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Inauguraldissertation zur Erlangung der Würde eines

Doctor rerum oeconomicarum

der Wirtschafts- und Sozialwissenschaftlichen Fakultät

der Universität Bern

2004



Die Fakultät hat diese Arbeit am 17. Juni 2004 auf Antrag der beiden

Gutachter Prof. Dr. Gunter Stephan und Prof. Dr. Aleksander Berentsen

als Dissertation angenommen, ohne damit zu den darin ausgesprochenen

Auffassungen Stellung nehmen zu wollen.



Preface

Corruption is an age-old phenomenon and a widespread, multifaceted prob-

lem: there is hardly any country that has been spared from scandals in the

past and corruption has appeared in almost any kind of interaction between

the private and the public sector.

In 1995, the Sunday Times of India published a “bribe index”, i.e. a list

of the customary bribes that had to be paid for a range of routine public

services. For example, for the issuing of a driver’s license, a bribe of between

1,000 and 2,000 rupies was asked; For the installation of an electric meter,

government officials usually pocketed between 25,000 and 30,000 rupies.

After a large department store collapsed in Korea in 1995, it was discov-

ered that the accident had been caused by the substandard concrete that

had been used in construction. Government officials had taken bribes to

allow violation of the safety standards, which reduced the building costs

significantly for the department store.

In Gambia, people bribe tax collectors in order to reduce their duty. In

the early nineties, the country’s forgone tax revenue amounted to 8 - 9 %

of GDP. This was about eight times the country’s spending on health.

When Italy conducted an anticorruption investigation in 1991, the con-

struction costs for the Milan subway fell from $227 million to $97 million

per kilometer. Corrupt officials had agreed to overpriced contracts with

construction companies, taking bribes as return services.1

Empirical economic research has been concerned with the consequences as

well as the causes of corruption. The most important consequences are the

following: Corruption increases poverty and income inequality,2 it augments

1All examples from Rose-Ackerman (1999).
2Gupta et al. (2002)
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the public deficit and public debt,3 it reduces growth and investment,4 the

effectiveness of social spending, the formation of human capital,5 expen-

diture on education and health,6 and tax revenue7. Cross-country studies

concerned with the causes of a society’s corruption level identify income as

the single most important determinant. Cultural and political factors are

not crucial for a country’s corruption rate.8

There is a long tradition of microeconomic models that deal with the

individual incentives of engaging in corrupt activities. However, the con-

sequences of corruption are measured at the societal level. In fact, very

little research has been conducted to provide the missing link between the

causes at the individual level and the consequences at the societal level.9 To

comprehend both levels within the same model is important because it is

beyond controversy that the consequences of corruption have an influence

on the individual’s incentives. Therefore, only a dynamic setup is suited

to capturing all relevant factors of corruption. This is the motivation for

the first chapter of this book, which extends standard evolutionary game

theory to a new class of games allowing us to study the feedback effects

of population variables on individual incentives. In particular, the model

includes the informational distortions prevailing in the case of corruption.

While the first chapter applies a shortcut for modelling the information

available to the individuals involved, the second chapter addresses the issue

of information. It explicitly describes the relation between the nature of

information and the spread of illegal activities in a population. We aban-

don the specific formulation of corruption used in the previous chapter and

comprehend it as a general illegal activity. By extending a standard spa-

tial evolutionary game with heterogeneity of agents and various information

settings, we can explore the imitation dynamics peculiar to the spread of

illegal activities.

The third chapter extends the analysis of the second. Numerical sim-

3Tanzi (2002)
4Mauro (1995); Knack and Keefer (1995)
5Gupta et al. (2002)
6Tanzi (2002)
7Tanzi and Davoodi (2000)
8Paldam (2002)
9Exceptions are Chakrabarti (2001) and Andvig and Moene (1990).
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ulations of the formally described model with local information and het-

erogenous agents allow us to draw conclusions about contagion and spread

of illegal activities under general conditions.
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Chapter 1

The Dynamics of Corruption

The efforts of men are utilized in two

different ways: they are directed to the

production or transformation of economic

goods, or else to the appropriation of

goods produced by others.

Vilfredo Pareto

1.1 Introduction

Corruption is the major hindrance for economic growth and overall devel-

opment in poverty-stricken countries. The harmful impact of corruption

has several reasons. In a corrupt environment private investment, both do-

mestic and foreign, yields lower returns because of additional costs and a

climate of heightened uncertainty. The resulting decreased investment in-

centives lower growth (see Mauro, 1995, for empirical evidence). Not only

is the investment level sub-optimal in countries with prevalent corruption,

but also the management of public services. Corruption raises the prices of

public services,1 drives up the concerning transaction costs,2 and leads to

general mismanagement in the public sector (Rose-Ackerman, 1978; Shleifer

and Vishny, 1993). The reason for the latter is that corrupt policy-makers

1One reason for high prices is that policy makers are bribed to agree on overpriced

offers and contracts with private companies (Rose-Ackerman, 1999).
2Administration and government become less efficient, because bribe recipients

shorten the supply of services or invent new corruption opportunities by extending and

complicating the administrative process (Rose-Ackerman, 1999).
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allocate public funds inefficiently, seeking to direct money into projects

that easily can be corrupted. Therefore, a corrupt government and a cor-

rupt administration leave the society’s optimal intertemporal spending path

(Jain, 2001).3 Low growth rates and inefficient allocation of public funds

lead to persistent poverty. Furthermore, corruption raises income inequality

through other channels such as an inaccessible education system and a tax

regime in favor of those who can afford shirking their duties. Additionally,

a society’s most disadvantaged groups are negatively affected by the fact

that foreign aid projects seldom bring about the desired aim: In a corrupt

environment resources seep away before they reach the needy.

Corruption rates4 vary considerably across countries and time. It is

our aim to contribute to the understanding of these observed differences.

In particular we are interested in determining the conditions that lead to

a corruption rate which prevents economic growth and development of a

society. We believe that a thorough understanding of the dynamics of cor-

ruption is an inevitable prerequisite to form policy recommendations that

can improve present situations.

The corruption rate is the outcome of individual choices to engage in

corrupt activities (Chakrabarti, 2001). Consequently, we address the prob-

lem on the individual level and model the incentives that lead individuals

to corrupt activities explicitly. Analyzing corruption on the microeconomic

level has been the most traditional approach in studying the phenomenon

in economic theory.5 Our analysis differs from previous theoretical research

on corruption in two respects. Firstly, we explicitly model the informational

complicacies individuals face when making the decision to adopt or not to

adopt corrupt behavior. Our approach to this special informational situ-

ation in the case of corruption is evolutionary game theory. Within this

framework we specify an underlying game that represents the interaction of

corrupt and fair behavior in a society. Secondly, we include the effects that

3One example for the distortion in public expenditure through corruption is treated

in Mauro (1997): Corruption leads to a negative relation between the corruption level in

a society and its spending for education and health.
4It surpasses the purpose of this paper to specify or discuss the ways and means of

measuring corruption. The term corruption rate is used as a measure for the degree to

which corruption exists among public officials and politicians in a country.
5Theoretical research dates back to the 1970s with Krueger (1974) and Rose-Ackerman

(1978) and is now included in many different fields in economics.
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resulting population behavior has on the decision of the single individual.6

If two factors in a model have mutual impact on each other in a dynamic

context, we say that a feedback effect exists between them. We will not only

include the feedback effects between the corruption rate and the individ-

ual decision to adopt corrupt behavior in our consideration, but also the

feedback effect between the individual decision and per capita income.

