+ ~∇ · ~̂X

)
. (2.54)

D̂ is the generator of the dilation group in H = L2(R3). On the operators of position and
momentum its action is defined by

eiαD̂ ~̂P e−iαD̂ = e−α ~̂P,

eiαD̂ ~̂Xe−iαD̂ = eα ~̂X, (2.55)

where α is some real number.

The following results are true for potentials that satisfy

V = V1 + V2,

V2 '
1

r2+ε
,

V1 '
1

r1+ε
, ~x · ~∇V1 '

1

r1+ε
as r →∞. (2.56)
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The self-adjoint dilation operator D̂ satisfies the two important equalities

Ĥ − i

2
[Ĥ, D̂] = V̂ +

1

2
~̂X · ~∇V̂ ,

Ĥ0τ̂ =
1

2
Ŝ∗[Ŝ, D̂], (2.57)

where the Eisenbud-Wigner time delay τ is defined by the decomposition in the spectral
representation of Ĥ0:

τ(λ) = −iS(λ)∗dS(λ)
dλ

. (2.58)

See the papers by Jensen [Jen82] and Narnhofer [Nar84] for proofs and details. Note that
the decay properties on the potential (2.56) are very weak compared to those necessary in
the formalism by Jauch-Marchand, but still the important class of Coulomb-like potentials
is not included.

For incoming states φ ∈ Hac Lavine’s formula reads

〈φ| Ĥ0τ̂ |φ〉 =
∫ ∞

−∞

dt 〈ψt| (Ĥ −
i

2
[Ĥ, D̂])|ψt〉. (2.59)

The right hand side of this equation can be rewritten using eqs. (2.57), such that the
dependence on the potential becomes visible

〈φ| Ĥ0τ̂ |φ〉 =
∫ ∞

−∞

dt 〈ψt| (2V̂ + ~̂X · ~∇V̂ )|ψt〉. (2.60)

This formula is valid for potentials that satisfy the conditions (2.56). We observe that

the time delay operator is closely related to the virial V (~x) + 1
2
~x · ~∇V (~x).

For a spherically symmetric potential the energy shell components of the time delay
operator in the corresponding representation by Lavine reads

τl(λ) =
4m

kλ

∫ ∞

0

dr |ul(k, r)|2
(
V (r) +

r

2

dV (r)

dr

)
. (2.61)

This formula gives some qualitative information on the behaviour of the time delay, es-
pecially on the sign of τl(λ): it is the same as that of the expression V (r) + r

2
dV (r)
dr

.

τl(λ) is small if dV (r)
dr

< 0, i.e. if the potential decreases monotonously so that there are
no potential barriers which capture the particle near the origin. The time delay is neg-
ative for all energies if V (r) + r

2
dV (r)
dr

< 0. This condition is satisfied if the potential is
strongly repulsive and has no barriers. τl(λ) is of course not only governed by the term

V (r) + r
2
dV (r)
dr

, but also by the radial wave ul(λ).
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Jensen [Jen81] has proven the Eisenbud-Wigner formula for not necessarily spherically
symmetric potentials which fall off at infinity faster than 1

r4
.

Geometric time delay

The notion of time delay already appears in classical scattering theory. There it can
be derived with purely geometrical considerations, see, for a short introduction [Nar80,
Bol81, Mar81] and the references stated in these papers. We write down only the most
important results.

Consider a particle of mass m = 1 with trajectory (~x(t), ~p(t)) scattered by a potential
V (~x). The time delay is then given by

τ =
~x− · ~p− − ~x+ · ~p+

|~p+|2
, (2.62)

where ~p±
.
= limt→±∞ ~p(t) is the momentum of the particle as t → ±∞ and ~x±

.
=

limt→±∞ (~x(t)− ~p(t)t). The scattering matrix S transforms ~x− into ~x+ = S~x−. It de-
pends on the energy and the angular momentum of the particle. As r

.
= |~x| tends to

infinity one can write S = eiδ (δ is the usual phase shift), and the fundamental relation

τ = −i d
dλ

lnS (2.63)

holds.

2.2.4 Remarks

The quantity τ(φ) introduced in this section has to be viewed as a global time delay in
the sense that its evaluation involves the scattering in all possible directions. One can
also define a so-called angular time delay which depends on the direction of the incoming
beam and that of the observer of the scattered particles. The global time delay is then a
kind of average over all directions of the angular one (cf. [AJS77]).

We have observed that the time delay has been defined for a class of potentials which
does not include important cases as the Coulomb one, that is long-range potentials. The
situation is even worse — long-range potentials do not even fulfill the asymptotic condition
(2.1), and thus the wave operators do not exist. Possible ways to solve these problems
are discussed in the next section.
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2.3 Time delay in the Coulomb potential

2.3.1 Introduction

Since there are several problems associated with it, the special case of long-range potentials
needs a deeper investigation. Most of the definitions and formulae from the preceding
sections break down in the case of potentials decaying as slowly as, or more slowly than 1

r

as r →∞. In this section we discuss the problems and how some of them can be removed.
At the end we present a method of how one can define a finite time delay for the Coulomb
potential, but its physical interpretation seems not obvious.

2.3.2 Time-independent approach

Surprisingly there exists an explicit solution of the time-independent Schrödinger equation
for the Coulomb potential despite the various difficulties associated with it. We give a
short summary of the results which is based on the treatment in [Far73].

We consider the scattering of a particle with mass m and charge Z1e by a fixed charge
Z2e placed at the origin. The corresponding Schrödinger equation is

[
− 4
2m

+
Z1Z2e

2

4πε0r

]
Ψ(~x) = λΨ(~x). (2.64)

In an abbreviated form this equation reads

[
4+ k2 − 2γk

r

]
Ψ(~x) = 0, γ

.
=
mZ1Z2e

2

4πε0k
. (2.65)

We put

Ψ(~x) = eikzf(~x), (2.66)

where the z-axis has been set to lie in the direction of the incoming particle. eq. (2.65)
then simplifies to

4f + 2ik
∂f

∂z
− 2γk

r
f = 0. (2.67)

With another change of variable, u = ik(r − z) = 2ikr sin2( θ
2
), where θ is the polar angle

given by z = r cos θ, we find that

u
d2f

du2
+ (1− u) df

du
+ iγf = 0. (2.68)
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This is a special case of the confluent hypergeometric equation; solutions regular at u = 0
must be proportional to the confluent hypergeometric function

1F1(−iγ, 1;u) =
∞∑

n=0

Γ(−iγ + n)

Γ(−iγ)
un

(n!)2
, (2.69)

where Γ is the gamma function. The solution of (2.65) reads hence

Ψ(~x) = Aeikz1F1[−iγ, 1; ik(r − z)], (2.70)

where A is some constant.

For =(u) > 0 the asymptotic behaviour of 1F1(u) as |u| → ∞ is given by

1F1(−iγ, 1;u) '
eπγuiγ

Γ(1 + iγ)

[
1 +

γ2

u
+O

(
1

u2

)]

+
1

Γ(−iγ)
eu

u1+iγ

[
1 +

(1 + iγ)2

u
+O

(
1

u2

)]
. (2.71)

Therefore, as |r − z| → ∞, the scattering wave function behaves like

Ψ(~x) ' Ae
π
2
γ

Γ(1 + iγ)

{
eikz+iγ ln(k|r−z|)

[
1 +

γ2

ik(r − z) + ...

]

+
Γ(1 + iγ)

Γ(−iγ)
eikr−iγ ln(k|r−z|)

2ikr sin2 θ
2

[
1 +

(1 + iγ)2

ik(r − z) + ...

]}
. (2.72)

The first term in the curly brackets of eq. (2.72) represents a plane wave modified by the
phase factor iγ ln(k|r − z|). The second term can be rewritten in the form

fc(θ)
eikr−iγ ln(2kr)

r
,

where

fc(θ)
.
=

Γ(1 + iγ)

iΓ(−iγ)
e−iγ ln(sin

2 θ
2
)

2k sin2 θ
2

(2.73)

is the scattering amplitude. The expression

eikr−iγ ln(2kr)

r
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can be interpreted as an outgoing spherical wave modified by a term due to the long-range
nature of the Coulomb potential. We observe that both the incident and the scattered
waves are distorted by a term logarithmic in r right out to infinity. This is a characteristic
of the Coulomb potential and other potentials with the same fall-off. The meaning of this
result is that there exist no free asymptotic states in the usual sense in a long-range
potential. The notion of asymptotic freedom and therefore also the definition of the
asymptotic condition have to be modified in order to be able to give a description of the
theory analogous to that for the short-range case.

2.3.3 The time delay in long-range potentials is infinite

The time delay as it has been defined in the previous section is infinite for long-range
potentials. The following heuristic arguments shall elucidate this fact. The Gedanken-
experiment used in this paragraph has been adopted from [Gas74], where the problem is
discussed in more detail.

We consider a fictious experiment in classical particle scattering: a source at ~x0 =
(x0, 0, z0) injects test particles into a spherically symmetric force field ~F = αβ

~x
|~x|β+2 ; β ≥

1, αβ > 0, such that the motion of the particles takes place in the x-z-plane. The particles

have initial velocity ~̇x = (ẋ0, 0, 0). At ~x1 = (x1, 0, z1) an experimentalist measures:

~̇s(~s ) : the velocity of the particles at ~s
.
= ~x− ~x1,

T (~s ) : the time T taken by them to travel from ~x1 to ~x1 + ~s, (2.74)

where we have set T (0) = 0. We will give the qualitative behaviour of these two quantities
for large |~x0| and |~x1| (both the source and the observer are far away from the scatterer).
Introducing polar coordinates x = r cosϕ , z = r sinϕ, assuming that z0

x0
¿ 1 and denoting

by rmin the minimal distance which a particle of given energy E ' m
2
ẋ20 can reach from

the centre of force we obtain, approximately,

~̇s(~s ) '
√

2E

m
(cosϕas, 0, sinϕas)

.
=
~pout
m

,

T (~s ) ' |~s| m|~pout|
, for β > 1 (2.75)

and

~̇s(~s ) '
√

2E

m
(cosϕas, 0, sinϕas)

.
=
~pout
m

,

T (~s ) ' |~s| m|~pout|
+
α1
2E

m

|~pout|
ln

(
1 +

|~s|
|~x1|

)
, for β = 1, (2.76)
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where

ϕas
.
= π − 2

∫ 1
rmin

0

du√
2mE
l2
− 2m

l
V ( 1

u
)− u2

, l
.
= mẋ0z0, (2.77)

is the asymptotic angle between the x-axis and the trajectory of the scattered particle.

In the case β > 1, particles far from the origin behave as free ones within the applied
accuracy. They are called asymptotically free particles. In the case β = 1, however,
within the experimental uncertainties, we find that the time taken by the particle has
an additional logarithmic contribution; for α1 > 0 it takes more time to travel the same
distance than the free one. The distance it covers in the time T is given by the absolute
value of

~s(T ) ' ~pout
m

T − α1
m

|~pout|3
~pout ln

(
1 +
|~pout|
|~x1|

T

m

)
. (2.78)

We observe that even in the far future this particle is not asymptotically free.

The time delay suffered by the particle in the potential with β = 1 can be considered as
the time Ts spent by it within the distance d from the centre of force subtracted by the
time Tfree it would have spent there without the interaction:

τ(d)
.
= Ts(d)− Tfree(d). (2.79)

As we have pointed out before, the trajectories in potentials decaying faster than the
Coulomb one are free in the far future. We can therefore put Tfree ' d m

|~pout|
for large d.

Hence, the time delay in potentials with β = 1 reads

τ(d) ' α1
2E

m

|~pout|
ln

(
1 +

d

|~x1|

)
. (2.80)

It obviously tends to infinity as d → ∞. One, therefore, needs to redefine the notion of
asymptotically free particles by some means in order to get a way to define a finite time
delay.

The preceding arguments can be adopted to the case of quantum mechanics. One can show
that the asymptotic condition (2.1) does not hold for scattering in long-range potentials
and that the Møller operators Ω̂± = s−limt→±∞ V

∗
t Ut do not exist (cf. [AJS77], prop.

13.6).

2.3.4 A new asymptotic condition

Dollard [Dol64] has provided a generalization of the asymptotic condition for the Coulomb
potential and has constructed the corresponding wave operators. In this subsection we
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shall give a short summary of his work and of improvements by other authors. See also
[AJS77] for details and proofs.

We know from the previous subsection that the asymptotic condition (2.1) fails to hold
for Coulomb scattering and that the wave operators do not exist in the usual sense. We
now briefly introduce Dollard’s construction of the Coulomb wave operators. Consider
the Coulomb Hamiltonian

Ĥc
.
= − 4

2m
+
ξ

r
, ξ

.
=
Z1Z2e

2

4πε0
. (2.81)

The corresponding evolution is given by

Wt
.
= e−iĤct, (2.82)

and the distorted free evolution reads

Yt
.
= e−iĤ0c(t), (2.83)

where

Ĥ0c(t)
.
= Ĥ0t+

mξsgn t√
−4 ln

(
−2|t|4

m

)
.
= Ĥ0t+ Ĥ ′

0c(t). (2.84)

The operator Ĥ ′
0c(t) acts on a state φ(~x) = 1

(2π)
3
2

∫
d~kei

~k·~xφ̃(~k) as follows:

(Ĥ ′
0c(t)φ)(~x) =

mξsgn t

(2π)
3
2

∫
d~kei

~k·~x ln

(
2k2|t|
m

)
φ̃(~k)

k
. (2.85)

W ∗
t Yt is unitary, and the strong limits

lim
t→±∞

‖W ∗
t Ytφ− Ω̂c

±φ‖ = 0 (2.86)

define the Coulomb wave operators Ω̂c
±. They exist on all of L2. Eqs. (2.86) represent the

modified asymptotic condition. In the remote past and in the far future respectively, the
scattering states behave as free ones with respect to the modified free evolution Yt:

lim
t→±∞

‖Wtψ − Ytφ‖ = 0, ψ = Ω̂c
±φ. (2.87)

Ytφ is the only possible form for a wave packet in the Coulomb field. Again, we can define
the scattering operator by

Ŝc
.
= Ω̂c∗

+ Ω̂
c
−, φout = Ŝcφin. (2.88)
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Mulherin and Zinnes [MZ70] have given a somewhat different construction, but their wave
operators coincide with that of Dollard. They define their free Coulomb evolution Zt by

(Z±t φ)(~x) =
1

(2π)
3
2

∫
d~k Φ±c (

~k, ~x)e−i
k2

2m
t φ̃(~k), (2.89)

where φ ∈ L2 is a free state. Φ±c (
~k, ~x) is the kernel of the Coulomb transform, which

converts a free state into an asymptotic state in the Coulomb potential:

φ±c (~x) =
1

(2π)
3
2

∫
d~k Φ±c (

~k, ~x) φ̃(~k); (2.90)

the kernel is given by

Φ±c (
~k, ~x)

.
= ei(

~k·~x∓ γ ln(kr±~k·~x)). (2.91)

The wave operators according to this construction are defined by the limits

Ω̂c
±
.
= lim

t→±∞
W ∗
t Zt. (2.92)

Their action is well-defined on states ∈ L2, and they are identical to the wave operators
obtained by Dollard.

The evolution Z±t can be written as the product of two operators

Z±t = K̂±(ξ)Ut. (2.93)

The operators K̂±(ξ) are defined implicitly by eq. (2.93) and depend on the charge, which
is itself proportional to ξ. For ξ = 0, it holds that K̂±(0) = Î. Hence, Zt reduces just
to the free evolution Ut for short-range potentials. In the case of long-range potentials,
where ξ 6= 0, however, the operators K̂±(ξ) are no longer trivial. They transform the free
state φ into the asymptotic states given by:

(K̂±φ)(~x) =
1

(2π)
3
2

∫
d~k Φ±c (

~k, ~x) φ̃(~k). (2.94)

The operators K̂±(ξ) are sometimes called time-dependent dressing transformations.

As we have pointed out, the scattering state ψ±t = Ω̂c
±Wtφ is not asymptotically free

(‖Utφ − ψt‖ 6→ 0), but its probability distributions for both position and momentum
approach those of the free wave function φt as t→ ±∞ (cf. [RS79] p. 174). In this sense
we can say that the motion is asymptotically free.
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2.3.5 Coulomb time delay made finite

Based on the considerations of the preceding subsection we show how one can define a
finite time delay for long-range potentials for a sufficiently large class of state vectors.
The method has been developed by Bollé, Gesztesy and Grosse in [BGG83]. It uses the
time-dependent formulation of scattering theory together with Dollard’s results on the
Coulomb wave operators. We only state the most important formulae from [BGG83] and
refer the reader to that article for proofs and references.

The Coulomb time delay is defined with respect to the modified free evolution of Dollard
(cf. eq. (2.83)). It is shown to be finite and to satisfy a generalization of the Eisenbud-
Wigner formula.

The Coulomb potential shall be denoted by V (r) = ξ

r
, ξ ∈ R, the unperturbed Hamilto-

nian is given by Ĥ0 = −4, m = 1
2
. Hence, the modified free evolution reads

Y a
t = e

−i

[
Ĥ0t+

ξsgn t

2

√
Ĥ0

ln(4aĤ0|t|)

]

, t 6= 0, (2.95)

where an explicit dependence on a parameter a > 0 has been introduced. Dollard’s choice
for a was a = 1, but we will see that the choice a = e seems more natural. According to
the previous subsection the modified free evolution Y a

t defines, now a-dependent, Coulomb
wave operators Ω̂a,c

± .

Let S0(R3) ⊂ H = L2(R3) be the subset of the Schwarz space S(R3) given by

S0(R3)
.
= {φ ∈ S(R3) | φ̃(~k) vanishes in a neighbourhood of ~k = 0}. (2.96)

Then, for a state φ ∈ S0(R3), both the modified free sojourn time

T a,cR (φ)
.
=

∫ ∞

−∞

dt ‖P̂RY a
t φ‖2 (2.97)

and the Coulomb sojourn time

T cR(φ)
.
=

∫ ∞

−∞

dt ‖P̂RWtΩ̂
a,c
− φ‖2 (2.98)

are finite, as well as their difference

τa,cR (φ)
.
= T cR(φ)− T a,cR (φ), (2.99)

which is the Coulomb time delay for the region of R3 with |~x| ≤ R.



30 Chapter 2. Time delay in scattering theory

Since the potential is spherically symmetric, we introduce the functions φlm ∈ S0(R3)
which satisfy

φ̃lm(~k) = αlm(k)Y
m
l (~ω), (2.100)

where αlm(k) ∈ C∞0 (0,∞), l ∈ N, −l ≤ m ≤ l, ~k = k~ω and ~ω ∈ S2. Y m
l denote the

spherical harmonics.

As the distance R from the scattering centre tends to infinity, the sojourn times of the
states φlm approach

T a,cR (φlm)
R→∞'

∫ ∞

0

k2dk

∫

S2
d~ω
∣∣∣φ̃lm(k~ω)

∣∣∣
2
[
R

k
+

ξ

2k3
ln(2kaR)− ξ

k3

]
+O(1), (2.101)

T cR(φlm)
R→∞'

∫ ∞

0

k2dk

∫

S2
d~ω
∣∣∣φ̃lm(k~ω)

∣∣∣
2
[
R

k
+

ξ

2k3
ln(2kR)

− ξ

2k3
+

1

k

∂

∂k
δcl (k)

]
+O(1). (2.102)

Here,

δcl (k) = arg

[
Γ

(
l + 1 +

iξ

2k

)]
(2.103)

is the Coulomb phase shift. For φlm ∈ S0(R3) the time delay for infinite space region is
finite and is given by

τa,c(φlm) =

∫ ∞

0

k2dk

∫

S2
d~ω
∣∣∣φ̃lm(k~ω)

∣∣∣
2 1

k

∂

∂k

[
δcl (k)−

ξ

2k
(1− ln a)

]
. (2.104)

For functions φ ∈ S0(R3) whose Fourier transforms φ̃ have compact support, the time
delay can be written as an operator

τa,c(φ) = 〈φ| τ̂ a,c|φ〉. (2.105)

It is essentially self-adjoint and commutes with Ĥ0. The on-shell components of τ̂ a,c satisfy
a modification of the Eisenbud-Wigner formula:

τa,c(k) = − i

2k
S∗c (k)

∂

∂k
Sc(k) +

ξ

2k3
(1− ln a), k > 0, (2.106)
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where Sc(k) is the energy-shell decomposition of the Coulomb scattering operator,

Sc(k) = e
2i arg Γ

(
1
2
+
√
~L2(k) 1

4
+ iξ

2k

)
. (2.107)

Here, ~̂L2 is the square of the angular momentum operator.

The choice a = e seems the most natural one, because then (2.106) exactly parallels the
short-range form of the Eisenbud-Wigner formula.

2.3.6 Remarks

The construction in the preceding paragraphs is consistent, at least mathematically. The
deep reason that the regularization of the time delay works seems to be the state inde-
pendence of the potential, i.e. the states do not depend on the parameter ξ that appears
in the potential and the regularization. The modification of the time evolution due to
Dollard is also physically acceptable. It seems, however, not very obvious to interpret
the quantity τ a,c(φ), defined by eq. (2.104), as ’Coulomb time delay’, because, as we have
shown earlier, the time delay according to the standard definition for the Coulomb poten-
tial is infinite, not only in the quantum, but also in the classical case. It seems, therefore,
not justifiable to interpret the finite quantity τ a,c(φ) as a time delay in the usual sense.
The real physical meaning of it is not clear and remains to be found.

In the fourth chapter we will explain that the regularization of the time delay explained
in this section does not work in the case of the scattering of a self-gravitating null shell,
because the potential is not state-independent. There are thus two arguments that point
out that for our model there is no physically acceptable analog to the well-defined time
delay in short-range potentials.
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Chapter 3

Light-like shells and scattering time

3.1 Introduction

Since a consistent theory of quantum gravity seems to be out of reach in the present
one often chooses a model with a finite number of degrees of freedom and constructs an
exact quantum theory thereof. The model is chosen such that the main features of the
problems one wants to study are still present. For the study of gravitational collapse
self-gravitating spherical thin shells have proven to be quite useful. The collapsing shell,
although a simple finite-dimensional model, still suffers from the disease of singularities,
at least in the classical theory.

A shell consists of a thin layer of some matter and separates two distinct spacetime ge-
ometries which are influenced by the matter distribution inside the shell. Spherically
symmetric thin shells surrounded by their own gravitational field are widely used in cos-
mology and the study of quantum black holes. See, for example, [Háj00b] for a list of
references.

In this chapter we first briefly explain the basic ideas about thin shells; we especially treat
the spherically symmetric dust shells. We then turn our attention to light-like shells made
of null-dust and construct a simple scattering system: a spherically symmetric light-like
shell scattered off a spherical mirror that lies outside the horizon of the shell. Finally, we
compute the scattering time measured by an observer between his two encounters with
the shell.

3.2 Massive shells

3.2.1 Israel’s equations

The classical paper on the dynamics of thin shells in general relativity is that by W. Israel,
[Isr66]. We, however, summarize the treatment of Berezin et al. [BKT87] which is more

33
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intuitive.

A shell is an infinitely thin layer of matter which separates two media with different
properties, dividing by this spacetime into three distinct regions. We denote the world
sheet of the shell by Σ. It divides the spacetime into inner (M−) and outer (M+)
parts. In order to establish the formulae for the general-relativistic back reaction of the
moving shell in the spacetime, we need to take Einstein’s equations into account. The
energy-momentum tensor T µν of the shell will in general have singularities on it, but in
our treatment we assume that these are not stronger than those given by δ-functions.

First we have to introduce some notation and state our conventions. In this chapter we
use units with G = c = 1, and the Minkowski metric is given by η = diag(1,−1,−1,−1).
Greek indices are used for quantities on the four-dimensional spacetime manifold. They
run from 0 to 3. Quantities on the three-dimensional hypersurfaces carry Latin indices
which take the values 0, 2, 3. Einstein’s equations (with vanishing cosmological constant)
in these conventions read

Rµν −
1

2
gµνR = 8πTµν , (3.1)

where Rµν is the Ricci tensor and R the curvature scalar. Together with a given matter
distribution Tµν and the equations of continuity

T νµ;ν = 0, (3.2)

they determine the dynamics of the shell and the surrounding spacetime. Here, the
semicolon denotes the four-dimensional covariant derivative. As the hypersurface Σ may
be considered as embedded into four-dimensional spacetime, Einstein’s equations at the
shell can be expressed in terms of the extrinsic curvature (Kkl) and the surface energy
density (Skl) tensors. Kkl is given by

K±
kl = −n±µ e±ν(l) e

±µ
(k);ν , (3.3)

where

e±µ(k)
.
=
∂xµ±
∂yk

(3.4)

are vectors tangent to the shell hypersurface, xµ± are coordinates on the inner (-) and outer
(+) spacetimes M± and yk are coordinates at the shell. The terms ’inner’ and ’outer’
are to be understood as the position with respect to right spatial infinity. n±µ is a unit
normal vector of Σ in the respective coordinates directed from M− to M+. It is called
unit outer normal. We denote the jump of a quantity Q at the shell by

[Q]
.
= Q+ −Q−. (3.5)
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Einstein’s equations in this formalism hence read

ε
(
[Kk

l ]− δkl [Km
m ]
)
= 8πSkl . (3.6)

ε
.
= nµn

µ is +1 (−1) for space-like (time-like) shells. The special case of light-like shells
(ε = 0) is treated in the next section, because the usual formalism breaks down. The
equations (3.6) are often called Israel’s equations.

3.2.2 Spherically symmetric time-like dust shells

Israel’s equations are decisively simplified if we choose the matter of the shell to be a
non-relativistic pressure-less ideal fluid, so-called dust. The surface energy tensor then
obtains the simple form

Skl = Sukul, uku
k = −1, (3.7)

where S is the surface density of the shell and uk is a unit vector tangential to the

streamlines yk(τ) of the dust particles: dyk

dτ
= uk. τ is the proper time measured along

the streamlines. The streamlines are time-like geodesics of Σ, so the world sheet of the
shell is a time-like hypersurface.

We now turn our attention to the specific case of spherically symmetric dust shells. In this
case there is an inside (M−) and a outside (M+) geometry, both spherically symmetric.
According to Birkhoff’s theorem they must be Schwarzschild spacetimes with different
mass parameters E−, E+. If we assume that the shell is the only source of gravity, then
M− is a piece of Minkowski spacetime which does not contain null infinity, and E− = 0.
Consequently, E = E+ is the total mass of the system.

The interior metric in the polar Minkowski coordinates TM , R, θ, φ reads:

ds2 = dT 2M − dR2 −R2dΩ2, (3.8)

where we have introduced the abbreviation dΩ2
.
= dθ2 + sin2 θdφ2, that will be used

throughout this work. For the exterior we choose the Schwarzschild coordinates T,R, θ, φ,
for which the metric is given by the line element

ds2 = fdT 2 − 1

f
dR2 −R2dΩ2, f

.
= 1− 2E

R
. (3.9)

The induced metric on the world sheet Σ of the shell in the coordinates τ, θ, φ on the shell
is

ds2|Σ = dτ 2 − r2(τ)dΩ2, (3.10)
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where τ is the proper time along Σ and R = r(τ) is the radius of the shell at the time τ .

In the case of spherical symmetry we have K2
2 = K3

3 (This property holds in fact for any
tensor of this type). Israel’s equations (3.6) thus reduce to

− 4πS00 = [K2
2 ],

−8πS22 = [K0
0 ] + [K2

2 ] (3.11)

and

Ṡ00 + 2
ṙ

r

(
S00 − S22

)
+ [T n0 ] = 0, (3.12)

where T±n0 is the normal flow of the energy-momentum tensor inside (−) and outside (+)
of the shell. Since the matter of the shell is dust, it holds that S22 = S33 = 0 and hence,
S = −S00 . The two equations (3.11) thus reduce to a single one,

[K2
2 ] = 4πS. (3.13)

For a spherically symmetric geometry the non-vanishing components of the extrinsic cur-
vature tensor are given by

K2±
2 = −σ±

r

√
ṙ2 + f±, f±

.
= 1− 2E±

r
. (3.14)

Since f− = 1 and f+ = 1− 2E
r
, the equation of motion of the massive shell reads

σ−
r

√
ṙ2 + 1− σ+

r

√
ṙ2 + 1− 2E

r
= 4πS. (3.15)

The meaning of the two signs σ± is as follows: σ = +1 if the radii increase in the direction
of the outer normal to the shell, σ = −1 if they decrease. We will discuss the behaviour
of these signs later in this section.

For a shell of dust, equation (3.12) reduces to

Ṡ + 2
ṙ

r
S = 0. (3.16)

Hence,

S =
M

4πr2(τ)
(3.17)
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is the surface energy density of a sphere of radius R = r(τ) with rest mass M . Inserting
this result into (3.15), we obtain

σ−
√
ṙ2 + 1− σ+

√
ṙ2 + 1− 2E

r
=
M

r
, (3.18)

which is the final form of the equation of shell motion.

Solving (3.18) for E yields the total energy of the shell

E = E(r, ṙ) =M
√
ṙ2 + 1− M2

2r
. (3.19)

The difference E−M can be viewed at as the ’binding energy’ of the shell due to gravity.
We can rewrite eq. (3.19) in the form of the radial equation of motion of a particle moving
in an effective potential [Háj92]:

ṙ2 + Veff(r) = 0, Veff(r)
.
= 1−

(
E

M
+
M

2r

)2
. (3.20)

There are only three types of solutions:

1) E ≥ M, ṙ > 0: The shell starts at r = 0 at a finite time τ− and approaches r = ∞
with τ = +∞ and ṙ =

√
E2

M2 − 1 ≥ 0.

2) E ≥M, ṙ < 0: The time inversion of case 1).

3) E < M : The shell starts at r = 0, τ = τ−, ṙ = ∞, reaches a turning point at
r0 =

M2

2(M−E)
and falls back to r = 0 at the finite time τ+, ṙ = −∞.

We observe that ingoing shells must reach the singularity, so nothing can prevent the
collapse to a black hole in the classical theory once the shell has passed the horizon at
R = 2E. Moreover, an outgoing shell can never return behind the white hole horizon,
provided that E ≥M .

We add a note on the signs σ±. In flat (Minkowski) space (M−) we have always σ− = +1
for future-oriented shells (we will consider only these). Outside (M+) the geometry is
Schwarzschild. In the region I (see fig. (3.1)) it holds that σ+ = +1, since the outer normal
points into the direction of growing radial coordinate. Similarly, in the corresponding
region I’ at left infinity, the sign has the value σ+ = −1 for future-oriented shells. In
the two regions II, III beyond the horizons the sign can change. Where this happens
depends on the actual trajectory of the shell. But since we will not use massive shells in
the following, we do not go into details. The signs σ± are not defined for the light-like
case, because the normal nν lies tangential to the shell, and we can not give it a meaning
to be directed ’outwards’.
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Figure 3.1: Penrose diagram of the maximal extension of Schwarzschild spacetime show-
ing the directions of growing Schwarzschild time coordinate T in the four regions. The
singularities are depicted by thick lines. The horizons lie at R = 2E. The regions I and
I’ lie outside, whereas the regions II and III are inside the horizons.

3.3 Null shells

3.3.1 The light-like limit

The fundamental paper about light-like thin shells has been written by Barrabès and
Israel [BI91]. The description in the preceding paragraphs which works in the subluminal
case breaks down for light-like shells because the extrinsic curvature tensor Kkl is no
longer uniquely definable. Barrabès and Israel have established a beautiful method to
circumvent this problem. Their description includes the light-like case as a continuous
limit of the time-like one. But we will not take use of their formalism in the next section.
We will rather derive the equations of motion of a light-like shell from the equations of
null geodesics in Schwarzschild and Minkowski spacetime.

3.3.2 Light-like shells as null geodesics

We determine the equations of motion for light-like (null) spherically symmetric shells of
dust. In this section we loosely follow the treatment by Háj́ıček and Bičák in [HB97].

The spacetime interior of the shell can be described by the Minkowski metric

ds2 = dT 2M − dR2 −R2dΩ2. (3.21)

The outside geometry is given by the Schwarzschild metric

ds2 = fdT 2 − 1

f
dR2 −R2dΩ2, f .

= 1− 2E

R
. (3.22)



3.3. Null shells 39

E is the Schwarzschild mass. The metric on the hypersurface Σ defined by the light-like
shell is simply

ds2|Σ = −r2(λ)dΩ2, (3.23)

where λ is some parameter.

Since the motion of the null shell is that of a radial null geodesic in the two-dimensional
spacetime spanned by the coordinates TM and R (or T and R) with the trajectory R =
r(λ), TM = tM(λ) (or T = t(λ)), the formulae for the shell can be obtained from

ṫ2M − ṙ2 = 0, (3.24)

f ṫ2 − 1

f
ṙ2 = 0 (3.25)

in the respective interior (exterior) coordinates. We choose the parameter λ of the shell
trajectory to be a so-called physical parameter: ṫM = ηE, f ṫ = ηE (see [HB97] for the
exact definition). The overdot represents the derivative with respect to this parameter.
Then, the eqs. (3.24) and (3.25) imply the following three equations which govern the
shell motion:

ṙ2 = E2,

ṫ2M = ṙ2,

f 2ṫ2 = ṙ2. (3.26)

The first equation of (3.26) is the so-called radial equation while the two others are the
time equations. Taking square roots we obtain

ṙ = ζηE,

ṫM = η−|ṙ|,
f ṫ = η+|ṙ|. (3.27)

The four numbers ζ, η, η− and η+ can take the values ±1. Their meaning is explained in
the following. ζ just distinguishes which asymptotic region of the maximal extension of
Schwarzschild spacetime the geodesic reaches, ζ = +1 (−1) for the right (left) one. The
parameter η is connected with the direction of motion of the shell with respect to right
infinity. It takes the value +1 if the shell is outgoing and −1 if it is ingoing, provided
the shell is future-oriented. The meaning of the two remaining signs η± is determined
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as follows: Consider the case of the outgoing shells. Inside the shell the retarded null
coordinate

Ũ = TM −R (3.28)

is constant along the trajectory. The same holds for the retarded Eddington-Finkelstein
(REF) coordinate

Ū = T −R− 2E ln

∣∣∣∣
R

2E
− 1

∣∣∣∣ (3.29)

in the spacetime exterior of the shell. Hence, along the outgoing shell’s trajectory:

˙̃U = 0 = ṫM − ṙ = η−E − E. (3.30)

which implies that η− = +1 for future-oriented shells. This is consistent with the fact
that η− is the sign of ṫM which determines the time orientation of the trajectories. For
outgoing null geodesics in the exterior spacetime it holds that

˙̄U = 0 = ṫ− ṙ
(

r

r − 2E

)
=
E

f
(η+ − 1), (3.31)

hence also η+ = +1 for future-oriented shells. The same results are obtained in the case
of the ingoing shells. From the third eq. of (3.27) follows that

η+ = sgn (f ṫ). (3.32)

For null geodesics the sign of ṫ changes as the trajectory crosses a horizon and then does
not change anymore, because, in contrary to time-like geodesics, the light-like one never
lies tangent to the lines of constant t. Also the sign of f flips behind the horizon and then
stays the same, so the sign of f ṫ remains constant with value η+. We thus observe that all
the four signs remain constant during the evolution. In the case of a massive (time-like)
shell, however, this is not true. The parameter η+ can change its sign as the shell reaches
the region behind the horizon.

Past-orientation is represented by η± = −1. Since shells with Minkowski spacetime inside
cannot reach left infinity, we will consider only future-oriented shells that reach (or come
from) right infinity; thus we set

ζ = η± = +1. (3.33)

Thus, the remaining parameter η distinguishes between ingoing and outgoing shells, and
the eqs. (3.27) are reduced to
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ṙ = ηE,

ṫM = |ṙ| = E,

f ṫ = |ṙ| = E. (3.34)

We first solve these equations for outgoing shells (η = +1). In order to fix the parameter
λ we have to impose an initial condition. We choose

r(0) = 0. (3.35)

Hence we obtain the solution of the radial equation,

r(λ) = Eλ, (3.36)

and that the parameter λ must take values from the interval [0,∞). We also have to
determine the constants appearing in the integration of the two time equations. For an
outgoing radial null geodesic in flat spacetime it holds that Ũ = ũ is constant. Ũ = TM−R
implies that

ũ = tM(λ)− r(λ). (3.37)

The solution of the Minkowski time equation reads

tM(λ) = Eλ+ c, (3.38)

where c is an arbitrary constant. From the two last equations and from the fixing of λ by
eq. (3.35) follows that c = ũ, hence,

tM(λ) = Eλ+ ũ. (3.39)

We thus have determined the first integration constant.

The shell trajectory in the REF spacetime is given by

Ū = ū = t(λ)− r(λ)− 2E ln

∣∣∣∣
r(λ)

2E
− 1

∣∣∣∣ , (3.40)

whereas the solution of the second time equation reads

t(λ) = Eλ+ 2E ln

∣∣∣∣
λ

2
− 1

∣∣∣∣+ c′, (3.41)
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where c′ is another arbitrary constant. Hence, the two constants c′ and ū are equal; and
we obtain that

t(λ) = Eλ+ 2E ln

∣∣∣∣
λ

2
− 1

∣∣∣∣+ ū. (3.42)

The relation between the two time coordinates along the shell is thus given by

t(tM) = tM − ũ+ ū+ 2E ln

∣∣∣∣
tM − ũ
2E

− 1

∣∣∣∣ . (3.43)

A similar calculation for the ingoing (η = −1) case yields the following formulae:

r(λ) = −Eλ, λ ∈ (−∞, 0], (3.44)

tM(λ) = Eλ+ ṽ, (3.45)

t(λ) = Eλ− 2E ln

∣∣∣∣−
λ

2
− 1

∣∣∣∣+ v̄, (3.46)

t(tM) = tM − ṽ + v̄ − 2E ln

∣∣∣∣
ṽ − tM
2E

− 1

∣∣∣∣ . (3.47)

Because of the initial condition (3.35), the parameter λ takes negative values for ingoing
and positive ones for outgoing shells, in order to preserve the positiveness of r. The horizon
lies at the radius RH = 2E. The two values of the parameter of the shell trajectory there
are λH = 2η. The Schwarzschild time of the shell at the horizon, t(λH), diverges, but
anywhere else it is well-defined.