The consideration of feedback effects requires an extension of standard

evolutionary game theory. We therefore define the class of frequency depen-

dent evolutionary games and deliver some general results necessary for their

analysis. In the following we substantiate the choice of evolutionary game

theory as our framework and explain why we think that it suits the spe-

cial informational situations where corruption decisions are made. Based on

this we address the issue of the most important feedback effects surrounding

corruption and describe how we extend standard evolutionary game theory

to seize these feedback effects.

In our view it seems natural to study the spread of illegal activities such

as corruption in the framework of evolutionary game theory. If an activity is

illegal and can be prosecuted, respective information is scarce. The reason

is that individuals are not willing to share related information because this

reveals their relation to the illegal activity. Therefore, individuals actually

may be completely oblivious to the existence of a strategy, may not know

what share of the population plays the strategy, what the strategy’s returns

are, or simply how to play the strategy.

Individuals acting in situations where information is too scarce for be-

liefs to be formed and circumstances to be fully comprehended, are ideally

represented by models of bounded rationality (Simon, 1955, 1987; Selten,

2001; Dequech, 2001). The reason is that we expect individuals to act my-

opically (the behavior of others cannot be anticipated) and with inertia

(gathering information is difficult and time consuming as a result). Myopic

behavior in combination with inertia defines bounded rationality (Kandori

et al., 1993). Imitation is one way of learning how to play a game in a

situation described above (see Cartwright, 2002, for a survey of imitation

behavior rules). An evolutionary game combines myopic behavior, inertia

6Andvig and Moene (1990) models the impact of the corruption rate on individual

choice. What we have in mind, however, is a more comprehensive model, including

feedback effects between per capita income and corruption.
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and imitation in a suitable way for our purposes.7

The structure of the evolutionary game is that a continuum of infinitely-

lived players chooses between corrupt and fair strategies of an underlying

game. They are then matched pairwise to play the underlying game. Players

make their strategy decision according to an imitation rule which includes

inertia and myopic behavior.

Thereby the imitation rule determines the decisions of the players: in

every period of the game each player observes the strategy and the ex-

pected payoff of another player drawn at random. Consequently, a fre-

quently played strategy will be observed with a greater probability than a

strategy played by a minority. Players then imitate the observed strategy

if the expected payoff of their own strategy is lower than the one of the

observed.

The strategy decisions of the whole population define the adjustment

dynamics which in our case coincide with the replicator dynamics. The ad-

justment dynamics is formalized as a system of ordinary differential equa-

tions and can be analyzed by determination of the evolutionary equilibria

and description of the solutions’ global behavior. Let us now turn to the

underlying game which describes the incentives for corrupt behavior and

the feedback effects named above.

Empirical research has studied the correlations between the corruption

rate in a society and both cultural and economic variables (see Jain, 2001;

Graf Lambsdorff, 1999, for surveys of the empirical research). From the

many interesting and significant correlations that have been isolated, per

capita income has proven to be the most reliable predictor of the corruption

rate over diverse data sets: There is a strong negative correlation between

the corruption rate and GDP per capita of a country in most empirical

studies.8

The direction of causality between income and corruption rate has been

7To be specific: We apply a continuous-time pure-strategy selection dynamics arising

from strategy adaptation by myopic imitation.
8Mauro (1995) is using data consisting of the Business International (BI) indices on

corruption, red tape, and efficiency of the judicial system; Husted (1999) and Treisman

(2000) take the Transparency International’s (TI) annual index of perceived corruption

as a dependent variable; Paldam (2002) as well relies on the TI CPI index. For a

nontechnical discussion see Bardhan (1997).

1.1. INTRODUCTION 5

more difficult to tackle than the correlation between the two. There are

sound theoretical arguments for both directions of impact. Corruption af-

fects GDP per capita by lowering private investment and thereby lowering

growth (Mauro, 1995).9 Lowered institutional quality because of corrup-

tion is another reason for decreased growth rates.10 While this direction

of causality is well established in the literature, we also find research sup-

porting the reverse causality. Property rights are more valuable in high

income countries. Economic reasoning suggests that people are then willing

to spend more to protect property rights (Eggertsson, 1990) which increases

the quality of institutions. We also expect the opportunity costs of corrupt

behavior to be higher because return to investment and labor is high. While

we often lack a time series long enough to highlight the hypothesis that an

economy has significantly reduced its corruption rate when having under-

gone economic development, there are many historical examples describing

this process (see Hofstaedter, 1973, for examples). In order to shed light on

the matter of causality between economic growth and the corruption rate,

Chong and Calderon (2000) choose the following approach. They apply

a method (Geweke, 1979) based on Granger causality to corruption data,

which allows to measure linear feedbacks. They find that causality works

in both directions: institutional quality causes growth and growth causes

institutional quality.

How can we include the result of Chong and Calderon (2000) in our

model? In order to model the impact of corruption on income, we define

the underlying game in the following way. The underlying game consists

of three strategies: agents choose between a private sector activity, being

a fair government employee, and being a corrupt government employee.

The private activity’s return is a fixed surplus when playing against a fair

government employee or another private entrepreneur. In case the private

9This result has been supported by the work of Knack and Keefer (1995), Brunetti

et al. (1998), Mauro (1998), Chong and Calderon (2000) and others. Furthermore, Ades

and Di Tella (1997) present a formal model. Note that Mauro (1995) and other authors

also find a significant effect of corruption on growth. For this direct effect, Ott (2000);

Barreto (2000); Ehrlich and Lui (1999); Murphy et al. (1993); Li et al. (2000) and others

provide formal models.
10See North (1990) and Husted (1999) for theoretical treatment of the topic and Tanzi

and Davoodi (2000); Dollar and Kraay (2003); Kaufmann et al. (2000); Buscaglia (2001);

Keefer and Knack (1997) for empirical evidence; among others.
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entrepreneur plays against a corrupt government employee, the corrupt gov-

ernment employee siphons the surplus and the private entrepreneur is left

without return. A fair government employee earns the government wage

no matter whom he plays against. The corrupt government employee also

earns the government wage if playing against another government employee.

However, if he plays against a private entrepreneur, he extorts the surplus

from private sector activity but bears the costs of the corrupt act - that is,

the probability of getting caught red-handed and losing all his income in this

case. The underlying game’s payoffs represent the direct payoff flows of cor-

ruption. The surplus extorted by a corrupt government employee directly

decreases the private entrepreneur’s payoff. Thus the impact of corruption

on a player’s income is directly modelled in the underlying game.

In order to include the impact of income on the corruption rate we

choose to relate the two by modelling institutional quality which is highly

correlated with the corruption rate (e.g. Mauro, 1995). Our choice is guided

by the fact that the relation between institutional quality and income is very

well studied in economic research: The higher the income of a population,

the better is the quality of its institutions.11 We define institutional quality

as the detection probability of corruption. If corrupt actions are detected

with a high probability we say that institutional quality is high. Based

on this, we can now model the impact of income on the corruption rate by

assuming that the detection probability depends positively on income. Note

that a high detection probability results in high costs of corruption. The

costs of corruption determine the corrupt strategy’s payoff and are therefore

relevant for the decision to imitate it.

This completes the inclusion of the feedback effect in the model: On the

one hand, income is a function of the strategy frequencies in the population

and thus of the corruption rate. On the other hand, high income results in

a high detection probability and decreases the incentive to corrupt.

This modelling idea requires an extension of the standard framework

of an evolutionary game with replicator dynamics. It is necessary that

the stage game depends on the strategy frequencies as explained above.

We therefore define a new class of games which we call frequency depen-

11More income increases the value of property rights. ”In sum, the basic structure of

property rights is determined by the state and reflects the preferences and constraints of

those who control the state” (Eggertsson, 1990, p. 79).

1.1. INTRODUCTION 7

dent evolutionary games. We prove that frequency dependent evolutionary

games dispose the fundamental properties of evolutionary games, such as

uniqueness of solutions and invariance of the simplex and its boundaries.

We refer to the frequency dependent evolutionary game featuring the ef-

fects described above as the corruption game. Accordingly we refer to the

dynamics implied by the corruption game as the dynamics of corruption.

As an equilibrium concept we adopt the evolutionary equilibria suggested

by Friedman (1998). We calculate the evolutionary equilibria of the cor-

ruption game by applying local and global theory of nonlinear dynamical

systems. In the Appendix we extend Liapunov’s Theorem to critical points

that lie on the simplex’s boundary for the simplex invariant dynamics. This

achievement is a most helpful result when analyzing frequency dependent

evolutionary games.

Our results are the following. We first allow for a general corruption

detection probability function. A clean equilibrium where corruption is

extinguished can only exist if detection probability is high in absence of

corruption. As a consequence, populations with highly inefficient judicial

institutions are not expected to free themselves from corruption.

In a corrupt equilibrium private activity is driven out of the game and

only corrupt activity prevails. Such an equilibrium always exists if the detec-

tion probability is low in presence of a high corruption rate. We conclude

that if corruption in the government affects the judicial institution’s effi-

ciency negatively, the possibility of a population being trapped in a corrupt

equilibrium will prevail.

A hybrid equilibrium exists for a detection probability that is neither

high nor low.

In the next step we specify a detection function that depends on in-

come. The corruption game with such a detection function pays respect

to the feedback effect between income and corruption rate. We find that

a population can either converge to a clean equilibrium or to a corrupt

equilibrium. It depends on the initial conditions to which equilibrium a

population converges in the time limit. We analyze the respective basins of

attraction. Our results suggest the existence of a pivot as shown by Pal-

dam (2002) in an empirical study. The nature of the pivot is such that low

income countries are prone to become trapped in the corrupt equilibrium

for quite low corruption rates. In contrast, high income countries instead,
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seem to be more resistant to corruption in the sense that they converge to

the clean equilibrium even when a moderately high initial corruption rate

is present.

The plan of the present chapter is as follows. We first explain corruption

in a standard evolutionary game and provide the intuition of the replicator

dynamics by deriving them from an imitation rule. We analyze this ba-

sic corruption game and motivate the extension to implement a frequency

dependent evolutionary game for the study of corruption. In Section 1.3.1

we define frequency dependent games and prove the fundamental results.

In the subsequent section we analyze the corruption game by calculating

the evolutionary equilibria and describing the global behavior of the solu-

tions. Section 1.4 covers our conclusions. Note that for better readability

all proofs of Propositions and Lemmas are collected in Appendix 1.A.

1.2 The Model

In Section 1.2.1 we define the basic corruption game, the evolutionary game

which serves as our basic model. We present its stage game and explain why

the assumed imitation rule generally leads to replicator dynamics. In addi-

tion, we introduce the notion of an evolutionary equilibrium as an equilib-

rium concept and discuss the evolutionary equilibria of the basic corruption

game. In the following Section 1.2.2, we motivate the extension of standard

evolutionary game theory to frequency dependent evolutionary games. We

present the main ideas and refer to the related literature.

1.2.1 The Standard Framework

An evolutionary game describes strategic interaction over time. It is defined

by the populations of players, a state space of strategies, a stage game, and

an adaptation rule which determines the dynamic adjustment process.

The Population

The basic corruption game is a one-population game. We assume the popu-

lation to consist of a continuum of infinitely-lived players. This assumption

1.2. THE MODEL 9

has several well-discussed implications (see Friedman, 1998, for a complete

list).

Firstly, the state space of strategies is continuous. In adherence to con-

tinuous time this allows us to specify the dynamics of a game as a system

of ordinary differential equations.

Secondly, for an infinite number of players the law of large numbers

can be invoked. This allows us to ignore random fluctuations and differing

perceptions of the current state.

Lastly, an infinite number of players motivates the myopia assumption

inherent to our dynamic adjustment process specified below. Players’ in-

fluence on population are so small that players do not attempt to influence

other players’ future actions.

The Strategies

The basic corruption game consists of three strategies: strategy 1, strategy

2, and strategy 3. Hence, the pure-strategy set S of any player is S =

{1, 2, 3}. To simplify interpretations, we presume that individuals only play

pure strategies.12 It is convenient for upcoming calculations to introduce

the following notation. If an individual plays strategy i, i ∈ S, we denote

his strategy choice σi as a vector in IR3:

σi ∈
{(

1

0

0

)

,

(
0

1

0

)

,

(
0

0

1

)}

,

representing a player’s choice of strategy 1, 2, or 3 respectively.

The fraction of the population playing strategy i at time t is denoted by

xi(t) ∈ [0, 1]. The fractions of the population playing the three strategies

(also called strategy frequencies) are the variables in our model. In our

analysis we intend to describe the changes of these strategy frequency over

time. By doing so, we are able to find the conditions under which corruption

prevails or diminishes, and what the consequences for the payoffs of the

players are.