3.4 Scattering time and the spherical mirror

3.4.1 Glueing in- and outgoing geodesics

In this section we construct a simple scattering system containing a null shell with total
energy E and a spherical mirror with the fixed radius R = RM centered at R = 0. We
allow the energy of the shell only to have values that are small enough, such that the
horizon lies inside the mirror. This leads to a energy cut-off at

Emax =
RM

2
. (3.48)

Hence, only shells with an energy E inside the interval [0, RM
2
) are allowed.

We now glue together an ingoing and an outgoing radial null geodesic that meet at the
mirror and make a single trajectory out of them. We thus have to find for each ingoing
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geodesic Ṽ = ṽ (V̄ = v̄) its corresponding outgoing counterpart Ũ = ũ (Ū = ū). We
moreover require the two functions tM(λ) and t(λ) to be continuous in the parameter λ
at the mirror. First we fix the affine parameter λ by the condition

r(0) = RM , (3.49)

such that the radial shell equation reads

r(λ) = RM + ηEλ, (3.50)

where

η = +1, if λ ≥ 0, (3.51)

η = −1, if λ < 0, (3.52)

For an ingoing trajectory in the interior spacetime given by

Ṽ = ṽ = tM(λ) + r(λ) (3.53)

it holds that

tM(λ) = Eλ+ ṽ −RM , λ ∈ (−∞, 0]. (3.54)

Hence, at the mirror, where λ = 0,

tM(λ = 0) = ṽ −RM
.
= T0. (3.55)

From the outgoing geodesic given by

Ũ = ũ = tM(λ)− r(λ) = tM(λ)− Eλ−RM (3.56)

it follows that

tM(λ) = Eλ+ ũ+RM , λ ∈ [0,∞), (3.57)

and, therefore,

tM(0) = ũ+RM
.
= T0. (3.58)
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Since we require tM = T0 at the mirror for both parts of the trajectory (the Minkowski
time of the shell shall be continuous at the mirror), we obtain the junction condition
between ũ and ṽ

ũ = ṽ − 2RM . (3.59)

If we put together both parts, we get the function tM(λ) for the entire trajectory

tM(λ) = Eλ−RM + ṽ, λ ∈ R. (3.60)

A similar calculation in the Schwarzschild spacetime leads to the junction condition

ū = v̄ − 2RM − 4E ln

∣∣∣∣
RM

2E
− 1

∣∣∣∣
.
= v̄ − 2R∗M (3.61)

and to the function t(λ) measuring the Schwarzschild time along the shell trajectory,

t(λ) = Eλ+ 2ηE ln

∣∣∣∣
ηEλ+RM

2E
− 1

∣∣∣∣+ v̄ −RM − 2(η + 1)E ln

∣∣∣∣
RM

2E
− 1

∣∣∣∣ . (3.62)

Here the sign of λ coincides with η.

Equations (3.50), (3.60) and (3.62) together describe the trajectories of the shells in this
simple scattering system. Eqs. (3.59) and (3.61) provide the necessary junction conditions.

3.4.2 Scattering time at the radius RO

We calculate the scattering time measured by an observer at rest at the radius R = RO >
RM . During the measurement the observer is situated in the Schwarzschild spacetime
exterior to the shell. Therefore, we have to compute the two values t+, t− of the function
t(λ) at the radius R = r(λ) = RO and then take the difference. The resulting quantity is
the scattering time in terms of the Schwarzschild time coordinate, we denote it by

∆T
.
= t+(RO)− t−(RO). (3.63)

Using the equations (3.50) and (3.62) we obtain the Schwarzschild time along the shell in
terms of the radial coordinate r:

t(r) = ηr + 2ηE ln
∣∣∣ r
2E
− 1
∣∣∣+ v̄ − (η + 1)

(
RM + 2E ln

∣∣∣∣
RM

2E
− 1

∣∣∣∣
)
. (3.64)

Hence,
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t−(RO) = −RO − 2E ln

∣∣∣∣
RO

2E
− 1

∣∣∣∣+ v̄, (3.65)

t+(RO) = RO + 2E ln

∣∣∣∣
RO

2E
− 1

∣∣∣∣+ v̄ − 2RM − 4E ln

∣∣∣∣
RM

2E
− 1

∣∣∣∣ . (3.66)

Thus, the scattering time (3.63) equals to

∆T = 2(RO −RM) + 4E ln

∣∣∣∣
RO − 2E

RM − 2E

∣∣∣∣ . (3.67)

The proper time measured by an ideal clock carried along by an observer residing in the
Schwarzschild spacetime at the constant radius RO is given by

s =

√
1− 2E

RO

T, (3.68)

hence, the proper scattering time measured by the observer reads

∆s =

√
1− 2E

RO

∆T = 2

√
1− 2E

RO

(
RO −RM + 2E ln

∣∣∣∣
RO − 2E

RM − 2E

∣∣∣∣
)
. (3.69)

Of course, the scattering time tends to infinity as the observer approaches higher and
higher values:

lim
RO→∞

∆s =∞. (3.70)

If the energy of the shell approaches Emax = RM
2

such that the Schwarzschild radius of
the shell reaches the mirror, then the scattering time tends to infinity also for observers
with finite values of their radial coordinate. So the scattering time becomes infinite if the
shell falls under its Schwarzschild horizon.

To summarize the results we state that the scattering time ∆s in a model with a fixed
spherical mirror at R = RM can be defined for shells carrying a total energy E ∈ [0, RM

2
)

and observers at R = RO ≥ RM . It depends on the energy of the shell E and on the
values of the radial coordinate of the mirror (RM) and the observer (RO). The scattering
time diverges when the shell’s energy approaches the cut-off or when the radius of the
observer goes to infinity.
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Chapter 4

Sojourn time and gauge invariance

4.1 Why the time delay cannot be defined in a finite

way in the case of the self-gravitating shell

In chapter 2 it has been pointed out that in the standard definition the time delay
(eq. (2.47)) is infinite for long-range potentials, i.e. potentials with a fall-off at infin-
ity as fast as or slower than 1

r
. Both the gravitational and the Coulomb potential belong

to this class. It has also been shown that there is a certain way to redefine the time delay
in the case of the Coulomb potential, such that it becomes finite (eq. (2.104)). One has
to modify the free time evolution operator by adding to the free Hamiltonian a term de-
pending on the central charge of the potential, cf. eq. (2.95). Then the free and Coulomb
sojourn times (given by the eqs. (2.97) and (2.98)) are adapted to the new ’free’ evolution.
The limit as r →∞ of their difference is the, now finite, modified Coulomb time delay.

In the case of a self-gravitating shell, the system can also be considered having a ’central
potential’,

V (r) ∝ E

r
, (4.1)

that is long-range and depends on the total energy of the shell. This potential has the
same fall-off at infinity as the Coulomb one, so the method that has been successful in the
Coulomb case could be in principle applied also here. But there is a problem: In contrast
to the Coulomb case, where the central charge in the potential does not depend on the
scattered particle, the self-gravitating shell produces — so to say — its own potential.
When the shell is quantized (i.e., in our approach, the total energy E of the shell becomes
an operator), then the quantum states are dependent on the energy E. A wave packet
describing a quantum shell is hence a superposition of states with different energies.
Thus, also the central potential becomes a superposition of potentials corresponding to
different energies. But as the modified free evolution depends on the central charge in the

47



48 Chapter 4. Sojourn time and gauge invariance

Coulomb case, the corresponding evolution in the case of the self-gravitating shell would
depend on the shell’s energy and would be, therefore, state-dependent, thus rendering the
regularization itself state-dependent. The definitions of the modified free and Coulomb
sojourn times and therewith the modified time delay are hence not applicable in the case
of the gravitating shell.

4.2 Scattering time and sojourn time

In the preceding section it has been argued that the time delay can not be made finite
in the case of the scattering system consisting of a self-gravitating shell and a spherical
mirror. Therefore, we have to find a different quantity that is finite and well-defined and
that can be interpreted as a measure for the duration of the scattering. It should also
depend on the strength of the potential.

In chapter 3 the proper scattering time ∆s given by eq. (3.69) has been computed. It is
the proper time measured by an ideal clock carried along by an observer at the constant
radius RO between the two instants at which the shell and the observer meet. The thus
defined scattering time is a purely classical quantity. It satisfies the requirements stated
above.

Although the time delay measured at infinity diverges and cannot be regularized, the
sojourn time inside a finite region is clearly finite in our system. The sojourn time is the
mean time a particle resides under a given radius. Its interpretation as the mean residence
time of a quantum state in a specific region is plausible, at least in Minkowski spacetime,
c.f. section 2 of the appendix A. The sojourn time is, as it has been defined in eq. (2.39),
not a classical quantity but the expectation value of a quantum operator.

There is a problem in the definition of the sojourn time when one tries to adopt it to
curved spacetimes. In flat spacetime the sojourn time is the mean Minkowski time TM
the particle described by the wave function Φ resides inside a given radius R,

TS(Φ) =

∫ ∞

−∞

dTM 〈Φ|P̂R|Φ〉, (4.2)

where P̂R is the projection operator on the states inside the radius R. In the case of curved
spacetimes it is not clear anymore, over which ’time’ the integral has to be taken. For the
null shell scattered by the mirror the proper time at a fixed radius R seems to be a good
choice. But this time coordinate depends on the energy of the shell, E, that is replaced
by the corresponding operator Ê in the quantum theory. The (infinitesimal) proper time
ds is thus an operator and its mean value in the state Φ has to be computed before
the integration can be performed. Besides factor ordering difficulties with the projector
P̂R, there emerge several conceptual problems, that are discussed in more detail in the
appendix A. We, therefore, have to find a better definition for the quantum scattering
time for our model.
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In order to achieve this goal we define the quantum scattering time to be the expecta-
tion value of the operator ∆̂s for the wave packets of a suitable quantum theory. The
operator ∆̂s results from the replacement of E in the classical scattering time ∆s by the
corresponding operator Ê:

∆̂s = ∆s(E = Ê). (4.3)

But one must be careful when replacing classical quantities by operators. The classical
observable must be gauge invariant (i.e. a Dirac observable), otherwise severe problems
occur in the quantum theories corresponding to different gauges, see [Háj00a]. The scat-
tering time ∆s is, the way it has been defined in the third chapter, not gauge invariant.
But there is, fortunately, a method to redefine it, which renders it truly gauge invariant.
This is shown in section 5 of this chapter.

Let ∆s be the gauge invariant scattering time. From now on we will refer to the mean
value of the scattering time operator ∆̂s as the sojourn time of the quantum state under
the radius R:

ts(R)
.
= 〈∆s(R)〉. (4.4)

Even though this definition does not coincide with the usual one for the sojourn time, it
seems to be the best approximation we are able to do.

4.3 Gauge invariant scattering time

In the preceding section we have argued that the mean value of the scattering time
operator can be interpreted as the sojourn time of our quantum system. The main
problem with ∆s is, that it is not a gauge invariant, as it will be shown in the next
section. But only gauge invariant (Dirac) observables can be made into operators that
have a well-defined interpretation. It is, however, sometimes difficult to find suitable
gauge invariant quantities in general relativistic models. Therefore, one often has to
content oneself with a semiclassical approximation of the theory, where it may be less
difficult to find the needed gauge invariant. In the case of systems with an infinite-
dimensional transformation group the method of small disturbances invented by DeWitt
[DeW63] seems to be appropriate. DeWitt’s method is discussed in more detail in chapter
9. His approach requires a suitable gauge, however, with respect to which the metric can
be written as a sum of a flat background metric and a small perturbation thereupon.
Fortunately, such a gauge exists for our model. It is the Cartesian transform of the
central-regular gauge that is constructed in chapter 6. The proof that this gauge does
really satisfy all of the requirements for DeWitt’s method is written down in the appendix
C. Since in DeWitt’s approximation only infinitesimal gauge transformations remain, it
may be easier to find a gauge invariant quantity that can be associated with the sojourn
time, than in the exact theory.
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We are, however, in the fortunate situation that we have managed to find a satisfactory
definition of the scattering time that is also gauge invariant in the exact theory. This
is pointed out in section 5 of this chapter. Hence, the approximation due to DeWitt
is not needed. But the results related to the DeWitt-approximation we have obtained
are interesting also beyond the context of the sojourn time. They hence deserve to be
mentioned in this work. Also, the perturbative method could be used to compare the
results of the two methods in the low-energy regime.

In the next section we argue why the coordinate-based definition of the scattering time
is not gauge invariant. The last section is devoted to a definition that is based on the
invariant line element and is, therefore, independent of the choice of coordinates.

4.4 Coordinate-based definition

In the second section of this chapter we have argued that the scattering time operator
∆̂s can play the role of the expected value of the sojourn time ts(R) under the radius R.
The scattering time ∆s has been constructed by using the trajectories of the shell and
the observer in section 4 of chapter 3 and also, for the DeWitt case, in section section
6 of chapter 9. We, therefore, do not write down the construction once more. The thus
defined quantity is, unfortunately, not gauge invariant, because the trajectories that have
been used depend on the choice of coordinates. This is already true for the corresponding
trajectories in the semi-classical approach according to DeWitt and is explicitly shown
in subsection 8.3. of chapter 9. There, only infinitesimal gauge transformations act on
the coordinates, but they are general enough that the scattering times in two different
coordinate systems are not the same. Of course, if a quantity is already not invariant under
infinitesimal gauge transformations, it can not be invariant under finite transformations!
The quantity ∆s is, nevertheless, useful, because it will be demonstrated in the next
section, that one can define the scattering time in a gauge invariant way, such that it
becomes the difference of two invariant quantities.

4.5 Gauge invariant definition

In this section we present a gauge invariant way to define the scattering time. The proper
time measured by an ideal clock along the trajectory of an observer residing at the constant
radius R = RO is clearly gauge invariant, because it is the integral over the square root
of the invariant line element ds2, which is coordinate invariant by definition. The thus
defined proper time is, however, not unique, because an arbitrary constant turns up, when
one integrates over ds. We want to define the proper times measured by the observer at
the two instants at which he observes the shell pass by. We denote them by s− for the
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ingoing and by s+ for the outgoing shell. The two times read

s− = C, s+ = C + s, (4.5)

where C is the integration constant. The term s in s+ is the proper time an ideal clock
carried along by the observer measures along his trajectory between the two instants p1, p2
at which he encounters the shell. It is defined as follows:

s =

∫

γ

ds, (4.6)

where γ is the curve connecting the two points p1 and p2 along the trajectory of the
observer and where the infinitesimal proper time ds is given by

ds =
√
ds2 =

√
gµνdxµdxν . (4.7)

The equations (4.6, 4.7) are invariant under coordinate transformations. One can thus
compute them in the coordinates that are the most suitable. Since the curve γ lies in the
region of spacetime exterior to the shell, the Schwarzschild coordinates (T,R, θ, φ) are a
good choice. The trajectory of the observer with respect to these coordinates is given by

R(µ) = RO, T = µ, µ ∈ (µ−, µ+), (4.8)

where µ is the parameter along the curve γ and where p1 = (T (µ−), R(µ−)) and p2 =
(T (µ+), R(µ+)). The values µ± of the parameter are hence found by computing the
Schwarzschild times T± of the shell meeting the observer. Since R = RO is constant along
γ and since the rate ds

dT
between the two time coordinates in the exterior region is given

by
√

1− 2E
R
, the infinitesimal proper time simply reads

ds =

√
1− 2E

RO

dT. (4.9)

The line integral along a curve γ is defined as follows:

∫

γ

f(x)dx =

∫ b

a

f(γ(t))γ̇(t)dt. (4.10)

In our case, γ is simply given by T (µ) = µ. Hence, s reads

s =

√
1− 2E

RO

∫ µ+

µ−

dµ =

√
1− 2E

RO

∫ T+

T−

dT =

√
1− 2E

RO

(T+ − T−). (4.11)
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We thus only have to compute the two Schwarzschild times T±. For this end we need to
know the trajectory of the shell with respect to the coordinates T and R. It can be de-
termined by using the transformation from T,R to the double-null Eddington-Finkelstein
(DNEF) coordinates U, V , cf. the next chapter:

V = T +R∗, U = T −R∗, (4.12)

where

R∗
.
= R + 2E ln

∣∣∣∣
R

2E
− 1

∣∣∣∣ . (4.13)

Let T (λ), R(λ) be the trajectory of the shell. Then it holds that

V = v = T (λ) +R∗(λ) (4.14)

along the ingoing and that

U = v − 2R∗M = T (λ)−R∗(λ) (4.15)

along the outgoing shell. We make the following ansatz for T (λ):

T (λ) = λ− λ0 + v −R∗M . (4.16)

At the mirror the in- and the outgoing trajectories meet, hence T = v−R∗M and, therefore,
λ0 = 0. It also holds at the mirror that R(λ = 0) = RM . Thus, along the ingoing shell
(λ < 0):

R∗(λ) = v − T (λ) = −λ+R∗M , (4.17)

whereas along the outgoing shell (λ > 0):

R∗(λ) = T (λ)− v + 2R∗M = λ+R∗M . (4.18)

Hence, the function R∗(λ) reads

R∗(λ) = R∗M + |λ|. (4.19)

Eq. (4.19) can be easily solved for R(λ) by using the definition of the Kruskal function,
cf. appendix E, yielding the result

R(λ) = 2Eκ

(
e
|λ|+R∗M

2E

)
. (4.20)
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The trajectory of the shell is thus given by eq. (4.20) and

T (λ) = λ+ v −R∗M . (4.21)

The values T± are obtained by solving the equation

R(λ±) = RO (4.22)

for λ±, the result being

λ± = ±(R∗O −R∗M), (4.23)

and inserting it into eq. (4.21), yielding

T− = v −R∗O, T+ = v +R∗O − 2R∗M . (4.24)

Hence, according to eq. (4.11) the proper scattering time s reads

s = 2

√
1− 2E

RO

(
RO −RM + 2E ln

∣∣∣∣
RO − 2E

RM − 2E

∣∣∣∣
)

= ∆s. (4.25)

Thus, the two definitions ∆s and s coincide.

Now, in the definition of the two proper times s±, only the constant C remains to be
determined. If we require the proper time s− to be equal to the Minkowski time in the
past of the shell, that is given by

T−M = v −RO, (4.26)

we obtain that

C = v −RO. (4.27)

Hence, the proper times s± read

s− = v −RO, s+ = v −RO + s. (4.28)

The difference of the two proper times yields of course the scattering time s, as required:

s+ − s− = s
.
= ts. (4.29)

Here we have introduced the same symbol for ts for the (classical) gauge invariant scat-
tering time as for the sojourn time to emphasize that it is, so to say, its classical analog.
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We thus have found, that the proper scattering time measured by an observer at the
fixed radius RO can be defined in a gauge invariant way and that it is also given by the
eq. (4.25). Hence, the sojourn time of a state in the corresponding quantum theory is
given by the mean value of the operator t̂s associated to ts:

ts(Φ) = 〈Φ| t̂s |Φ〉. (4.30)

In the last section of the chapter 9 on the method by DeWitt we will demonstrate that
the second definition of the scattering time is invariant under infinitesimal coordinate
transformations, in contrast to the definition based on explicit coordinates. The two
definitions of the scattering time, ∆s and s, seem to agree only because of the special
coordinates chosen in the computation of ∆s.



Chapter 5

The space of solutions

5.1 Preliminaries

We construct and discuss the space of all solutions for the system consisting of a single
spherically symmetric thin null shell and a spherical, perfectly reflecting mirror at the
fixed radius R = RM . The space of solutions for a single shell without the mirror is
already well-known (cf. e.g. [HK01]). Also the case of multiple shells has been discussed
in the literature, [HK02a]. Our construction closely follows the methods of [HK02a].

There are two kinds of parameters characterizing a solution. Changes in the first kind
produce a change of the properties of the solution. These parameters thus have a real
physical meaning and can be chosen as coordinates in the physical phase space. On the
other hand, changes in the parameters of the second kind do not affect the properties of
the solution. Such parameters describe thus just pure gauge.

All spacetime solutions satisfy the following conditions: The metric outside the shell
is the Schwarzschild one corresponding to the Schwarzschild energy E. The spacetime
inside the shell is flat. It has a regular inner boundary defined by the mirror at the
radius R = RM > 0. The Cauchy hypersurfaces have thus the topology of R2 × S1.
The spacetime part outside the shell is denoted by I, the two parts inside the shell by
II (for the interior of the outgoing shell) and III (inside the ingoing shell). The shell
forms hypersurface boundaries of these three pieces. These hypersurfaces are light-like
with respect to the metrics of their adjacent spacetimes. There exist coordinates in the
neighbourhood of any shell point such that the metric is continuous in a neighbourhood
of this point. The resulting total spacetime is denoted by M. We furthermore assume
that the energy density of the shell is positive.

The topology of the Cauchy hypersurfaces is that of R2 × S1, but we assume that there
is only one infinity (that on the right) and thus only one scri, I = I− ∪ I+. It is also
assumed that the observers live there and define a reference frame. So each shell starts
at I−, is ingoing until it is reflected by the mirror and ends up as a outgoing shell at I+.
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We are now ready to construct the solutions. The regions inside the shell, II and III, are
parts of Minkowski spacetime,M0, whereas the region outside, I, is a part of the Kruskal
spacetime corresponding to the energy E, ME. The corresponding maximal analytical
extensions are denoted by (M̄0,M̄E) for the Minkowski and the Kruskal spacetimes and
by M̄ for the total shell spacetime. The Minkowski spacetime is oriented such that the
mirror is on the left and infinity is on the right. From the positivity of the energy density
of the shell it follows that then E > 0. The diagram fig. (5.1) depicts the regions and the
trajectory of the shell.

5.2 Singular DNEF gauge

The so-called Double-Null Eddington-Finkelstein (DNEF) (cf. [HK02a]) coordinates Ū ,
V̄ are very suitable to describe the spacetime outside the shell. They are defined by

Ū = T −R− 2E ln

∣∣∣∣
R

2E
− 1

∣∣∣∣ , V̄ = T +R + 2E ln

∣∣∣∣
R

2E
− 1

∣∣∣∣ , (5.1)

where T and R are the Schwarzschild coordinates. The abbreviation

R∗
.
= R + 2E ln

∣∣∣∣
R

2E
− 1

∣∣∣∣ (5.2)

is very useful. The DNEF coordinates are singular at the horizons of the in- and the
outgoing shell. We therefore restrict the allowed values of the Schwarzschild mass such
that

E <
RM

2
. (5.3)

Then, the horizon lies inside the mirror and the coordinates (5.1) are regular everywhere
in region I. The metric in I has the form

ds2 = Ā(Ū , V̄ )dŪdV̄ − R̄2(Ū , V̄ )dΩ2, (5.4)

where

Ā = 1− 2E

R̄
(5.5)

and

R̄ = 2Eκ
(
e
V̄−Ū
4E

)
. (5.6)
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+J

J−

V

UU=u

V=v

i0

R=RM

II

I

III

Figure 5.1: Penrose-like diagram of the spacetime M̄. The shaded region lies inside the
mirror with the radius R = RM . The ingoing shell trajectory defined by V = v starts at
past light-like infinity I−, becomes an outgoing shell trajectory U = u at the mirror and
ends up at future light-like infinity I+. The region outside the shell is denoted by I, that
inside the outgoing (ingoing) shell by II (III). The arrows show the directions in which
the double-null coordinates U and V increase.
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κ is the Kruskal function which is defined in the Appendix E. The radial function R̄ is
computed by subtracting Ū from V̄ in eq. (5.1) to get rid of the T and solving the resulting
equation for R, where the definition of the Kruskal function is needed. The other metric
function Ā is found by comparing the line elements (5.4) and that for the Schwarzschild
coordinates T and R,

ds2 =
R− 2E

R
dT 2 − R

R− 2E
dR2 −R2dΩ2, (5.7)

by using the inverse of the coordinate transformation given by (5.1).

In the regions II and III inside the shell we choose the Double-Null Minkowski (DNM)
coordinates Ũ , Ṽ that are defined by

Ũ = TM −R, Ṽ = TM +R, (5.8)

where TM , R are the Minkowski coordinates. The metric with respect to the DNM
coordinates is given by

ds2 = ÃdŨdṼ − R̃2dΩ2, (5.9)

where

Ã = 1, R̃ =
Ṽ − Ũ

2
. (5.10)

R̃ and Ã are the limits of R̄ and Ā as E → 0, so the DNM metric can be considered as
the DNEF metric for which E = 0.

Let us now turn to the shell trajectory. It starts in Ī ⊂ M̄E as an ingoing spherically
symmetric null hypersurface defined by the equation

V̄ = v̄, v̄ ∈ R. (5.11)

The trajectory of the same shell in ¯III ⊂ M̄0 is also an ingoing null hypersurface and has
the equation

Ṽ = ṽ, ṽ ∈ R. (5.12)

Similarly, the outgoing part of the trajectory is characterized by

Ū = ū (5.13)
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in Ī and by

Ũ = ũ (5.14)

in region ĪI ⊂ M̄0. The shell trajectories given by eqs. (5.11) and (5.13) meet at the
mirror, hence the parameters v̄ and ū must be related by some equation. This equation
can be easily found by solving

R̄(Ū = ū, V̄ = v̄) = 2Eκ
(
e
v̄−ū
4E

)
= RM (5.15)

for ū, yielding

ū = v̄ − 2R∗M . (5.16)

The parameter ū is thus determined by the solution parameters v̄, E and the radius of the
mirror, RM . There is, however, no such relation between the parameters ũ and ṽ inside
the shell. We thus find that the independent parameters are E ∈ (0,∞), v̄ ∈ R, ṽ ∈ R
and ũ ∈ R.

We now cut the pieces I fromME and II, III fromM0 and paste them together along the
shell’s trajectory to the solution spacetimeM, as displayed in fig. (5.1). The pasting is
always possible and uniquely defined by the requirement that points with the same value
of R coincide. Hence, the shell spacetime is given by the union M = I ∪ II ∪ III of the
three pieces I, II and III. Its maximal analytic extension is that of the union, such that
the scris are well-defined.

Which of the parameters ũ, ṽ, v̄ and E we obtained are truly physical parameters and
which of them are only gauge? Of course, the Schwarzschild mass E is a physical, even
geometrical quantity that determines the geometry of Schwarzschild spacetime. The two
parameters ũ and ṽ, however, are only gauge, because all pieces II(ṽ) (III(ũ)) cut from
M̄0 are isometric for each ṽ (ũ). Also all pieces I(v̄) cut from M̄E with fixed mass E
are isometric. So it seems that E is the only non-gauge parameter. But the position
of the shell with respect to the reference frame of the observers at infinity is also a
physical parameter. Indeed, v̄ is the value of the advanced time when the shell is sent
in, measurable by the observers near i0 ofM and is therefore the second observable. We
thus have two coordinates describing the physical phase space:

E ∈ (0,∞), v̄ ∈ (−∞,∞). (5.17)

Notice that in order to avoid solutions whose horizon is outside the mirror, the domain
of E is further restricted to the interval [0, RM

2
). The two remaining parameters ũ, ṽ are

gauge.
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5.3 Regular DNEF gauge

The authors of [HK02a] call the DNEF and DNM coordinates used above singular gauge,
because the metric with respect to them is not continuous at the shell. Coordinates
with respect to which the metric is C0 at the shell and smooth outside the shell are
called regular. Together with some boundary conditions at the mirror and at infinity a
regular gauge is the necessary requirement for defining a covariant gauge fixing [HK01].
Such a covariant gauge fixing is needed for the construction of a Kuchař decomposition
(cf. [Háj00a], [HK00] and the references cited therein). Since we will need the Kuchař
decomposition in the course of the reduction of the canonical action to the true degrees
of freedom, we construct such a regular gauge for our system.

The regular coordinates we are looking for are denoted by U and V . U shall be a retarded
null coordinate, whereas V is required to be a advanced null coordinate. In the regular
coordinate the equation of the shell reads

V = v, U = u (5.18)

in the ingoing and outgoing parts of the trajectory, respectively. The relation between u
and v will be determined below.

Outside the shell (in region I) we simply choose the DNEF coordinates from above:

U = Ū , V = V̄ . (5.19)

Thus the relation between the shell parameters reads

u = ū, v = v̄, (5.20)

hence, according to eq. (5.16), it holds that

u = v − 2R∗M . (5.21)

In the coordinates U and V the region I is defined by the inequalities

U < u, V > v. (5.22)

The metric coefficients in region I are given by eq. (5.6) for R and by eq. (5.5) for A.

We now construct an extension of the coordinates U , V into the inside for which the
metric is continuous at the shell. The coordinates must be therefore at least C1 at the
shell. We consider the extension of U , V from I to II across the outgoing shell. The
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extension from I to III is completely analogous. To this end we apply the method defined
by the lemma 2 in [HK02a]. For the retarded null coordinate U in II we put

U = Ũ − ũ+ ū, (5.23)

which implies that U is smooth at the outgoing shell. The inverse transformation reads

Ũ = U + ũ− ū. (5.24)

The extension of the advanced null coordinate is more intricate. According to the afore-
mentioned lemma the coordinates must satisfy that the function R is continuous at the
shell,

RI(Ū = ū, V̄ ) = RII(Ũ = ũ, Ṽ ), (5.25)

where RI , RII are the radial functions in the respective regions. RI is given by

RI = 2Eκ
(
e
V̄−Ū
4E

)
, (5.26)

whereas RII reads

RII =
Ṽ − Ũ

2
. (5.27)

These two equations and eq. (5.25) imply that

2Eκ
(
e
V−u
4E

)
=
Ṽ − ũ

2
(5.28)

at the outgoing shell. Solving this equation for V yields

V = Ṽ + u− ũ+ 4E ln

∣∣∣∣∣
Ṽ − ũ
4E

− 1

∣∣∣∣∣ . (5.29)

using that Ṽ = Ũ + 2R and the inverse transformation (5.24), one finds that

V = U + 2R + 4E ln

∣∣∣∣
U − u+ 2R

4E
− 1

∣∣∣∣ . (5.30)

The radial metric function R is hence easily found to be

R(U, V ) =
u− U

2
+ 2Eκ

(
e
V−u
4E

)
. (5.31)
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The other metric function A(U, V ) can be obtained by comparing the double-null line
element

ds2 = A(U, V )dUdV −R2(U, V )dΩ2 (5.32)

and that defined by the retarded EF coordinates,

ds2 = dŨ2 + 2dŨdR−R2dΩ2, (5.33)

where dŨ and dR are given by

dŨ = dU, dR = −1

2
dU +

1

2


1− 1

κ
(
e
V−u
4E

)


 dV, (5.34)

yielding

A(U, V ) = 1− 1

κ
(
e
V−u
4E

) . (5.35)

It is straightforward to show that the metric is continuous at the shell U = u in the new
coordinates U , V .

The domains of U and V in II are constrained by the shell (U > u, V > v) and by the
mirror (R > RM). Solving the inequality R > RM for V , we obtain

V > V ∗(U)
.
= U + 2RM + 4E ln

∣∣∣∣
U − u+ 2RM

4E
− 1

∣∣∣∣ . (5.36)

Hence, the domains of the new coordinates in II read

U > u, V > V ∗(U). (5.37)

The extension of the coordinates U and V to the region III inside the ingoing shell is
obtained in a similar way. We find that the coordinates read

V = Ṽ − ṽ + v̄ (5.38)

and

U = Ũ + v − ṽ − 4E ln

∣∣∣∣∣
ṽ − Ũ
4E

− 1

∣∣∣∣∣ = V − 2R− 4E ln

∣∣∣∣
v − V + 2R

4E
− 1

∣∣∣∣ . (5.39)
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The equation of the shell is hence

V = v. (5.40)

The metric functions in III read

R =
V − v

2
+ 2Eκ

(
e
v−U
4E

)
(5.41)

and

A = 1− 1

κ
(
e
v−U
4E

) . (5.42)

The functions A and R are obviously continuous at the shell V = v.

The domains of U and V in the region III are found to be

U < U ∗(V ), V < v, (5.43)

where

U∗(V )
.
= V − 2RM − 4E ln

∣∣∣∣
v − V + 2RM

4E
− 1

∣∣∣∣ . (5.44)

We summarize the results in the three regions. The transformation from the singular to
the regular gauge reads:

U =





Ū : U < u, V > v,

Ũ : U > u, V > V ∗,

Ũ + v − ṽ − 4E ln
∣∣∣ ṽ−Ũ4E − 1

∣∣∣ : U < U ∗, V < v,

(5.45)

V =





V̄ : U < u, V > v,

Ṽ + u− ũ+ 4E ln
∣∣∣ Ṽ−ũ4E

− 1
∣∣∣ : U > u, V > V ∗,

Ṽ : U < U ∗, V < v.

(5.46)

The metric functions with respect to the new coordinates are given by:

A(U, V ) =





1− 1

κ

(
e
V−U
4E

) : U < u, V > v,

1− 1

κ

(
e
V−u
4E

) : U > u, V > V ∗,

1− 1

κ

(
e
v−U
4E

) : U < U ∗, V < v,

(5.47)
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R(U, V ) =





2Eκ
(
e
V−U
4E

)
: U < u, V > v,

u−U
2

+ 2Eκ
(
e
V−u
4E

)
: U > u, V > V ∗,

V−v
2

+ 2Eκ
(
e
v−U
4E

)
: U < U ∗, V < v.

(5.48)

Obviously, the functions A, R are continuous at the ingoing (V = v) as well as at the
outgoing (U = u) shell. The relation between the shell parameters v and u is given by
eq. (5.21), u = v − 2R∗M . We will call the gauge corresponding to the above defined
coordinates U and V regular DNEF gauge in the following. This gauge will be used in
many calculations.



Chapter 6

The central-regular gauge

6.1 Motivation

In this chapter we modify the regular DNEF gauge found in the last chapter. The result-
ing gauge is then not the simplest possible for this model, but it has several very useful
properties. First of all, the metric with respect to the chosen coordinates is continuous
even at the shell. The second useful feature of the gauge affects the Hamiltonian formula-
tion of the theory that is treated in the next chapter. The volume part in the ADM action
is given by the integral over some quantity, the integral being taken over the radial coordi-
nate ρ from ρ = ρM to ρ =∞, where ρM is the solution of the equation R(ρ, τ) = RM for
ρ. In a general gauge (as, e.g. the regular DNEF gauge,) ρM is not constant but depends
on the time coordinate τ , having the unattractive effect that the variation of ρM does
not vanish. But since ρM is contained in the action as the lower boundary of an integral
over some complicated quantity, the variational equation becomes very involved. We,
therefore, demand that the coordinates near the mirror are such that ρM = const. The
coordinates that are constructed in this chapter satisfy this requirement, they are regular
at the centre in this sense. The third property is that the components of the Cartesian
transform of the metric are all only small perturbations in a given parameter s of the
components of the Minkowski metric, such that they satisfy the condition for DeWitt’s
semiclassical theory, cf. chapter 9. The explicit proof is written down in the appendix C.

The price of these three restrictions on the gauge choice is that the coordinates cannot be
chosen to be double null (DN) everywhere in spacetime, because one has to interpolate
between the DN coordinates at the shell and at the mirror, which is not feasible with co-
ordinates that remain DN in the interpolation region. In fact, it is impossible to construct
DN coordinates that have the first two properties from above at the same time.

This chapter is organized as follows: in section 2 we remind the reader of our notation con-
cerning the various regions of spacetime and we introduce the singular DNEF coordinates
from chapter 5 as the reference coordinates on the spacetime manifold. The splitting
of spacetime into smaller parts is continued in section 3, where we define the wedges,

65
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where the interpolation of the coordinates takes place. The next section is devoted to the
construction of the new coordinates, the so-called central-regular (CR) coordinates. In
section 5 we settle the notation for three types of coordinate systems and the associated
metrics. In section 6 we explicitly write down the components of the CR metric in each
region separately and show that they are continuous at the shell.

6.2 Regions in spacetime, reference coordinates

The spacetime (M, g) is split into three disjoint parts by the trajectory of the shell. The
region outside the shell is denoted by I, the region between the outgoing shell and the
mirror by II and that between the ingoing shell and the mirror by III, as displayed in figure
5.1 of chapter 5. The reference coordinates on our spacetime manifoldM for the outside
I are the double null Eddington Finkelstein (DNEF) coordinates Ū and V̄ (cf. section 2
of chapter 5), being defined by the Schwarzschild coordinates T and R by

Ū
.
= T −R∗ = T −R− 2E ln

∣∣∣∣
R

2E
− 1

∣∣∣∣ (6.1)

and

V̄
.
= T +R∗ = T +R + 2E ln

∣∣∣∣
R

2E
− 1

∣∣∣∣ . (6.2)

The equation of the ingoing shell is given by

V̄ = v̄, (6.3)

while that of the outgoing shell reads

Ū = ū, (6.4)

where ū and v̄ are constant numbers. The shell’s trajectory defines the boundaries of the
region I and restricts thus the allowed values of the coordinates to the domains

−∞ < Ū ≤ ū, v̄ ≤ V̄ <∞. (6.5)

In the two inside regions II and III of M the reference coordinates are the double null
(retarded and advanced) Minkowski (DNM) coordinates Ũ and Ṽ defined by their relation
to the polar Minkowski coordinates TM and R:

Ũ
.
= TM −R, (6.6)
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Ṽ
.
= TM +R. (6.7)

The trajectory of the shell is given by

Ṽ = ṽ (6.8)

in region III and by

Ũ = ũ (6.9)

in region II, respectively. Again, ũ and ṽ are constants and again, the shell’s trajectory
confines the possible values of the reference coordinates in the regions II and III. There
is another boundary given by the mirror. The radius of the (spherical) mirror is

R = RM . (6.10)

It follows from eqs. (6.6) and (6.7), that there is a dependence between Ũ and Ṽ at the
mirror:

Ṽ = Ũ + 2RM . (6.11)

The shell hits the mirror in the point with the coordinates

Ṽ = ṽ, Ũ = ũ, (6.12)

therefore, it follows from eq. (6.11) that

ṽ = ũ+ 2RM . (6.13)

The reference coordinates in region II are thus restricted to the domains

ũ ≤ Ũ <∞, Ũ + 2RM ≤ Ṽ <∞. (6.14)

In region III the domains are given by

−∞ < Ũ ≤ ũ, Ũ + 2RM ≤ Ṽ ≤ ṽ. (6.15)

There is also a relation between ū and v̄:

v̄ = ū+ 2R∗M , R∗M
.
= RM + 2E ln

∣∣∣∣
RM

2E
− 1

∣∣∣∣ . (6.16)
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This follows from R = RM at the mirror and from the definition of the DNEF coordinates,
eqs. (6.1) and (6.2).

Of course, the DNEF coordinates in I and the DNM coordinates in II and III do not join
continuously at their respective boundaries. The consequence thereof is that ṽ 6= v̄ and
ũ 6= ū in general, and that the metric with respect to the coordinates has jumps at the
shell. We observe that the reference coordinates are very closely related to the singular
DNEF coordinates defined in chapter 5. The difference is that there the coordinates Ũ , Ṽ
are not reference coordinates on the shell spacetime manifoldM but in the pieces II and
III cut from the Minkowski spacetime manifoldM0, such that there is no relation between
the coordinates in II and III. In the present case, however, the reference coordinates are
defined in the union II ∪ III ⊂M.

6.3 The three wedges of II and III

The two inside regions II and III are cut into three sections each by two straight lines
each emanating form the point (Ũ , Ṽ ) = (ũ, ṽ) to infinity. These lines are denoted by
k±, l±, where k± lies nearer to the mirror than l± and where a plus (minus) sign denotes,
that the line is in region II (III). The regions between the shell’s trajectory and the line
l± are denoted by Z±, those between the two lines by K± and those between the lines k±
and the mirror by M± (See figure (6.1)).

The equations of the lines are given by

l+ : Ũl
.
= β(Ṽ − ṽ) + ũ, (6.17)

k+ : Ũk
.
= α(Ṽ − ṽ) + ũ, 0 < β < α < 1 (6.18)

in region II and by

l− : Ũl−
.
=

1

α
(Ṽ − ṽ) + ũ, (6.19)

k− : Ũk−
.
=

1

β
(Ṽ − ṽ) + ũ (6.20)

in region III.

The reason for splitting up the interior parts of the spacetime is that we want the coor-
dinates to be double null Minkowski at the mirror and DN and C1 at the shell. But this
is impossible if the coordinates are DN everywhere (we do not prove this here). There-
fore, we have to choose a section of the interior parts, where the coordinates interpolate
between those near the shell and those near the mirror but are not DN anymore. This
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Figure 6.1: The spacetime pieces II and III inside the shell are split into three parts each
by the wedges K±. The three wedges with a plus sign constitute region II, those with a
minus sign are the parts of region III. The arrows show the directions of the increasing
reference coordinates Ũ and Ṽ . The mirror is represented by the line R = RM , whereas
the ingoing (outgoing) shell’s trajectory is given by the line Ṽ = ṽ (Ũ = ũ).

section should touch as little of the mirror and the shell as possible and should have a
simple description. The choice above seems to satisfy these requirements sufficiently well.
More reasons for the specific choices of the coordinates in the various regions are written
down in the corresponding subsections.

6.4 Central-regular (CR) coordinates

We give the explicit construction of the CR coordinates U and V that are smooth every-
where except at the shell where they are C1. The construction is written down for each
part separately. The coordinates are double null (DN) everywhere except in the wedges
K±.

The equation of the shell in the new coordinates is given by

V = v (6.21)
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in the ingoing and

U = u (6.22)

in the outgoing case, where u and v are constant numbers.

6.4.1 Region I

Outside the shell we simply choose for U and V the DNEF coordinates Ū and V̄ given
by eqs. (6.1) and (6.2), so

U = Ū , V = V̄ (6.23)

in region I, where the domains of Ū and V̄ are given by eq. (6.5). It follows that

u = ū, v = v̄, (6.24)

and, therefore, using eq. (6.16),

v = u+ 2R∗M (6.25)

in region I.

There is another reason to choose the DNEF coordinates outside the shell besides their
simplicity: The proper Schwarzschild time difference between the two events at which
the shell meets the observer seems to be the most sensible to define the sojourn time.
The polar transform (cf. section 5.2 of this chapter) of the DNEF coordinates yields that
τ = V+U

2
is the Schwarzschild time T . So the choice of DNEF coordinates outside the

shell is in this sense a preferred one.

6.4.2 Region II, Z+

The coordinates in this wedge are required to be DN and (at least) C1 at the shell. Outside
the shell we have already found suitable coordinates. These are now to be extended across
the shell, similar to the construction of the regular DNEF coordinates in section 3 of
chapter 5. The retarded null coordinate U does not pose a problem, we simply put

U = Ũ − ũ+ ū; (6.26)

because of eq. (6.23), U is then of course smooth at the shell.
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The advanced null coordinate V reads:

V = Ṽ − ũ+ ū+ 4E ln

∣∣∣∣∣
Ṽ − ũ
4E

− 1

∣∣∣∣∣ = Ṽ − ũ+ ū+ L, (6.27)

where the useful abbreviation

L = L(Ṽ )
.
= 4E ln

∣∣∣∣∣
Ṽ − ũ
4E

− 1

∣∣∣∣∣ (6.28)

has been introduced. Equations (6.26) and (6.27) give thus the DN coordinates in Z+
expressed in the reference coordinates that take values from the domains

Ũ ∈ (ũ, Ũl+), Ṽ ∈ (ṽ,∞). (6.29)

The relation between the shell parameters v, ṽ in Z+ reads

v = ṽ − ũ+ ū+ L|Ṽ=ṽ = ṽ − ũ+ ū+ c, (6.30)

where the constant c is given by

c
.
= L|Ṽ=ṽ = 4E ln

∣∣∣∣
RM

2E
− 1

∣∣∣∣ . (6.31)

We will show later that the metric with respect to these coordinates is continuous, im-
plying that the coordinates are at least C1 at the shell as requested.

6.4.3 Region II, M+

In the innermost wedge we take DNM coordinates, where Ũ is shifted by −ũ + ū and Ṽ
by the constant c− ũ+ ū. The coordinates in M+ are hence

U = Ũ − ũ+ ū, V = Ṽ − ũ+ ū+ c, (6.32)

where the reference coordinates take values from the intervals

Ũ ∈ (Ũk+ , Ṽ − 2RM), Ṽ ∈ (ṽ,∞). (6.33)

On account of the additional number c the coordinates in M+ and Z+ are equal at the
shell Ṽ = ṽ, i.e. at the mirror, so there are no jumps of the coordinates in the point at
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the mirror where the shell is reflected. The equation between the shell parameters reads,
again:

v = ṽ − ũ+ ū+ c. (6.34)

The metric with respect to the coordinates (6.32) is of course the DNM metric, where
R is shifted by some constant. Its polar transform to the coordinates τ,X is the polar
Minkowski metric, where the coordinates τ and X differ from the Minkowski coordinates
TM , R by additive constants. The equation of the mirror R = RM does not depend
on the Minkowski time TM because the coordinate lines are orthogonal in M+. This is
not the case if one took the coordinates defined by eqs. (6.26, 6.27) from Z+ in M+,
because then the equation R = RM would depend on the corresponding time coordinate.
The Hamiltonian action we intend to use and reduce in the next chapter depends on the
radius of the mirror, ρM(τ), that appears as the lower boundary of the ρ-integral in the
volume part of the Liouville form. If ρM depends on τ , then the variation of ρM (ρM
is a dependent dynamical variable due to R(ρM) = RM and must be, therefore, varied)
does not vanish, which leads to the unwelcome consequence that the equations of motion
become very complicated. We therefore want to restrict the gauge freedom at the mirror
such that δρM = 0, i.e. that ρM is constant and thus has zero variation. The Minkowski
coordinates (and those related to them by additive constants) have this nice property.
This issue will be discussed in more detail when we turn our attention to the canonical
analysis in the next chapter.

6.4.4 Region II, K+

This wedge is the most intricate part of the gauge because it involves a smooth interpola-
tion of the coordinates U and V between their values in the two adjacent wedges Z+ and
M+. The cost of the interpolation is that the coordinates in K+ are no more DN.

The retarded coordinate U again poses no problem; we make the natural choice

U = Ũ − ũ+ ū; (6.35)

U is thus smooth at the boundaries k+ and l+ of the wedgeK+. The coordinate V depends
on both reference coordinates through the interpolating function ω+ = (L− c)q+ that is
defined in the appendix D by eq. (D.11). V is given by

V = Ṽ − ũ+ ū+ L+ ω+, (6.36)

the domains of the reference coordinates being

Ũ ∈ (Ũl+ , Ũk+), Ṽ ∈ (ṽ,∞). (6.37)
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At the outer boundary l+ of K+, q+ = 0, so V = Ṽ − ũ+ ū+L smoothly goes over to the
V of Z+. Similarly, at the inner boundary k+, q+ = −1, such that V = Ṽ − ũ + ū + c.
The properties of the interpolating function are discussed in detail in the appendix D.

The equation between the shell parameters is

v = ṽ − ũ+ ū+ L|Ṽ=ṽ + ω+|Ṽ=ṽ = ṽ − ũ+ ū+ c. (6.38)

From the equations (6.24, 6.30, 6.34, 6.38) follows that the relations between the shell
parameters in the whole region II are given by

u = ū, v = ṽ − ũ+ ū+ c = v̄. (6.39)

Furthermore, since ṽ − ũ = 2RM ,

v = u+ 2RM + c = u+ 2R∗M (6.40)

holds in the region II, as required.

6.4.5 Region III, Z−

The construction of the coordinates in the three wedges of III is completely analogous, so
we write down only the results. The DN coordinates in Z− read

U = Ũ − ṽ + v̄ − L′, V = Ṽ − ṽ + v̄, (6.41)

where

L′ = L′(Ũ)
.
= 4E

∣∣∣∣∣
ṽ − Ũ
4E

− 1

∣∣∣∣∣ . (6.42)

The domains of the reference coordinates are given by

Ũ ∈ (−∞, ũ), Ṽ ∈ (Ṽl− , ṽ), (6.43)

where

Ṽl−
.
= α(Ũ − ũ) + ṽ (6.44)

is the solution of eq. (6.19) for Ṽ .
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The equation between the shell parameters reads

u = ũ− ṽ + v̄ − L′|Ũ=ũ = ũ− ṽ + v̄ − c′, (6.45)

where c′ is defined by

c′
.
= L′|Ũ=ũ = 4E ln

∣∣∣∣
RM

2E
− 1

∣∣∣∣ = c. (6.46)

6.4.6 Region III, M−

The DN coordinates read

U = Ũ − ṽ + v̄ − c′, V = Ṽ − ṽ + v̄. (6.47)

Their domains are

Ũ ∈ (−∞, ũ), Ṽ ∈ (Ũ + 2RM , Ṽk−), (6.48)

where

Ṽk−
.
= β(Ũ − ũ) + ṽ (6.49)

is the solution of eq. (6.20) for Ṽ .

The equation between the shell parameters is given by

u = ũ− ṽ + v̄ − c′. (6.50)

6.4.7 Region III, K−

In this wedge the interpolation is performed as in K+. The coordinate V is given by

V = Ṽ − ṽ + v̄, (6.51)

whereas the other coordinate U interpolates between its values in M− and Z−:

U = Ũ − ṽ + v̄ − c′ + ω−. (6.52)

ω− = (L′ − c′)q− is defined in the appendix D by eq. (D.13). As Ṽ = Ṽk− , the function
q− obtains the value 0, so V is smooth at the line k−. Similarly, at the line l−, where
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Ṽ = Ṽl− , it holds that q− = −1. Hence, V is also smooth there. The domains of the
reference coordinates in K− are

Ũ ∈ (−∞, ũ), Ṽ ∈ (Ṽk− , Ṽl−). (6.53)

The equations between the shell parameters are again given by

u = ũ− ṽ + v̄ − L′|Ũ=ũ + ω|Ũ=ũ = ũ− ṽ + v̄ − c′. (6.54)

It follows from eqs. (6.24, 6.45, 6.50, 6.54) that

u = ũ− ṽ + v̄ − c′ = ū, v = v̄ (6.55)

in the whole of III. Furthermore,

u = v − 2RM − c = v − 2R∗M (6.56)

is also satisfied in the region III, as expected.

6.5 Metric components: general UV-type, polar and

Cartesian form

In this section we write down the general form of the line element in the various regions.
The next section is then devoted to the explicit expressions for the metric components.
We state the line elements in the UV-type, polar and Cartesian coordinates.

6.5.1 UV-type coordinates

We call the coordinates (U, V, θ, φ) and the corresponding line elements UV-type. In the
last section we have constructed the coordinates U and V in all parts of the spacetime.
These coordinates are DN everywhere except in the two interpolation wedges K±. We
therefore, treat the DN and the non-DN cases separately in the following. If the coordi-
nates are DN, then the corresponding line element has the general form

ds2 = AdUdV −R2dΩ2, dΩ2
.
= dθ2 + sin2 θ dφ2, (6.57)

where (U, V, θ, φ) is the DN coordinate system and where A and R are functions of U and
V alone.
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If U and V are not double null, then the line element reads

ds2 = FdU 2 +HdV 2 + 2GdUdV −R2dΩ2, (6.58)

where, as above, the metric components F,G,H and R depend on U and V only.

6.5.2 Polar coordinates

Consider the transformation

τ =
V + U

2
, X =

V − U
2

, θ = θ, φ = φ (6.59)

to the polar coordinates (τ,X, θ, φ). Its inverse

U = τ −X, V = τ +X, θ = θ, φ = φ (6.60)

changes the UV-type line elements to

ds2 = A (dτ 2 − dX2)−R2dΩ2 (6.61)

in the DN case and to

ds2 = Qdτ 2 + J dτ dX +W dX2 −R2dΩ2 (6.62)

in the non-DN case. Here, the abbreviations

Q
.
= F + 2G+H, J

.
= 2(H − F ), W

.
= F − 2G+H (6.63)

have been introduced. The metric components A,Q, J,W and R depend on τ and X only.

6.5.3 Cartesian coordinates

Consider the Cartesian coordinates (τ, ~X), where

~X = X~n, ~n
.
= (sin θ cosφ, sin θ sinφ, cos θ). (6.64)

Here, ~n is a vector parametrizing the unit sphere with unit length, ~n · ~n = 1. We define
the following two vectors,

~m
.
=
∂~n

∂θ
= (cos θ cosφ, cos θ sinφ,− sin θ), (6.65)
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~l
.
=

1

sin θ

∂~n

∂φ
= (− sinφ, cosφ, 0) (6.66)

that constitute an orthonormal system together with ~n. From

d~n = ~mdθ + sin θ~l dφ, (6.67)

follows hence that

d~n · d~n = dθ2 + sin2 θdφ2 = dΩ2. (6.68)

From eq. (6.64) we obtain

d ~X = Xd~n+ ~ndX, (6.69)

hence

d ~X · d ~X = X2dΩ2 + dX2. (6.70)

From the inverse of eq. (6.64),

X =
√
~X · ~X, θ = arctan

√
X2
1 +X2

2

X3

, φ = arctan
X2

X1

, ~X
.
= (X1, X2, X3), (6.71)

it follows that

dX =
1

X
~X · d ~X. (6.72)

Now we can express dΩ2 in terms of the spatial Cartesian coordinates ~X:

dΩ2 =
1

X2

(
d ~X2 − 1

X2
( ~X · d ~X)2

)
. (6.73)

The line element for the DN case reads thus

ds2 = Adτ 2 − R2

X2
d ~X2 +

(
R2

X2
− A

)( ~X · d ~X
X

)2
. (6.74)

For example, the Minkowski line element is recovered for A = 1, R = X. A and R are
functions of τ and X; they depend on the spatial coordinates through the absolute value
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X only. For the sake of simplicity however, we write down the metric components as
functions of U and V in the following even in the Cartesian case. The expressions with
respect to the Cartesian coordinates are then found by replacing U and V by τ and X
using the transformation (6.60).

The non-DN case is given by

ds2 = Qdτ 2 +
J

X
dτ ~X · d ~X − R2

X2
d ~X2 +

(
R2

X2
+W

)( ~X · d ~X
X

)2
. (6.75)

The Minkowski line element is again recovered if the metric functions are Q = 1, J =
0,W = −1, R = X, as can be easily checked.

If one transforms the CR metric into the Cartesian form, one obtains the Cartesian
central regular (CCR) metric, that satisfies the conditions for DeWitt’s method. This
will be shown in the appendix C.

6.6 Metric components: explicit UV-type form

We write down the explicit form of the metric components in UV-type form (cf. the line
elements (6.57) and (6.58) defined in the last section) in each of the seven parts of the
spacetime. We show that this metric is smooth at the boundaries of the various regions,
except at the shell, where it is still continuous. The metric is called central-regular (CR)
metric.

6.6.1 Region I

The two non-vanishing metric functions A and R with respect to the coordinates U and
V in the outside region are given by

A = 1− 2E

R
(6.76)

and

R = 2Eκ
(
e
V−U
4E

)
, (6.77)

where κ is the Kruskal function defined by equation (E.1) in the appendix E. A and R
have been already explicitly constructed in section 2 of chapter 5.
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6.6.2 Region II, Z+

The metric component R in the line element (6.57) is found by replacing Ṽ by Ũ +2R in
eq. (6.27) and solving the resulting quantity for R:

R =
u− U

2
+ 2Eκ

(
e
V−u
4E

)
. (6.78)

A is determined by comparing the flat line element with respect to the retarded Minkowski
coordinates (cf. chapter 5), leading to

A = 1− 1

κ
(
e
V−u
4E

) . (6.79)

At the outgoing shell U = u, the metric components A and R of Z+ and that of region I
are equal, as can be easily checked. Hence, the metric is continuous there, as requested.

6.6.3 Region II, M+

In the wedge M+ the metric functions are given by the components of the double-null
Minkowski metric, where the radial function R differs form the Minkowski radial function
by the constant c

2
,

R =
Ṽ − Ũ

2
=
V − U − c

2
, A = 1. (6.80)

6.6.4 Region II, K+

In order to find the metric components in this wedge we need the UV-line element (6.58).
By comparison of this line element with the components of the flat DN reference metric,
the functions F,G and H are found to be

F = −
V,Ũ
V,Ṽ

, G =
1

2V,Ṽ
, H = 0, R =

Ṽ − Ũ
2

=
Ṽ (V, U)− U − ũ+ ū

2
. (6.81)

Here, the derivatives of V with respect to the reference coordinates are given by

V,Ũ = (L− c)q+,Ũ = −(L− c)ψ(x = Ũ − z; a, z)
K

, (6.82)
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V,Ṽ = 1 + (1 + q+)L,Ṽ + (L− c)q+,Ṽ

= 1 + (1 + q+)L,Ṽ +
(L− c)ψ

2K

[
(α− β) Ũ − z

a
+ α + β

]
, (6.83)

where eqs. (D.7) and (D.33) from the appendix D have been used.

We now demonstrate that the metric components go smoothly over to those in the adjacent
regions M+ and Z+. The boundary to the region M+ is given by the line k+. There we
obtain from the equations (6.32, 6.36, 6.81, 6.82, 6.83 and D.6) that

F = 0, G =
1

2
, R =

V − U − c
2

, (6.84)

but these functions just correspond to the metric components (A = 2G = 1) in regionM+.
Furthermore, the interpolation function is smooth at the boundaries and its derivatives
all vanish there, so the metric components smoothly go over to that in M+.

The boundary to Z+ is given by the line l+. Using the same set of equations as above,
we find

F = 0, G =
1

2

(
1− 4E

Ṽ − ũ

)
, R =

Ṽ − U − ũ+ ū

2
. (6.85)

Solving eq. (6.27) for Ṽ yields

Ṽ = ũ+ 4Eκ
(
e
V−ū
4E

)
. (6.86)

But the reference coordinate Ṽ in K+ and Z+ is the same, hence A = 2G and R of
eq. (6.85) coincide with A and R (eqs. (6.79, 6.78)) from Z+ at l+:

R =
Ṽ − U − ũ+ ū

2
=
u− U

2
+ 2Eκ

(
e
V−u
4E

)
, (6.87)

A = 1− 4E

Ṽ − ũ
= 1− 1

κ
(
e
V−u
4E

) , (6.88)

where it has been used that u = ū. The same arguments as for the boundary k+ hold of
course also for l+, hence, the metric functions are smooth at l+.
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6.6.5 Region III, Z−

Similarly to the treatment in region Z+, we obtain the metric functions

R =
V − v

2
+ 2Eκ

(
e
v−U
4E

)
(6.89)

and

A = 1− 1

κ
(
e
v−U
4E

) . (6.90)

Of course they join continuously with the components of region I at the shell.

6.6.6 Region III, M−

We obtain the same line element as in region M+, with c = c′.

6.6.7 Region III, K−

The metric components in the line element (6.58) are given by:

F = 0, G =
1

2U,Ũ
, H = −

U,Ṽ
U,Ũ

. (6.91)

In these equations, the coordinate U is given by (6.52). Its derivatives read (using
eqs. (D.13, D.35 and D.36) from the appendix D):

U,Ṽ = −(L′ − c′)ψ(Ṽ − y)
K

(6.92)

and

U,Ũ = 1 + L′
,Ũ
q− +

(L′ − c′)ψ(Ṽ − y)
2K

[
(α− β) Ṽ − y

a
+ α + β

]
. (6.93)

The same smoothness arguments as in the analysis of region K+ lead to the conclusion
that the metric in K− goes smoothly over into the metrics of the adjacent regions.
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6.7 Conclusions

We have shown that the CR metric is smooth, except at the shell, where it is only
continuous. We have also demonstrated that the metric has the desired behaviour at the
mirror.

The following table shows the main features of the three gauges we have been considering
so far:

Gauge Double-null C0 at shell Regular at mirror

Singular DNEF yes no yes

Regular DNEF yes yes no

Central-regular no* yes yes

Table 6.1: The main properties of the three gauges that have been used so far. *) but DN
at the mirror, at the shell and at ∞.

We observe that it seems to be impossible to satisfy all of the three conditions at once.
Each of the three gauges has its advantage and will be therefore used in the corresponding
situation.



Chapter 7

The canonical action and its
reduction

7.1 Introduction

In this chapter we reduce the canonical action for the system consisting of the shell, its
surrounding gravitational field and the mirror to an action containing as variables only the
true degrees of freedom. These true degrees of freedom are Dirac observables that will play
the role of the observables in the corresponding quantum theory. We adopt the reduction
method developed by Háj́ıček, Kiefer and Kouletsis (HKK) in refs. [HK01], [HK02b],
[KH02] and [Háj03] to our model including a spherical mirror as the inner boundary.
Their method can be straightforwardly applied to our system if a suitable restriction on
the allowed gauges near the mirror is imposed and if some further assumptions are made.

The next section is devoted to the original LWF [LWF98] action and the resulting equa-
tions of motion. It is followed by a summary of the reduction method due to HKK (section
3). In the final section we add the mirror to the LWF system and explain the differences
that appear on that account. We show, after making some further assumptions, that the
method by HKK also works in our case, the reduced action containing the expected de-
grees of freedom: the total energy of the shell and its canonical conjugate, the asymptotic
advanced (or retarded) time.

7.2 The LWF action

Louko, Whiting and Friedman [LWF98] have found the ADM action for spherically sym-
metric spacetimes containing a spherically symmetric thin shell made of null dust. In this
section we write down the most important formulae that we will need from their paper.

83
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The spacetime geometry is given by the ADM metric

ds2 = N2dt2 − Λ2(dρ+Nρdt)2 −R2dΩ2, (7.1)

where N,Nρ,Λ, R are continuous functions of t and ρ. N,Λ and R are also required to
be positive. The shell history is denoted by ρ = r(t). p is its conjugate momentum.
Quantities Q evaluated at the shell are denoted by Q(r). Derivatives with respect to ρ
are abbreviated by a prime, Q′, those with respect to t by an overdot, Q̇.

Including the null shell, the Hamiltonian bulk action reads

SΣ =

∫
dt

[
pṙ +

∫

R
dρ
(
PΛΛ̇ + PRṘ−NH−NρHρ

)]
, (7.2)

where the constraint functions are given by

H =
ΛP 2Λ
2R2

− PΛPR
R

+
RR′′

Λ
− RR′Λ′

Λ2
+
R′2

2Λ
− Λ

2
+
ηp

Λ
δ(ρ− r), (7.3)

which is the so-called superhamiltonian, and

Hρ = PRR
′ − P ′ΛΛ− pδ(ρ− r) (7.4)

(the supermomentum) and where N , N ρ are Lagrange multipliers and η
.
= sign(p). The

canonically conjugate momenta of the metric functions R and Λ are given by

PΛ = −R
N

(Ṙ−NρR′) (7.5)

and

PR = − Λ

N
(Ṙ−NρR′)− R

N

[
Λ̇− (NρΛ)′

]
. (7.6)

The constraint equations are

H = 0, Hρ = 0. (7.7)

The functions N,N ρ, R,Λ are to be smooth functions of ρ everywhere, except at the
shell, where they are only continuous and may have finite jumps in their first derivatives.
Also the conjugate momenta PR, PΛ are smooth except at the shell, where they have
finite discontinuities. The most singular contributions come from the explicit matter
delta-terms in the constraints and the implicit delta-functions appearing in R′′ and P ′Λ.
However, it is argued in [LWF98], that these discontinuities pose no problem and that the
action is well-defined. The LWF action is a generalization of Kuchař’ canonical action for
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pure spherical gravity obtained in [Kuc94]. By similar methods the canonical spacetime
dynamics including massive (time-like) instead of null shells has been found [FLWH97].

Variation of the action with respect to the canonical variables and the Lagrange multipliers
yields the dynamical,

Λ̇ = N

(
ΛPΛ
R2
− PR

R

)
+ (NρΛ)′, (7.8)

Ṙ = −NPΛ
R

+NρR′, (7.9)

ṖΛ =
N

2

[
−P

2
Λ

R2
−
(
R′

Λ

)2
+ 1 +

2ηp

Λ2
δ(ρ− r)

]
− N ′RR′

Λ2
+NρP ′Λ, (7.10)

ṖR = N

[
ΛP 2Λ
R3
− PΛPR

R2
−
(
R′

Λ

)′]
−
(
N ′R

Λ

)′
+ (NρPR)

′, (7.11)

ṙ =
ηN(r)

Λ(r)
−Nρ(r), (7.12)

ṗ = p

(
Nρ − ηN

Λ

)′
(r), (7.13)

and the constraint equations (7.7).

The possible occurrence of surface terms has not been taken into account yet, but we will
do it after having imposed the fall-off conditions on the metric variables at the infinities
ρ→ ±∞, that have been given by LWF and Kuchař [Kuc94]:

Λ(t, ρ) ≈ 1 +
M±

ρ
+O(|ρ|−1−ε), (7.14)

R(t, ρ) ≈ |ρ|+O(|ρ|−ε), (7.15)

PΛ(t, ρ) ≈ O(|ρ|−ε), (7.16)

PR(t, ρ) ≈ O(|ρ|−1−ε), (7.17)

N(t, ρ) ≈ N±∞ +O(|ρ|−ε), (7.18)

Nρ(t, ρ) ≈ O(|ρ|−ε), (7.19)

where M± and N±∞ are functions of t, and where ε ∈ (0, 1]. With these fall-off conditions
the two asymptotic regions (ρ → ±∞) are asymptotically flat. N±∞ are the rates at
which the asymptotic Minkowski times T±∞ evolve with respect to the coordinate time t.
There are only two surface terms appearing in the variation of the action if one imposes
the above fall-off conditions. The variation of the term NRR′Λ′

Λ2
in the superhamiltonian

constraint −NH with respect to Λ leads to the non-vanishing terms (cf. [Kuc94])
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N±∞ lim
ρ→±∞

(
RR′

Λ2
δΛ

)
= N±∞δM±. (7.20)

The last equality follows from the fall-off conditions. The surface terms are therefore
proportional to the variation of the mass function M defined in equation (7.89) at the
the infinities, M±, as has been pointed out by Kuchař in [Kuc94]. When the equations of
motion hold, the masses M± are equal to the Schwarzschild energies E±∞. The surface
terms (7.20) can be canceled by adding the so-called ADM boundary term (see also
[RT74]) to the bulk action:

S∂Σ = −
∫
dt(N∞E∞ +N−∞E−∞), (7.21)

the resulting action being

S =

∫
dt [pṙ −N−∞E−∞ −N+∞E+∞]

+

∫
dt

[∫ ∞

−∞

dρ
(
PΛΛ̇ + PRṘ−NH−NρHρ

)]
. (7.22)

The left infinity (as ρ goes to −∞) will become unimportant as soon as we introduce the
mirror.

LWF have also incorporated fall-off conditions at ρ = 0 for the systems with R3 spatial
topology:

Λ(t, ρ) ≈ Λ0 +O(ρ2), (7.23)

R(t, ρ) ≈ R1ρ+O(ρ3), (7.24)

PΛ(t, ρ) ≈ PΛ2ρ
2 +O(ρ4), (7.25)

PR(t, ρ) ≈ PR1ρ+O(ρ3), (7.26)

N(t, ρ) ≈ N0 +O(ρ2), (7.27)

Nρ(t, ρ) ≈ N ρ
1 ρ+O(ρ3), (7.28)

where Λ0 > 0, R1 > 0, PΛ2 , PR1 , N0 > 0 and Nρ
1 are functions of t. These fall-offs

imply that the mass left of the shell vanishes when the equations of motion hold. The
classical solutions thus describe a shell with flat interior. There is only need for one ADM
boundary term:

S∂Σ = −
∫
dtN∞E∞. (7.29)
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The LWF action for R3 spatial topology hence reads

S =

∫
dt

[
pṙ −N∞E∞ +

∫ ∞

0

dρ
(
PΛΛ̇ + PRṘ−NH−NρHρ

)]
. (7.30)

7.3 Canonical reduction of the LWF action using the

methods by HKK

In this section we give a short review of the reduction methods introduced by Háj́ıček and
Kiefer in [HK01] and refined by Háj́ıček and Kouletsis in refs. [HK02b] and [KH02]. The
aim of these methods of reduction is to find an action containing only the true degrees of
freedom as variables without losing too much information about the spacetime geometry.
There exists a particular form of the gravitational action that is effectively reduced, but
still contains some information about the geometry of the spacetime. This is the so-called
Kuchař decomposition (see [HK00] and the references therein). Kuchař variables are split
into pure gauge ones (the so-called embeddings), dependent ones that are canonically
conjugate to the embeddings, and physical degrees of freedom (Dirac observables).

Our aim is thus to bring the action (7.30) into this form. The method to achieve this
involves the choice of a particular gauge and the solving of the constraints. This procedure
has been successfully accomplished for a single spherical thin null shell in [HK01]. The
calculations were involved, included some miraculous simplifications and finally yielded
a very simple result: The true degrees of freedom were the total energy of the shell
and the asymptotic advanced (retarded) time in the ingoing (outgoing) case. In the
papers [HK02b], denoted by HKo2 in the following and [KH02] (HKo3), the method has
been generalized to any double-null (DN) gauge and to any number of shells, and some
understanding has been obtained about the general structure of the reduction process.
We write down the most important results for us from the two above cited papers in the
next subsections.

7.3.1 Transformation of the Liouville form at the constraint sur-
face

In HKo2 the integrand in the LWF action (7.30) is reduced to a form consisting only of
boundary terms. This involves a transformation of the Liouville form Θ at the constraint
surface Γ that is defined by the solution of H = 0 and Hρ = 0 and uses the nice property
of the pull-back ΘΓ of Θ to Γ that it depends only on the Dirac observables. Although ΘΓ

is thus a gauge invariant quantity, the original variables depend on the gauge degrees of
freedom. The transformation must be therefore still calculated explicitly. It is found by
using a Kuchař decomposition in an arbitrary DN gauge, represented by the coordinates
U and V . The choice of Dirac observables is left open; they are denoted by ok, k = 1, 2.
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The final variables are thus the Dirac observables ok, the embeddings U(ρ), V (ρ) and their
momenta PU(ρ), PV (ρ), which vanish at the constraint surface.

A double-null metric has the general form

ds2 = A(U, V ; o) dUdV −R2(U, V ; o) dΩ2, (7.31)

the metric components being dependent on the the Dirac observables ok. Derivatives of
the functions A and R with respect to the coordinates U and V are abbreviated by A,U ,
etc.

The Liouville form at the constraint surface for a single shell is given by

ΘΓ = pdr −N∞E∞ +

∫ ∞

0

dρ (PΛdΛ + PRdR). (7.32)

It can be split into a boundary part (the first two terms on the right hand side) and
two volume parts, which are associated with the inside and the outside of the shell,
respectively,

Θb
a =

∫ b

a

dρ (PΛdΛ + PRdR), (7.33)

where a = 0, b = r for the inside and a = r, b = ∞ for the outside part. The volume
parts are to be transformed to a sum of boundary terms that do not depend on the
gauge degrees of freedom and their momenta anymore. This must be feasible, because
the Liouville form at the constraint surface is gauge invariant!

We now summarize how the transformation has been achieved by HKK. For any DN gauge,
the equations (47-49) of [HK02b] (or eqs. (32-34) of [HK01]) represent the condition that
the transformation is performed at the constraint surface. The following ansatz is useful
for the transformation of the volume parts:

Θb
a|Γ =

∫ b

a

dρ [(fdU + gdV + hido
i)′ + dϕ], (7.34)

where

f =
RR,U

2
ln

(
−U

′

V ′

)
+ F (U, V, oi), (7.35)

g =
RR,V

2
ln

(
−U

′

V ′

)
+G(U, V, oi), (7.36)

hi =
RR,i

2
ln

(
−U

′

V ′

)
+Hi(U, V, o

i), (7.37)



7.3. Canonical reduction 89

ϕ = RR,UU
′−RR,V V

′− R
2
(R,UU

′+R,V V
′) ln

(
−U

′

V ′

)
−FU ′−GV ′+φ(U, V, oi), (7.38)

and where the functions F , G and Hi must satisfy the following differential equations:

F,V −G,U =
R

2A
(2AR,UV − A,UR,V − A,VR,U), (7.39)

F,i −Hi,U =
R

2A
(2AR,iU − A,iR,U − A,UR,i), (7.40)

G,i −Hi,V = − R

2A
(2AR,iV − A,iR,V − A,VR,i), (7.41)

φ = 0, (7.42)

that are valid for any DN gauge. The equations (47-49) of [HK02b] provide the integra-
bility conditions for this system of differential equations. The volume parts are hence
transformed to boundary terms:

Θb
a|Γ = (fdU + gdV + hido

i − ϕdρ)|ρ=bρ=a. (7.43)

The entire ΘΓ can thus be brought to a sum of boundary terms with contributions from
the regular centre (ρ = 0), from infinity and from the shell, at least in the cases for which
the equations (7.39) - (7.41) can be solved.

7.3.2 Properties of the functions F , G and Hi

In HKo2 the authors find that any two sets of solutions (F 0, G0, H0
i ) and (F,G,Hi) of the

eqs. (7.39) - (7.41) are related by

F = F 0 +W,U , G = G0 +W,V , Hi = H0
i +W,i + Ci, (7.44)

where W is an arbitrary function of U, V and oi, and Ci depends on the Dirac observables
alone but is otherwise arbitrary. They also argue that each such solution (7.44) leads to
the same Liouville form Θb

a|Γ. However, different solutions lead not to the same boundary
Liouville form (7.43) but only to equivalent ones, that differ by an exact form d[w(b(t), t)−
w(a(t), t)], where w(ρ, t)

.
=W (U(ρ, t), V (ρ, t), oi(t)).
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Gauge transformations also affect the functions F,G and Hi, although the Liouville form
itself does not change. The results found in HKo2 are

F = F̃ X̃,U −
R2

4

X̃,UU

X̃,U

, (7.45)

G = G̃Ỹ,V −
R2

4

Ỹ,V V

Ỹ,V
, (7.46)

Hi = H̃i + F̃ X̃,i + G̃Ỹ,i −
R2

4

(
X̃,Ui

X̃,U

− Ỹ,V i

Ỹ,V

)
, (7.47)

where the transformation between two sets of DN coordinates,

Ũ = X̃(U, o), Ṽ = Ỹ (V, o), (7.48)

also depends on the Dirac observables oi. The eqs. (7.45) - (7.47) lead to the transforma-
tion of the functions F̃ , G̃ and H̃i that solve the eqs. (7.39) - (7.41) for the gauge Ũ , Ṽ
to the functions F,G and Hi that solve them for the gauge U, V . So if one knows the
functions F,G,Hi in one gauge, one can obtain it in any other (DN) gauge, for which the
coordinate transformation can be given explicitly. In fact, one can always find a gauge
Ũ , Ṽ such that the right hand sides of the eqs. (7.39) - (7.41) become trivial.