12Note that this assumption is not necessary for the dynamic adjustment process we

aim for. For example, Hofbauer and Sigmund (1998) discuss the replicator dynamics

under the assumption that mixed strategies are played.
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The strategy state of the game,

x(t) =

(
x1(t)

x2(t)

x3(t)

)

,

specifies the frequency of each of the three strategies in t. We will drop the

time index t if there is no danger of misunderstanding.

The set of feasible strategy states is called the strategy state space. Since

strategy frequencies must add up to one, the strategy state space for an

evolutionary game is a simplex. We define the simplex of dimension n − 1

as

Σn−1 =

{

x(t) ∈ IRn
∣
∣
∣ xi(t) ≥ 0 and

n∑

i=1

xi(t) = 1 for i = 1, ..., n

}

.

The strategy state space of the basic corruption game is Σ2.

In the basic corruption game Strategy 1 represents the choice of holding

down a job as government employee while not exploiting the power of the

position. That is, a player choosing Strategy 1 acts as a fair government

employee. Strategy 2 also comprises to serve in public service, but in con-

trast to Strategy 1, the player now abuses the power of the public role for

private benefits. Strategy 2 can therefore be referred to as the strategy of a

corrupt government employee. The third option is to pursue a private sector

activity. We refer to Strategy 3 as the strategy of a private entrepreneur.

Sometimes it is convenient to speak of public servants or government em-

ployees generally; in this case we refer to the total of players with Strategy

1 and 2. The share of public servants is abbreviated with xG = x1 +x2. We

also use the word administration for the government employees.

In our application, each pairwise encounter of two players is interpreted

as one economic interaction. This means that each play of the stage game is

considered as one economic act. The strategy choice of a player represents

his decision which sector to direct his manpower to. The greater the share

of individuals working in the public sector, xG, the greater the share of

economic activity that is processed entirely within the public sector (games

played among government employees) or with the help of the public sector

(games between private entrepreneurs and public servants).13

13The share of economic activity taking place within the government (administration)

is Pr(xG ≥ y)2 = x2
G and the share of economic activity happening within the private

sector is Pr(y ≥ xG)2 = (1 − xG)2 = x3
2.
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Note that our choice of a one-population model has three implications

for the interpretation of the basic corruption game. First, the size of gov-

ernment, measured as the share of agents employing strategy 1 or 2, is en-

dogenous. Second, government employees play against themselves. These

interactions can be interpreted as organizational and administrative tasks

within a government which we believe to be a realistic feature in a model

including the public sector.14 Third, the private sector cannot elude the

interaction with the public sector, no matter whether it is beneficial or

damaging to its business.15 In the next subsection we describe how the

three strategies are presumed to interact.

The Stage Game

The stage game characterizes the strategic interaction of two players at any

point in time. The stage game of the basic corruption game is a normal

form game. It is defined by an expected payoff function f(σi, x), where σi

is the strategy choice of a specific player and x ∈ Σ is the state of the game.

As in most of the existing literature, we adopt a linear expected payoff

function originally employed in Maynard Smith (1982) and depict the game

as a payoff matrix A. In every period players are drawn randomly and

pairwise to play the stage game and receive the expected payoff f(σi, x) =

σT
i Ax.16

The assumptions for A are as follows. A fair government employee re-

ceives the wage w at any point in time, independently of his opponent. The

interpretation is that he is paid w no matter whether he is busy mainly

14The rate at which the economic activities taking place within the administration

increase with a marginal change of xG is inherent in the game structure: ∂ Pr(xG≥x)2

∂xG
=

2xG.
15Note that this feature is similar to a type of world Niskanen proposes: sponsors (in

our case these are the private entrepreneurs as we will see in the next subsection) are

passive in accepting the output proposal of bureaucracy without any careful monitoring

or evaluation of alternatives (Niskanen, 1996).
16As common in the literature, we do not differentiate between the expected payoff

against the population and the realized payoff of a specific stage game played. There are

several reasons for that (Friedman, 1998): First, in large populations such as ours the

expected payoff is a sufficient statistic. Second, payoffs are often not generated by random

pairwise encounters, but by general interactions such as markets, and are therefore not

stochastic.
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delivering services to the private sector or doing work within the admin-

istration. The corrupt government employee, too, receives the wage w at

any point in time, but additionally seizes a corruption income when play-

ing against a private entrepreneur. The private entrepreneur generates a

surplus s when being paired with another private entrepreneur or a fair

government employee, and loses the fruits of his work when encountering a

corrupt government employee. The corruption income of the corrupt public

servant can be specified as s − c, where c depicts the individual costs of

corruption. These assumptions lead to

A =





w w w

w w w + s − c

s 0 s



 .

It is a simplifying assumption that the payoff of a private entrepreneur

does not vary between playing against a fair public servant and playing

against a private entrepreneur. From our view this simplification is justified

by the following interpretation: an entrepreneur makes the surplus s from

his business activity while losing it with probability x2, because he cannot

circumvent interaction with the government.17 Changing the payoff for

Strategy 3 when playing against Strategy 1 (this is element a31 of matrix

A), amounts to making a statement about the efficiency of public service.

The reason is that x1 would then affect the average payoff of Strategy 3. If

a31 = s though, then it is only x2 that influences the private entrepreneur’s

average payoff. Although we have an idea in which direction we could

change a31, we do not want to include such an effect in our model. It is our

aim to analyze the impact of corruption and we do not want to blur the

results with other effects.

The Imitation Rule and the Adjustment Dynamics

Now let us describe in the following how the players select their strategies.

As mentioned above, our analysis is based upon the hypothesis, that

strategy selection by imitation is a realistic assumption when describing

illegal behavior. Players imitate the strategy of other, more successful play-

ers, where success refers to greater expected payoff. They base their decision

17Imagine that the entrepreneur needs to collect permits or certificates from the ad-

ministration, has to pay taxes to the government, or is subjected to controls by law.
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which strategy to imitate on sporadically and imperfectly observed expected

payoffs and behavior. Information is scarce because knowledgeable players

hide the information for which they can be prosecuted. To derive adjust-

ment dynamics we slightly modify a model in Weibull (1995, p. 155). Note

that time is continuous in our model.

Two elements are needed to find a general specification of the adjustment

dynamics. With probability ρi(x) players playing strategy i (called i-players

in the following) review their strategy choice at any point in time. With

probability ϕj
i (x) a reviewing i-player switches to strategy j, j ∈ S, at any

point in time. The share of i-players that will imitate another strategy is

∑

j ∈S\i

xiρi(x)ϕj
i (x) = xiρi(x)

∑

j ∈S\i

ϕj
i (x) = xiρi(x)(1 − ϕi

i(x))

= xiρi(x) − xiρi(x)φi
i(x) .

The share of players imitating i that have played a different strategy before

is

∑

j ∈S\i

xjρj(x)ϕi
j(x) =

∑

j ∈S

xjρj(x)ϕi
j(x) − xiρi(x)ϕi

i(x) .