For example in the flat interior one can choose for Ũ , Ṽ the advanced and retarded
Minkowski null (DNM) coordinates which yields the trivial solution

F̃ = G̃ = H̃i = 0, ∀i. (7.49)

In the curved spacetime outside of the shell we can take the double-null Eddington-
Finkelstein (DNEF) coordinates defined by eqs. (5.1) of chapter 5:

U = T −R− 2E ln

∣∣∣∣
R

2E
− 1

∣∣∣∣ , (7.50)

V = T +R + 2E ln

∣∣∣∣
R

2E
− 1

∣∣∣∣ , (7.51)

where T,R are the Schwarzschild coordinates. The metric components in this gauge read

R(U, V ) = 2Eκ
(
e
V−U
4E

)
, A(U, V ) = 1− 2E

R
. (7.52)
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If one chooses these coordinates as the Ũ and Ṽ from above, one obtains the simple
solution

F̃ = G̃ = 0, H̃i =
Ṽ − Ũ

2
E,i. (7.53)

The drawback of the (singular) DNEF gauge is that the above solution diverges at the
horizon. But this singularity can be removed by subtracting a suitableW -term, as demon-
strated in HKo2. But for shells not on a horizon the eqs. (7.53) are sufficiently suitable.

7.3.3 Explicit calculation of the Liouville form ΘΓ

The solutions (7.49) and (7.53) are used to compute the boundary Liouville form (7.43)
explicitly. This has been accomplished by Kouletsis and Háj́ıček in HKo3 ([KH02]) for
any number of shells. We adopt their results to the case of a single shell with flat interior
spacetime.

The Liouville form is given by

ΘΓ = pdr −N∞E∞ +Θr
0|Γ +Θ∞r |Γ

= Θ0 +Θr +Θ∞, (7.54)

where

Θ0
.
= −(fdU + gdV + hido

i)|ρ=0 (7.55)

and

Θ∞
.
= lim

ρ→∞
(fdU + gdV + hido

i)−N∞E∞ (7.56)

are the contributions from the centre and from infinity, respectively. These quantities are
most easily calculated in the singular DNEF gauge. Here we subsume the DN Minkowski
(DNM) gauge into the DNEF gauges — it is the special case for which E = 0. In this gauge
the coordinates are singular at the horizon. One can justify that one may nevertheless
use such a singular gauge as follows: The Liouville form at the constraint surface ΘΓ is
point-wise gauge invariant. At those points for which the DNEF gauge is regular, the
integrand of ΘΓ in any volume part has the same value as for a regular C1 gauge. At the
points for which the embedding intersects a horizon, the DNEF gauge is singular. The
value of the integrand in such a point is the limit from the left or right, since the integrand
is continuous in a regular gauge. Therefore, the difference of the boundary terms that one
obtains by integrating over any volume part is gauge invariant and can thus be computed
also in the singular DNEF gauge.
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More care is to be taken with the expression of the shell variables r and p in terms of
the embeddings and the Dirac observables, because at the shell the DNEF coordinates
(outside) and the DNM coordinates (inside) the shell are not continuous. The results
of HKo3 are as follows: If (U, V ) are C1 DN coordinates, (Ũ , Ṽ ) DNM coordinates left
from the (outgoing) shell and (Ū , V̄ ) DNEF coordinates right from the shell, then the
expressions for the shell variables are given by

pout = −R(r)∆r(R,UU
′), Ũ(r) = ũ, Ū(r) = ū (7.57)

for the outgoing and, similarly, by

pin = R(r)∆r(R,V V
′), Ṽ (r) = ṽ, V̄ (r) = v̄ (7.58)

for the ingoing case. Here the abbreviation

∆r(X)
.
= lim

ρ↘r
X − lim

ρ↗r
X (7.59)

has been used. For the new variables that describe the shell it generally holds that ũ 6= ū,
ṽ 6= v̄, because the coordinates are not continuous at the shell.

Now we are ready to compute the three contributions Θ0, Θr and Θ∞ to the Liouville
form along the hypersurfaces Σ defined by the embedding (U(ρ), V (ρ)).

The contribution from the shell

We start with the contribution from the shell. According to eqs. (14)-(18) of HKo3, Θr

for a shell not on a horizon can be brought to the form (eq. (19) in HKo3)

Θr = −∆r

[
1

4
ln

(
−U

′

V ′

)
d(R2) + Fdu+Gdv +Hido

i

]

+∆r [RR,UU
′dr −RR,V V

′dr] + pdr. (7.60)

Further transformations depend on the direction of the motion of the shell. We shall
assume that it is outgoing; the ingoing case is treated in an analogous way. The jumps in
eq. (7.60) must be calculated, where it is assumed that the embedding is C1. The result
is given by eq. (34) of HKo3:

Θr = −
1

4
d
(
R2(r)

)
∆r(ln |R− 2E|)−∆r(Fdu+Gdv +Hido

i) (7.61)

and holds at each intersection of an outgoing shell with the hypersurface Σ that is not a
point of a Schwarzschild horizon. Now one can plug in the expressions for the functions
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F , G and Hi on both sides of the shell. Left from the shell the spacetime is flat, hence the
functions are given by eqs. (7.49), and right from the shell the functions for the singular
DNEF gauge are given by the eqs. (7.53). Further simplifications, where one utilizes some
properties of the Kruskal function, lead to the final results

Θr = udE (7.62)

for the outgoing and

Θr = vdE (7.63)

for the ingoing shells. The eqs. (7.62) and (7.63) are valid as long as the shell is not on a
horizon. The case for shells on a horizon has been carefully analysed in HKo3.

The contributions from the centre and from infinity

The contribution from the centre is easily computed using the solution (7.49) for the
functions F , G, Hi inside the shell. At ρ = 0 the geometric radius R vanishes, R(ρ =
0) = 0, and the boundary condition U ′(0) = −V ′(0) must be imposed in order that the
embedded hypersurfaces avoid conical singularities at the centre. All these conditions
yield the result that the contribution from the centre vanishes:

Θ0 = 0. (7.64)

For the computation of the contribution from infinity the authors of HKo3 restrict the
foliation at infinity such that it is parallel to the hypersurfaces given by the slices of
constant Schwarzschild time coordinate. This means that the Schwarzschild coordinates
as functions of the embedding have the following fall-off at infinity:

R(ρ)→ ρ+O(ρ−1), T (ρ)→ T∞ +O(ρ−1). (7.65)

The authors further assume that the foliation parameter t is equal to the asymptotic
Minkowski time T∞ at infinity. Hence, N∞ = 1. Finally, they replace the ADM mass E∞
by the total energy E (the Schwarzschild mass) of the system. The functions F , G and Hi

are given by the eqs. (7.53). Putting all these results together and using the asymptotic
expansions of R, U , V and their derivatives, they obtain for the contribution from infinity,
eq. (7.56),

Θ∞ = lim
ρ→∞

R

2
ln

(
−U

′

V ′

)(
R,UdU +R,V dV +R,ido

i
)
= 0. (7.66)

Hence, also the total contribution to the Liouville form from infinity vanishes.
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The reduced action

We have seen that only the contribution from the shell survives, leading to the total
Liouville form at the constraint surface:

ΘΓ = vdE, ΘΓ = udE. (7.67)

The first equation holds for ingoing, the second for outgoing shells.

The reduced action for a single ingoing shell reads thus

Sin =

∫
dt(vĖ), (7.68)

whereas that for a single outgoing shell is given by

Sout =

∫
dt(uĖ). (7.69)

A natural choice for the conjugate pair of Dirac observables is obviously (E, v) or (E, u) in
the respective cases. These pairs span the physical phase space of the model, the domains
of the variables being

E ∈ [0,∞), v ∈ R, (7.70)

E ∈ [0,∞), u ∈ R, (7.71)

respectively.

7.4 The action for the system including the mirror

and its reduction

7.4.1 Gauge conditions

We include the spherical mirror centered at R = 0 and with the fixed radius R = RM

and accordingly change the LWF action (7.30). The inclusion of the mirror restricts the
possible values of the coordinates ρ and t. From the equation R(t, ρ) = RM one can infer
the boundary values of ρ and t; the equation corresponds to a curve in the (t, ρ)-plane,
denoted by ρM(t). The allowed values of the coordinates are thus

t ∈ R, ρ ∈ [ρM(t),∞). (7.72)
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Consequently, we have to replace the lower boundary of the ρ-integration in the LWF
action by ρ = ρM(t). But a time-dependent boundary in the integration imposes a severe
problem: ρM(t) becomes a dependent dynamical variable in the variation of the action.
From R(ρM) = RM = const. follows that

δR(ρM) = δRM = 0. (7.73)

But the equality

δR(ρM) = (δR)M + (R′)MδρM (7.74)

implies that

δρM = −
(
δR

R′

)

M

(7.75)

does not vanish in general. If the action is varied with respect to R, a boundary term of
the form

− δS

δρM

(
δR

R′

)

M

(7.76)

is contributed, that is exceedingly intricate. We, therefore, rather prefer ρM to be con-
stant, such that δρM = 0.

This property can be obtained by imposing suitable boundary conditions on the coor-
dinates at the mirror. Good boundary conditions seem to be the following: we require
the coordinates to be the polar Minkowski coordinates at the mirror (or coordinates that
differ from them only by additive constants):

t|M = TM , ρ|M = RM . (7.77)

Then, since RM is constant, δρM = 0, as desired. Of, course, the coordinates must be still
C1 across the shell and smooth everywhere else. Such coordinates do exist, as we have
shown earlier, in chapter 6, by explicitly constructing the central-regular gauge, i.e. its
polar transform, but the cost is that the coordinates for the corresponding metric in UV-
form cannot be double-null everywhere anymore. As we will observe later, the restriction
of the choice of coordinates at the mirror has beautiful consequences in addition to making
the variation of ρM vanish.

The problem of C1 DN-gauges (as e.g. the regular DNEF gauge) is that in the case where
the mirror is present, the curve defined by the equation R(t, ρ) = RM necessarily has a
cusp at the point where the shell is reflected by the mirror. The cusp can be removed
only if the coordinates are allowed to be non-DN in some regions of the spacetime.
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A second problem affects the applicability of the DeWitt method that is presented in
chapter 9. The solution ρM(t, ρ) of the equation R(ρ, t) = RM explicitly depends on
the solution parameters E and v. If E is changed, then the shape of the cusp changes
accordingly, and if v varies then the position of the cusp is moved. Even in the limit E → 0
the curve depends on the choice of v, so there are different flat metrics for different v.
But DeWitt’s method requires a fixed background manifold common to all solutions.
Therefore, in order to be able to apply DeWitt’s methods, we need a restriction on the
possible gauges at the mirror, like that given by eq. (7.77).

The modified LWF action thus reads:

S =

∫
dt

[
pṙ −N∞E∞ +

∫ ∞

ρM

dρ
(
PΛΛ̇ + PRṘ−NH−NρHρ

)]
, (7.78)

where the superhamiltonian is modified in comparison to that of LWF:

H =
ΛP 2Λ
2R2

− PΛPR
R

+
RR′′

Λ
− RR′Λ′

Λ2
+
R′2

2Λ
− Λ

2
+
|p|
Λ
δ(ρ− r), (7.79)

so that there is no extra parameter η describing the direction of the shell, and the action
is valid for both the in- and the outgoing movement of the shell. The other terms are
identical to those in the unmodified LWF action.

7.4.2 Surface terms

Varying the action (7.78) with respect to the canonical variables leads to new surface
terms from the mirror:

BM
.
=

[
NR

Λ
δR′ − NRR′

Λ2
δΛ− N ′R

Λ
δR +NρPRδR−NρΛδPΛ

]

ρ=ρM

. (7.80)

Notice that in contrast to the case in the previous section we do not impose any fall-
off conditions on the canonical variables at ρ = ρM . But the surface terms BM can be
removed with the help of the gauge condition from the preceding section.

From the boundary conditions on the coordinates at the mirror follows that in any allowed
coordinates the metric near the mirror is given by the (polar) Minkowski line element
(omitting the angular part)

ds22 = dT 2M − dR2. (7.81)

Here, TM is the Minkowski time coordinate. Introducing the foliation TM(t, ρ), R(t, ρ)
and expressing the differentials in the line element in terms of the coordinates t, ρ yields

ds22 = (Ṫ 2M − Ṙ2)dt2 − 2(ṘR′ − ṪMT ′M)dtdρ− (R′2 − T ′2M)dρ2. (7.82)
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Comparison of the coefficients of this line element with those of the corresponding ADM
line element,

ds22 = (N 2 − Λ2(Nρ)2)dt2 − 2NρΛ2dtdρ− Λ2dρ2, (7.83)

leads to the following set of equations:

Ṫ 2M − Ṙ2 = N2 − Λ2(Nρ)2, (7.84)

ṪMT
′
M − ṘR′ = −NρΛ2, (7.85)

R′2 − T ′2M = Λ2. (7.86)

But we required that the coordinates be Minkowski at the mirror, so t = TM and ρ = R,
which implies that the ADM metric coefficients at the mirror read

N = ṪM = 1, Nρ = 0, Λ = R′ = 1. (7.87)

Inserting these equations into eq. (7.80) yields that the boundary term from the mirror
vanishes:

BM = 0. (7.88)

Restricting the gauge at the mirror is hence doubly helpful!

From the eqs. (7.87) and from the definition of PΛ, eq. (7.5), it also follows that the
so-called mass function [LWF98],

M =
R

2

(
1−

(
R′

Λ

)2
+

(
PΛ
R

)2)
. (7.89)

vanishes at the mirror,

MM = 0. (7.90)

7.4.3 Boundary conditions

Even with vanishing surface terms BM , the variation of the action (7.78) does not lead
to the correct equations of motion yet. An additional boundary condition has to be
imposed in order that the shell is really reflected at the mirror and does not pass through
it unhindered. To incorporate the reflection, the condition

|p|M = constant (7.91)
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is needed, meaning that the absolute value of the momentum of the shell does not change,
when the shell is reflected by the mirror.

The boundary condition (7.91) is indeed responsible for gluing the otherwise independent
in- and outgoing trajectories together. We can show this as follows: Let (U, V ) be the
regular DNEF coordinates. They have been defined in chapter 5 by eqs. (5.45, 5.46). The
formulae for the shell momentum p expressed in the embedding variables given by eqs. (8)
and (9) of HKo3 read

pout = −R(r)∆r (R,U)U
′(r), pin = R(r)∆r (R,V )V

′(r). (7.92)

The derivatives of R in this gauge are given by

R,U = −A
2
, ρ > r, R,U = −1

2
, ρ < r (7.93)

for the outgoing and by

R,V =
A

2
, ρ > r, R,V =

1

2
, ρ < r (7.94)

for the ingoing shells. Inserting these into the eqs. (7.92) and evaluating them at the
mirror yields

(pout)M = −RM

2
((A(r))M − 1)(U ′(r))M , (pin)M =

RM

2
((A(r))M − 1)(V ′(r))M . (7.95)

Hence, we obtain that, if (7.91) holds, then also

V ′(r)|M = U ′(r)|M (7.96)

must be satisfied. But since, according to eqs. (12) and (13) in HKo3, U(r) = u and
V (r) = v at the mirror, the equation (7.96) is equivalent to

v = u+ c, (7.97)

where c is a not yet specified constant. Hence, the additional boundary condition glues
the trajectories together. However, the value of the constant c, which should be equal to
R∗M , remains unspecified by the condition (7.91).

Since MM = 0, as we have seen above, there is no shell passing through the mirror in
either direction because otherwise the total mass at the mirror would change. Thus, the
additional boundary condition and the vanishing of the mass function at the mirror are
reconcilable. In addition, the requirement that the shell is reflected by the mirror glues
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the in- and outgoing shell trajectories together in a unique way. We know from chapter 5
that the relation between the shell parameters v and u is given by u = v − 2R∗M . Hence,
the value of the constant c is determined:

c = 2R∗M . (7.98)

7.4.4 Reduction

We reduce the action (7.78) using the same methods as in the case without the mirror.
The shell’s trajectory results from glueing together an in- and an outgoing one at the
mirror, in contrast to the system without the mirror, where the shell is either in- or
outgoing. Thus, in our case, it depends on where the embedding hypersurface Σ lies,
which part of the shell’s trajectory it intersects. Σ can even go through the point where
the shell hits the mirror. The diagram fig. (7.1) shows the three possible cases for the
embedding hypersurface.

The reduction method of HKK can be performed on each of these three types of hyper-
surface separately. The calculation is completely analogous to that of HKK except of
two things: first, the integrals in the volume parts of the Liouville form have the lower
boundary ρM instead of 0. This is a minor difference and poses no difficulties, as we will
show later.

The second difference however is more imminent, and it requires an additional assumption
in order that the occurring problem can be solved. The gauge condition we imposed at
the mirror implied that the coordinates can not be double-null (DN) everywhere. One
can restrict the region, where they are not DN to an area that is away from both the
mirror and the shell’s trajectory. We have constructed such a gauge, the CR coordinates,
explicitly in chapter 6. The figure (7.1) shows the ’wedges’ in which the coordinates are
not DN in this gauge.

The problem is that the ansatz and the differential equations for the functions F , G and
Hi found by HKK hold only in the case of DN gauges. However, the resulting Liouville
form at the constraint surface is gauge invariant and must hence be the same for any
gauge. We therefore make the following assumption:

The reduction method using the ansatz (7.34) by HKK works in any gauge
for which the coordinates are DN at the mirror, at the shell and at infinity.
The resulting Liouville form at the constraint surface is given by the sum
of the boundary terms that were present in the action initially and of those
that result from the integration of the volume parts, i.e. eq. (7.43), where the
possible boundaries of the integration are either (ρmin, r(t)), where ρmin is the
minimal value of the radial coordinate ρ and r(t) the position of the shell, or
(r(t),∞).



100 Chapter 7. The canonical action

Since the interpolation wedges do not intersect neither the mirror nor the shell, the in-
tegration boundaries do not lie in a region where the coordinates are not DN, so our
interpolation gauge satisfies the conditions of the assumption. Taking the assumption for
granted, we can compute the Liouville form at the constraint surface in any such gauge
we want, be the gauge DN or not outside the ’delicate’ regions. We make the same simple
choice as in the previous section: DNEF coordinates outside and DNM inside the shell.

After the preceding discussion, along any embedding hypersurface Σ, the only difference
to the system without the mirror is the different lower integration boundary in the volume
part corresponding to the spacetime interior of the shell. Hence we can use the results for
the contributions from infinity and from the shell from the previous section:

Θ∞ = 0 (7.99)

and

Θr = vdE (7.100)

for a hypersurface intersecting the ingoing shell, or

Θr = udE (7.101)

for a Σ intersecting an outgoing one. Therefore, we only need to compute the contribution
from the mirror:

ΘM = −
(
fdU + gdV + hido

i − ϕdρM
)
ρM
. (7.102)

The last term in the bracket on the right hand side vanishes because ρM is constant. In
the DNM gauge the functions F , G and Hi all vanish, so only the terms proportional
to the logarithm ln

(
−U ′

V ′

)
survive. We get rid of the logarithm by imposing that the

embedding hypersurfaces are parallel to the surfaces of constant Minkowski time at the
mirror, which is equivalent to the condition

T ′M(ρM) =
V ′(ρM) + U ′(ρM)

2
= 0, (7.103)

such that the hypersurfaces avoid conical singularities. In our case this requirement is
automatically fulfilled because of the gauge conditions we have imposed at the mirror
earlier. The contribution from the mirror hence vanishes:

ΘM = 0. (7.104)



7.4. The action including the mirror 101

We thus obtain the same total Liouville form at the constraint surface as in the system
without the mirror. For a hypersurface intersecting an ingoing shell the reduced action is
hence given by

S =

∫
dt(vĖ), (7.105)

while that for a Σ intersecting the trajectory of an outgoing shell reads

S =

∫
dt(uĖ). (7.106)

If Σ goes through the point where the shell bounces from the mirror one has to take limits.
Depending on which limit (left or right) is taken, one obtains one of the two actions above.

We have shown above (eq. (7.97)) that the two asymptotic times u and v only differ by a
constant:

u = v − 2R∗M . (7.107)

Therefore, the two actions (7.105) and (7.106) are equivalent, and thus one of them alone
governs the entire trajectory of the shell. The condition (7.107) (or (7.97)) represents the
boundary condition (7.91) in the reduced theory. We will work with the action (7.105) in
the following, such that the phase space variables of our system are E and v. They have
the following domains:

E ∈ [0,∞), v ∈ R. (7.108)
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R = RΜ

Σ2

Σ3

Σ1

Figure 7.1: Schematic diagram of the trajectory of the shell bouncing at the mirror at the
radius R = RM . Three embedding hypersurfaces Σ are drawn. Σ1 intersects the ingoing
shell, Σ2 the outgoing one. Σ3 goes through the point where the shell hits the mirror. The
shaded region shows the two ’wedges’ where in the central-regular gauge the coordinates
are not double-null.



Chapter 8

Sojourn time

8.1 Introduction

This chapter is devoted to the main findings of this thesis. The sojourn time is explicitly
computed and the rather surprising results are discussed. The chapter is organized as
follows: The gauge invariant definition of the scattering time from chapter 4 is recalled
in section 2. A well-defined quantum theory is constructed by representing the Dirac
observables E and D

.
= Ev by a corresponding pair of self-adjoint operators in section

3. Suitable wave packets, the so-called quasi-polynomial packets, are then introduced in
section 4. In the quantum theory the scattering time is represented by the self-adjoint
operator t̂s. Formulae for the mean value of t̂s and the spread of the proper times ŝ± valid
for any kind of wave packet are written down in section 5. In section 6 they are explicitly
evaluated analytically for the quasi-parabolic wave packets. In section 7 the results of our
numerical computations are written down. They are visualized by diagrams displaying
the plots of the sojourn time and the spread of the proper time s+ as functions of the
mean energy or the width of the wave packets. The last section is devoted to a short
summary and discussion of the most important results.

8.2 The scattering time

The Schwarzschild energy E and its canonical conjugate, the asymptotic advanced time v
are Dirac observables of our simple scattering system consisting of a single self-gravitating
spherical thin null shell reflected by a fixed spherical mirror. The classical proper scatter-
ing time ts has been found earlier in chapter 4. It is a function of the observable E and
the constants RM and RO:

ts = 2

√
1− 2E

RO

(
RO −RM + 2E ln

∣∣∣∣
RO − 2E

RM − 2E

∣∣∣∣
)
. (8.1)
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In section 4 of chapter 4 we have pointed out that the scattering time ∆s, that has been
defined using explicit coordinates, is not gauge invariant. But we have found a definition
(in section 5 of chapter 4) that is both gauge invariant and yields the same quantity,
ts = ∆s. Hence, also ts is a Dirac observable. We have defined the two gauge invariant
quantities s±, that are the proper times measured by an ideal clock carried along by a
static observer at the instants at which the he sees the shell pass by inwards (s−) and
outwards (s+). They read:

s− = v −RO, s+ = v −RO + ts. (8.2)

The proper time s− has been identified with the Minkowski time in the past of the shell.
The difference of the two proper times is the scattering time ts:

s+ − s− = ts. (8.3)

The two observables s± depend on both basic Dirac observables E and v, whereas ts
depends only on the energy E.

In the next section we turn the proper times s± into operators by substituting the Dirac
observables E and v by their representative operators Ê and v̂.

8.3 Quantum mechanics

In this section we construct a quantum mechanical description of our system. The Dirac
observables E and v are to be represented by a pair of self-adjoint operators. But there is
a severe problem: the domain of E is the positive half-axis, whereas that of its conjugate
v is R. This leads to the well-known conclusion that the momentum operator v̂ = −i ∂

∂p

cannot be made self-adjoint on the half-axis. This follows from von Neumann’s theorem
on the deficiency indices of this v̂, cf. e.g. [RS75, BFV01]. See also the appendix F, where
we give a short introduction on this topic.

We therefore need another pair of Dirac observables, that can be made into self-adjoint
operators. This can be achieved using the following trick. The pair of observables E, v is
replaced by the pair E, D

.
= Ev that has the Poisson bracket

{E,D} = E. (8.4)

D is called a dilatation and is of course also a Dirac observable. The corresponding Lie
algebra generates a group of symplectic transformations on the phase space that preserves
the boundary E = 0. The group is the so-called affine group A. It has three irreducible
unitary representations. In the first one the spectrum of the operator Ê is the positive real
axis, in the second one Ê is the zero operator and in the third, the spectrum is (−∞, 0].
We must thus choose the first representation.
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The Hilbert space K of state vectors consists of the complex functions φ(p) of p ∈ [0,∞)
that have finite norm with respect to the scalar product

(φ(p), ψ(p)) =

∫ ∞

0

dp

p
φ̄(p)ψ(p), (8.5)

that is left invariant by the affine group. Here, p is the eigenvalue of the energy operator
Ê belonging to an eigenstate φ(p) in the Ê-representation,

Êφ(p′) = pφ(p′) = pδ(p− p′). (8.6)

The action of the dilatation operator D̂ on a Hilbert state reads

D̂φ(p) = −ip∂pφ(p). (8.7)

The quantum representative of the Poisson bracket (8.4) is given by the commutator

[Ê, D̂] = iÊ. (8.8)

The observable v = D
E
, is represented by the operator

v̂ = Ê−
1
2 D̂Ê−

1
2 , (8.9)

where the factor ordering has been chosen such that the operator is symmetric with respect
to the scalar product, which can be easily checked. This operator possesses, however, no
self-adjoint extension, again because of von Neumann’s theorem. This is demonstrated in
section 4 of appendix F. But, due to the lack of time in the completion of this thesis, we
continue to work with this v̂. We justify this decision as follows: Even if the observable
v is not represented by a self-adjoint operator, the quantum theory constructed above is
well-defined. The advanced time v appears only in the proper times s± but not in the
scattering time ts, so the effect on the sojourn time of using a non self-adjoint operator
should not be significant. Of course, the operators s± that depend explicitly on v̂ are
now not self-adjoint, such that their mean value and spread are to be interpreted with
some care. But we do not expect a significant qualitative difference in the results if
one uses a really self-adjoint v̂. We could define a self-adjoint operator corresponding to
the observable v by taking the square of (8.9), denoted by Q̂, which has a self-adjoint
extension, according to section 4 of the appendix mentioned above. Then we could define
the operator v̂ by taking the square root of Q̂ and by applying the spectral theorem. Of
course, one must be careful in the definition of the square root, because the domain of v
is the whole real axis. In any case this modification would require a lot of time and would
also, presumably, make some of the calculations of the next sections much more intricate.
So we postpone it to a later time.
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The action of our operator v̂ on a Hilbert state is given by

v̂φ(p) =
i

2p
φ(p)− i∂pφ(p). (8.10)

v̂ thus acts as the differential operator

v̂ =
i

2p
− i∂p (8.11)

in the energy representation.

8.4 Wave packets

In this chapter we work with wave packets in the energy space defined by

ψ(p) = 3

√
70

(b− a) 92
√
p
(
p4 − 2(a+ b)p3 + (a2 + 4ab+ b2)p2 − 2ab(a+ b)p+ a2b2

)
χ[a,b],

(8.12)

where χ[a,b] is the characteristic function of the interval [a, b] and where

0 ≤ a < b¿ RO

2
. (8.13)

These packets are localized in a finite region in energy space. We will call them quasi-
polynomial wave packets in the following, because they differ from polynomial packets
only by the factor

√
p. This factor has been deliberately introduced in order to obtain

similar results to that one would obtain using polynomial wave packets and the ’standard’
scalar product without the p in the denominator of the measure, instead. The figure (8.1)
shows a sample quasi-polynomial wave packet.

Our main motivation to take these wave packets is that they are the lowest order polyno-
mial (up to the factor

√
p) wave packets that lie in the domain of the differential operators

∂p and ∂
2
p and have compact support in energy space. Polynomials of lower order can not

satisfy the conditions ψ(a) = ψ(b) = ψ′(a) = ψ′(b) = 0, where ψ′
.
= ∂2ψ

∂p2
. E.g. for a rect-

angular packet that is the simplest possible wave packet — it is made of step functions
— already the first derivative has delta-functions at p = a and p = b coming from the
derivative of the characteristic function χ[a,b] that are not compensated by ψ, because the
rectangular packet is not continuous there. The consequence is that ψ ′ is not in the Hilbert
space. A polynomial of fourth order, however, can be chosen such that the conditions at
a and b are satisfied, and, hence, the derivative of ψ is continuous there. This is necessary
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Figure 8.1: The graph of the function ψ(p) describing a quasi-polynomial wave packet is
plotted as a function of the energy p. The parameters a and b that define the lower and
upper boundaries of the interval on which the amplitude of the packet is different from
zero have the values a = 3 and b = 8.
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because some of the operators in our theory are second-order differential operators, i.e. v̂2

and D̂2.

It is also very useful that one can restrict the contributing energies to a finite interval
such that one can investigate what happens if a specific energy is in that interval. This is
especially important in the case of the mean square deviation of the operator correspond-
ing to s+ that diverges if the wave packet contains the state with the energy equal to RM

2
,

as we will show in the next section.

The mean energy of a quasi-polynomial packet reads

〈E〉 =
∫ ∞

0

dp

p
|ψ|2p = b+ a

2
, (8.14)

and the expectation value of the operator Ê2 is given by

〈E2〉 = 3b2 + 3a2 + 5ab

11
. (8.15)

The mean square deviation is thus

(∆E)2 =
(b− a)2

44
. (8.16)

The action of the dilatation operator D̂ and its square D̂2 on the wave packet is given by

D̂ψ = −ip∂pψ, (8.17)

D̂2ψ = −p∂pψ − p2∂2pψ. (8.18)

Its expectation values read

〈D〉 = 0 (8.19)

and

〈D2〉 = 3

4

(5a2 + 6ab+ 5b2)

(b− a)2 = (∆D)2. (8.20)

We will not make use of the operator D̂ from now on. It has been only introduced in
order to construct a well-defined quantum theory.
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The operator corresponding to the advanced time has been defined in eq. (8.9). Its action
on the wave packet is given by

v̂ψ =
i

2p
ψ − i∂pψ, (8.21)

whereas that of its square reads

v̂2ψ = − 3

4p2
ψ +

1

p
∂pψ − ∂2pψ. (8.22)

We first compute the expected value of v̂. The resulting integral vanishes:

〈v〉 = 0. (8.23)

The expected value of the squared operator is hence equal to the mean square deviation
of v̂ and reads

〈v2〉 = (∆v)2 =
12

(b− a)2 . (8.24)

The spreads of Ê and v̂ are related by

∆E∆v =

√
3

11
⇒ ∆E ∝ 1

∆v
. (8.25)

8.5 General formulae

We represent the proper times before (s−) and after (s+) the scattering by quantum
operators ŝ± and write down the important results relating to the expected value and the
spread of these operators, valid for any kind of wave packet. We use these formulae in
the next section, where we calculate the expected values explicitly for quasi-polynomial
wave packets.

The two proper times s± defined in eqs. (8.2) of section 3 are represented by the operators
(in the Ê-representation)

ŝ− = −RO + v̂ = −RO +
i

2p
− i∂p (8.26)

and

ŝ+ = −RO + v̂ + t̂s = −RO +
i

2p
− i∂p + t̂s, (8.27)
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where

t̂s = 2

√
1− 2p

RO

(
RO −RM + 2p ln

∣∣∣∣
RO − 2p

RM − 2p

∣∣∣∣
)

(8.28)

is the scattering time operator in the Ê-representation. Since t̂s depends only on one of
the basic operators, i.e. Ê, there are no factor ordering ambiguities, and there are no
difficulties with the non-self-adjointness of our v̂.

The expectation value of ŝ− in any wave packet is given by

〈s−〉 = −RO + 〈v〉, (8.29)

that of its square by

〈s2−〉 = R2O + 〈v2〉 − 2RO〈v〉, (8.30)

its mean square deviation reads thus

(∆s−)
2 = (∆v)2. (8.31)

The mean value of the other operator is

〈s+〉 = −RO + 〈v〉+ 〈ts〉, (8.32)

where 〈ts〉 is the expectation value of the scattering time operator which is equal to the

sojourn time. The mean value of ŝ2+ is slightly more involved, because the factor ordering
becomes important. The result is, after choosing the obvious factor ordering,

〈s2+〉 = R2O − 2RO〈v〉+ 〈v2〉+ 〈t2s〉 − 2RO〈ts〉+ 〈tsv〉+ 〈vts〉. (8.33)

The mean square deviation of ŝ+ reads therefore

(∆s+)
2 = (∆v)2 + (∆ts)

2 + 〈tsv〉+ 〈vts〉 − 2〈v〉〈ts〉. (8.34)

The difference of the expected proper times 〈s+〉 and 〈s−〉 measured by the observer at
the radius RO turns out to be equal to the sojourn time:

〈s+〉 − 〈s−〉 = 〈ts〉. (8.35)

Our interest is focussed to this quantity and the spreads of the proper time before (∆s−)
and after (∆s+) the reflection:

∆s− = ∆v, (8.36)
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∆s+ =
√

(∆v)2 + (∆ts)2 + 〈tsv〉+ 〈vts〉 − 2〈v〉〈ts〉. (8.37)

Especially interesting is the case where the energies in the wave packets exceed the cut-off
at E = RM

2
that has been introduced in the classical theory. The classical scattering time

diverges at the cut-off and is no longer defined for energies that are even higher. We will
observe that this is not the case for the sojourn time.

But before we turn our attention to the explicit calculation of these quantities, we have
a closer look at the term 〈vts〉 appearing in eq. (8.37), because it is the only expression
that is responsible for divergences. In order to compute this term, the following property
is useful: One can show that for our (non-self-adjoint) operator v̂ it holds that:

[Ê, v̂] = i. (8.38)

The action of any regular function F of the operator Ê alone on a eigenstate φ of Ê is,
according to spectral analysis, given by,

F (Ê)φ = F (E)φ. (8.39)

Hence, one obtains, after a simple calculation, the useful relation

〈vF 〉 = 〈Fv〉 − i〈F ′〉, F ′
.
=
∂F

∂E
. (8.40)

From eq. (8.40) it follows that

〈vts〉 = 〈tsv〉 − i〈t′s〉. (8.41)

The first term on the right hand side is regular everywhere. This is, however, not true for
the second term and stems from the fact that the derivative of the scattering time with
respect to the energy contains singularities. The derivative reads

t′s = − 2

RO

√
1− 2E

RO

(
RO −RM + 2E ln

∣∣∣∣
RO − 2E

RM − 2E

∣∣∣∣
)

+4

√
1− 2E

RO

ln

∣∣∣∣
RO − 2E

RM − 2E

∣∣∣∣

8E

√
1− 2E

RO

( |1, RO − 2E|
|RO − 2E| −

|1, RM − 2E|
|RM − 2E|

)
, (8.42)

where the abbreviation

|1, x| .= d|x|
dx

(8.43)
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has been introduced. |1, x| is equal to the sign of x if x 6= 0 and is undefined for x = 0.
The first two terms on the right hand side of eq. (8.42) are as regular as ts and thus pose
no problem. The expression in the bracket of the third term, however, is highly singular
if E = RM

2
or E = RO

2
. Indeed, the expression |1,x−q|

|x−q|
has an (essential) singularity at the

point x = q:

lim
x↘q

|1, x− q|
|x− q| = +∞, lim

x↗q

|1, x− q|
|x− q| = −∞. (8.44)

The integral

∫ q+z

q−z

dx g(x)
|1, x− q|
|x− q| , z > 0 (8.45)

for an arbitrary function g(x) thus diverges if g(q) 6= 0. But the wave packets we use
lead to integrals of this form with non-vanishing functions g at the point E = RM

2
. The

consequence is that the expectation value of t′s diverges as soon as the wave packet contains
states with E = RM

2
. Hence, also the spread of ŝ+ diverges for such a wave packet.

Of course, as pointed out earlier, all results involving the operator v̂ have to be interpreted
with some care. But we expect that the results that one would obtain using a self-adjoint
v̂ would not be qualitatively different from ours.

8.6 Formulae for quasi-polynomial wave packets

We explain how the quantities 〈ts〉, ∆s− and ∆s+ are computed explicitly for the quasi-
polynomial wave packets given by eq. (8.12). We present a quite detailed description of
the calculation of the sojourn time 〈ts〉. The results for 〈t2s〉 and 〈tsv〉 are found using
similar methods. The quantity 〈vts〉 diverges in some cases as has been pointed out in
the previous section. In all other cases it cancels the contribution from the term 〈tsv〉.
We have made this observation by performing numerical computations.