This leads to a net effect in the share of i-players of

ẋi =
∑

j ∈S

xjρj(x)ϕi
j(x) − xiρi(x) . (1.1)

We can now further specify this general adjustment dynamics by making

assumptions on ρi(x) and ϕi
j(x). First, we presume that players continu-

ously review their strategies and set ρi(x) = 1 ∀i. Second, for specifying

ϕi
j(x) we suppose the following: At time t, every player samples an oppo-

nent with a probability equal for all opponents. The player observes the

opponent’s strategy and, with some noise, the opponent’s expected payoff.

Therewith, a j-player sampling an i-player observes f(σi, x)− ε with prob-

ability xi, where ε is a random variable with a continuously differentiable

cumulative distribution function Φ : IR → [0, 1].

We assume the following imitation rule: A j-player imitates strategy i

when his own expected payoff (known without noise) is smaller than the

observed expected payoff of strategy i. That is, he imitates strategy i if
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f(σj, x) < f(σi, x) − ε. The probability that a j-player imitates i is Pr[ε <

f(σi, x) − f(σj, x)] = Φ[f(σi − σj, x)]. From this we can conclude that

ϕi
j(x) = xi Φ[f(σi − σj, x)] ∀ i 6= j ,

ϕj
j(x) = 1 −

∑

i∈S\j

xi Φ[f(σi − σj, x)] .

Plugging this last expression and ρi(x) = 1 into (1.1), the adjustment dy-

namics takes the form

ẋi =
∑

j ∈S

xjϕ
i
j(x) − xi =

∑

j ∈S\i

xjϕ
i
j(x) + xi(ϕ

i
i(x) − 1)

=
∑

j ∈S\i

xj xiΦ[f(σi − σj, x)] + xi



−
∑

j ∈S\i

xjΦ[f(σj − σi, x)]





= xi

∑

j ∈S

xj

(

Φ[f(σi − σj, x)] − Φ[f(σj − σi, x)]
)

.

Finally we must specify the cumulative distribution function Φ. We assume

a uniformly distributed error term ε over the interval of possible expected

payoff differences. The function Φ is linear, Φ(y) = α + βy, and the adjust-

ment dynamics derived from the imitation rule simplifies to

ẋi = 2βxi

∑

j ∈S

xjf(σi − σj, x) = 2βxi

(
∑

j ∈S

xjf(σi, x) −
∑

j ∈S

xjf(σj, x)

)

= 2βxi (f(σi, x) − f(x, x)) .

Except from a time rescaling, our dynamics is thus equal to the replicator

dynamics (see Taylor and Jonker, 1978; Schuster and Sigmund, 1983),

ẋi = xi (f(σi, x) − f(x, x)) ∀i ∈ S . (1.2)

Since we do not focus on rates of convergence in this chapter, we can con-

tinue using equation (1.2). We alternatively will refer to it as the replicator

dynamics or the imitation dynamics. Note that in our model, by equation

(1.2), strategy selection from myopic imitation leads to a deterministic,

continuous-time, continuous-state dynamics. Furthermore, note that equa-

tion (1.2) is a system of ordinary differential equations. For a simplified
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notation, we define the system’s right hand side as the (Lipschitz contin-

uous) function F : Σ → Σ, and can now write the imitation dynamics as

ẋ = F (x).18

Equilibrium Concept and Equilibria of the Basic Corruption Game

The most common equilibrium concept in biological literature concerned

with evolutionary games is the ESS, which stands for Evolutionary Stable

Strategy (see Hofbauer and Sigmund, 1988, for a thorough treatment). Or-

thodox game theory literature tends to focus on NE, the Nash-Equilibrium.

As Friedman (1998) clearly points out, both the ESS and the NE, are static

equilibrium concepts that rest upon the payoff function of the stage game. In

Section 1.2.2 we abandon the assumption of a constant stage game wherefore

a dynamic equilibrium concept needs to be employed. Instead of referring

to a constant stage game, it must assure stability of F in an equilibrium.

In Definition 1 we specify the Evolutionary Equilibrium EE in terms of the

mathematical definitions of function F ’s stability in a critical point (also

called stationary point or fixed points). The term evolutionary equilibrium

was introduced by Hirshleifer (1982).

Definition 1 A strategy state x ∈ Σn−1 is an evolutionary equilibrium of an

evolutionary game if x is an attractor19 of the dynamical system ẋ = F (x)

defining the game’s adjustment dynamics.

What is the interpretation of our equilibrium concept’s definition for evolu-

tionary games? As mentioned above, we are interested in how the imitation

dynamics changes the strategy frequencies over time. By solving equation

18The replicator dynamics are simplex invariant:

∑

i∈S

ẋi =
∑

i∈S

xi (f(σi, x) − f(x, x)) =
∑

i∈S

xif(σi, x) − f(x, x)
∑

i∈S

xi

= f(x, x) − f(x, x) = 0 .

19An attractor is defined as an asymptotically stable non-wandering set (in our case the

only possible non-wandering sets are critical points and points on limit cycles or graphics).

For definitions of critical points (also called equilibrium points or fixed points), limit

cycles, graphics (also called separatrix cycles), asymptotic stability, and non-wandering

sets see Perko (2000) or any textbook on dynamic systems.
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Very little research has been done on frequency dependent evolutionary

games. The notion game with frequency dependent payoffs is due to Brenner

and Witt (2003) discussed below. The concept itself dates back to Joosten

et al. (1994), who first described games with changing payoffs, in a different

context though. A few other examples of frequency dependent games (not

evolutionary ones) are provided by Joosten et al. (2000) who introduce

frequency dependent payoffs in the setup of stochastic games. They extend

the concept of the Folk Theorem to capture the equilibria.

Brenner and Witt (2003) analyze evolutionary games with two-strategy,

two-player stage games, where the dynamics is derived from individual strat-

egy adaptation due to reinforcement learning in the variant of meliorating

behavior. The resulting learning process changes the strategy choices in the

population always in the same direction as the replicator dynamics. The

authors describe the stationary state of a game that has a dominant strat-

egy at every point in time. The players’ payoffs depend on the frequency

with which the dominant strategy has been played over all previous time

periods.

Our analysis differs in several aspects from the setup of Brenner and Witt

(2003). Firstly, we are concerned with the replicator dynamics. Secondly,

our stage game is a three strategy game. Thirdly, we assume that the

payoffs of the stage game in some period only depend on the frequencies of

strategies played in that same period. Hence, strategy frequencies of prior

periods do not enter the payoffs of the stage game. However these historical

strategy frequencies have an effect on the stage game indirectly, namely

through their impact on the present strategy frequencies.

1.3 Frequency Dependent Evolutionary

Games

We first define the class of frequency dependent evolutionary games.

Definition 2 An evolutionary game consisting of a population, a strat-

egy state space, a strategy state dependent stage game, and a dynamic ad-

justment process, belongs to the class of frequency dependent evolutionary

games.