The expected value of t̂s consists, up to constant factors, of integrals of the types

I1
.
=

∫
dpΠ(p)

√
1− αp, (8.46)

and

IL,i
.
=

∫
dp pΠ(p)

√
1− αp ln |2p− βi| (8.47)
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where

α =
2

RO

, β1 = RO, β2 = RM , (8.48)

and where Π(p) is a polynomial in p the coefficients of which are determined by the explicit
form of the wave packet ψ, eq. (8.12),

Π(p)
.
= c̃8p

8 + ...+ c̃0. (8.49)

〈ts〉 is hence given by

〈ts〉 = 2(RO −RM) I1|ba + 4
(
IL,1|ba − IL,2|ba

)
. (8.50)

We first compute the part I1 that does not contain logarithms. In order to transform the
integrand of I1 into a pure polynomial, we make the substitution

y2 = 1− αp, dp = −2y

α
dy. (8.51)

The integration after the substitution yields

I1 = −
2

α

∫
dy y2Π

(
1− y2
α

)
= −ROQ̃(y), (8.52)

where

Q̃(y)
.
=
c16
19
y19 + ...+

c0
3
y3. (8.53)

Here the coefficients c0, ..., c16 are defined the substitution (8.51) and by the definition of
Π, eq. (8.49)

Π

(
1− y2
α

)
= c16y

16 + ...+ c0. (8.54)

The logarithmic terms IL,i require a little bit more work. After the substitution (8.51) we
obtain that

IL,i = −
2

α

∫
dy y2(1− y2)Π

(
1− y2
α

)
ln |Σi(y)|, (8.55)

where

Σi = −
2

α
y2 +

2

α
− βi. (8.56)
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By integration by parts the IL,i can be brought to the form

IL,i = −
2

α

[
Q(y) ln |Σi(y)| −

∫
dy Q(y)

Σ′i(y)

Σi(y)

]
.
= − 2

α
[Ki − Ji] , (8.57)

where

Q(y) =
1

α

∫
dy (1− y2)y2Π

(
1− y2
α

)

=
1

α

[
Q̃(y)−W (y)

]
,

W (y)
.
=

c16
21
y21 + ...+

c0
5
y5. (8.58)

Ki reads thus

Ki =
1

α

[
Q̃(y)−W (y)

]
ln |Σi(y)|

=
1

α

[
b21y

21 + ...+ b3y
3
]
ln |Σi(y)|,

bm
.
=

cm−3 − cm−5
m

, ck = 0 : k < 0. (8.59)

The integrand of Ji is now a rational function, because the quotient
Σ′i(y)

Σi(y)
is given by

Σ′i(y)

Σi(y)
=

2y

y2 − σi
, σi

.
= 1− αβi

2
. (8.60)

The Ji thus read

Ji =
2

α

∫
dy

b21y
22 + ...+ b3y

4

y2 − σi
. (8.61)

The integrals that appear in eq. (8.61) are of the form

Ln,i
.
=

∫
dy

yn

y2 − σi
= −y

(n+1)

2σi
Φ

(
y2

σi
, 1,

n+ 1

2

)
, (8.62)

where Φ(z, h, ν) is Lerch’s Φ function (cf. A. Erdélyi, Higher transcendental functions,
Vol. 1). The first few Ln interesting for us are given by
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L4 =
y3

3
+ σy − σ 3

2ArTh

(
y√
σ

)
,

L5 =
y4

4
+
σ

2
y2 +

σ2

2
ln(y2 − σ),

L6 =
y5

5
+
σ

3
y3 + σ2y − σ 5

2ArTh

(
y√
σ

)
,

L7 =
y6

6
+
σ

4
y4 +

σ2

2
y2 +

σ3

2
ln(y2 − σ). (8.63)

The Ji hence read

Ji =
2

α

21∑

k=3

bkL(k+1),i. (8.64)

Having obtained these results we are able to combine the terms in IL,i to

IL,i = −
R2O
2

21∑

m=3

bm
[
ym ln |Σi(y)| − 2L(m+1),i

]
. (8.65)

The sojourn time eq. (8.50) is now easily put together.

Using similar methods one can calculate the expectation values 〈tsv〉 and 〈t2s〉. The square
logarithmic terms in the latter quantity can be removed by repeated integration by parts.

The expected values of t̂s, t̂2s and t̂sv are finite for all wave packets that are a superposition
of states with energies from the interval [0, RO

2
). This is in strong contrast to the classical

case where the scattering time diverges as the energy approaches the value for which the
Schwarzschild radius of the shell is equal to the radius of the mirror, RM

2
. We call this

energy the Schwarzschild energy corresponding to the mirror with radius RM and denote
it in the following by

ESchw
.
=
RM

2
. (8.66)

In the next section we give some numerical examples to illustrate these findings, but one
can also easily convince oneself without numerically calculating 〈ts〉 that it remains finite
in the case of wave packets for which a < ESchw, b > ESchw by looking at the various terms
contributing to the mean sojourn time. None of them can diverge even in this case.

The quantity 〈vts〉, however, diverges for wave packets that contain the Schwarzschild
energy ESchw, as it has already been pointed out at the end of the previous section.
Consequently, it is not compensated by the term 〈tsv〉 that remains finite, such that the
proper time of such packets has an infinite spread after the scattering. In the case of
wave packets that consist exclusively of energies below (or above) ESchw, the spread of the
proper time after the scattering is finite.
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8.7 Numerics, tables and diagrams

8.7.1 The Planck regime

In this section we illustrate the results from the preceding section by presenting some
numerical computations. In contrast to the other parts of this thesis, we use units for
which c = ~ = 1, G = `2Pl, where

`Pl =

√
~G
c3
, (8.67)

is the Planck length, which in SI units amounts of `Pl = 1.62 ·10−35m. Quantum effects in
gravitational systems become important only at the Planck scale which is very small and
far beyond experimental reach at present. All quantities we are interested in are therefore
given in units at the Planck scale, that are, besides the Planck length, the Planck mass,

mPl =

√
~c
G

=
1

`Pl
= 2.18 · 10−8kg, (8.68)

and the Planck time

tPl =

√
~G
c5

= `Pl = 5.39 · 10−44s. (8.69)

We have reintroduced Newton’s constant G, thus we have to adjust the notation of the
scattering time, because of E = GM = `2PlM , where M is the Schwarzschild mass of the
shell. The scattering time reads:

ts = 2

√
1− 2M

RO

`2Pl

(
RO −RM + 2M`2Pl ln

∣∣∣∣
RO − 2M`2Pl
RM − 2M`2Pl

∣∣∣∣
)
. (8.70)

The distances RM or RO are given in units of the Planck length,

RO = αO`Pl, RM = αM`Pl, (8.71)

where αO ≥ αM > 0 are dimension-less numbers. The Schwarzschild mass M can be
expressed in units of the Planck mass,

M = qmPl =
q

`Pl
, (8.72)
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where q is dimension-less, whereas times as the scattering ts or the asymptotic advanced
time v are expressed in units of the Planck time tPl = `Pl:

ts = 2

√
1− 2q

αO

(
αO − αM + 2q ln

∣∣∣∣
αO − 2q

αM − 2q

∣∣∣∣
)
`Pl, (8.73)

v = ωtPl = ω`Pl. (8.74)

Obviously, ts is then of the order of the Planck time.

We investigate the dependence of the three interesting quantities 〈ts〉, ∆s− and ∆s+ on
the mean energy 〈E〉 = `2Pl〈M〉 = 〈q〉mPl and the width of the packets. The computations
have been done using MAPLE. For all calculations we chose the following values for the
two radii:

RM = 20 `Pl, RO = 2000 `Pl, (8.75)

which correspond to αM = 20, αO = 2000. The Schwarzschild energy ESchw = `2PlMSchw is
hence given by MSchw = qSchwmPl, where qSchw = αM

2
= 10, i.e. the Schwarzschild radius

of a shell with this energy coincides with the radius of the mirror. The interesting shells
are thus those that have Schwarzschild radii of the order of magnitude of the radius of
the mirror. We, therefore, choose the parameters a and b appearing in the definition of
the quasi-polynomial wave packet (8.12) such that they are not too different from the
Schwarzschild energy. Thus qa and qb, where

qa
.
=

a

`Pl
=

ma

mPl

, ma
.
=

a

`2Pl
(8.76)

and

qb
.
=

b

`Pl
=

mb

mPl

, mb
.
=

b

`2Pl
, (8.77)

may not be too different from qSchw = 10.

The radius of the observer’s position has been chosen such that it is much larger than the
values of a and b we intend to take. This is because the computations are not valid anymore
if the energies are not small compared to the Schwarzschild energy of the observer, RO

2
,

for the observer is supposed to reside in a region where the gravitational effect of the shell
on the spacetime is only weak. One effect that occurs if the energies in the wave packet
are too high compared to RO is that the sojourn time becomes negative.

The results concerning the spreads of the operators ŝ± have to be interpreted with some
care, according to our observations in the previous sections. But we expect that the
qualitative results do not change significantly if the operator v̂ is replaced by one that is
really self-adjoint. The results on the sojourn time are then of course not affected.
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8.7.2 Numerics

We first investigate the behaviour of 〈ts〉, ∆s− and ∆s+ for wave packets with the same
width in energy space but varying mean energy. We take packets for which the two
parameters a and b in eq. (8.12) satisfy b− a = 2`Pl, i.e. qb − qa = 2. Hence, according to
eq. (8.16), the spread of the energy ∆E = ∆M`2Pl, with ∆M = mPl∆q, reads ∆q = 0.30.
The expected value of v̂ is zero for all quasi-polynomial packets. The root mean square
deviation is given by ∆v = `Pl∆ω, ∆ω = 1.73. It is equal to the spread ∆s− of the proper
time before the scattering. The following table (8.1) displays the results for 〈ts〉 and ∆s+.

qa qb 〈q〉 = 〈M〉/mPl 〈ts〉 [tPl] ∆s+ [tPl]

0 2 1 3976.89 5.49

2 4 3 4013.53 6.13

4 6 5 4055.80 7.17

6 8 7 4108.27 9.35

8 10 9 4191.65 20.05

9 11 10 4285.81 diverges

10 12 11 4241.84 7.52

11 13 12 4232.47 1.87

12 14 13 4233.75 2.04

13 15 14 4238.50 2.45

14 16 15 4244.83 2.69

16 18 17 4259.58 2.91

50 52 51 4482.07 2.24

82 84 83 4596.65 1.76

Table 8.1: Numerical results for the sojourn time 〈ts〉 and the spread of ŝ+ are written
down in units of the Planck time for packets with constant energy width and varying
mean energy. The Schwarzschild energy is at 〈q〉 = 10. There the sojourn time has a local
maximum, and the spread of the proper time of the outgoing shell diverges.

The sojourn time grows until it reaches a local finite maximum at the Schwarzschild energy
corresponding to qSchw = αM

2
= 10. Beyond this energy it then decreases, only to begin

to grow slowly again. The diagram fig. (8.2) illustrates this behaviour.

Also the spread of ŝ+ increases near the Schwarzschild energy. For the packets that contain
the Schwarzschild energy it diverges as expected. Above the Schwarzschild energy it first
decreases very fast, then reaches a minimum, slowly increases again to reach a much less
distinctive maximum, after which it slightly decreases again. The dependence of ∆s+ on
the mean energy is displayed in the diagram (8.3).

The next table (8.2) shows the dependence of 〈ts〉 on the width of the packets while the
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Figure 8.2: The sojourn time 〈ts〉 is plotted as a function of the mean energy 〈q〉, where the
energy width of the quasi-polynomial packets is constant: ∆q =0.30. The Schwarzschild
energy is given by qSchw = 10. The peak in 〈ts〉 at 〈q〉 = 10 is well visible. The sojourn
time is finite for all 〈q〉, in contrast to the classical scattering time that diverges at and
is not defined beyond the Schwarzschild energy. The dimensionless variable q is related
to the energy E by q = M

mPl
= E

`Pl
, where mPl and `Pl are the Planck mass and length,

respectively. The sojourn time is given in units of the Planck time tPl.
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Figure 8.3: The spread of the proper time measured by the observer after the scatter-
ing ∆s+ is plotted as a function of the mean energy 〈q〉, where the energy width of the
quasi-polynomial packets remains constant at ∆q = 0.30. If the wave packets contain the
Schwarzschild energy qSchw = 10, which is true for 〈q〉 ∈ (9, 11), then the spread diverges.
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mean energy is constant and equal to the Schwarzschild energy, 〈q〉 = qSchw = 10. The
width of the packets is varied by choosing different values for qb − qa. The spread ∆s+ is
infinite for each of these packets. ∆s− is of course equal to ∆v, as always.

qa qb ∆q 〈ts〉 [tPl] ∆s− [tPl]

0 20 3.02 4194.03 0.17

4 16 1.81 4214.44 0.29

8 12 0.60 4258.22 0.87

9 11 0.30 4285.81 1.73

9.9 10.1 0.03 4377.45 17.32

Table 8.2: Numerical results for the sojourn time 〈ts〉 are written down in units of the
Planck time for packets with constant mean energy 〈q〉 = 10 and varying energy width.

As the packets become more and more narrow in energy space, the sojourn time increases.
This is because the contribution from the singular energy qSchw becomes more and more
important. The diagram fig. (8.4) illustrates the dependence of 〈ts〉 on the width of the
packets. For a packet with mean energy 〈q〉 = 10 and zero energy width (∆q = 0), the
sojourn time diverges, corresponding to the classical scattering time for a shell with mass
M = 10mPl.

The following table (8.3) displays the results for packets with constant mean energy
〈M〉 = 5mPl that contain only states with energies below the Schwarzschild energy. In
this case the spread of the proper time after the scattering is finite.

qa qb ∆q 〈ts〉 [tPl] ∆s− [tPl] ∆s+ [tPl]

0 10 1.51 4058.69 0.35 36.47

4 6 0.30 4055.80 1.73 7.17

4.9 5.1 0.03 4055.69 17.32 17.34

Table 8.3: Numerical results for the sojourn time and proper time spreads for packets with
mean energy 〈q〉 = 5 and varying energy width are written down.

The sojourn time slightly decreases as the packets become narrower, because the con-
tribution from the energies near the Schwarzschild energy becomes less important. The
spread ∆s− of the proper time before the scattering is proportional to the inverse of the
spread of the packet in energy space, as expected. ∆s+, on the other hand, displays a
less simple behaviour that is shown in fig. (8.5).

The last table (8.4) shows the results for packets of variable width and constant mean
energy 〈M〉 = 15mPl that consist entirely of states with energies that lie above the
Schwarzschild energy.
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Figure 8.4: The sojourn time 〈ts〉 is plotted as a function of the energy width ∆q of the
wave packets, while the expected energy remains constant at 〈q〉 = 10.
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Figure 8.5: The spread of the proper time measured by the observer after the scattering
∆s+ is plotted as a function of the energy width ∆q of the wave packets, while the expected
energy remains constant at 〈q〉 = 5.
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qa qb ∆q 〈ts〉 [tPl] ∆s− [tPl] ∆s+ [tPl]

10 20 1.51 4245.91 0.35 9.58

14 16 0.30 4244.83 1.73 2.69

14.9 15.1 0.03 4244.79 17.32 17.33

Table 8.4: The table shows numerical results for the sojourn time and the spreads of the
proper time before and after the scattering for packets with mean energy 〈q〉 = 15 and
varying energy width.

The sojourn time decreases very slightly as the packets become more and more narrow.
The spread ∆s+ shows the same behaviour as in the case of the low-energy packets.

8.8 Summary and discussion

The most important observations that we have made in this chapter are the following:
The sojourn time 〈ts〉 is always finite, even if the wave packet consists of energies for
which the corresponding classical scattering time, eq. (8.1), diverges. The sojourn time
also remains finite beyond the Schwarzschild energy and has a local maximum at ESchw.
The spread of the proper time of the incoming packets ∆s− is equal to the spread of v̂,
and is therefore proportional to the inverse of ∆E. It is thus always finite. The spread of
the outgoing packets, ∆s+, however displays a non-trivial dependence on the form of the
wave packets. It diverges if the packets contain the Schwarzschild energy ESchw = RM

2
,

otherwise it is finite. Thus, even if parts of a wave packet fall under their Schwarzschild
horizon, the sojourn time remains finite, but the spread of the proper time measured
by the observer after the scattering diverges. If, however, the entire packet crosses the
horizon, also the spread becomes finite.

There is an interesting analogy to the theory of quantum scattering of a particle on
a potential. The (finite) peak of the sojourn time at the Schwarzschild energy looks
like a resonance. The peak is more sharply defined if the packet is narrower in energy
space and becomes less visible as the packets widen. This behaviour is illustrated in the
diagram fig. (8.6). We can thus say that the sojourn time of a null shell scattered by a
mirror has a resonance at the Schwarzschild energy for which the classical scattering time
diverges. ESchw has been introduced as an energy cut-off in the classical system. In the
corresponding quantum theory it becomes a resonance.

In the introduction of this thesis we have stated the hypothesis that the scattering times
could be long enough that the black hole has enough time to evaporate almost completely
by emitting Hawking radiation, such that only a small remnant of the initial system
remains. The computations we have done in the previous subsection, however, seem to
imply that the sojourn time is much too short to allow for that scenario. We want to
elucidate this statement by a (although highly improbable) example. Consider a null
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Figure 8.6: The sojourn time 〈ts〉 is plotted as a function of the expected energy 〈q〉 for
three wave packets of different energy widths ∆q. The distinctiveness of the resonance
at the Schwarzschild energy at 〈q〉 = 10 dependent on the width of the packets is well
visible. The curves have been plotted from 〈q〉 = 7 to 〈q〉 = 14. The curve with the
sharpest peak comes from the packets with the parameter w = 1, where w and ∆q are
related by w =

√
11∆q. The two other curves are for broader wave packets with w = 2

and w = 4, respectively. The three packets have the energy widths ∆q = 0.30, ∆q = 0.60
and ∆q = 1.21.
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shell with one solar mass that is scattered by a mirror in a neighbouring galaxy one Mpc
(about 3.3×106 light years) away. The sojourn time measured by the observer residing in
our galaxy is then about 6.6× 106 years. But this is roughly the time light needs to cover
the way from the observer to the mirror and back. Thus, there is no time at all for black
hole radiation, and the hypothesis above is not satisfied in our model. There seem to be
two possible reasons for how that comes about. The first one is that the corresponding
theory for a star looks significantly different from that for a null shell, such that our
construction does not apply for astrophysical situations. The second reason may be that
our calculations have been too optimistic. We have defined the sojourn time 〈ts〉 simply
by taking the expectation value of an operator that has been obtained by the replacement
of the Dirac observables in the scattering time ts by the corresponding operators. We then
have computed the thus defined sojourn time in energy regions (beyond the Schwarzschild
energy) for which its classical counterpart is not even defined and have found, that it is
still finite there, which is our justification for using it. But it is not clear if such an
extrapolation is the right method. Maybe a different way to define the scattering times
will prove to be more accurate, e.g. the perturbative approach that is the subject of the
next chapter.

A further problem in our definition of the sojourn time has not been mentioned before.
Since the operator t̂s does not depend on the advanced time v̂, it does not feel the spatial
extension of the wave packets. For example, if an eigenstate of energy (the energy being
different from the Schwarzschild energy) is taken instead of a packet, then the sojourn
time is finite according to our formula. But the shell state is time independent and the
times of intersection of the shell with the observer are not well defined. We have tried
to solve this issue by introducing the two proper times s± measured by the observer at
the instants he encounters the shell. But still, the sojourn time itself did not depend on
the width of the packet in position space. This is a second hint that our method is not
perfect yet. Our construction is thus to be looked at as a first attempt to compute the
duration of the collapse-reemergence scenario.



Chapter 9

The perturbative approach

9.1 Introduction

This chapter is devoted to an alternative approach to quantize the shell-mirror model.
In contrast to the treatment in the preceding chapters this approach is perturbative. It
uses the fact that if the gravitational fields are very weak, then they can be considered as
small disturbances on a fixed, classical background such that one can make use of semi-
classical methods. For systems where an infinite-dimensional gauge group is present, as it
is case for our model, the methods worked out by DeWitt [DeW63] seem to be the most
promising ones.

Before we turn our attention to the perturbative approach we briefly repeat our mo-
tivations to choose our system. We have simplified the collapse model of the single
self-gravitating null shell to a simple scattering system that avoids the singularity by
introducing a perfectly reflecting spherical mirror at the fixed radius RM . In order that
the shell does not fall under its Schwarzschild horizon the energy cut-off E < RM

2
is im-

posed. The shell is thus always reflected by the mirror, and by this in- and outgoing
shell trajectories are glued together in a unique way. In the last chapter, we then have
relaxed the condition that the shell energy be smaller than the Schwarzschild energy in
the quantum theory and obtained results, that could not be expected from the classical
model.

A second simplification that is necessary for a semi-classical treatment is provided by a
more severe restriction of the shell’s energy E to very small values, i.e. E ¿ RM

2
, such that

the metric of the spacetime can be interpreted as a small disturbance on a flat metric in
suitable coordinates. We have found such coordinates, so we are in the fortunate situation
to make use of DeWitt’s [DeW63] method of quantizing, in a covariant way, a system that
has an infinite-dimensional transformation group.

In the last chapter we have explicitly computed the sojourn time and obtained quite
surprising results. The sojourn time has been defined by replacing the classical scattering
time ts by the operator t̂s and evaluating it in specific wave packets. At the end of that
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chapter we have discussed that, although interesting, the results are not yet very satisfying
and that it is not clear whether our construction can be really taken seriously. DeWitt’s
method thus could help us to find out if our approach is correct, or to show us what
went wrong, at least in the low-energy regime. One of the problems mentioned in the
last chapter is that the sojourn time does not depend on the width of the wave packets
in position space, which makes our theory not very plausible if the packets are not well
localized in space. We therfore hope that the perturbative approach presented in this
section will once lead us to a quantity that can be interpreted as the scattering time of a
quantum system and also depends on the shape of the wave packets in position space.

Our findings in this chapter are also interesting simply because of the fact that our model
is an example where DeWitt’s method can be explicitly applied. We have, however, not
done explicit calculations of the sojourn time in the perturbative approach yet.

The following section is devoted to a very short summary of DeWitt’s methods. It is
followed by a section where we give the necessary conditions on a pair of metrics to be
usable for DeWitt’s approximation and state a theorem that there exists a coordinate
system such that the conditions are satisfied. Then, in section 4, it is specified what
is needed from these methods for the shell-mirror model. That section is followed by
a discussion of the classical dynamics of the fields in the chosen coordinates. The next
section (6) is devoted to the two definitions of the scattering time already encountered in
chapter 4. Then, infinitesimal gauge transformations are introduced (section 7) and it is
shown how these affect the fields and the scattering time (section 8).

9.2 A brief summary of DeWitt’s method

DeWitt’s method [DeW63] provides a manifestly covariant quantum theory for systems
that can be considered a small disturbance on a classical background and have an infinite-
dimensional transformation group. In this very short summary of the method we adopt
the terminology and the condensed notation from the aforementioned article and from a
classic paper by the same author, [DeW67]. Since the use of the method is not restricted
to the gravitational field alone, the following notation is very general, holding for a large
class of physical systems.

The most fundamental assumption is that every isolated dynamical system is described
by an action functional

S =

∫
dxL[φi, φi,µ], dx

.
=
∏

µ

dxµ. (9.1)

L is the Lagrangian and depends on a set of real dynamical (field) variables φi(xµ) and
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their first derivatives. We adopt DeWitt’s notation for functional derivatives:

δS

δφi
.
= S,i. (9.2)

The dynamical equations of the system are determined by the stationary action principle
which states that the admissible values for the fields are the solutions of the equation

S,i = 0. (9.3)

Each distinct solution corresponds to a classical dynamical history. Let φi be such a
solution and φi + δφi a small (infinitesimal) perturbation thereof which also obeys the
dynamical equations. Then

0 = S,i[φ+ δφ] = S,i[φ] + S,ij[φ]δφ
j ⇒ S,ijδφ

j = 0, (9.4)

which is the equation of small disturbances, since δφi can be interpreted as a small dis-
turbance in the system that propagates on the background field φi. The second functional
derivative of the action, S,ij plays a fundamental role, insofar as it is the differential oper-
ator governing the propagation of infinitesimal disturbances on an arbitrary background
field.

The invariance group of the gravitational field is infinite-dimensional and non-Abelian.
The change produced in the field by an infinitesimal group transformation is expressed in
the form

δφi =

∫
Ri
α′δξ

α′dx′
.
= Ri

αδξ
α, fα

′ .
= fα(x′), (9.5)

where the Ri
α′ are linear combinations of the delta function and its derivatives and where

the δξα
′
are arbitrary infinitesimal functions of xµ, known as group parameters. The

domain inside which the group parameters are non-zero is finite but otherwise arbitrary.

In this section lower case Latin letters are field indices, whereas Greek letters from the
beginning of the alphabet are group indices. Letters form the middle (µ, ν, ...) of the
Greek alphabet are coordinate indices. In the case of general relativity this distinction is
a bit confused because coordinate, group and field (i = (µν)) indices are all the same.

A functional A of the fields is regarded as a physical observable if it is a group invariant,
the condition for this property to hold being

A,iR
i
α = 0. (9.6)
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In particular, the action functional is a group invariant: S,iR
i
α = 0. From the latter

identity follows that the field equations are replaced by linear combinations of themselves
under a group transformation and hence that solutions go into solutions:

δS,i = S,ijδφ
j = S,ijR

j
αδξ

α = −S,jRj
α,iδξ

α. (9.7)

The right hand side of this equation is equal to 0 if the field equations are satisfied; so
the operator S,ij is singular in this case and does not possess a unique inverse. This has
the consequence that the solutions of the equation of small disturbances are not uniquely
determined, but only modulo transformations of the form

δφ
′i = δφi +Ri

αδξ
α. (9.8)

It is convenient to restrict the δφi by imposing further conditions known as supplementary
conditions:

Riαδφ
i = 0, Riα

.
= γijR

j
α, (9.9)

where γij is an arbitrary matrix used for lowering field indices i, j, ... except for the single
requirement that it be such that the operator

F̂αβ
.
= RiαR

i
α (9.10)

be nonsingular and have unique advanced and retarded Green’s functions Ĝ±αβ satisfying

F̂αγĜ
±γβ = −δβα (9.11)

and

lim
α→±∞

Ĝ±αβ = lim
β→∓∞

Ĝ±αβ = 0, (9.12)

where the limit of the index is to be understood as the limit of the point xµ that is
represented by the corresponding index. The supplementary conditions may be made to
hold by carrying out a transformation of the form (9.8), with

δξα = Ĝ±αβRiβδφ
i, (9.13)

which will make the δφi unique.

For the purpose of lowering group indices α, β, ... another matrix γ̃αβ is introduced. It is
arbitrary except that it is required to be nonsingular and to possess a unique inverse that
may be used to raise group indices. Then the matrix

Fij
.
= S,ij +Riαγ̃

−1αβRjβ (9.14)
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is nonsingular. When the supplementary conditions are satisfied, S,ij may be replaced by
Fij in the equation of small disturbances, eq. (9.4), yielding

Fijδφ
j = 0. (9.15)

The advanced and retarded Green’s functions G±ij of the operator Fij satisfy

FikG
±kj = −δji . (9.16)

The commutator function

G̃ij = G+ij −G−ij (9.17)

is a necessary ingredient in the Poisson bracket of two observables,

(A,B) = A,iG̃
ijB,j, (9.18)

its definition being due to Peierls. The corresponding quantum form reads

[Â, B̂] = iÂ,i
ˆ̃GijB̂,j. (9.19)

In this and all following equations involving quantum operators a caret on a symbol
denotes that the quantity represented by this symbol is a quantum operator.

A useful and important class of invariants can be built out of the asymptotic fields defined
by

φ±i
.
= φi −G±ij0 (S,j − S0,jkφk). (9.20)

This definition is based on the formal (WKB-) expansion of the action,

S =
1

2
S0,ijφ

iφj +
1

6
S0,ijkφ

iφjφk + ... (9.21)

An index 0, in either the upper or lower position, indicates that that quantity to which it
is affixed is evaluated at the zero point φi = 0, which corresponds to flat empty spacetime
in the case of gravity. Notice that the zero point is a solution of the field equations, hence
linear terms in the expansion above vanish. The asymptotic fields satisfy the equation

S0,ijφ
±j = 0 (9.22)
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which is independent of the choice of the matrices γij and γ̃αβ. A change thereof produces
only a gauge transformation in the asymptotic fields having the form

δφ±i = Ri
0αδζ

±α. (9.23)

The same change is produced by a group transformation with the special form

δζ±α = −Ĝ±αβ0 R0iβR
i
γδξ

γ , (9.24)

hence also

S0,ij(φ
±j + δφ±j) = 0 (9.25)

holds. Because of this one can construct many group invariants, so-called asymptotic
invariants out of the asymptotic fields by introducing a set of field-independent quantities
IAi, IBi, ... which obey IAiR

i
0α = 0, IBiR

i
0α = 0, ... The quantities defined by

A±
.
= IAiφ

±i, B±
.
= IBiφ

±i, ... (9.26)

are then asymptotic invariants. This construction works only when the field equations are
satisfied, therefore the latter quantities are conditional invariants, fulfilling the slightly
relaxed group invariance condition

A,iR
i
α = S,ia

i
α. (9.27)

Since asymptotic invariants are observables, they have a well-defined Poisson bracket,
given by

(A±, B±) = IAiG̃
ij
0 IBj. (9.28)

The asymptotic fields φ±i are the solutions of the linearized theory obtained from the action
functional 1

2
S0,ijφ

±iφ±j. This theory is well-understood; the choice of the most suitable
invariants for the gravitational field, their quantization and applications to scattering
processes are explicitly given in [DeW67].

9.3 Existence theorem for a suitable gauge

In order to be able to use DeWitt’s method that we have presented in the preceding
section, we first need a suitable coordinate system with respect to which the shell metric
gµν differs only slightly from a flat (but otherwise arbitrary) metric fµν . By a flat metric
we mean one that is obtained by a regular coordinate transformation from the Minkowski
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metric ηµν = diag(1,−1,−1,−1). Since there are many flat metrics on M in any given
coordinate system, it is not straightforward to tell whether there exists one, that is close
enough to the shell metric in the given coordinates. Also the notion of distance between
two metrics needs to be properly defined. These issues are discussed in more detail in the
appendix B.

Motivated by the results found in the aforementioned appendix, we impose the following
conditions on the pair of metrics gµν and fµν , where the metric fµν is flat, while gµν
describes the spacetime of the shell:

• The metrics gµν and fµν are regular (i.e. | det(gµν(x))| > 0,∀x) and continuous
everywhere on the spacetime manifoldM,

• The shell metric gµν can be expanded about the small parameter s = 2E
RM

, such that
gµν(s) ≈ fµν +O(s), and the limit gµν(s)→ fµν as s→ 0 exists.

These conditions strongly restrict the possible coordinates. The first condition ensures
that the metrics are regular and continuous at the shell. It excludes, e.g., the singular
DNEF coordinates (5.1, 5.8). The second one is the most important one. It ensures that
the two metrics differ not too much from each other and that they agree if s (i.e. E) is
zero.

Both the regular DNEF (5.45, 5.46) and the CR (cf. section 4 of chapter 6) coordinates do
not satisfy the second condition. This is because the θθ-components, −R2, of both these
metrics diverge at infinity. It it thus very improbable that one finds a suitable flat metric
that has a corresponding θθ-component that can compensate the divergence of −R2 at
infinity. Polar coordinates seem hence not to be suited for DeWitt’s method. This issue
is discussed in more detail in section 2 of the appendix B.

The Cartesian form (6.74, 6.75) of the central-regular (CR) metric found in chapter 6
satisfies, however, all of the conditions above. We therefore choose as gµν the Cartesian
CR metric (CCR) and as fµν the Minkowski metric ηµν and thus prove the following
existence theorem:

Theorem 9.1 There exists a coordinate system with respect to which the metric of the
shell-mirror spacetime satisfies the conditions (9.3) that are required in order that De-
Witt’s methods can be applied.

The explicit proof is a bit lengthy and is therefore written down in the appendix C.

9.4 What is needed from DeWitt’s method for the

shell-mirror model

Our system consists of the null spherical thin shell, its gravitational field and the mirror,
as defined earlier in chapter 3. Our choice for the metric of the spacetime is the Cartesian
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central-regular (CCR) metric (C.2, C.3) that has been constructed chapter 6 and the
appendix C. In the present case, the background metric is simply the Cartesian Minkowski
metric ηµν . The metric field propagating on this background is the difference of the CCR
and the Minkowski metrics,

hµν
.
= gµν − ηµν , (9.29)

and will be explicitly written down in the next paragraph. Since hµν is a small perturba-
tion, |hµν | ¿ 1, one can ignore anything that is of higher than first order in this quantity.
Therefore, one can use ηµν instead of gµν to raise or lower indices, because the corrections
are of higher order in the perturbation.

The trajectory of the shell is represented by a curve on the background described by a set
of functions XA(λ) depending on the (arbitrary) parameter λ. Both the metric and the
trajectory of the shell depend on the solution-parameters (E, v) of Einstein’s equations:

hµν = hµν(E, v;x
µ), XA(λ) = XA(E, v;λ), (9.30)

where xµ is the coordinate system for which the metric of the shell spacetime obtains the
Cartesian form, i.e. (τ, ~X).

The requirement that hµν be a small perturbation of the Minkowski metric does not
completely specify the coordinates, because there may be other coordinate systems in
which the metric can still be written as η plus a small perturbation, but this perturbation
will be, of course, different. Thus, the decomposition (9.29) is not unique. So we must
allow for small changes of the coordinate system such that the decomposition (9.29) still
holds. Such infinitesimal gauge (i.e. coordinate) transformations are given by

δξµ = ξµdε, (9.31)

the arbitrary vector field ξ(x) being the generator and dε being an infinitesimally small but
positive number. The vector field ξ(x) vanishes outside a finite but otherwise arbitrary
region of spacetime. This requirement will be, however, replaced by a less restrictive
one in section 7. The explicit form of the effects of the gauge transformations on the
fields will be also stated later, namely in the last section. Taking the infinitesimal gauge
transformations into account, the quantities that describe the model read:

hµν = hµν(E, v; ξ(x);x), XA(λ) = XA(E, v; ξ(x);λ). (9.32)

In the language of the previous paragraph, the fields hµν , X
A are asymptotic fields, the

quantities E, v are the physical observables that will be used for quantization, and the
group transformations are represented by the generators ξµ. Nothing else will be needed
from DeWitt’s method, because the classical solutions are already known.
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9.5 Classical dynamics in the CCR gauge

In the Cartesian central-regular (CCR) coordinates xµ = (τ, ~X), the metric disturbance
hµν reads

h00 = A− 1,

h0k = 0, k = 1, 2, 3,

hkk = 1− R2

X2
+

(
R2

X2
− A

)
X2
k

X2
,

hkl =

(
R2

X2
− A

)
XkXl

X2
, k 6= l, (9.33)

where the metric functions R = R(τ,X), A = A(τ,X) have been written down in section
6 of chapter 6 and in the appendix C. The above equations are only valid in the parts of
the spacetime, where the CR coordinates are double-null. The form of the disturbance in
the wedges K± is, however, straightforwardly computed by using the components of the
corresponding shell metric. The components of hµν depend on the solution parameters
(E, v) in virtue of their occurrence in the metric functions R and A.

The equation for the trajectory of the shell with respect to the DNEF coordinates (U, V )
is given by V = v, U = u for the in- and outgoing shells, respectively. From the coordinate
transformation V = τ +X, U = τ −X follows that

τ(λ) +X(λ) = v, τ(λ)−X(λ) = u. (9.34)

At the mirror the two trajectories meet in the point V = v, U = u = v − 2R∗M . Hence,
expressed in the coordinates (τ,X),

τ(λ0) +X(λ0) = v, τ(λ0)−X(λ0) = v − 2R∗M , (9.35)

and, therefore,

X(λ0) = R∗M , τ(λ0) = v −R∗M . (9.36)

This suggests the following ansatz for the shell’s trajectory XA(λ)
.
= (τ(λ), X(λ)):

τ(λ) = λ− λ0 + v −R∗M ,
X(λ) = |λ− λ0|+R∗M , λ ∈ R. (9.37)

The ansatz obviously satisfies eqs. (9.34) for all λ. By putting λ0 = 0, the equations
reduce to
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τ(λ) = λ+ v −R∗M ,
X(λ) = |λ|+R∗M , λ ∈ R. (9.38)

The sign of λ changes at the mirror from −1 for the ingoing to +1 for the outgoing shell.
The trajectory of the shell depends on the solution parameters v and, through R∗M , the
shell energy E:

XA(λ) = XA(E, v;λ). (9.39)

Eqs. (9.38) are the same equations as those that have been obtained in chapter 3, but
now they are expressed in the coordinates τ and X.

9.6 Scattering time

9.6.1 Coordinate-based definition

In chapter 4 we have assumed that the operator ∆̂s made from the classical proper
scattering time ∆s given by eq. (3.69) can be identified with the sojourn time. We hence
repeat the construction of the proper time measured by an observer at a constant radius
ρ between the two times he and the shell meet from the fourth section of chapter 4, using
the new coordinates τ and X.

The classical scattering time of the shell under the radius ρ is given by the difference of
the two times at which the shell’s trajectory is at the radius ρ:

τρ
.
= τ(λ+ρ )− τ(λ−ρ ). (9.40)

Care is to be taken when one is talking about radii. Here, by ρ, we are meaning a constant
value of the geometric radius defined by the metric, R(τ,X) = ρ. That R is truly the
geometric radius can be shown by expressing the metric in the polar coordinates τ , X:
ds2 = A(dτ 2−dX2)−R2dΩ2. The orbits of the rotation group are then given by constant
values of the function R(τ,X). If S is the surface area of an orbit of the rotation group,
then the geometric radius reads

rgeom =

√
S
4π

= R(τ,X). (9.41)

It is obvious that this function is an invariant under rotationally symmetric coordinate
transformations. The equation R(τ,X) = ρ = constant defines thus a curve in the plane
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spanned by the coordinates τ and X. In order to find the explicit form of this curve, one
has to solve

ρ = R(τ,X) = const (9.42)

for τ (or X) in all of the three regions I, II, III of spacetime. But since the observer
residing at the radius ρ is in the region I outside the shell during the measurement of the
scattering time, it suffices to find the expression in region I alone. Notice that we have
solved this problem already once for the Schwarzschild scattering time in chapter 3. In
region I, the solution of eq. (9.42) is given by

X = ρ∗
.
= ρ+ 2E ln

∣∣∣ ρ
2E
− 1
∣∣∣ , (9.43)

τ ∈ (v − ρ∗, v − 2R∗M + ρ∗)
.
= (τ−, τ+). (9.44)

The boundary values of the τ -interval follow from the shell’s equations (9.35). The equa-
tions

τ− = τ(λ−ρ ), τ+ = τ(λ+ρ ) (9.45)

determine the values of λ looked for:

v − ρ∗ = λ−ρ + v −R∗M ⇒ λ−ρ = R∗M − ρ∗, (9.46)

v − ρ∗ − 2R∗M = λ+ρ + v −R∗M ⇒ λ+ρ = −R∗M + ρ∗. (9.47)

Alternatively, one can solve the equation

ρ∗ = X(λ±ρ ), (9.48)

which yields the same result. The scattering time is thus given by

τρ = λ+ρ − λ−ρ = 2(ρ∗ −R∗M) = 2(ρ−RM) + 4E ln

∣∣∣∣
ρ− 2E

RM − 2E

∣∣∣∣ . (9.49)

This is the same result as given by eq. (3.67) of chapter 3 indicating that τ is equal to
the Schwarzschild time in region I.
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The proper time s the observer is measuring is defined by the relation ds2 = Adτ 2. Since
the metric component A is constant at the constant radius ρ in region I, it holds that
s =
√
Aτ + const. Hence, the difference of two time measurements reads

∆s =
√
A∆τ =

√
1− 2E

ρ
∆τ. (9.50)

The proper scattering time measured by an observer at the constant radius ρ is, therefore,

sρ = 2

√
1− 2E

ρ

(
ρ−RM + 2E ln

∣∣∣∣
ρ− 2E

RM − 2E

∣∣∣∣
)
. (9.51)

Notice that this quantity does not depend on the solution-parameter v. We demonstrate
later in this chapter that the scattering time defined in this way is not invariant under
infinitesimal gauge transformations and, therefore, is not an observable that can be used
for quantization.

9.6.2 Gauge-invariant definition

There is a second way to define the residence time of the observer between his two en-
counters with the shell. The resulting quantity is invariant under infinitesimal gauge
transformations as will be shown later in this chapter. The gauge-invariant definition
has been written down in section 5 of the fourth chapter. It is the difference ts of the
two proper times s± measured by the ideal clock of an observer at rest at the constant
radius ρ. We adopt the construction of ts from the aforementioned chapter to the CCR
coordinates τ and X.

The trajectory of the observer is given by the equation R(τ,X) = ρ. A parametrized
curve γ(µ) describing this trajectory in region I reads

X(µ) = ρ∗, τ(µ) = µ, µ ∈ (µ−, µ+). (9.52)

The infinitesimal proper time ds measured by the observer can be obtained from the line
element of the spacetime in the points of the trajectory,

ds =
√
gµνdxµdxν =

√
A
√
dτ 2 − dX2. (9.53)

The proper time along the curve γ reads thus

ts =

∫

γ

ds =

∫

γ

√
A
√
dτ 2 − dX2. (9.54)
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From dτ = dµ, dX = 0 follows that the above integral can be written as

∫

γ

ds =

∫ µ+

µ−

dµ
√
A(X = ρ∗, τ = µ) =

√
1− 2E

ρ

∫ µ+

µ−

dµ =

√
1− 2E

ρ

∫ τ+

τ−
dτ, (9.55)

where the fact that A =
√

1− 2E
ρ

= constant for R = ρ in region I has been used.

Obviously the quantity on the right hand side of this equation is the proper scattering
time sρ defined by eq. (9.51) above. Hence, ts(ρ) = sρ, as expected. In section 8 of this
chapter we show that the thus defined scattering time is invariant under infinitesimal
gauge transformations.

9.7 Infinitesimal gauge transformations

According to DeWitt and the previous subsections, the infinitesimal gauge transforma-
tions are given by

xµ → x′
µ
= xµ − δξµ(x), δξµ(x)

.
= ξµ(x)dε. (9.56)

Since the model is spherically symmetric, it seems to be sensible to restrict the gauge
transformations to those that preserve this symmetry. This confines the arbitrariness of
the vector fields ξµ to rotationally symmetric ones. In coordinates adapted to the spherical
symmetry, e.g. (τ,X, θ, φ), rotationally symmetric vector fields ξ satisfy

ξµ = ξµ(τ,X) =
(
ξ0(τ,X), ξX(τ,X), 0, 0

)
. (9.57)

In the Cartesian coordinates obtained from the transformation τ = τ , xk = Xnk, such
vector fields are of the form

ξµcart = (ξ0,
xk

X
ξX). (9.58)

This restriction will simplify many calculations. Earlier in this chapter we have required
the vector field ξ to vanish outside a finite but arbitrary region. We will weaken this
requirement when we discuss the asymptotic form of ξ in the subsection after the next.

9.7.1 Order of magnitude of gauge transformations and metric
perturbations

When one is comparing the effects of the metric perturbation hµν and that of infinitesimal
gauge transformations given by eq. (9.56), the question arises whether they are of the
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same order of magnitude. If this is not the case, then the approximating procedure of
linearization may be not self-consistent. In order to show that our methods are self-
consistent we will consider the problem in the general case, using DeWitt’s notation.

Let φi be the solution of the variational equation S,iφ
i = 0. Then, a small perturbation

of the action S + δS will have the solution φi + δφi. Let this perturbation be due to the
coupling to a weak external agent described by a unspecified (the actual form will not be
needed) functional A of the fields φi:

δS
.
= Adε. (9.59)

The perturbation δφi then satisfies the equation of small disturbances

S,i[φ+ δφ] ≈ S,i[φ] + S,ij[φ]δφ
j = S,ij[φ]δφ

j = −A,idε, (9.60)

thus the perturbed field is given by

δφi = −GijA,jdε, (9.61)

where Gij is the Green’s function belonging to the differential operator S,ij or, if necessary,
to its invertible extension Fij, respectively. Thus, the perturbed field is of the order of
the (infinitesimally) small number dε:

δφi ∝ dε. (9.62)

The disturbances induced by infinitesimal gauge transformations φ′ = φ + δφ are of the
same order of magnitude. This follows clearly from the form of δφ,

δφi = Ri
αξ

αdε ∝ dε. (9.63)

In the next section we will show that metric perturbations of the flat spacetime can be
considered being induced by a diffeomorphism denoted by χ and those induced by gauge
transformations by another diffeomorphism, ψdε. Since the metric perturbation h is of
the same order than effects due to gauge transformations, the use of the linearized theory
is justified, because the zeroth order in the expansion of the full metric g is the flat
Minkowski metric η. First order effects are given by h and the Lie derivative of η along
the vector field ξ that are both of the same order of magnitude dε.

9.7.2 Asymptotics of infinitesimal gauge transformations

We have stated earlier in this chapter that the generators ξ of the infinitesimal coordinate
transformations must vanish outside an arbitrary compact region of spacetime. This seems
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to suffice when considering only the scattering time under a fixed finite radius. But since
also quantities that are defined only in the asymptotic region may become important, a
trivial action of the gauge group there is undesirable. Therefore, it seems to be necessary
to weaken the requirement of compact support. We will hence replace the requirement
ξµ = 0 in the asymptotic region by the less restrictive condition

ξµ(x) = ζµ = const. (9.64)

This choice is motivated by DeWitt’s definition of asymptotic invariants and the action
of the gauge group thereupon. If an infinitesimal gauge transformation is given by δφi =
Ri
αξ

αdε, then its action on asymptotic fields φ±i reads

δφ±i = Ri
0αζ

αdε, (9.65)

where ζ is the generator of a member of an infinitesimal Abelian group and Ri
0α is the

zero-point value of Ri
α, which can be understood as the inhomogeneous part of the general

group transformation law given by

Ri
αξ

αdε = Ri
0αξ

αdε+Ri
α,jφ

jξαdε. (9.66)

The generators ζ of the asymptotic gauge group must be such that the change induced by
them on the metric perturbation remains small in the asymptotic region. Since hµν → 0
in the asymptotic region, also the disturbance

δhµν = (ζµ,ν + ζν,µ)dε (9.67)

must vanish. The asymptotic group is also, as stated above, Abelian. Therefore, a good
realization of these two requirements seems to be ζµ = const. So, all over the asymptotic
region the infinitesimal gauge transformations reduce to rigid infinitesimal translations
of the coordinates xµ and become thus asymptotic symmetries. It is easy to show that
the vector ζµdε = const. generates an isometry, neglecting corrections of the second order
in dε. It has to be pointed out that the above choice is dependent on the choice of
coordinates, ζ = const being the appropriate choice for the Cartesian coordinates (τ, xk).

The constant vector ζµ (still with respect to Cartesian coordinates) can be decomposed
into a linear combination of translations along the four coordinate axes:

ζµ = ytµ +
3∑

k=1

βkv
µ
k , (9.68)

where y, βk are arbitrary infinitesimally small real numbers that do not vanish all at the
same time and where

tµ
.
= (1, 0, 0, 0), vµ1

.
= (0, 1, 0, 0), vµ2

.
= (0, 0, 1, 0), vµ3

.
= (0, 0, 0, 1) (9.69)
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are the four base vectors. The symmetry can thus be split into a time shift and a spatial
translation, both being still infinitesimal. The time shift has a physical effect on the
asymptotic retarded (or advanced) time of the shell, as it will be shown explicitly in the
next section. The spatial part of the translation, however, does not seem to have any
interesting effect on the physical objects other than making the describing spatial coordi-
nates less adapted to the spherical symmetry. Therefore, we will exclude the asymptotic
spatial translations in the following and keep only the infinitesimal time shifts; δζµ is then
given by

δζµ
.
= ζµdε = (ydε, 0, 0, 0). (9.70)

Hence, infinitesimal gauge transformations generated by any vector field ξ reduce to in-
finitesimal time shifts in the asymptotic region. On can thus understand such a trans-
formation as the composition of a gauge transformation generated by the vector ξ̄µ that
converges asymptotically to the zero vector and a constant infinitesimal time shift σ(y),
whose action on the coordinates reads

[σ(y)](xµ)dε = (τ + ydε, xk). (9.71)

The abstract vector ξ is then given by

ξ = σ(y) ◦ ξ̄. (9.72)

For each y ∈ R there is thus a whole class of vectors ξ̄. We can formulate this result in
a more mathematical language: Let G be the group of all (infinitesimal) gauge transfor-
mations with generators ξ that converge asymptotically to the Abelian generators ζ. Let
N be the normal subgroup of G consisting of all those ξ that converge to the zero vector
in the asymptotic region such that the fall-off conditions on the metric are conserved,
i.e. of all those ξ for which ζ = 0. Denote such an element by ξ̄. Then the factor group of
asymptotic symmetries G/N consists of the time shifts σ(y) which build a one-dimensional
continuous group of translations.

9.8 Effect of the gauge transformations on the fields

We show how the infinitesimal gauge transformations given by eq. (9.56) affect the form
of the metric perturbation and the shell trajectory.
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9.8.1 Effect on the trajectory of the shell

The effect of the infinitesimal transformation eq. (9.56) on the trajectory of the shell,
given by eq. (9.38), is given by

XA(λ)→ X ′A(λ) = XA(λ)− δξA(x), δξA(x) = (δξ0, δξX), (9.73)

where

δξX
.
=

3∑

k=1

xk

X
δξk. (9.74)

This follows from the transformation law for the radial coordinate X:

X ′ =

√√√√
3∑

k=1

(xk − δξk)2

=

√√√√
3∑

k=1

((xk)2 − 2xkδξk + (δξk)2)

≈

√√√√
3∑

k=1

((xk)2 − 2xkδξk)

≈ X −
3∑

k=1

xk

X
δξk, (9.75)

where quadratic terms in the δξk have been neglected.

As mentioned above, the asymptotic time shift symmetry transformations σ(y)dε have an
explicit effect on the trajectory of the shell. The disturbance δξ0 is in this case simply
given by

δξ0 = ydε, (9.76)

which leads to

X ′A(λ) = (λ+ v −R∗M + ydε, |λ|+R∗M)
.
= (λ+ v′ −R∗M , |λ|+R∗M), (9.77)

where v′
.
= v + ydε. The trajectory X ′A(λ) of the shell with asymptotic retarded time v

after the symmetry transformation looks therefore exactly the same as the untransformed
trajectory of the shell with the parameter v′. One can thus also understand the asymptotic
time shifts as mappings from one solution to another.



144 Chapter 9. The perturbative approach

9.8.2 Effect on the metric perturbation

We formulate the problem of gauge invariance in a slightly more geometric way, following
the treatment in [Car97]. The linearized theory can be thought of as one describing the
behaviour of tensor fields on a given flat background. Since one can consider (passive)
coordinate transformations between the charts of a manifold as active diffeomorphisms
on the manifold, one can introduce a background spacetime MB equipped with the flat
metric ηµν , a physical spacetimeMP with some metric gµν satisfying Einstein’s equations
and a diffeomorphism

χ :MB →MP . (9.78)

The two manifolds are diffeomorphic, thus they are, as manifolds, the same, but equipped
with different tensor fields. Since the linearized theory takes place on the flat background
spacetime, one is interested in the pull-back (χ∗g)µν of the physical metric to the back-
ground spacetime MB. One can thus define the perturbation as the difference between
the pulled-back physical metric and the flat one:

hµν = (χ∗g)µν − ηµν . (9.79)

Of course, the diffeomorphism χ is required to be such that hµν remains small. Then, it
follows from the fact that gµν satisfies Einstein’s equations on the physical spacetime that
the perturbation obeys the linearized equations on the background. The issue of gauge
invariance in this formulation is thus simply the fact that there are many permissible
diffeomorphisms betweenMB andMP . Let such a diffeomorphism be generated by the
vector field ξµ(x) from eq. (9.56) and be denoted by ψdε, dε being an (infinitesimally)
small number. If χ is a permissible diffeomorphism, then so is the composition (χ ◦ ψdε),
although with a different value of the perturbation:

h(dε)µν = [(χ ◦ ψdε)∗g]µν − ηµν = [ψdε∗(χ∗g)]µν − ηµν . (9.80)

Plugging in the decomposition given by eq. (9.79) yields

h(dε)µν = ψdε∗(h+ η)µν − ηµν = ψdε∗(hµν) + ψdε∗(ηµν)− ηµν . (9.81)

Since dε is small, ψdε∗(hµν) equals to hµν in lowest order, while the other two terms define
a Lie derivative along the vector field ξµ(x):

h(dε)µν = ψdε∗(hµν) +

[
ψdε∗(ηµν)− ηµν

dε

]
dε

= hµν + Lξηµνdε
= hµν + (ξµ,ν + ξν,µ)dε
.
= hµν + δhµν . (9.82)
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The equality on the third line follows from the fact that covariant derivatives can be
replaced by partial derivatives in approximations to lowest order. Eq. (9.82) tells us what
kind of metric perturbations lead to physically equivalent space-times: those related to
each other by (ξµ,ν + ξν,µ)dε for some vector ξµ.

For the rotationally symmetric vector fields ξµ = (ξ0, ξk), where ξk = xk

X
ξX(τ,X), the

explicit expression for δhµν reads:

δh00 = 2ξ0,τdε,

δh0k =
xk

X

(
ξ0,X + ξX,τ

)
dε, k = 1, 2, 3,

δhkk = 2

[
ξX

X
+

(xk)2

X2

(
ξX,X −

ξX

X

)]
dε,

δhkl = 2
xkxl

X2

(
ξX,X −

ξX

X

)
dε, k 6= l. (9.83)

These formulae are, again, only true in the regions of spacetime for which the CR co-
ordinates are DN. The corresponding expression for δhµν in the non-DN wedges K± is
computed in a similar way.

9.8.3 Effect on the scattering time

The action of infinitesimal coordinate transformations also affects the scattering time τρ
(and, in consequence, the proper scattering time sρ). In the transformed coordinates
τ ′, X ′, the trajectory of the observer (in the region I) at R = ρ is given by

X ′(µ) = X(µ)− ξX(µ)dε = ρ∗ − ξX(µ)dε, µ ∈ (µ−, µ+),

τ ′(µ) = τ(µ)− ξ0(µ)dε = µ− ξ0(µ)dε. (9.84)

That of the shell reads

X ′(λ) = X(λ)− ξX(λ)dε = |λ|+R∗M − ξX(λ)dε, λ ∈ (λ−, λ+),

τ ′(λ) = τ(λ)− ξ0(λ)dε = λ+ v −R∗M − ξ0(λ)dε. (9.85)

Here,

µ± = λ± + v −R∗M = ±(ρ∗ −R∗M) + v −R∗M . (9.86)
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The scattering time with respect to the new coordinates τ ′, X ′ is thus given by

τ ′ρ = τ ′(λ+)− τ ′(λ−) = λ+ − λ− − [ξ0(λ+)− ξ0(λ−)]dε
= τρ − [ξ0(λ+)− ξ0(λ−)]dε (9.87)

Even in the case of rotationally symmetric vector fields ξ, the bracket in eq. (9.87) does
not vanish in general, so this definition of scattering time is not gauge invariant and is,
therefore, not a suitable observable for the quantum description. Only in the asymptotic
region (i.e. for ρ → ∞) the scattering time is invariant, because there the vector field
ξµ(x) converges to a fixed constant vector ζµ, such that the terms in the bracket cancel.
But, of course, the scattering time under an infinite radius is infinite and makes thus not
much sense.

There is, however, a second way to define the scattering time, as we have shown earlier:
the proper time measured by the ideal clock of the observer along his trajectory. In the
unperturbed case this definition coincided with the first one, but this is not true if a
non-vanishing and non-trivial generator ξµ is present.

In the coordinates τ,X, the infinitesimal proper time interval dsρ along the trajectory

of the observer is simply
√

1− 2E
ρ
dµ. We show, that this quantity remains invariant

under the infinitesimal gauge transformations in question. The differentials of the new
coordinates along the trajectory given by R = ρ read

dX ′ = −ξX,τ dεdµ, dτ ′ = (1− ξ0,τdε)dµ. (9.88)

The line element along this trajectory reads thus

ds′2ρ = Bdτ ′2 − CdX ′2 − 2Ddτ ′dX ′ ≈
[
B(1− 2ξ0,τdε) + 2DξX,τ dε

]
dµ2, (9.89)

where terms of second or higher order in dε have been neglected. The metric components
B, C and D can be obtained by comparing the invariant line element ds2 with respect to
the two coordinate systems. Neglecting higher order terms, the components read

B =
A

1− 2ξ0,τdε
, C =

A

1− 2ξX,Xdε
, D =

A(ξX,τ − ξ0,X)dε
1− (ξX,X + ξ0,τ )dε

(9.90)

Since D is of order dε the second term in the expression for ds′2ρ can be neglected, thus
the result reads

ds′2ρ = A(µ)dµ2 = ds2ρ. (9.91)
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Hence, the infinitesimal proper time dsρ of the observer at the constant radius ρ is really
a gauge invariant. The integral of dsρ along the curve defined by R = ρ in region I is
therefore again given by

s′ρ =

∫ µ+

µ−

√
A(µ)dµ =

√
1− 2E

ρ
(µ+ − µ−) = 2

√
1− 2E

ρ
(ρ∗ −R∗M) = sρ. (9.92)

Hence, the second definition of the scattering time is gauge invariant (at least in the
DeWitt approximation), in contrast to the first one. The two definitions coincide in
the special case of the Cartesian coordinates (τ, xk) but not in non-trivial infinitesimal
transformations thereof.

In chapter 4 we have already once computed the two definitions of the scattering time
in the non-perturbative case. Since the first definition of scattering time is not gauge
invariant in the semi-classical case, it clearly cannot be in the full theory. The second
definition is not only invariant under infinitesimal coordinate transformations but also
under finite ones, because ts = s+− s−, where the s± are gauge invariant. This is pointed
out in chapter 4.
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Chapter 10

Discussion and outlook

We summarize and discuss the main results of this thesis, point out the problems that
have occurred and tell what needs to be done yet.

We first have found out that there is no definition of the time delay for our model that can
be made finite. Even though the time delay can be, at least mathematically, consistently
regularized in the case of the Coulomb potential, this is not feasible for the gravitational
one, because there the regularization would be state-dependent. We thus have to renounce
to define the scattering time in the asymptotic region and must content ourselves with
a quantity measured at a finite distance from the mirror: the proper scattering time
measured by an observer at rest between his two encounters with the shell. We then have
found that the sojourn time for finite distances, that has been used to define the time
delay, seems to be a suitable choice for the quantum analog of the scattering time. But the
sojourn time, the way it has been defined, works only for particle scattering in Minkowski
spacetime. The generalization to curved spacetimes raised conceptual problems we did
not know how to cope with. We have therefore assumed that the sojourn time can be
interpreted as the mean value of an operator that represents the classical scattering time in
the corresponding quantum theory. Such an operator is, of course, only well-defined if its
classical counterpart is a gauge-invariant constant of motion, a so-called Dirac observable.
We have constructed such gauge-invariant quantities — the proper times of an observer at
rest measured as the shell passes the observer inwards and outwards, respectively. Their
difference is equal to the proper scattering time, which is thus also a Dirac observable.
In order to prove that the true degrees of freedom of our model are really the shell’s
energy E and its asymptotic advanced time v, and that they are canonically conjugated
to each other, we have performed the canonical reduction program of the Hamiltonian
action given by LWF and HKK. The method had to be adapted to incorporate the non-
trivial inner boundary of the spacetime due to the mirror, because the standard methods
became not applicable there. The reduction could be explicitly performed by making
some further assumptions and by constructing a gauge that is regular at the mirror. This
central-regular gauge has, in addition, the nice property that it satisfies the conditions on
a coordinate system in order that the perturbative methods of quantization invented by
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DeWitt can be applied to our model. We thus have proven an existence theorem for such
a gauge for our system. This theorem can be probably generalized to incorporate other
systems related to ours. We, finally, have set up a well-defined quantum theory where
the scattering time is represented by a self-adjoint operator and explicitly computed its
expected value, the sojourn time, for a special kind of wave packet. The rather surprising
result is that the sojourn time for packets of finite width remains finite at and above
the Schwarzschild energy even if the corresponding classical scattering time is infinite!
The sojourn time has, so to say, a resonance at the Schwarzschild energy, while the peak
remains finite. There is the minor flaw in the computations that the operator v̂ is not self-
adjoint, such that the classical observable v is not represented by a quantum observable.
But since v̂ only appears in the two proper times ŝ± but not in their difference t̂s, the
sojourn time, which is the really interesting quantity, this shortcoming does no seem to
affect our results significantly. It seems to be possible to replace our operator by a really
self-adjoint v̂, but the correct definition involves taking the square root of a differential
operator, which makes the computation much more intricate.

Our findings are, if surprising and interesting, of course, far from solving the problem on
an astrophysical scale, that would require a model that is much more appropriate than
our simple system. But they are first steps on a way to measure scattering times in such
systems. Our results give a hint that the quantum collapse is significantly different form
its classical analog.

There is a lot of work to be done yet to answer several open questions. First of all,
the quantum theory must be adapted such that also v is represented by a self-adjoint
operator. It seems that there is a scale invariance in the resulting quantities we have
obtained. Every interesting quantity in our model (i.e. the sojourn time, the spreads of
the proper times) seems to scale with the radius of the mirror (or, equivalently, with its
corresponding Schwarzschild energy). This conjecture has to be substantiated. Then,
our methods have to be extended to include the collapse case without the mirror (cf. the
unitary quantum theory of a single null thin shell found by Háj́ıček [Háj01]), since the
mirror can not be considered really a physical object. There is work to be done to apply
DeWitt’s quantization method to our system — we have only constructed the coordinates
and the classical dynamics of the fields on the background— in order that one can compare
the results with our findings of the exact approach in the low-energy regime. This would
be a good way to check the validity of this approach. The scattering times we found are
too short for astrophysical objects, according to the present astronomical observations. Of
course, our model is hardly appropriate for, e.g., a collapsing star; hence, the calculations
could be improved by developing more realistic models. DeWitt’s perturbative method
seems to be a good starting point for the fulfillment this task.



Appendix A

Schwarzschild sojourn time

A.1 Introduction

In this appendix we give some arguments against the use of a generalization of the standard
definition of the sojourn time as written down in eq. (2.39) of chapter 2. For this end we
assume that there is a well-defined quantum theory where the energy E and the position
r of the shell are represented by a conjugate pair of self-adjoint operators on a Hilbert
space K. The eigenfunctions of Ê are denoted by |p〉, whereas that of r̂ read |r〉. The
evolution parameter is the Minkowski time TM , and Ê is the corresponding Hamilton
operator. This quantum theory seems not to be very suitable to describe our system, but
it has the advantage that it is simple and that it suffices to demonstrate the problems we
want point out.

In the next section we collect some interesting results about the Minkowski sojourn time
TS. Then we define the Schwarzschild sojourn time and argue why this definition is not
a good one.

A.2 Minkowski Sojourn Time

We recall some basic notions concerning the standard Minkowski sojourn time TS defined
in eq. (2.39) of chapter 2. We suppose that the standard definition is a good one and
that its interpretation as the mean residence time of a particle inside a given region is
justified. The notion of sojourn time in the context of particle physics seems to date back
to Goldberger and Watson [GW64]. It has been given a precise mathematical foundation
by Jauch and Marchand, since it is a main concept used in their definition of time delay
in scattering processes. We have presented these ideas in chapter 2.
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The sojourn time of a Hilbert state φ under the radius R is given by the expression

TS(φ) =

∫ ∞

−∞

dTM ‖P̂Rφ(r, TM)‖2 =
∫ ∞

−∞

dTM 〈φT | P̂R |φT 〉. (A.1)

TM is, as always, Minkowski time, φT is the time development of the scattering state φ
and P̂R is the operator projecting the states of K into the interval [0, R]. In the position
representation P̂R acts as follows:

P̂Rφ(r) = χ[0,R]φ(r) =

{
φ(r) : r ≤ R

0 : r > R
. (A.2)

Since P̂R is a projector, P̂ 2R = P̂R holds.

The interpretation of TS as the sojourn time is more obvious if we approximate the integral
by a sum over small time intervals [Tk−1, Tk], k = 1, ..., K, T0 = −τ , TK = τ , where τ is
chosen to be large enough:

TS(φ) ≈
K∑

k=1

‖P̂Re−iÊukφ‖2 (Tk − Tk−1), uk
.
=
Tk−1 + Tk

2
. (A.3)

This is the weighted sum of small time intervals, the weight being the probability that the
state φ is lying inside the radius R during this time interval. The sum is the total time
spent there by a particle described by the wave function φ, provided the time evolution
is given by φT = e−iÊTMφ.

It has to be emphasized that TS is the mean residence time of a particle described by the
wave packet φT inside the region with r ≤ R.

Using the Heisenberg picture one can write the sojourn time in a simpler form by com-
puting the time integral. In the Heisenberg picture the formula for the sojourn time
reads:

TS(φ) =

∫ ∞

−∞

dTM 〈φ| eiÊTM P̂Re−iÊTM |φ〉. (A.4)

By expanding φ into energy eigenstates we obtain

TS(φ) =

∫ ∞

0

dp′
∫ ∞

0

dp φ̃∗(p′)φ̃(p)

∫ ∞

−∞

dTM ei(p
′−p)TM 〈p′| P̂R |p〉. (A.5)

The time integration can be done explicitly yielding a δ-function. We can then perform
one of the remaining integrations which leads to

TS(φ) = 2π

∫ ∞

0

dp
∣∣∣φ̃(p)

∣∣∣
2

〈p| P̂R |p〉. (A.6)
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The matrix elements of the projector P̂R can be evaluated by expanding the energy eigen-
states in terms of eigenstates of the position operator r̂. A straightforward calculation,
where it is assumed that

〈r|p〉 =
√

2

π
sin pr, (A.7)

yields the result

TS(φ) = 2R− 2

∫ ∞

0

dp
∣∣∣φ̃(p)

∣∣∣
2 sin pR cos pR

p
. (A.8)

The first term on the right hand side is clearly the classical sojourn time for a light-like
particle inside the region with radius R (we put RM = 0 here for the sake of simplicity).
The second term is the correction due to the wave-like nature of the quantum mechanical
packet. In eq. (A.8) the interpretation of TS as the mean residence time seems very
obvious.

By reintroducing Planck’s constant ~ into all the formulae and expanding TS in powers
of ~, which we made up to the fourth order, one obtains

TS(φ) = 2R +O(~4). (A.9)

Obviously, the quantum corrections are very small.

A.3 Schwarzschild Sojourn Time

A.3.1 Definition

In chapter 4 we proposed to generalize the Minkowski sojourn time to the case of the
curved shell-mirror spacetime by replacing the Minkowski time TM by the proper time s
at the radius R. In the expression for TS(Φ) the differential dTM must thus be replaced by
the infinitesimal proper time ds. But ds depends on the energy of the shell which becomes
an operator in the quantum theory. Hence, also ds is an operator, d̂s. To simplify the
discussion we do not compute the proper sojourn time but only the mean Schwarzschild
time, that does not have the square root prefactor, along the trajectory. The problems that
occur are the same in both cases. Thus we replace dTM by the infinitesimal Schwarzschild
time d̂T , that, being dependent on Ê, is an operator. dT can be written as

dT = zdTM , z
.
=

∂T

∂TM
, (A.10)
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where z is the Minkowski-time derivative of T along the shell. It is given by

z =
r

r − 2E
, (A.11)

which follows from the equations of motion that have been written down in eqs. (3.26) of
chapter 3. Since we have assumed that the evolution parameter in the quantum theory is
TM , this construction seems to be sensible. We further assume that z can be represented
by a self-adjoint operator ẑ by a suitable factor ordering and that it has a complete set
of eigenfunctions in K, the eigenfunctions being denoted by |z〉. Then, states in K can be
expanded in terms of these eigenfunctions and the expectation value 〈ẑ〉 = 〈ψ| ẑ |ψ〉 is a
well-defined quantity. Note that z is time-independent in the Schrödinger picture. The
Schwarzschild sojourn time is thus defined as follows:

Tz(φ)
.
=

∫ ∞

−∞

dTM 〈φT | P̂RẑP̂R |φT 〉, (A.12)

where φ ∈ K and φT = e−iETMφ. This seems to be the most sensible factor ordering of
the operators inside the bracket. If the limit R → ∞ in the brackets is taken, just the
well-defined expected value 〈ẑ〉 is obtained. The time integral over it is the total (and of
course infinite) Schwarzschild time. Thus, at least in this case, the definition seems to be
justified.

A.3.2 Discussion

We explore the physical meaning of the Schwarzschild sojourn time Tz and argue why it
can be used only in a very specific case.

We have assumed in the preceding section that z can be made into a self-adjoint operator
ẑ on the Hilbert space K and that it has a complete system of normalized eigenfunctions
|z〉. Then any state |φ〉 can be expanded into these eigenfunctions. Hence, the normalized
eigenfunctions |r〉 of the position operator r̂ can be expanded in terms of the |z〉:

|r〉 =
∑

z

αrz|z〉. (A.13)

Here and in the following formulae we write the expansions of the wave functions as sums
over the eigenstates over some range of the eigenvalues. These sums are to be understood
as generalized sums, standing for ordinary summations in the case of a discrete spectrum
and for integrations if the spectrum of the corresponding operator is continuous. Since
we do not know the explicit form of ẑ, its eigenfunctions and its spectrum, we keep
our formulae as general as possible. This is justified because we are interested only in
qualitative results, for which the general form is sufficiently well suited.
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A (time-dependent) Hilbert state |φT 〉 can be expanded into eigenfunctions of the position
operator; its z-expansion is, therefore,

|φT 〉 =
∞∑

r=0

cr(TM)|r〉 =
∞∑

r=0

cr(TM)
∑

z

αrz|z〉. (A.14)

Its projection by P̂R reads:

P̂R|φT 〉 =
R∑

r=0

cr(TM)
∑

z

αrz|z〉. (A.15)

Hence, the weight in the Minkowski sojourn time, 〈φT | P̂R |φT 〉, is given by

〈φT | P̂R |φT 〉 =
R∑

r=0

|cr(TM)|2 =
R∑

r′=0

(cr′)
∗(TM)

R∑

r=0

cr(TM)
∑

z

(αr
′

z )
∗αrz, (A.16)

since
∑

z(α
r′

z )
∗αrz = δr′r. Using this, we can rewrite eq. (A.3):

TS(φ) ≈
∑

z

K∑

k=1

(Tk − Tk−1)
R∑

r′=0

(cr′)
∗(uk)

R∑

r=0

cr(uk)(α
r′

z )
∗αrz. (A.17)

This is the same weighted sum as above, only decomposed into eigenstates of the operator
ẑ.

The action of ẑ on a state |φT 〉 is given by

ẑ|φT 〉 =
∞∑

r=0

cr(TM)
∑

z

zαrz|z〉. (A.18)

Its action on the projected state P̂R|φT 〉 reads

ẑP̂R|φT 〉 =
R∑

r=0

cr(TM)
∑

z

zαrz|z〉. (A.19)

Notice that the two operators ẑ and P̂R do not commute in general, because
∑

z zα
r
z|z〉

can usually not be written in the form C|r〉, where C is some constant. The expectation
value of the operator P̂RẑP̂R is given by

〈φT | P̂RẑP̂R |φT 〉 =
∑

z

z

R∑

r′=0

(
cr′(TM)αr

′

z

)∗ R∑

r=0

cr(TM)αrz. (A.20)
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We can now write our definition of the Schwarzschild sojourn time in terms of the expan-
sion (A.20):

Tz(φ) =

∫ ∞

−∞

dTM 〈φT | P̂RẑP̂R |φT 〉

=
∑

z

∫ ∞

−∞

zdTM

R∑

r′=0

(
cr′(TM)αr

′

z

)∗ R∑

r=0

cr(TM)αrz. (A.21)

If we perform the same approximation by finite time intervals as in the previous section
for the Minkowski sojourn time, we obtain

Tz(φ) ≈
∑

z

K∑

k=1

z(Tk − Tk−1)
R∑

r′=0

(cr′(uk))
∗

R∑

r=0

cr(uk)α
r
z(α

r′

z )
∗

=
∑

z

K∑

k=1

(tk − tk−1)z
R∑

r′=0

(cr′(uk))
∗

R∑

r=0

cr(uk)α
r
z(α

r′

z )
∗. (A.22)

This is the weighted sum for each z over the Schwarzschild time intervals [tk−1, tk]. The
weight is the same as before. The sum over all z gives the total ’time’ spent by the state
inside the radius R. This interpretation sounds very good, but it, unfortunately, has one
serious problem — it is wrong: the quantity z(Tk − Tk−1) could be interpreted as the
Schwarzschild time that the particle in the sub-state |z〉 spends under R if the state was
under R; but it is not, unless the operators P̂R and ẑ commute, when they have common
eigenstates. But this is usually not the case.

We now want to illustrate what went wrong. For this, we consider a simplified (and very
unrealistic) system given by

|φT 〉 = c1|r1〉+ c2|r2〉+ c3|r3〉, (A.23)

where r1, r2 < R and r3 > R. The projector’s action on this state reads

P̂R|φT 〉 = c1|r1〉+ c2|r2〉. (A.24)

We further assume that ẑ has only two different eigenstates and that the position eigen-
states can be written as

|ri〉 = αi|z1〉+ βi|z2〉. (A.25)

The expectation value eq. (A.20) in the formula for the Schwarzschild sojourn time for
this system reads
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〈φT | P̂RẑP̂R |φT 〉 = z1
(
|c1|2|α1|2 + |c2|2|α2|2 + α∗1α2c

∗
1c2 + α1α

∗
2c1c

∗
2

)

+ z2
(
|c1|2|β1|2 + |c2|2|β2|2 + β∗1β2c

∗
1c2 + β1β

∗
2c1c

∗
2

)
.

(A.26)

The clue is that what is written in the upper bracket is not the expected value of |z1〉 of
being under R. If this was the case, the decomposition of the Schwarzschild sojourn time
in z-eigenfunctions would make sense. This stems from the fact that the sub-states |zi〉
alone are not under R even although the special linear combinations |rl〉, l = 1, 2, are.

The whole construction fails because the two operators P̂R and ẑ do not commute. What
happens if they do commute? We assume that the |φT 〉 can be decomposed as follows:

|φT 〉 =
∑

z

αz(TM)|z〉 =
∑

zR

AzR(TM)|zR〉+
∑

z∞

Bz∞(TM)|z∞〉, (A.27)

where the projector acts on the two kinds of z-eigenfunctions as P̂R|zR〉 = |zR〉 and
P̂R|z∞〉 = 0. The existence of such a decomposition is granted if the commutator [ẑ, P̂R]
vanishes. In this special case the decomposition of the bracket in (A.12) into a sum over
z seems to have a good interpretation:

〈φT | P̂RẑP̂R |φT 〉 =
∑

zR

zR |AzR(TM)|2 , (A.28)

and the Schwarzschild sojourn time thus reads

Tz(φ) =
∑

zR

∫ ∞

−∞

zRdTM |AzR(TM)|2 , (A.29)

where |AzR(TM)|2 is the weight factor of φT in the sub-state |zR〉.
The interpretation of eq. (A.22) seems to make sense in this case, because now the sub-
states |zR〉 are really under the radius R. But there are more difficulties that have to be
taken into account.

It is a well-known fact that measurements of observables in quantum mechanics have a
strong influence on the quantum states. For instance, measuring the energy of a wave
packet destroys the wave packet — immediately after the measurement the system is in
a particular eigenstate of the energy operator. This collapse of the wave function also
occurs in our system when we measure the Schwarzschild sojourn time. At each instant
TM we make consecutive measurements of the operators P̂R and ẑ. Since the wave packet
is not necessarily an eigenstate of one of these two operators and since they usually do
not commute, a measurement at the time T1 destroys the wave function. Hence, at a
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later time T2 not the original packet will be measured, but the time development of the
eigenstate of ẑ which has been created at the time T1. Therefore, from the point of view of
the standard interpretation of quantum mechanics such a series of repeated measurements
does not make sense. It would be much better to let the packet evolve until some final
time Tf and only then make the whole time measurement at once. For this reason it
seems to be a good idea to look for some way to perform the integration over time first
and acting on the state afterwards. One possible method to do this is writing the operator
in the expression for the Schwarzschild sojourn time in the Heisenberg picture:

Tz(φ) = 〈φ|
∫ ∞

∞

dTM eiÊTM P̂RẑP̂Re
−iÊTM |φ〉. (A.30)

Here, the the whole expression between the brackets, including the time integral, is one
operator, representing the measurement of the entire sojourn time in the state |φ〉. De-
composing |φ〉 into eigenstates |p〉 of the energy (Hamilton) operator E and integrating
over time yields:

Tz(φ) =

∫ ∞

∞

dTM

∫ ∞

0

dp′
∫ ∞

0

dp φ∗(p′)φ(p)〈p′| eiÊTM P̂RẑP̂Re−iÊTM |p〉

=

∫ ∞

0

dp′
∫ ∞

0

dp φ∗(p′)φ(p)

∫ ∞

∞

dTM ei(p
′−p)TM 〈p′| P̂RẑP̂R |p〉

= 2π

∫ ∞

0

dp |φ(p)|2 〈p| P̂RẑP̂R |p〉. (A.31)

To obtain the last line we have used a representation of the δ-function. The decomposition
of a state into energy eigenstates is always possible and the matrix elements of the operator
P̂RẑP̂R should be, in principle, calculable. Provided the quantity Tz(φ) can be given a
physical meaning as Schwarzschild sojourn time, which seems to be the case when ẑ and
P̂R commute, also the last line of eq. (A.31) seems to make sense. It has, moreover, the
advantage that TM is not present anymore, such that the measurement problem mentioned
above is removed.