1.3. FREQUENCY DEPENDENT EVOLUTIONARY GAMES 19

We adhere to the notation of Section 1.2.1 and only allude to the mod-

ifications necessary to transform an evolutionary game into a frequency

dependent evolutionary game. The frequency dependent stage game of a

frequency dependent evolutionary game is depicted by a matrix Ã(x), where

the matrix components ãkl are functions of x. The corruption game thus

has the payoff matrix

Ã(x) =





w̃(x) w̃(x) w̃(x)

w̃(x) w̃(x) w̃(x) + õ(x)

s̃(x) 0 s̃(x)



 , (1.3)

where the functions w̃(x), s̃(x), and õ(x) will be specified in Section 1.3.2.

As a consequence of a frequency dependent stage game, the expected payoff

of strategy choice σi is f(σi, x) = σT
i A(x)x, where f is not linear in x

anymore. The replicator dynamics are given by (1.2) and can be written as

ẋi = xi

(
σT A(x)x − xA(x)x

)
∀ i ∈ S (1.4)

for a frequency dependent evolutionary game.

For the rest of this section we proceed as follows. First, we prove in

1.3.1 that the general features of the replicator dynamics still hold for fre-

quency dependent evolutionary games. Second, we deal with specific classes

of frequency dependent evolutionary games. In 1.3.2 we analyze the cor-

ruption game which has the payoff matrix defined in (1.3). In Appendix

1.B we analyze the class of frequency dependent evolutionary games having

stage games with only two pure strategies. We compare the evolutionary

equilibria of the standard evolutionary games with two strategies with their

frequency dependent counterparts.

1.3.1 Some General Results

The replicator dynamics of a frequency dependent evolutionary game is a

system of differential equations as specified in (1.4). To guarantee that this

system of differential equations induces a well-defined dynamics on the state

space Σn−1, two conditions must be satisfied: (1) there is a unique solution

for all initial conditions x0 ∈ Σn−1, (2) these solutions must remain inside

of Σn−1, i.e. φt(x
0) ∈ Σn−1. Only if (1.4) satisfies these two fundamental
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requirements, the frequency dependent evolutionary game can be used as

an economic model.

The following two propositions comprise the conditions for the system

of differential equations (1.4) to be well-defined. Proposition 2 concerns the

existence and the uniqueness of the solutions of system (1.4).

Proposition 2 If all elements of A(x) are Lipschitz-continuous functions,

the replicator dynamics of a frequency dependent evolutionary game has a

unique solution for every initial condition in the state space.

Note that all proofs are in Appendix 1.A. The next proposition states that

the unique solution of the replicator dynamics of a frequency dependent

evolutionary lies in the interior of the game’s state space.

Proposition 3 If all elements of A(x) are continuous functions, then the

interior of simplex Σ and the boundary of the simplex Σ are both invariant

under the replicator dynamics of a frequency dependent evolutionary game.

Since Lipschitz-continuity implies continuity (see e.g. Walter, 1991), the dif-

ferential equation system (1.4) induces a well-defined dynamics if we assume

the elements of A(x) to be Lipschitz-continuous functions of x.

Proposition 3 implies in particular

N∑

i=1

xi = 1 ⇒
N∑

i=1

ẋi = 0 ⇒ ẋk = −
N∑

j=1

j 6=k

ẋj .

The change in the frequency of one strategy can be expressed through the

changes in frequencies of the other strategies. This allows us to reduce

the differential equation system of the replicator dynamics for frequency

dependent evolutionary games by one equation.

A last property of the replicator dynamics, not as fundamental for the

outcome as those established in Propositions 2 and 3, but very convenient

for the calculations of the solution, is that it is invariant under positive

continuous payoff transformations. Invariance under a positive continuous

payoff transformation means that the functions in A(x) can be multiplied

by a positive real number without changing the solutions of the system.

Similarly, adding or subtracting a continuous function from the columns

of A(x) does not change the replicator dynamics of a frequency dependent

evolutionary game.
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Proposition 4 The replicator dynamics of a frequency dependent evolu-

tionary game is invariant under positive continuous transformations of pay-

offs.

In the Appendix 1.B we focus on the class of evolutionary games that

have stage games with two strategies. We compare the evolutionary equilib-

ria of the standard evolutionary games with those of the frequency depen-

dent evolutionary games. To demonstrate the usefulness of our extension,

we give an example that cannot be modelled satisfactorily by an evolution-

ary game with an invariable stage game.

In the next section, we apply Propositions 2, 3 and 4 to the corruption

game in order to understand the dynamics of corruption.

1.3.2 The Corruption Game

In analyzing the corruption game we proceed as follows. Firstly, to assure

that the model suits the aim of analyzing the dynamics of corruption, we

make assumptions on the functions in the payoff matrix Ã(x) of the corrup-

tion game. Then we present our main results. Proposition 5 describes the

behavior of the solution trajectories that origin in the state space generally.

We discuss the evolutionary equilibria given in the proposition and interpret

their implications for the model. Finding a frequency dependent evolution-

ary game’s EE can be a very hard task, since its differential equation system

is highly nonlinear. Therefore we briefly describe the proof of Proposition

5 and allude to an extension of Liapunov’s Theorem that is developed and

proven in Appendix 1.A. This theorem can be very helpful for analyzing

nonlinear dynamical systems with a simplex as a state space. Finally, we

provide numerical solutions that provide further insight into the dynamics

of corruption.

Defining the Corruption Game

The corruption game’s payoff matrix Ã(x) in (1.3) contains three functions:

w̃(x), the payoff resulting from government wage, õ(x), a corrupt govern-

ment employee’s expected additional payoff when encountering a private

entrepreneur, and s̃(x), the payoff from the return of private economic ac-

tivity.
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To specify these functions let us assume that government wage is a

function of population income (and tax revenue therefore)20 and that the

government budget is financed through proportional taxes. Furthermore, let

us assume that the government’s budget is balanced at any point in time and

that all legally earned payoffs are subject to taxes. The tax rate is denoted

by τ . According to that we define w̃(x) = (1 − τ)w(x), s̃(x) = (1 − τ)s(x),

and õ(x) = s(x) − c(x). Hence, we rewrite the payoff matrix as

A(x) =





(1 − τ)w(x) (1 − τ)w(x) (1 − τ)w(x)

(1 − τ)w(x) (1 − τ)w(x) (1 − τ)w(x) + s(x) − c(x)

(1 − τ)s(x) 0 (1 − τ)s(x)



 . (1.5)

The function c(x) depicts the expected costs of corrupting a private en-

trepreneur and absorbing his surplus s(x) from private economic activity.

The probability at which a corrupt activity is detected is denoted by p(x),

p(x) ⊆ [0, 1]. We assume that if a corrupt government employee is caught

red-handed, he is punished by having drawn off his net income, i.e.

c(x) = p(x) ((1 − τ)w(x) + s(x)) .

Note that a corrupt government employee encountering a private entrepreneur

obtains the payoff w(x) + s(x) if p(x) = 0 and obtains a zero payoff if

p(x) = 1. We leave detection probability p(x) unspecified for the moment

and describe the corruption game’s dynamics for a general function p(x).

Later we will discuss the game with a specification of the function p(x). For

now we make the following assumption.

Assumption 1 An increase in the share of corrupt government employees

decreases the probability that a corrupt act is detected, i.e.,

∂p

∂x2

(x) < 0 .

20The higher the GDP of a country, the higher is the government wage, though there

exist differences in the percentage of government wage expenditure to GDP between

countries. Hewitt and Van Rijckeghem (1995) find the following factors as determinants

of government wage in a cross-country study: federal structure of political system, size

of population in combination with per capita income, centralization of government, and

government debt as factors. To keep our model simple, we abstract from these factors.

1.3. FREQUENCY DEPENDENT EVOLUTIONARY GAMES 23

Further an increase in the share of corrupt government employees decreases

the detection probability by more than an increase in the share of fair gov-

ernment employees, i.e.,

∂p

∂x2

(x) <
∂p

∂x1

(x) .

Note that ∂p

∂x1
(x) can be positive or negative.

Though it is possible to analyze the game with w(x), s(x), and c(x) being

functions of x, we choose to normalize s(x) = 1. By that normalization

we abandon the possibility of a frequency dependent surplus from private

activity. Though we are aware of interesting specifications of s(x),21 we

abstain from including such an effect. The reason is that we model the

costs of corruption for the private sector in the payoff matrix directly, and

do not want to lessen the explanatory power of the model by including

further effects. Note that by setting s(x) = 1, government activities are

of no direct utility for the private sector. But of course we can choose a

p(x) such that the share of fair government employees influences the costs

of corruption.

These assumptions allow us to calculate the government wage explicitly.

Tax revenue r(x) is given by

r(x) = τxT





w(x) w(x) w(x)

w(x) w(x) w(x)

1 0 1



 x

= τ ((x1 + x2)w(x) + (1 − x1 − x2)(1 − x2)) .

As mentioned above, the government is not able to tax the transfers from

the private entrepreneur to the corrupt government employee. Thus, only

legal payoffs are enlisted in the matrix used for tax revenue calculation.

Now we can explicitly compute w(x) using the budget constraint of the

government:

w(x) =
r(x)

x1 + x2

,

=
τ ((x1 + x2)w(x) + (1 − x1 − x2)(1 − x2))

x1 + x2

.

21Research in institutional economics suggests that s is higher the better the infras-

tructure of a country. Since we solely wish to analyze the impact of corruption, it is

consequent to only have x2 defining institutional quality.
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By solving for government salary we receive

w(x) =
τ

1 − τ

(1 − x1 − x2)(1 − x2)

x1 + x2

.

Plugging the explicit expression for w(x) into the definition of r(x) yields

r(x) =
τ

1 − τ
(1 − x1 − x2)(1 − x2) .

This allows us to evaluate how the government wage and the tax revenue

depend on x1 and x2.

∂w(x)

∂x2

<
∂w(x)

∂x1

< 0 and
∂r(x)

∂x2

<
∂r(x)

∂x1

< 0 .

It is not surprising that the derivations of the government wage with respect

to x1 and x2 are negative. Firstly, if either x1 or x2 increases, the frequency

of private entrepreneurs decreases. However, this fraction of the population

is solely responsible for the contribution of value to r(x), since government

employees only pay tax on their wages which are a fraction of r(x); hence

they cannot contribute to tax revenue positively. Secondly, the higher the

number of government employees is, the lower is government salary for a

given r(x). The reason is our assumption of a balanced government budget:

if x1 or x2 increases, r(x) has to be split among more employees, so each gets

a smaller wage. We also observe that the derivation of government wage

with respect to x2 is smaller than the one with respect to x1. The rationale

for this is the following. The more corrupt government employees there are,

the higher is the share of games played among corrupt employees and pri-

vate entrepreneurs. This implies that more of the entrepreneurs’ surpluses

flow outside the taxation system because they become illegal income from

corruption. This reduces r(x) and therewith w(x). This is supported by

empirical studies (e.g. Hwang, 2002; Hewitt and Van Rijckeghem, 1995).

The Main Result - The Dynamics of Corruption

In the last subsection we specified the functions in the payoff matrix of

the corruption game, except for p(x) which we want to treat generally.

Proposition 4 states that we can rewrite the payoff matrix (1.3) as

A(x) =





0 0 0

0 0 1 − c(x)

(1 − τ)(1 − w(x)) −(1 − τ)w(x) (1 − τ)(1 − w(x))



 (1.6)
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without having changed its dynamics. The replicator dynamics for fre-

quency dependent evolutionary game yields a system of three differential

equations for the corruption game. Following Proposition 3, we drop the

third equation for ẋ3 and substitute x3 by 1 − x1 − x2. This leaves us with

the planar system

ẋ1 = x1(1 − x1 − x2) [(1 − τ)(w(x) − 1) − x2(τ − c(x))]

ẋ2 = x2(1 − x1 − x2) [(1 − τ)w(x) + (1 − x2)(τ − c(x))] .
(1.7)

We describe the dynamics of corruption in the following proposition.

Proposition 5 The corruption game can only have the following three crit-

ical points as evolutionary equilibria:

• (τ, 0) is an EE if 1
2−τ

< p(τ, 0),

• (0, 1) is an EE if p(0, 1) < τ ,

• (0, x̄2) exists as a critical point if there exists an x̄2 satisfying p(0, x̄2) =
τ

(1−x̄2)2τ+x̄2
and is an EE if τ > x̄2 and if − ∂c

∂x2
(0, x̄2) < τ

x̄2
2

.

There always exists at least one evolutionary equilibrium.

According to Proposition 5, the corruption game can have seven different

combinations of evolutionary equilibria. We show these in Figure 1.2.

 

x2 = 1 x1 = 1 

x3 = 1 

x2 = 1 x1 = 1 

x3 = 1 

x2 = 1 x1 = 1 

x3 = 1 

x2 = 1 x1 = 1 

x3 = 1 

x2 = 1 x1 = 1 

x3 = 1 

x2 = 1 x1 = 1 

x3 = 1 

x2 = 1 x1 = 1 

x3 = 1 

Figure 1.2: The possible combinations of evolutionary equilibria.

The proof of Proposition 5 is given in Appendix 1.A . In order to give an

illustration how a frequency dependent evolutionary game has to be solved,
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let us present a verbal sketch of the proof. The proof is accomplished in

two parts.

In Part I, we apply the local theory of nonlinear systems on (1.7). This

involves calculating its critical points as well as determining the system’s

dynamical behavior in their vicinity. Critical points are found by setting the

right hand side of (1.7) equal to zero and by solving for x1 and x2. There

are several solutions and in many cases we find conditions for the existence

of the critical point.