We conclude that the Schwarzschild sojourn time is not well-defined in the general case,
and there seem to be deep problems that must be treated carefully. Therefore, we renounce
to stick to the definition of sojourn time so closely and choose a different way to define
the quantum scattering time.



Appendix B

Distance of metrics as a topological
problem

B.1 Introduction

In chapter 9 we have discussed the semi-classical approach to quantization by DeWitt and
applied it to our shell-mirror system. In this approach the metric describing the spacetime
must be decomposed into a sum of a flat background metric and a small perturbation. We
have found a coordinate system satisfying the desired properties for such a decomposition.
In this chapter we want to elucidate some of the issues that have appeared in the course
of our application of DeWitt’s method.

We cast the problem of the distance of two metrics in a topological language in order to
exploit the useful properties of this method. The space of all Lorentzian metrics on the
manifoldM, which we denote by Lor(M) in the following, has been thoroughly explored
by several authors [BE81, HE73, Ler73], there are various topologies, which can be put on
this space [Haw71]. First we recall and reformulate the problem and give some possible
definitions for the closeness of two metrics. Next we discuss the properties of sequences
of metrics in Lor(M) and observe, that one must be careful when taking limits. In the
last section we state some known properties of the space of metrics and sketch some ideas
for further investigations.

B.2 Closeness of metrics, topologies on Lor(M)

We give several possible definitions for the closeness of two metrics gµν and fµν in a given
coordinate system xµ and show how these definitions are related to the various topologies
that can be put on Lor(M).
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B.2.1 Closeness conditions in Lor(M)

Let ε > 0 be a small number and ε(x) > 0 a small and continuous real function onM, x
denoting a point ofM. Then one can define the following closeness conditions on a pair
fµν , gµν of metrics onM:

|gµν(x)− fµν(x)| < ε, ∀x ∈M, (B.1)

|gµν(x)− fµν(x)| < ε(x), ∀x ∈M (B.2)

and

|gµν(x)− fµν(x)|
{
< ε |fµν(x)| : µ, ν such that fµν 6= 0

< ε : µ, ν such that fµν = 0
, ∀x ∈M. (B.3)

The condition (B.3) seems to be the most suitable one, if metrics are compared, for which
some of the components diverge as specific regions on the manifoldM are reached. This
is, for example, the case for the shell metric expressed in the regular DNEF coordinates
(U, V, θ, φ), defined by eqs. (5.45, 5.46),

ds2 = A(U, V )dUdV −R2(U, V )dΩ2, (B.4)

where the θθ-component, −R2, tends to −∞ as V →∞ or U → −∞. If this component,
for example, is compared with the θθ-component of the double-null Minkowski metric
given by

ds2 = dUdV − (V − U)2
4

dΩ2, (B.5)

i.e. −R20
.
= − (V−U)2

4
, then the condition (B.3) reads

| −R2 +R20| < ε |R20|. (B.6)

This inequality is equivalent to

∣∣∣∣1−
R2

R20

∣∣∣∣ < ε. (B.7)

Whenever for the functions R and R0 holds everywhere on the manifold that

R2

R20
= 1 + εK(ρ), |K| < 1, (B.8)
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where ρ is a radial coordinate on the manifold, then the condition (B.7) is satisfied.
eq. (B.8) implies that

R2

R20
≈ 1 +O(ρ−ζ), ζ > 0, (B.9)

as ρ → ∞. That may, however, not be sufficient for the condition (B.1), that in this
example reads

| −R2 +R20| = εR20K(ρ) < ε. (B.10)

This is due to the fact that even if the quotient R
R0

remains small everywhere, the difference

|−R2+R20| can attain arbitrarily large values at infinity, because the fall-off of K(ρ) may
be too slow to compensate the diverging factor R20 at infinity. For this reason condition
(B.3) is more suitable than (B.1), whenever the metrics are expressed in coordinates, that
are singular at infinity, like the UV-type or the polar coordinates, cf. section 5 of chapter
6. If fµν is the Cartesian Minkowski metric ηµν , then the two conditions of course agree.

In condition (B.2) one usually chooses the function ε(x) such that it goes to 0 at infinity,
which we assume too in the following. So, at infinity, the condition (B.2) is more restrictive
than (B.1). Condition (B.3) is not a special case of (B.2), because in (B.3) the form of
the right hand side depends on the component of the metric, whereas in (B.2) it is the
same for all components. In this sense, the condition (B.3) is less beautiful than (B.2),
and we will observe in the next paragraph that there is no obvious relation of (B.3) to a
topology on Lor(M).

If one does not allow coordinates for which any of the metric components of fµν and gµν
diverge, then the conditions (B.1) or (B.2) are very well suited to compare two metrics.
Our choice for the DeWitt-compatible metrics in chapter 9 satisfies this requirement.

B.2.2 Topologies on Lor(M)

One can relate the neighbourhoods defined by the conditions from the last paragraph to
the neighbourhoods defining the various topologies that can be put on Lor(M) [Haw71].
The neighbourhoods defined by (B.1) are just those of the C0 open topology on Lor(M).
Those defined by (B.2) belong to the class of (Whitney) fine C0 topologies. The latter is,
as indicated by its name, finer than the former, corresponding to our observation above,
that the second condition is more severe than the first. There seems to be no obvious
topology related to the third condition (B.3), however. The detailed description of the
topologies can be found in [Haw71].
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B.3 Limits of metrics

In chapter 9 we have required that the shell metric gµν can be written as a flat metric
fµν plus a small perturbation depending on the parameter s = 2E

RM
. Hence, in the limit

E → 0, gµν must converge to fµν in a well-defined way. In this section we point out that
taking limits of this kind on Lor(M) is an intricate business.

The limit E → 0 is a limit of a family of spacetimes with a common parameter, i.e. the shell
energy E in our case, on the space of all Lorentz metrics Lor(M). Limits on Lor(M) have
been explored by Geroch [Ger69], who observed that a one-parameter family of metrics,
g(λ), λ being the parameter, can attain different limiting metrics as λ goes to 0 or ∞
in different coordinate systems. His example was the Schwarzschild spacetime, where he
considered three coordinate systems with respect to which the limiting metric was the
Minkowski, a divergent, and a Kasner metric, respectively. It seems thus, that, under
coordinate transformations, this kind of sequences of metrics in Lor(M) are not mapped
to sequences in a way, that the limiting metric is mapped on a metric that are related
by a regular coordinate transformation. This is because the coordinate transformation
depends on the parameter λ. In the limit λ → 0 (or ∞), the coordinate transformation
may become singular and thus not usable to transform the limit metric in the original
coordinates into the new ones.

Even though the limits are not necessarily related by coordinate transformations, Geroch
found some properties which are hereditary to the limit spacetime. For example, the
Petrov type can only be the same or a more degenerate type in the limit. So, for example,
a sequence of type D metrics allows only type D, N or O limits. Paiva et al. [PRM93,
PRHM97] found a way to explicitly compute the various possible limits for a given metric
and also stated which Segré types can be inherited by a limit metric.

B.4 Some properties of Lor(M)

This is a summary of a few collected properties of Lor(M).

Lor(M) is the space of all Lorentzian metrics on a fixed, non-compact, four-dimensional
manifold M without boundary. One can put various topologies on Lor(M) [Haw71],
amongst them are the compact-open, open and Whitney fine topologies. The two latter
have been defined earlier. The neighbourhoods of the compact-open topologies are defined
in the same way as those for the open topologies, but the condition needs to hold only on
a compact subset ofM. All of these topologies can be generalized to the order k in the
derivatives of the metrics, resulting in the so-called Ck topologies. Two metrics that are
close to each other in a C0 topology have light-cones that are near.

One can put an equivalence relation ∼ on Lor(M) (see for example Beem and Ehrlich
[BE81]) by defining two metrics g1, g2 ∈ Lor(M) to be equivalent if there exists a smooth
conformal factor Ω :M→ (0,∞) such that g1 = Ω2g2. We denote the equivalence class
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of g ∈ Lor(M) by [g]. The quotient space Lor(M)/ ∼ of equivalence classes is denoted by
Con(M). There is a natural projection map π : Lor(M)→ Con(M) given by π(g) = [g].
The fine C0 topology on Lor(M) induces a quotient topology on Con(M) in the usual
way: a subset A of Con(M) is defined to be open in this topology if the inverse image
π−1(A) is open in the fine C0 topology on Lor(M). Con(M) can also be equipped with
the so-called interval topology, but we do not go into details here. It is known that the
quotient and interval topologies agree on Con(M). Thus, two conformal classes [g1] and
[g2] are close in either of these topologies on Con(M), if and only if at all points p of
M, the metrics g1 and g2 have light cones which are close in the tangent space TpM.
The properties of Con(M) have been used to make statements about so-called stable
properties on Lor(M) [BE81, HE73].

The quotient space Con(M) seems not to be very useful for our needs, however, because
it does not take the gauge invariance into account. Hence, there are flat metrics in several
equivalence classes from Con(M), and so are shell metrics.

In order to be able to treat the problem in a more gauge invariant way, we have tried
to make a similar construction for the equivalence classes of metrics that are related by
regular coordinate transformations. The quotient space Phys(M) of these equivalence
classes also inherits the C0 topology from Lor(M). Now, all flat metrics are collected in
one equivalence class, say η, and all shell metrics belonging to a specific solution given by
the parameters (E, v) are represented by g(E, v). Consider a one-parameter sequence of
equivalence classes of shell metrics with parameter E, {g(E, v)} (the other parameter v
being constant), that converges to η. It would be good to know, how sequences of repre-
sentatives of the equivalence classes in Lor(M) behave in this case. Especially interesting
is the question, whether there exists at all a convergent sequence in Lor(M) if there is
one in the quotient space. It is clear that the opposite holds: if a sequence of metrics
converges in Lor(M) then also the sequence of its equivalence classes in Phys(M). We
are still working on the answer of this question.
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Appendix C

Proof of the existence theorem

C.1 The Cartesian central-regular metric

In this appendix we show that the Cartesian central-regular (CCR) metric satisfies the
conditions for DeWitt’s approximation (cf. chapter 9) if a certain parameter is small
enough. This parameter is

s
.
=

2E

RM

. (C.1)

s is the Schwarzschild radius of the Schwarzschild spacetime with mass E divided by the
radius of the mirror. By this we prove the existence theorem 9.1 for a suitable gauge that
has been stated in chapter 9.

The CCR metric is the central-regular (CR) metric, that has been computed in section

6 of chapter 6, expressed with respect to the Cartesian coordinates τ, ~X (cf. section 4 of
chapter 6). The line element for the regions where the CR coordinates are DN (i.e. I,M±,
Z±, cf. figure (6.1)) reads:

ds2 = Adτ 2 − R2

X2
d ~X2 +

(
R2

X2
− A

)( ~X · d ~X
X

)2
, (C.2)

whereas that of the non-DN regions (K±) is given by

ds2 = Qdτ 2 +
J

X
dτ ~X · d ~X − R2

X2
d ~X2 +

(
R2

X2
+W

)( ~X · d ~X
X

)2
. (C.3)

The explicit form of the metric components is given in section 3 of this appendix.

Cartesian coordinates have the advantage over polar (6.59) or UV-type (6.57) coordinates
that the metric is much better suited for DeWitt’s theory. The reason is that the radial
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function R runs to infinity as spatial infinity is approached. If two such metrics with
different radial functions are compared (e.g. our DN metric and the DNM metric) then the
difference R2 −R20 of the θθ-components for instance, albeit probably very small in finite
regions, may become unboundedly large at spatial infinity. Therefore, UV-type and polar
coordinates are not good choices, even if they are the most adapted to spherical symmetry.
In Cartesian coordinates the function R appears only in the quotient R

X
which has a

much better behaviour as one goes near to spatial infinity. The difference between the
corresponding components of two metrics is then suppressed by a X2 in the denominator
which also tends to infinity. It is thus much more probable that two Cartesian type metrics
are only slightly different at spatial infinity. This issue has been discussed in more detail
in the previous appendix.

In the following sections we explicitly write down the metric components and show that
for a small parameter s, the CCR metric approaches the Minkowski metric sufficiently
well in each of the seven parts of the spacetime (cf. fig. (6.1)).

C.2 Expansion of some functions in the parameter s

First we need the expansion about small s of some of the functions appearing in the CCR
coordinates. We first define the abbreviations

γ+
.
=
Ṽ − ũ
2RM

, (C.4)

η+
.
=
Ṽ − ṽ
2RM

(C.5)

in region II and

γ−
.
=
ṽ − Ũ
2RM

, (C.6)

η−
.
=
ũ− Ũ
2RM

(C.7)

in region III, respectively. An easy calculation using eqs. (6.39) or (6.55) shows that

η± = γ± − 1. (C.8)

The following developments in the parameter s hold:

L = 2RM ln
∣∣∣γ+
s
− 1
∣∣∣ s ≈ −2RMs ln s+ 2RM ln(γ+)s+O(s2), (C.9)
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L− c = 2RM ln

∣∣∣∣
η+

1− s + 1

∣∣∣∣ s ≈ 2RM ln(γ+)s+O(s2), (C.10)

L,Ṽ =
4E

Ṽ − ũ− 4E
=

s

γ+ − s
≈ s

γ+
+O(s2), (C.11)

c = c′ = 2RM ln

∣∣∣∣
1

s
− 1

∣∣∣∣ s ≈ −2RMs ln s+O(s2), (C.12)

L′ − c′ = 2RM ln

∣∣∣∣
η−

1− s + 1

∣∣∣∣ s ≈ 2RM ln(γ−)s+O(s2), (C.13)

L′
,Ũ

=
4E

ṽ − Ũ − 4E
=

s

γ− − s
≈ s

γ−
+O(s2). (C.14)

These expansions will be needed to determine the behaviour of the metric functions in
the regions K± for small s.

C.3 CCR metric components and their expansion

We compute the CCR metric components in the seven regions separately and show that
they can be expanded in the small parameter s. Notice that even if the CCR metric
is defined with respect to the Cartesian coordinates τ , ~X, we write down the metric
components as functions of the corresponding DN coordinates U and V , just for the sake
of simplicity. The transformation between the two coordinate systems is given by the
equations (6.59) and (6.64).

C.3.1 Region I

The functions A, R and X appearing in the metric (C.2) in region I read

A = 1− 2E

R
, (C.15)

R = 2Eκ
(
e
V−U
4E

)
(C.16)

and

X =
V − U

2
. (C.17)
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Using the results about the asymptotic expansion of the Kruskal function κ from the
appendix E, we find the expansions of the metric components in I about small values of
s. We do this as follows: First, we express R and A in terms of s:

R = RMsκ
(
e
γ
s

)
, γ

.
=
V − U
2RM

, (C.18)

A = 1− 1

κ
(
e
γ
s

) . (C.19)

From eq. (E.10) (putting y = γ/s) follows the expansion of R about s,

R ≈ V − U
2

+RMs ln s−RM ln(γ)s+O(s2) s→0−→ V − U
2

(C.20)

and that of A,

A ≈ 1− s

γ

s→0−→ 1. (C.21)

Finally, the expansion of the metric component R2

X2 is given by

R2

X2
≈ 1 +

2

γ
s ln s− 2

γ
ln(γ)s+O(s2) s→0−→ 1. (C.22)

The two last equations show that for small s the CCR metric components of (C.2) in
region I differ from the Minkowski metric components only by terms proportional to s ln s
or higher orders of s. By choosing s small enough one can thus control the difference
between the two metrics. The CCR metric does therefore satisfy the DeWitt condition in
the region I.

C.3.2 Region II, Z+

The functions appearing in the metric components read

R =
u− U

2
+ 2Eκ

(
e
V−u
4E

)
, (C.23)

A = 1− 1

κ
(
e
V−u
4E

) (C.24)

and

X =
V − U

2
(C.25)
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The asymptotic expansions of R,A and R2

X2 for small s read (using eq. (E.10))

R ≈ V − U
2

+RMs ln s−RM ln

(
V − u
2RM

)
s+O(s2) s→0−→ V − U

2
, (C.26)

A ≈ 1− 2RM

V − us
s→0−→ 1 (C.27)

and

R2

X2
≈ 1 + 4

RM

V − U s ln s− 4
RM

V − U ln

(
V − u
2RM

)
s+O(s2) s→0−→ 1. (C.28)

The last two approximations show that the CCR metric (C.2) in region Z+ is a pertur-
bation of the Minkowski metric of the order of s ln s. The conditions for the applicability
of DeWitt’s approximation are thus satisfied in region Z+ if s is chosen appropriately.

C.3.3 Region II, M+

In the wedge M+ the metric functions are given by the components

X =
V − U

2
, R =

V − U − c
2

, A = 1,
R2

X2
= 1− 2c

V − U +
c2

V − U . (C.29)

These are almost the components of the Minkowski metric, the only difference being the
occurrence of the constant c. Since c = 4E ln

∣∣RM
2E
− 1
∣∣, it can be expanded in powers

of s. Hence, according to eq. (C.12), it holds that c ≈ −2RMs ln s + O(s2). Thus, the
components of the CCR metric in M+ are only a small perturbation of the Minkowski
metric and approach it when s→ 0. DeWitt’s condition is thus satisfied in M+.

C.3.4 Region II, K+

In order to find the metric components in this wedge we need the line element (6.58)
from chapter 6. By comparison of this line element with the components of the flat DN
reference metric, the functions F,G and H are found to be

F = −
V,Ũ
V,Ṽ

, G =
1

2V,Ṽ
, H = 0. (C.30)

By inserting these quantities into eq. (C.3), the metric components of the Cartesian form
are obtained:

Q =
1− V,Ũ
V,Ṽ

, W = −
1 + V,Ũ
V,Ṽ

, J = 2
V,Ũ
V,Ṽ

, R =
Ṽ (V, U)− U − ũ+ ū

2
. (C.31)
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Using the expansions from the second section and the estimates from appendix D, we
can discuss the behaviour of the metric functions for small s. We first need to know the
expressions for the derivatives of V , (V being given by eq. (6.36)), with respect to the
reference coordinates,

V,Ũ = (L− c)q+,Ũ = −(L− c)ψ(x = Ũ − z; a, z)
K

, (C.32)

V,Ṽ = 1 + (1 + q+)L,Ṽ + (L− c)q+,Ṽ

= 1 + (1 + q+)L,Ṽ +
(L− c)ψ

2K

[
(α− β) Ũ − z

a
+ α + β

]
, (C.33)

where eqs. (D.7) and (D.33) from the appendix D have been used. Recalling that in K+

the quantity a is given by

a =
α− β

2
(Ṽ − ṽ) = (α− β)RMη+, (C.34)

the expansion of L− c, eq. (C.10), and the estimate (D.21), we find that

|V,Ũ | <
(L− c)e 1

3

(α− β)RMη+
≈ 2e

1
3

(α− β)
ln(γ+)

(γ+ − 1)
s+O(s2) s→0−→ 0, (C.35)

hence V,Ũ is controlled by the behaviour of s. For V,Ṽ , the estimate reads:

|V,Ṽ | < 1+L,Ṽ +
3(L− c)e 1

3

2(α− β)RMη+
≈ 1+

[
1

γ+
+

3e
1
3

(α− β)
ln(γ+)

(γ+ − 1)

]
s+O(s2) s→0−→ 1, (C.36)

where we have used eqs. (C.10, C.11 and D.20). Also V,Ṽ can be expanded in the parameter

s. Therefore, V is a perturbation of Ṽ of the order of magnitude of s.

Since both derivatives of V are controlled by s, this is also true for the metric components.
For Q, W and J we thus find that

Q ≈ 1 +O(s), W ≈ −1 +O(s), J ≈ 0 +O(s). (C.37)

R is slightly more tricky because we do not know the explicit form of the function Ṽ (U, V ).
But we can expand V in terms of s by using eqs. (C.9) and (C.10):

V ≈ Ṽ − ũ+ ū− 2RMs ln s+ 2RM(q+ + 1) ln(γ+)s+O(s2). (C.38)
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For small s we can approximately solve this equation for Ṽ :

Ṽ ≈ V + ũ− ū+O(s ln s), (C.39)

hence, according to eq. (C.31),

R ≈ V − U
2

+O(s ln s), (C.40)

which leads to

R2

X2
≈ 1 +O(s ln s). (C.41)

Since s ln s is small for small s, all Cartesian metric components are controlled by the
parameter s and satisfy, therefore, the DeWitt condition.

We have already shown in section 6 of chapter 6 that the components of the CR metric
are smooth at the boundaries of the wedge. Since the transformation from the UV to
the Cartesian coordinates is smooth, this property is inherited by the components of the
CCR metric.

C.3.5 Region III, Z−

Similarly to the treatment in region Z+, we obtain the metric functions X = V−U
2

,

R =
V − v

2
+ 2Eκ

(
e
v−U
4E

)
(C.42)

and

A = 1− 1

κ
(
e
v−U
4E

) . (C.43)

The components of the Cartesian metric in (C.2) can thus be easily computed. Their
asymptotic expansion for small s is, similar to that of the components in the region Z+,
given by:

A ≈ 1− 2RM

v − U s
s→0−→ 1 (C.44)

and

R2

X2
≈ 1 + 4

RM

V − U s ln s+ 4
RM

V − U ln

(
v − U
2RM

)
s+O(s2) s→0−→ 1. (C.45)

Hence, the Cartesian metric in Z− does satisfy DeWitt’s condition in the region Z−.
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C.3.6 Region III, M−

As in the regionM+ we obtain the c-shifted Minkowski line element that satisfies DeWitt’s
condition for appropriate s.

C.3.7 Region III, K−

The components of the CCR line element (C.3) read

Q =
1− U,Ṽ
U,Ũ

, W = −
1 + U,Ṽ
U,Ũ

, J = −2
U,Ṽ
U,Ũ

, R =
V + ṽ − v̄ − Ũ(U, V )

2
. (C.46)

In these equations, the coordinate U is given by (6.52). Its derivatives read (using
eqs. (D.13, D.35 and D.36) from the appendix D):

U,Ṽ = −(L′ − c′)ψ(Ṽ − y)
K

(C.47)

and

U,Ũ = 1 + L′
,Ũ
q− +

(L′ − c′)ψ(Ṽ − y)
2K

[
(α− β) Ṽ − y

a
+ α + β

]
. (C.48)

They have the estimates

|U,Ṽ | <
(L′ − c′)e 1

3

(α− β)RMη−
≈ 2e

1
3

(α− β)
ln(γ−)

(γ− − 1)
s+O(s2) s→0−→ 0, (C.49)

|U,Ũ | < 1+L′
,Ũ
+

3(L′ − c′)e 1
3

2(α− β)RMη−
≈ 1+

[
1

γ−
+

3e
1
3

(α− β)
ln(γ−)

(γ− − 1)

]
s+O(s2) s→0−→ 1, (C.50)

where we have used the eqs. (C.13, C.14), the estimates from appendix D, eqs. (D.37,
D.38), and that

a =
α− β

2
(Ũ − ũ) = −(α− β)RMη− (C.51)

in the wedge K−. Thus, the derivatives have a behaviour corresponding to those of region
K+. The consequence is that the metric components in K− are all perturbations of the
Minkowski metric components controlled by the parameter s and hence satisfy the DeWitt
condition.
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C.4 Conclusion

We conclude that the CCR metric is everywhere a small perturbation of the Minkowski
metric, if the parameter s is small enough, and that in the limit s→ 0 it converges to ηµν .
Since the metric is also continuous at the shell and smooth everywhere else, it satisfies
the conditions for DeWitt’s method. We thus have proven the existence theorem (9.1) by
constructing an explicit example.
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Appendix D

The interpolation function

D.1 Definition

Let ω(x) be a function on the interval [a, b], with a < b. We call ω a C∞-interpolation
on [a, b] if the following properties hold:

• ω is C∞ on [a, b],

• ω(a) = A, ω(b) = B, for some A and B.

If one considers the change of a metric under a regular coordinate transformation, then
one observes that the transformed metric components involve the first derivatives of the
new coordinates with respect to the old ones. Hence, in order that the metric satisfy the
conditions for being suitable for DeWitt’s semi-classical theory, the first derivatives must
fulfill certain conditions. Roughly, these requirements boil down to the condition, that the
first derivatives do not have too large values for a given small parameter, i.e. s = 2E

RM
in

our case. But in the interpolating regions K±, derivatives of the new coordinates involve
derivatives of an C∞-interpolation ω, so we need a means to control the behaviour of ω,Ũ
and ω,Ṽ . Control of the derivative of ω is available if

max
[a,b]
|ω′(x)| < k

|B − A|
b− a (D.1)

for some positive constant k with order of magnitude 1. In the next paragraphs we
construct the interpolating functions ω± with this property for the coordinates in the
wedges K±.
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D.2 The function q

We make use of the fact that the function

ψ(x)
.
=

{
e

a2

(x−a)(x+a) : x ∈ (−a, a),
0 : x ≤ −a or x ≥ a

(D.2)

is C∞. This bell-shaped function is symmetric with respect to the ψ-axis and has its
maximum at x = 0:

max
[−a,a]

ψ(x) = ψ(x = 0) = e−1. (D.3)

Its integral is also C∞ and strictly monotonously increases from 0 at x = −a to some
finite maximal value K at x = a. For x > a, the integral has the constant value K. We
denote this integral by

φ(x)
.
=

∫ x

−a

dy ψ(y). (D.4)

K, the area under the curve ψ(x) on the interval [−a, a], is given by

K
.
=

∫ a

−a

dy ψ(y) = φ(a). (D.5)

Then,

q
.
= −φ(x)

K
(D.6)

is a C∞-interpolation on [−a, a], where the quotient K normalizes q to −1. The values of
q at x = ±a are given by q(−a) = 0 and q(a) = −1, hence q interpolates between A = 0
and B = −1. The function q will we needed to construct the interpolating functions ω±
in the next subsections.

The derivative of q with respect to x reads

q′ = −ψ(x)
K

. (D.7)

The normalization factor K is bounded from both sides: an upper bound is clearly given
by the area of the rectangle [−a, a]× [0, e−1]. A lower bound can be found by computing
the value of ψ at the points x = ±a

2
:

ψ(x = ±a
2
) = e−

4
3 , (D.8)
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It follows that the rectangle [− a
2
, a
2
] × [0, e−

4
3 ] in the (x, ψ(x))-plane lies under the curve

ψ(x) for all x ∈ [−a, a], its area is hence a lower bound forK. Bounds forK are, therefore,
given by

ae−
4
3 < K < 2ae−1. (D.9)

They are needed to estimate quantities involving 1
K
.

D.3 Interpolating function ω+ for K+

ω+ is to be a function of the two reference coordinates Ũ , Ṽ , interpolating on the interval
Ũ ∈ [Ũl+ , Ũk+ ] between ω+|l+ = 0 and ω+|k+ = −(L − c). With these properties of ω+,
the function V in K+ given by eq. (6.36) interpolates between the desired values of V ,
i.e. V |l+ = Ṽ − ũ+ ū+ L and V |k+ = Ṽ − ũ+ ū+ c.

We take the function q defined in eq. (D.6) of the last section and replace the parameters
x and a by

x = Ũ − z, z
.
=
Ũk+ + Ũl+

2
, a =

Ũk+ − Ũl+
2

. (D.10)

By these replacements, the centre of the interpolation function is shifted to the right
place, and the correct interval, on which ω+ is defined, is taken. q interpolates between
0 and −1, but we want it to interpolate between 0 and −(L − c). Hence, it has to be
multiplied with L− c to yield the desired ω+:

ω+
.
= (L− c)q+ = (L− c) q(x = Ũ − z; a(Ṽ ), z(Ṽ )). (D.11)

D.4 Interpolating function ω− for K−

The construction of ω− is completely analogous to that of ω+. The coordinate U in region
K− is defined by eq. (6.52), where ω− = (L′ − c′)q−. We again take the function q and
replace the parameters x and a by

x = Ṽ − y, y
.
=
Ṽl− + Ṽk−

2
, a =

Ṽl− − Ṽk−
2

, (D.12)

where Ṽl− and Ṽk− are defined by eqs. (6.44) and (6.49), respectively. This q− interpolates

again between 0 and −1 on the interval [Ṽk− , Ṽl− ], but we want it to interpolate between
0 and −(L′ − c′). Hence, it has to be multiplied with L′ − c′ to yield the ω− looked for:

ω−
.
= (L′ − c′)q− = (L′ − c′) q(x = Ṽ − y; a(Ũ), y(Ũ)). (D.13)
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D.5 Some useful estimates

The following estimates will be useful in the next sections: From (D.9) follows that

1

K
<
e
4
3

a
. (D.14)

The function ψ is of course bounded by its maximum, (D.3):

|ψ| ≤ 1

e
. (D.15)

The definition of the two numbers α and β has been given in eqs. (6.17) and (6.18), hence
the estimates

α + β < 2, 0 < α− β < 1 (D.16)

are surely valid. In the wedge K+ it holds that

|Ũ − z| < a, (D.17)

whereas in region K− the following estimate is satisfied:

|Ṽ − y| < a. (D.18)

From (D.14) and (D.15) one obtains that

|q′| < e
1
3

a
. (D.19)

Useful bounds for q are given by

0 ≤ 1 + q ≤ 1. (D.20)

D.6 Derivatives of q+, estimates

In order to estimate the derivatives of ω+ with respect to the reference coordinates Ũ and
Ṽ in K+, we need estimates for the derivatives of q+. The derivative with respect to Ũ
is simply q′ with the replacements from eq. (D.10) and is hence, using eq. (D.19), easily
estimated:

|q+,Ũ | <
e
1
3

a
(D.21)
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The derivative with respect to Ṽ is more intricate. We first observe that q+ depends on
Ṽ only through a(Ṽ ) and z(Ṽ ), hence,

q+,Ṽ = q+,aa,Ṽ + q+,zz,Ṽ . (D.22)

The derivatives of a and z are straightforwardly found to be

a,Ṽ =
α− β

2
, z,Ṽ =

α + β

2
. (D.23)

This follows from eq. (D.10) and the definition of Ũk+ and Ũl+ . Their estimates are found
using eq. (D.16):

|a,Ṽ | <
1

2
, |z,Ṽ | < 1. (D.24)

The derivative of q+ with respect to z reads

q+,z =
ψ(Ũ − z)

K
. (D.25)

It can be estimated using (D.14) and (D.15):

|q+,z| <
e
1
3

a
. (D.26)

The derivative with respect to a is given by

q+,a = −
1

K

∫ Ũ−z

−a

dξ
∂ψ

∂a
+
φ(Ũ − z)
K2

∫ a

−a

dξ
∂ψ

∂a
. (D.27)

We observe that

∂ψ

∂a
=

2a2ξψ

(ξ2 − a2)2 = −ξ
a

∂ψ

∂ξ
, (D.28)

so the integrals in eq. (D.27) can be evaluated by integration by parts, yielding

∫ a

−a

dξ
∂ψ

∂a
=
K

a
(D.29)

and

∫ Ũ−z

−a

dξ
∂ψ

∂a
=
φ(Ũ − z)

a
− Ũ − z

a
ψ(Ũ − z). (D.30)
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Hence,

q+,a =
Ũ − z
aK

ψ(Ũ − z). (D.31)

Using eqs. (D.14, D.15 and D.17) its estimate is found to be again

|q+,a| <
e
1
3

a
. (D.32)

Collecting these results, we obtain for q+,Ṽ the formula

q+,Ṽ =
ψ(Ũ − z)

2K

(
(α− β) Ũ − z

a
+ α + β

)
, (D.33)

while an estimate thereof is given by

|q+,Ṽ | <
3e

1
3

2a
. (D.34)

We observe that both |q+,Ũ | and |q+,Ṽ | are bounded by 1
a
times a constant of order of

magnitude 1.

D.7 Derivatives of q−, estimates

The analogous treatment of q− leads to the final result, that

q−,Ṽ = −ψ(Ṽ − y)
K

(D.35)

and

q−,Ũ =
ψ(Ṽ − y)

2K

(
(α− β) Ṽ − y

a
+ α + β

)
. (D.36)

Hence, the estimates for the derivatives of q− read

|q−,Ṽ | <
e
1
3

a
(D.37)

and

|q−,Ũ | <
3e

1
3

2a
. (D.38)



Appendix E

The Kruskal function

We collect some useful results on the Kruskal function denoted by κ. κ(x) is defined
implicitly by its inverse:

x = κ−1(z) = (z − 1)ez. (E.1)

For x = ey, it holds that z = κ(ey), so the following equation holds:

y = z + ln |z − 1|. (E.2)

κ is strictly monotonously growing on the interval x ∈ [−1,∞), taking the following values
at special points:

κ(−1) = 0, κ(0) = 1, κ(∞) =∞. (E.3)

The derivative of κ can be determined by the derivative of its inverse and using the inverse
function theorem:

(κ−1)′(z) = zez =
1

κ′(x)
=⇒ κ′(x) =

1

κ(x)eκ(x)
. (E.4)

If x = ey,

κ,y(e
y) = 1− 1

z
, z = κ(ey). (E.5)

The Kruskal function is closely related to Lambert’s W function W (q) that is defined
implicitly by:

W (q)eW (q) = q, (E.6)
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the relation being

κ(x) = 1 +W (xe−1). (E.7)

There is an abundant literature about the Lambert W function. We are interested in the
asymptotic expansion of κ for large x. The asymptotic expansion of W can be found in
the literature (e.g. [CGH+96]), the three first terms being

W (q) ≈ ln q − ln(ln q) +
ln(ln q)

ln q
. (E.8)

The asymptotic expansion of κ follows thus from eq. (E.7):

κ(x) ≈ lnx− ln(ln(x)− 1) +
ln(ln(x)− 1)

ln(x)− 1
. (E.9)

Most interesting is the case x = ey. The first two terms of the expansion then read

κ(ey) ≈ y − ln(y − 1). (E.10)



Appendix F

Self-adjoint extensions of symmetric
operators

We briefly review a very useful method to check whether a symmetric operator has a
self-adjoint extension, and if, how many there are. We introduce the concept of deficiency
indices and state von Neumann’s theorem, cf. e.g. [RS75, BFV01]. We then demonstrate
that the operator v̂ used in chapter 8 has no self-adjoint extension, but that its square is
self-adjoint. The first three sections closely follow the treatment in [BFV01].

F.1 Deficiency indices and von Neumann’s theorem

The deficiency indices of an operator P̂ are an ordered pair of positive integers (n+, n−).
Its knowledge, upon the use of von Neumann’s theorem, immediately gives the answer to
the question how many self-adjoint extensions the operator P̂ does admit. Let H be a
Hilbert space. An operator (P̂ ,D(P̂ )), where D(P̂ ) is the domain of the operator P̂ in
H, is said to be

• densely defined if the subset D(P̂ ) is dense in H,

• closed if φn is a sequence in D(P̂ ) such that limn→∞ φn = φ, limn→∞ P̂ φn = ψ then
φ ∈ D(P̂ ) and P̂ φ = ψ,

• symmetric if ∀φ, ψ ∈ D(P̂ ) it holds that (P̂ φ, ψ) = (φ, P̂ψ).

• self-adjoint if it is densely defined, symmetric and it holds that D(P̂ †) = D(P̂ ) and
P̂ † = P̂ , where P̂ † is the adjoint of P̂ .

Let us assume that the operator (P̂ ,D(P̂ )) is densely defined, closed, symmetric and let
(P̂ †,D(P̂ †)) be its adjoint.
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One defines the deficiency subspaces N± by

N+
.
= {ψ ∈ D(P̂ †), P̂ †ψ = z+ψ =(z+) > 0},

N−
.
= {ψ ∈ D(P̂ †), P̂ †ψ = z−ψ =(z−) < 0}, (F.1)

with the respective dimensions n+, n− that are the deficiency indices. The crucial point
is that the dimension is independent on the choice of the complex number z± as long as it
lies in the upper/lower half-plane. The determination of the deficiency indices thus boils
down to the counting of how many solutions of the equation P̂ †ψ = zψ have finite norm.
The following theorem by von Neumann [vN29] determines the number of self-adjoint
extensions from the knowledge of the deficiency indices.

Theorem F.1 (von Neumann, 1929) For an operator P̂ with the deficiency indices
(n+, n−) there are three possibilities:

1. If n+ = n− = 0, then P̂ is self-adjoint.

2. If n+ = n− = n ≥ 1, then P̂ has infinitely many self-adjoint extensions, parame-
trized by a unitary n× n matrix.

3. If n+ 6= n−, then P̂ has no self-adjoint extension.

A self-adjoint operator has only real eigenvalues. Thus, if the equation P̂ †ψ = zψ has
solutions in the Hilbert state for which z has a non-vanishing imaginary part, then P̂ is
clearly not self-adjoint. But if the dimensions of the two deficiency subspaces are equal,
then the operator can be made self-adjoint by imposing suitable additional boundary
conditions on the Hilbert states.

F.2 The momentum operator

We now apply this analysis to the momentum operator k̂ = −i∂x on the Hilbert space
H = L2(a, b), where a, b ∈ R ∪ {−∞,∞}. To use von Neumann’s theorem we have to
find the functions ψ±(x) that are the solutions of the equations

k̂†ψ±(x) = −i∂xψ±(x) = ±
i

λ
ψ±(x), (F.2)

where λ > 0 has the dimension of a length. The solutions of the eqs. (F.2) are of course

ψ±(x) = C±e
∓ x
λ . (F.3)

Now we have to discuss the different intervals [a, b].
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A. The momentum operator on R: None of the functions (F.3) belongs to the
Hilbert space L2(R). Thus, the deficiency indices are (0, 0), as k̂ possesses no non-real
eigenvalues. According to the theorem the momentum operator is hence self-adjoint.

B. The momentum operator on the positive half-axis: Only ψ+ belongs to the
Hilbert space L2(0,∞), hence the deficiency indices are (1, 0). Thus, by von Neumann’s
theorem, there is no self-adjoint extension of k̂ on the interval [0,∞). This implies that
the momentum is not a measurable quantity in this situation.

C. The momentum operator on a finite interval: Both of the solutions (F.3) are
in the corresponding Hilbert space, hence the deficiency indices are (1, 1). Thus, there is
a one-parameter family of self-adjoint extensions.

F.3 The Laplacian

We make the same analysis for the Laplacian ∆ = −∂2x on the Hilbert space L2(a, b). To
compute the deficiency indices one has to solve the equation

−∂2xφ±(x) = ±k20φ±(x), k0 > 0, (F.4)

the solution being

φ±(x) = a±e
k±x + b±e

−k±x, k±
.
=

1∓ i√
2
k0. (F.5)

A. The Laplacian on R: The deficiency indices are (0, 0), hence the Laplacian is
self-adjoint and uniquely defined on L2(R), as expected.

B. The Laplacian on the positive half-axis: The deficiency indices are (1, 1), hence
there is a one-parameter family of self-adjoint extensions. The corresponding boundary
conditions can be expressed as

φ(0) = νφ′(0), ν = − tan
(α
2

)
, α ∈ [0, 2π]. (F.6)

C. The Laplacian on a finite interval: In this case the deficiency indices are (2, 2),
hence the self-adjoint extensions are parametrized by a U(2) matrix.
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F.4 The operator v̂

In our system the observable v plays the role of the conjugate momentum of the energy E.
It is thus straightforward to represent v by the momentum operator −i∂p, where Êφ = pφ
in the energy representation, in the corresponding quantum theory. But in chapter 8 we
have observed that there are problems with this interpretation because the domain of E is
restricted to the positive semi-axis. According to the results of section 2 of this appendix,
v̂ thus has no self-adjoint extension on the Hilbert space L2(0,∞). We hence, in chapter
8, took a different pair of observables to construct a well-defined quantum theory, the
energy E and the dilatation D = Ev. The appropriate scalar product for this choice is

(φ, ψ) =

∫ ∞

0

dp

p
φ̄(p)ψ(p). (F.7)

The corresponding Hilbert space K consists of the complex functions on the interval [0,∞)
for that the norm derived from this scalar product is finite. The dilatation operator D̂ is
self-adjoint on this Hilbert space, as can be easily checked. However, it has no self-adjoint
extension if the standard scalar product is taken.

We then tried to represent the observable v by the symmetric operator

v̂ =
1

Ê
1
2

D̂
1

Ê
1
2

=
i

2p
− i∂p. (F.8)

We now show that this operator also fails to have a self-adjoint extension. For this end
we solve the equations

v̂†ψ±(p) = ±
i

a
ψ±(p), a > 0. (F.9)

The solutions read:

ψ±(p) = C±
√
pe∓

p
a . (F.10)

Of course the solution ψ+ has finite norm with respect to the scalar product (F.7), but
this is not true for ψ− which diverges at infinity. Hence, the deficiency indices are (1, 0)
which means that the operator v̂ has no self-adjoint extension.

We now demonstrate that the square of the operator given by eq. (F.8), however, is
uniquely self-adjoint on the Hilbert space K. We denote this operator by Q̂. In the
energy representation it is given by the differential operator

Q̂ = − 3

4p2
+
∂p
p
− ∂2p . (F.11)



F.4. The operator v̂ 187

In order to find the deficiency indices we have to solve the differential equation

Q̂ψ±(p) = −
3

4p2
ψ±(p) +

1

p
∂pψ±(p)− ∂2pψ±(p) = ±ia2ψ±(p), a > 0. (F.12)

The solutions read

ψ+(p) = C1+
√
p sin

(
1 + i√

2
ap

)
+ C2+

√
p cos

(
1 + i√

2
ap

)
(F.13)

and

ψ−(p) = C1−
√
p sinh

(
1 + i√

2
ap

)
+ C2−

√
p cosh

(
1 + i√

2
ap

)
. (F.14)

One then can show that both of these functions have infinite norm, such that the deficiency
indices are (0, 0). Hence, Q̂ is self-adjoint.

By applying the spectral theorem one could hence define a self-adjoint operator v̂ by taking
the square root of Q̂. But one must be careful with the signs, because the spectrum of v̂
must be the whole real line. The solution of these problems is postponed to a later time.
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Appendix G

Invariant classification

G.1 Introduction

This appendix is devoted to the invariant classification of the shell-mirror spacetime. It
is shown that in the case of our null-shell-spacetime there are not enough non-vanishing
independent invariants such that one could express the metric in terms of them. The
Petrov and Segré types in all regions of spacetime are determined and the maximal possi-
ble subset of invariants in each of the regions according to Zakhary and McIntosh [ZM97]
is found. It is demonstrated that even at the shell there is only one non-vanishing in-
dependent algebraic invariant, in contrast to the expectation of at least two. The last
sections are devoted to the invariant classification due to Takeno, that, however, breaks
down in the point where the shell is reflected by the mirror. Some useful results about
derivatives at surface layers are written down.

G.2 Petrov type

We first determine the Petrov type of our model using the methods presented in e.g.
[KSMH80] and [Ste77], cf. also the extensive literature cited therein.

G.2.1 Weyl tensor

The Petrov classification is the discrimination of Riemannian spaces with respect to the
algebraic properties of the Weyl conformal tensor

Cµνρσ
.
= Rµνρσ −

1

2
(gµρRνσ − gνρRµσ + gνσRµρ − gµσRνρ)

+
R
6
(gµρgνσ − gµσgνρ) . (G.1)
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The Weyl tensor is completely traceless, i.e. the contraction with respect to each pair of
indices vanishes. It thus has 10 independent components. A spacetime with zero Weyl
tensor is called conformally flat. Cµνρσ has the same symmetries as the Riemann tensor.

G.2.2 Tetrad components

We introduce the complex null tetrad consisting of the two real null vectors kµ, lµ and the
two complex conjugate null vectors mµ, m̄µ. Its components are defined by the following
decomposition of the metric tensor:

gµν = kµlν + kνlµ −mµm̄ν −mνm̄µ (G.2)

and by the requirement that the scalar products of the tetrad vectors vanish apart from

kµlµ = 1, mµm̄µ = −1. (G.3)

With the help of this tetrad we can define the five complex coefficients in the expansion
of the Weyl tensor (see [KSMH80] for details):

Ψ0
.
= Cµνρσk

µmνkρmσ,

Ψ1
.
= Cµνρσk

µlνkρmσ,

Ψ2
.
=

1

2
Cµνρσk

µlν(kρlσ −mρm̄σ),

Ψ3
.
= Cµνρσl

µkνlρm̄σ,

Ψ4
.
= Cµνρσl

µm̄νlρm̄σ. (G.4)

The traceless part of the Ricci-tensor is defined by

Sµν
.
= Rµν −

R
4
gµν . (G.5)

We also define the following complex quantities:
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Φ00 = Φ̄00
.
=

1

2
Sµνk

µkν ,

Φ01 = Φ̄10
.
=

1

2
Sµνk

µmν ,

Φ02 = Φ̄20
.
=

1

2
Sµνm

µmν ,

Φ11 = Φ̄11
.
=

1

4
Sµν(k

µlν −mµm̄ν),

Φ12 = Φ̄21
.
=

1

2
Sµνl

µmν ,

Φ22 = Φ̄22
.
=

1

2
Sµνl

µlν . (G.6)

They are the tetrad components of Sµν . The set {Ψa,ΦAB}, a = 0, ..., 4, A,B = 0, ..., 2
is very useful for the classification of spacetimes and for building invariant scalars. It has
also an important meaning in the Newman-Penrose formalism of general relativity based
on complex null tetrads and spinors.

G.2.3 Determination of the Petrov type

The Petrov type at a point p of a given spacetime can be determined by calculating the
roots of the quartic algebraic equation

Ψ0 − 4cΨ1 + 6c2Ψ2 − 4c3Ψ3 + c4Ψ4 = 0 (G.7)

where the coefficients Ψa are given with respect to an arbitrary complex null tetrad at p.
The Petrov type of the spacetime in the point p is found by inspection of the multiplicity
of the roots c. The possible cases are written down in the table (G.1):

Petrov type Multiplicities of the roots c

I (1,1,1,1)

II (2,1,1)

III (3,1)

D (2,2)

N (4)

O No roots - Weyl tensor vanishes identically

Table G.1: Petrov classification of spacetimes.
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Notice that the Petrov type is a local property which can change to a different type at
a different point for certain spacetimes, including the shell spacetime. One can also use
the algorithm by d’Inverno and Russell-Clark (see p.64 of [KSMH80]) to determine the
Petrov type.

G.2.4 Petrov type of the regular DNEF metric

We apply the methods of the preceding paragraphs to find the Petrov type of our model in
the various regions. The shell-mirror spacetime is described by the regular DNEF metric
defined in chapter 5 by the eqs. (5.47, 5.48).

Region I

Since this region is a part of Schwarzschild spacetime we expect it to have the same Petrov
type, i.e. type D. This can be easily verified by computing the non-vanishing independent
components of the Weyl tensor,

C0101 =
E(R− 2E)2

2R5
,

C0212 = −E(R− 2E)

2R2
,

C0313 = −E(R− 2E)

2R2
sin2 θ,

C2323 = −2ER sin2 θ. (G.8)

We need the complex null tetrad corresponding to the metric in DNEF coordinates. The
contravariant form of the tetrad vectors reads

kµ = (0,

√
2

A
, 0, 0),

lµ = (

√
2

A
, 0, 0, 0),

mµ = (0, 0,− 1

R
,− i

R
sin θ),

m̄µ = (0, 0,− 1

R
,
i

R
sin θ). (G.9)

Now we are able to calculate the coefficients Ψa. They read:

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0, Ψ2 =
E

R3
. (G.10)
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Hence, the algorithm of d’Inverno and Russell-Clarke tells us that the DNEF metric in
region I belongs to a spacetime of Petrov type D.

Regions II and III

The spacetime in these regions is flat, the metric being a regular transformation of the
Minkowski metric. The Weyl tensor vanishes identically, and there are no non-zero coef-
ficients. Therefore, these parts of the shell spacetime are of Petrov type O.

At the shell

At the outgoing shell U = u the non-zero independent components of the Weyl tensor
read

C0101 =
E(R− 2E)2

4R5
,

C2020 = −3Eδ(0),
C3030 = −3Eδ(0) sin2 θ,

C0212 = −E(R− 2E)

4R2
,

C0313 = −E(R− 2E)

4R2
sin2 θ,

C2323 = −ER sin2 θ. (G.11)

They are found by using the methods presented in section 5 of this appendix. The
coefficients Ψa vanish apart from

Ψ2 =
E

2R2
. (G.12)

Although there are, compared to the region I, two new non-vanishing components of the
Weyl tensor, there are no new non-vanishing tetrad components. This is because the
terms proportional to the distribution δ(0) are canceled out because they are multiplied
by zero terms in the Ψa’s. Hence, also at the shell the spacetime is of Petrov type D. We
observe that the coefficient Ψ2 at the shell is the mean of the interior and exterior values.
The same results hold, of course, also at the ingoing shell V = v.

G.3 Segré type

We determine the Segré type of the DNEF metric in the various regions. The Segré (or
Plebański) classification is the analogue of the Petrov one for the trace-free Ricci tensor
Sµν , eq. (G.5). We do not go into details but refer to the treatment in [KSMH80].
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Since the Ricci scalar R vanishes everywhere for our model, as it is shown in the section
6 of this appendix, the Ricci tensor and its trace-free part coincide. In regions I, II and
III the Ricci tensor is zero since the space is empty on both sides of the shell. This
corresponds to the Segré type [(111, 1)], according to the notation of [KSMH80]. At the
shell, however, there is one non-vanishing component of the Ricci tensor that is computed
using the methods of section 5, i.e. eq. (G.32):

RV V (r) =
A(r)− 1

R(r)
δ(0) (G.13)

for the ingoing and

RUU(r) =
A(r)− 1

R(r)
δ(0) (G.14)

for the outgoing shell. Here, a quantity Q evaluated at the shell is denoted by Q(r).
Hence, by virtue of Einstein’s equations, the energy momentum tensor is of the form of a
pure radiation field:

TUU = cRUU = Φ2k2U , kµk
µ = 0 (G.15)

in the outgoing and

TV V = cRV V = Φ2k2V (G.16)

in the ingoing case. This tensor has the algebraic type [(11, 2)], see [KSMH80]. Of course,
the algebraic types of Tµν and Rµν coincide for zero cosmological constant and zero scalar
curvature.

We summarize the Petrov and Segré types for the various regions of the shell metric in
the table (G.2):

Region Petrov type Segré type

I D [(111,1)]

II O [(111,1)]

III O [(111,1)]

U = u D [(11,2)]

V = v D [(11,2)]

Table G.2: Petrov and Segré types of the regions of the shell spacetime.

This result will be very useful in the next section.
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G.4 A complete set of curvature invariants

A set of invariant scalars that uniquely characterize the spacetime geometry would be
extremely useful. Having such a set of invariants in hand, it is possible to obtain useful
information about the geometry without using explicit coordinates.

For a general spacetime, there are at most 14 independent algebraic invariants made from
the Riemann tensor and its covariant derivatives. Since the computation of covariant
derivatives can be very tedious, it is sensible to look for invariants of low degree in the
derivatives of the Riemann tensor. Amongst many authors who have claimed to have
found such independent sets, the set of Zakhary and McIntosh (ZM) [ZM97] seems to
be the most precise. Their set contains of 17 invariants of lowest possible degree and is
complete in the sense that for each Petrov and Segré type it contains a maximal sub-
set of independent invariants. Their result is a generalization of the (non-complete) set
by Carminati and McLenaghan [CML91] which is used in the computer algebra system
MAPLE.

G.4.1 General features

The set of ZM consists of three types of Riemann invariants: 1) Weyl invariants made
from the Weyl tensor. There are in general 4 independent real Weyl invariants, usually
represented by 2 complex quantities. 2) Ricci invariants: There are in general 4 indepen-
dent Ricci invariants, one of which is the Ricci scalar. The other 3 are made from the
trace-free part of Rµν . 3) Mixed invariants: There are at most 6 independent real mixed
invariants for any particular case.

ZM found the maximum possible number of independent invariants for each of the 6 ×
15 = 90 Petrov and Segré types. For each type they gave the subset of independent
invariants, and for most of the types they also stated the relations between dependent
and independent invariants, the so-called syzygies.

G.4.2 The complete set of invariants

The set consists of the 4 real Weyl invariants

I1
.
= <(I),

I2
.
= =(I),

I3
.
= <(J),

I4
.
= =(J), (G.17)
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where

I
.
=

1

3
(Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2

2) (G.18)

and

J
.
= Ψ0Ψ2Ψ4 + 2Ψ1Ψ2Ψ3 −Ψ0Ψ

2
3 −Ψ2

1Ψ4 −Ψ3
2, (G.19)

the 4 real Ricci invariants

I5
.
= R,

I6
.
=

2

3
(Φ00Φ22 − 2Φ01Φ21 + Φ02Φ20 − 2Φ10Φ12 + 2Φ211),

I7
.
= 2(Φ00Φ11Φ22 + Φ01Φ12Φ20 + Φ02Φ10Φ21

−Φ00Φ12Φ21 − Φ01Φ10Φ22 − Φ02Φ11Φ20),

I8
.
= complicated expression in the ΦAB (G.20)

and 9 real mixed invariants I9, ..., I17 given by even lengthier expressions (see [ZM97] for
the explicit expressions).

G.4.3 The subsets for the case of the shell metric

The maximal possible subsets for the various regions, according to their Petrov and Segré
types (G.2), are written down in the table (G.3):

Region Independent invariants

I R, I
II and III R

U = u and V = v R, I, M1

Table G.3: Possible non-vanishing independent invariants in the various regions of the
shell spacetime according to their Petrov and Segré types.

The explicit expression for the mixed invariant M1
.
= I15 is written down in [ZM97]. The

Ricci scalar R vanishes everywhere in our case, so the remaining potentially non-zero
invariants are I and M1. They read

I =





0 : in regions II and III,
E2

2R6(r)
: at the shell,

E2

R6 : in region I,

(G.21)
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and

M1 = 0. (G.22)

We found these results by analyzing the explicit dependence of I and M1 on the Ψa’s and
the ΦAB’s given in [ZM97] and checked them by calculating the quantities using the tensor
package of MAPLE. In a general spacetime of this Petrov and Segré type the quantity
M1 does not vanish, in our case, however, it is zero everywhere. Thus, there is only
one surviving non-zero invariant, namely I. I is really a single invariant because in our
case it is real. It is discontinuous at the shell, the value there being exactly the mean
of the interior and the exterior. This nicely fits into the framework of [BI91] concerning
discontinuous quantities at a surface layer, that is presented in the next section.

The conclusion of this section is that curvature invariants alone do not contain enough
information about the shell spacetime. We expected two different scalars, because the
spacetime is time-dependent and spherically symmetric, which means that its metric
components are functions of two coordinates. We have, however, found only one non-
vanishing scalar, the other one remains to be found, if there is one at all. But what we
can say, that this other scalar can not be one made of the Riemann tensor and its covariant
derivatives, because the set of ZM for this type is complete. It is probably because of the
special nature of light-like objects that the information contained in the invariants is not
sufficient for our ends.

There are other examples where the information contained in the curvature scalars is
insufficient to characterize a spacetime: For the so-called pp (plane-fronted parallel) grav-
itational waves (see e.g. [EK62]) all invariants made from the Riemann tensor vanish.
This is also true for flat spacetime, but the two spacetimes are obviously different! In
our case the information about the time dependence of the metric is somehow contained
in the condition for the inside and outside regions of the shell spacetime. The energy E
of the shell is contained in the invariant I, its asymptotic advanced time v is given in
the shell’s equation V = v which defines the boundary between the inside and outside
regions.

G.5 Derivatives at surface layers

Let Σ be a hypersurface in a four-dimensional Riemannian spacetime. According to Israel
[Isr66], Σ is a boundary surface, if the metric tensor and its first derivatives with respect
to some special class of coordinates are continuous across the hypersurface. It is called
a surface layer, if the metric functions are only continuous at Σ. Since our light-like
thin shell belongs clearly to the second case, we must find a means to define derivatives
of the metric functions, in order to obtain meaningful expressions for quantities like the
curvature at the shell. In their paper about null shells, [BI91], Barrabès and Israel give an
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elegant definition viewing thin shells as distributions. We state only the most important
formulae.

Let the equation of the shell Σ in the coordinates xµ be given by φ(xµ) = 0. The jump
and the hybrid function of a quantity F discontinuous at Σ are, respectively, defined by

[F ]
.
= (F+(x)− F−(x))|Σ, (G.23)

F̃ (x)
.
= F+(x)Θ(x) + F−(x)Θ(−x), (G.24)

where F+(F−) are the functions in the outside (inside) regions, respectively, and the step
function is given by

Θ(x)
.
=





1 : x > 0
1
2

: x = 0

0 : x < 0

. (G.25)

From these definitions it follows that

∂µF̃ = ∂̃µF − [F ]δ(Φ)Φ,µ, (G.26)

F̃ G̃ = F̃G− [F ][G]Θ(Φ)Θ(−Φ). (G.27)

δ is the Dirac Delta-function. At the shell, Φ(x) = 0, the hybrid function reduces to the
expression

F̃ |Σ =
1

2

(
F+ + F−

)
|Σ. (G.28)

Hence,

(∂µF̃ )|Σ =
1

2

(
F+,µ + F−,µ

)
|Σ − [F ] Φ,µ|Σ δ(0). (G.29)

Since the metric is continuous, it holds that gαβ = g̃αβ, g
αβ = g̃αβ. From the definition of

the Christoffel symbols and from eq. (G.24) it follows that at the shell

Γλµν = Γ̃λµν =
1

2
(Γ+λµν + Γ−λµν )|Σ, (G.30)

which can be easily verified using that the jump of the metric is zero. The Riemann and
Ricci tensors at the shell read thus, respectively,

Rκ
λµν = R̃κ

λµν − 2δ(0)[Γκλ[ν ]Φ,µ] −
1

2
[Γρ
λ[ν ][Γ

κ
ρµ]] (G.31)
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and

Rλν = R̃λν − 2δ(0)[Γµ
λ[ν ]Φ,µ] −

1

2
[Γρ
λ[ν ][Γ

µ

ρµ]]. (G.32)

The Ricci scalar is, therefore, given by

R = R̃ − 2δ(0)gλν [Γµ
λ[ν ]Φ,µ] −

1

2
gλν [Γρ

λ[ν ][Γ
µ

ρµ]]. (G.33)

G.6 General properties of spherically symmetric

spacetimes

We briefly summarize some general results about spherically symmetric spacetimes given
by Takeno in his book [Tak66]. We slightly change his notation to match it to our
conventions.

G.6.1 Basic equations

The most general spherically symmetric line element in coordinates (t, r, θ, φ) adapted to
the spherical symmetry reads

ds2 = Cdt2 + 2Ddtdr − Adr2 −BdΩ2, (G.34)

where A,B,C and D are functions of t, r. They satisfy

m
.
= AC +D2 > 0. (G.35)

The inverse metric has non-vanishing components

g00 =
A

m
,

g01 =
D

m
,

g11 = −C
m
,

g22 = − 1

B
,

g33 = − 1

B
sin2 θ. (G.36)
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The non-zero independent components of the Riemann tensor read

f1
.
= R1212 =

R1313
sin2 θ

, (G.37)

f2
.
= R1010, (G.38)

f3
.
=
R2323
sin2 θ

, (G.39)

f4
.
= R2020 =

R3030
sin2 θ

, (G.40)

f5
.
= R1220 =

R1330
sin2 θ

. (G.41)

The quantities f1, ..., f5 are lengthy functions of t, r given by eqs. (4.6) of [Tak66]. We
will state them explicitly later for special cases. The components of the Ricci tensor are
given by

R00 =
Cf2
m

+ 2
f4
B
, (G.42)

R01 = −2
f5
B

+
Df2
m

, (G.43)

R11 = 2
f1
B
− Af2

m
, (G.44)

R22 =
R33
sin2 θ

=
f3
B

+
Cf1 + 2Df5 − Af4

m
. (G.45)

The Ricci scalar hence reads

R =
4

mB
(Af4 − Cf1 − 2Df5) +

2f2
m
− f3
B2

. (G.46)

Using the non-vanishing mixed (2,2) components of the Riemann tensor, Rρσ
µν , one can

define the following useful quantities:

α
.
= R1212 = R1313, (G.47)

β
.
= R2020 = R3030, (G.48)
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γ
.
= R2012 = R3013, (G.49)

δ
.
= R1220 = R1330, (G.50)

ξ
.
= R1010, (G.51)

η
.
= R2323. (G.52)

The function ξ coincides with the Gaussian curvature of the surfaces of constant B. The
relations between the quantities α, β, ... and fa are given by

α =
Cf1 +Df5

mB
, (G.53)

β =
−Af4 +Df5

mB
, (G.54)

γ =
Df1 − Af5

mB
, (G.55)

δ =
Cf5 +Df4

mB
, (G.56)

ξ = −f2
m
, (G.57)

η =
f3
B2

. (G.58)

In some cases the quantities α, ..., η are more useful than the expressions fa. The Ricci
tensor and the scalar curvature can be expressed in terms of the α, β, ...:

R00 = −(2β + ξ), (G.59)

R11 = −(2α + ξ), (G.60)

R01 = 2γ, (G.61)
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R10 = 2δ, (G.62)

R22 = R33 = −(α + β + η), (G.63)

R = −2(2α + 2β + ξ + η). (G.64)

Any spherically symmetric line element can be brought into the form

ds2 = Cdt2 − Adr2 −BdΩ2, (G.65)

by a suitable coordinate transformation. Such a coordinate system is called a spherically
symmetric coordinate system (sscs) in a narrow sense, whereas the most general case
(with D 6= 0) is called a sscs in a wide sense. Any spherically symmetric line element in
a narrow sense can be brought into the form of a so-called D-type coordinate system.

G.6.2 Spherically symmetric spacetimes in D-type coordinates

We summarize some results about spherically symmetric line elements in the form

ds2 = 2Ddrdt−BdΩ2 (G.66)

from [Tak66]. D and B are in general functions of the two coordinates r, t. We are
interested in this kind of line elements, because the metric with respect to the regular
DNEF coordinates belongs to this class. In chapter 6 we have referred to these coordinates
as of the UV-type.

The relation between the fa and the α, ..., η and their explicit expression in terms of the
components of the metric reads in this case:

α = β =
f5
BD

=
1

4BD

(
−2Ḃ′ + B′Ḃ

B

)
,

γ =
f1
BD

=
1

4BD

(
2B′′ − B

′2

B
− 2B′D′

D

)
,

δ =
f4
BD

=
1

4BD

(
2B̈ − Ḃ2

B
− 2ḂḊ

D

)
,

ξ = − f2
D2

=
1

D2

(
−Ḋ′ + D′Ḋ

D

)
,

η =
f3
B2

= − 1

2B2

(
2B +

B′Ḃ

D

)
. (G.67)
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Here, an overdot (prime) represents the derivative with respect to t (r).

G.6.3 Invariant scalars

The following quantities are invariant under coordinate transformations:

X
.
= α + β, (G.68)

Y
.
= αβ − γδ, (G.69)

L
.
= X2 − 4Y, (G.70)

S1
.
= ξ + η, (G.71)

S2
.
= ξη. (G.72)

This holds for any spherically symmetric spacetime. One can express the scalars con-
structed algebraically from gµν and Rµνρσ in these quantities. For example, the Ricci
scalar is given by

R = −4X − 2(ξ + η) = −4X − 2S1, (G.73)

and is, therefore, an invariant. The equations

L = 0 (G.74)

and

α− β = γ = δ = 0 (G.75)

are also coordinate invariant. One can use the properties given by eqs. (G.74) and (G.75)
to invariantly classify the spherically symmetric spacetimes. In the following we will use ξ
and η instead of S1 and S2. Only in a few quite pathological cases ξ are η are not scalars.
Details can be found in [Tak66].

Coordinate transformations that leave the angular coordinates θ and φ invariant are called
T-transformations [Tak66]. A quantity Q that is invariant under T-transformations is
called a T-scalar. For example −B and the function R appearing in the components of
the regular DNEF metric are such T-scalars, but they are not scalars under more general
coordinate transformations. However, any scalar is of course also a T-scalar.
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G.6.4 Invariant classification according to Takeno

We briefly state some results of chapter II of [Tak66]. A spherically symmetric spacetime,
denoted by S0, belongs either to the category Sa, when both L = 0 and α−β = γ = δ = 0
hold, to Sb, when L = 0 while α− β = γ = δ = 0 does not hold or to Sc, when L 6= 0.

If one excludes the pathologic cases with B = const. (Takeno denotes them by SII), one
can also classify any remaining spherically symmetric spacetime denoted by SI into two
types. The property in question is whether the line element of the spacetime can be
brought into the form

ds2 = −Adr2 − r2dΩ2 + Cdt2 (G.76)

of a so-called canonical coordinate system (ccs) or not, but we do not want to go into
details and refer to the aforementioned book. The necessary and sufficient condition for
a D-type line element to allow a ccs is

B′Ḃ 6= 0. (G.77)

We denote, still following [Tak66], the spacetimes satisfying (G.77) by © and the others
by 4. One finally obtains the invariant classification scheme given by the table (G.4):

S0

Sa Sb Sc

SII SIa SIb SIc

© 4 © © 4

Table G.4: Classification of spacetimes according to Takeno.

For example, Schwarzschild’s exterior solution belongs to type SIa(©). We will observe,
that in the case of our shell-mirror spacetime, this method of classification becomes im-
practical because of the discontinuity of the (first) derivatives of the metric at the shell.

G.7 Invariants for the shell spacetime in regular

DNEF coordinates

We compute the Takeno invariants for the different regions of the spacetime of our model
in the regular DNEF gauge using the methods from the two previous sections. We make
the following replacements:

t = U, r = V, D =
A(U, V )

2
, B = R2(U, V ). (G.78)
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using these replacements we can express the derivatives of D and B with respect to r an
t using the derivatives of A and R with respect to U and V :

Ḃ = 2RR,U , B′ = 2RR,V , B̈ = 2R2,U + 2RR,UU , B′′ = 2R2,V + 2RR,V V ,

Ḃ′ = 2R,UR,V + 2RR,UV , Ḋ =
A,U
2
, D′ =

A,V
2
, Ḋ′ =

A,UV
2

. (G.79)

G.7.1 Region I

In the region I exterior to the shell the derivatives of R and A are given by

R,U = −A
2

= −R,V , A,U = −EA
R2

= −A,V . (G.80)

We are now able to calculate the Takeno invariants. They read

α = β = −ξ
2
= −η

2
=

E

R3
, γ = δ = L = 0,

R = 0, X = 2α, Y = α2. (G.81)

Hence, there is only one independent scalar in region I, depending on the T-scalar R
and the shell energy E. It is no surprise that this scalar is closely related to the single
non-vanishing scalar that has been found in section 4 of this appendix, I = E2

R6 .

G.7.2 Regions II and III

In region II the derivatives of R and A read

R,U = −1

2
, R,V =

A

2
, A,U = 0, A,V =

EA

(R− u−U
2

)2
, (G.82)

whereas in region III they are given by

R,U = −A
2
, R,V =

1

2
, A,V = 0, A,U =

EA

(R− V−v
2

)2
. (G.83)

Inserting these quantities into the definition of α, ... yields:

α = β = γ = δ = ξ = η = L = 0,
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R = X = Y = 0, (G.84)

as expected.

G.7.3 At the shell

Things become more interesting if we consider these quantities at the shell. Since the
metric is at most continuous there, we expect discontinuities in quantities, which depend
on its (first) derivatives. We consider the outgoing shell given by the equation U = u. The
ingoing case is treated similarly. For the outgoing shell the function Φ reads Φ(U, V ) =
U − u. We exclude the special point (U, V ) = (u, v) where the shell is reflected from the
mirror for the moment.

Let square brackets denote the jump of a quantity at the shell: [Q]
.
= Q+ − Q−, and let

P (r) denote a quantity P evaluated at the shell. The jumps in the derivatives of R and
A are easily computed:

[R] = [A] = [R,V ] = [A,V ] = [R,V V ] = [A,V V ] = 0,

[R,U ] =
1− A(r)

2
, [A,U ] = −

EA(r)

R2(r)
,

[R,UU ] =
EA(r)

2R2(r)
, [R,UV ] = −

EA(r)

2R2(r)
, [A,UU ] =

E2A(r)

R4(r)
− EA2(r)

R3(r)
. (G.85)

Using the methods of section 5 we obtain for the hybrid quantities at the shell (in order
to keep the notation clear the (r) and the tilde are not written in the following):

Ḃ = −R
2
(A− 1), B′ = AR, Ḋ = −EA

4R2
, D′ =

EA

2R2
,

B̈ =
EA

2R2
+R(A− 1)δ(0) +

A2 + 1

4
, B′′ =

A2

2
+
EA

R
, Ḃ′ = −A(A+ 1)

4
− EA

2R
,

Ḋ′ = −E
2A

4R4
+
EA2

4R3
. (G.86)

Equipped with these equations we are now ready to calculate the curvature quantities
α, ..., η at the shell. They read

α = β = −ξ
2
= −η

2
=

E

2R3
, δ =

A− 1

AR
δ(0), γ = L = 0,
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R = 0, X = 2α, Y = α2. (G.87)

We observe that the distributional part δ(0) has entered one of the quantities only, namely
δ. Since it appears only in the invariant Y in the product γδ, it has no effect, since γ = 0.

Various scalars are discontinuous at the shell. The Ricci scalar R is, however, zero every-
where, even at the shell. L is still equal to zero at the shell, but δ = γ = 0 does not hold
anymore. This means that, while the regions I, II and III belong to the class SIa(©), the
metric at the shell lies in the class Sb. Even though the Ricci scalar vanishes, the Ricci
tensor has non-zero components at the shell. The information about the matter of the
shell is contained in the equations

RV V =
A− 1

R
δ(0) (G.88)

for the ingoing and

RUU =
A− 1

R
δ(0) (G.89)

for the outgoing case. This corresponds to a distributional matter distribution in the
energy momentum tensor, TV V ∝ δ(0) (TUU ∝ δ(0)). This is sensible, because an in-
finitesimally thin null shell can be considered as a limit of a thick Vaidya shell with finite
energy-momentum tensor.

G.7.4 At the point (U, V ) = (u, v)

We get into big troubles at the singular point (U, V ) = (u, v), where the trajectories of
the in- and outgoing shells meet at the mirror. Although we can still define the function
Φ by putting Φ(U, V ) = U − V − (u − v), it is not clear what is the ’inside’ and what
the ’outside’, because the three regions I, II and III meet at this particular point. There
actually is, to be exact, no interior of the shell. So we can not define jumps and hybrid
functions in the usual way, and thus the construction of the Takeno invariants fails.

A possible way out of this problem could be found as follows. Instead of considering
an infinitesimally thin shell from the beginning, one should take a thin but finite patch
filled with radial null radiation commonly described by the Vaidya metric between the
exterior Schwarzschild and the interior Minkowski spacetimes. In this case, the metric
and its derivatives are less singular, because the surface layer is transformed into two
distinct boundary surfaces, and the interesting quantities can be defined everywhere. The
actual construction of coordinates, with respect to which the shell is continuous and has
continuous first derivatives is quite involved, although one can proceed as in the thin shell
case. Double null coordinates for the Vaidya spacetime have been found by (e.g.) [WL86]
and [SV00]. But since the construction is tedious, and since there are problems at the
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mirror where there is a region (a triangle in the Penrose diagram) where the two thick
shells overlap, we will not pursue this path in this work.



Appendix H

Asymptotic properties

H.1 Asymptotic simplicity

We want to find out if the shell spacetime is asymptotically simple and flat. There is no
special motivation other than making the classical discussion of our model more complete.

A spacetime (M, g) is called asymptotically simple [HE73] if it satisfies the following
conditions: There exists another (smooth) Lorentz manifold (M̃, g̃), such that

• M is an open submanifold of M̃ with smooth boundary ∂M = I .
= I+ ∪ I−;

• there exists a positive, real C3 function Λ on M̃, such that g̃µν = Λ2gµν onM, and
such that Λ = 0, dΛ 6= 0 on I;

• every null geodesic inM acquires a future and past endpoint on I.

We now demonstrate that the spacetime of the shell is asymptotically simple. For this
end we express the spacetime with respect to the regular DNEF coordinates. We first
compactify it by using the coordinate transformation

V = tan p, U = tan q, (H.1)

which yields the line element

ds2 =
1

cos2 p

1

cos2 q

(
Adpdq −R2 cos2 p cos2 q dΩ2

)
. (H.2)

Hence, the conformal factor Λ is given by

Λ = cos p cos q. (H.3)

209
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The domains of the new null coordinates p, q are now finite and given by

p ∈
(
−π
2
,
π

2

)
, ∈

(
−π
2
,
π

2

)
, p > q∗, (H.4)

where q∗ > q. The number q∗ is defined by the boundary condition on V and U imposed
by the mirror at R = RM , cf. eqs. (5.37, 5.43) of chapter 5. The boundary ∂M is given by
p = π

2
, which defines the null surface of future light-like infinity I+ and q = −π

2
, defining

past light-like infinity I−. The points (p, q) = (π
2
, π
2
)
.
= i+ (future time-like infinity),

(p, q) = (−π
2
,−π

2
)
.
= i− (past time-like infinity) and (p, q) = (π

2
,−π

2
)
.
= i0 (space-like

infinity) do not belong to ∂M. One can easily convince oneself that the function Λ is
smooth, positive and that it satisfies Λ = 0, dΛ 6= 0 at ∂M. Hence, the conditions listed
above are all fulfilled meaning that the shell spacetime is asymptotically simple.

H.2 Asymptotic flatness

An asymptotically simple spacetime is called asymptotically flat (or empty) [HE73] if it
furthermore satisfies that the Ricci tensor Rµν vanishes in an open neighbourhood of I.
The Ricci tensor for the shell spacetime (expressed in the regular DNEF coordinates) has
two non-vanishing components given by

RUU =
A− 1

R
δ(U − u), RV V =

A− 1

R
δ(v − V ). (H.5)

They vanish away from the shell but are distributional at the shell. The components have
been computed using the methods by Barrabès and Israel, cf. the appendix G. It does not
seem that the Ricci tensor is zero in a whole neighbourhood of I. But one can relax the
above condition to one on the fall-off behaviour of the metric in the vicinity of a (spatial)
hypersurface as R→∞: the metric is to satisfy

gµν ∼ ηµν +
αµν

(
xσ

r
, t
)

r
+O

(
1

r1+ε

)
, (H.6)

where ε > 0, xσ = (t, xk) is a flat coordinate system at space-like infinity, αµν is an

arbitrary symmetric tensor and r =
√
~x2. The Cartesian transform of the central-regular

metric introduced in chapter 6 satisfies this condition at space-like infinity. There, the
metric component R2

~X2
is of the order of 1, hence all components of the metric behave

as required. Thus, if one allows the less restrictive definition of asymptotic flatness,
then the shell spacetime is indeed asymptotically flat, even though its Ricci tensor has a
distributional part.
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