If a critical point is hyperbolic, we can determine its stability by ap-

plying the Hartman-Grobman Theorem. However, some critical points of

system (1.7) are nonhyperbolic. Their asymptotic stability, or non-stability

respectively, is typically more difficult to determine; one frequently used

method is due to Liapunov. However, in frequency dependent evolution-

ary games, critical points may lie on the boundaries of the simplex where

Liapunov’s Theorem does not apply. Therefore, we prove an extension of

Liapunov’s Theorem to overcome the problems in determining the stability

of nonhyperbolic critical points on simplex boundaries. Theorem 1 in Ap-

pendix 1.A states that the method due to Liapunov, applied as described

in Theorem 1, can be used to determine the stability of a critical point on

the simplex boundary as long as the simplex is invariant under the system’s

dynamics. As shown in Proposition 3, frequency dependent evolutionary

games fulfill this necessary requirement under very general assumptions on

the payoff functions. We believe that Theorem 1 can considerably simplify

the analysis of frequency dependent evolutionary games in many cases.

In Part II, we check whether there exist other attracting sets of (1.7) in

addition to the critical points found in Part I. We control for feasible at-

tracting sets by applying Theorems of the global theory of nonlinear systems

like the Poincaré-Bendixson Theorem and Theorems of Index Theory. We

succeed in showing that the attracting sets of (1.7) must be critical points.

Therefore we can conclude that we have found all evolutionary equilibria in

Part I of the proof.

Interpreting the Main Result

We find three strategy states that can be evolutionary equilibria under our

assumptions.
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The critical point (τ, 0) always exists and is an evolutionary equilibrium

if the detection probability of corrupt behavior is sufficiently high in (τ, 0).

We refer to this EE as the clean equilibrium because all corrupt activity is

crowded out by private activity and fair government service. If the function

p(x), a society’s detection probability, takes high values for x2 → 0, we know

a clean equilibrium exists. Therefore we conclude that for a society with a

judiciary functioning efficiently at a low corruption rate, a clean equilibrium

exists and at least some initial strategy states converge towards it. Note

that a population may have a clean equilibrium for some tax rates, but not

for others.

The second critical point, (0, 1), also exists independently of the speci-

fication of p(x). Furthermore, it is an evolutionary equilibrium if detection

probability is low enough in (0, 1). In this case we speak of a corrupt equi-

librium because in this equilibrium all agents choose to be a corrupt govern-

ment employee. Thus, if function p(x) takes low values for high values of x2,

the corrupt equilibrium exists. A society’s detection probability p(x) takes

low values for a high corruption rate if corruption badly affects a society’s

judiciary or its implementation. As soon as elements of a judiciary that are

responsible for the detection of corruption can be corrupted, we expect that

the society can be trapped in the corruption equilibrium for at least some

initial strategy states.22

The last evolutionary equilibrium does not exist for all τ and all p(x).

If (0, x̄2) exists and if the costs of corruption are not increasing too strongly

22The corrupt equilibrium may appear unlikely at first glance, because all players

choose to be government employed although government wage converges to zero. We

offer two arguments in favor of this evolutionary equilibrium. The first is an example:

During Carlos Menem’s last term of office as President of Argentina, 70% (!) of the

labor force was employed by the local governments in many of the provinces (namely

Chaco, Tucumán, La Rioja, and others). The majority of government employees barely

worked yet collected their salary in the end of the month. At that time, Argentina

certainly fulfilled the condition for the existence of the corrupt equilibrium: although the

corruption rate was high, almost nobody was convicted for corrupt activities. Only 5%

of Argentineans reported that they would seek judicial help in case of severe problems.

The efficiency of the judiciary was too low for people to bother reporting corruption

(and other crimes). The example is taken from TI’s Daily Corruption News Service,

http://www.transparency.org/cgi-bin/dcn-read.pl?citID=35148. The second argument

is a theoretical one. The dynamics converge at an extremely low speed towards (0, 1), so

our model does not actually suggest any observations of (0, 1) or its closest vicinity.
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in x2, then it is an EE of the corruption game. We refer to it as the hybrid

equilibrium because the government service is entirely corrupt but does not

suppress private economic activity. If a society’s detection probability p(x)

does not depend strongly on the corruption rate and is neither very high

nor very low, then we expect the hybrid equilibrium to exist. Consequently,

a society whose judiciary is not too strong but also not too badly affected

by corruption may have a hybrid equilibrium and can converge to it at least

for some initial strategy states.

The stability conditions for the three critical points are independent

of each other. Therefore the specification of p(x) and the tax rate τ may

imply any combination of the three evolutionary equilibria for the corruption

game. By definition the EE are attractors of (1.7). Since Proposition 5

denotes all EE, every trajectory through an initial strategy state x0 ∈ Σ2

- except the separatrices of system (1.7) - converges to one of the EE. The

separatrices of a dynamical system are those trajectories that approach a

saddle point in the limit. The corruption game can have two saddle points

at most; these are (0, x̄2) and (τ−x̂2, x̂2) (see Proof of Proposition 5). So we

have at most two separatrices within the simplex. If two or three EE exist

for a given p(x) and τ respectively, then the initial state is decisive for the

EE the population converges to. We are interested in determining the sets

of initial strategy states that converge to a certain evolutionary equilibrium.

These sets are called the evolutionary equilibria’s basins of attraction.

In order to describe each equilibrium’s basin of attraction formally, the

system would have to be solved explicitly. As in the case with many nonlin-

ear differential equation systems, this is not possible. Instead, we provide

an example of a function p(x) and describe the global behavior of the cor-

ruption game by numerical simulations.

The Feedback Effect

In the following we discuss the dynamics of corruption for the specific func-

tion

p(x1, x2) = (1 − x1 − x2)(1 − x2) .

This choice of p(x) is motivated by the results of empirical studies. For

example, Chong and Calderon (2000) find that corruption has an impact
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on growth, but also that growth influences the corruption rate. With our

choice of p(x) we pay respect to that fact insofar as income influences the

corruption rate. The reasoning in our model is as follows. The higher the

income of a population is, the more valuable are property rights. Assume

now that the players have the possibility to protect their property rights,

for instance by establishing a judiciary that is independent of the govern-

ment. The better such an independent judiciary works, the higher is the

detection probability of corrupt activities. We suggest that the efficiency

of the judiciary depends on the amount of financial resources available.

Hence, populations are disposed to provide more resources to protect prop-

erty rights the richer they are. Therefore it is reasonable to assume that

p(x) depends positively on income.

In the corruption game, the legal23 population income is

l(x1, x2) =
(1 − x1 − x2)(1 − x2)

1 − τ
. (1.8)

For simplicity, we implement p(x) as a linear function of l(x). Since p(x) is

a probability it can only take values in [0, 1]. Consequently, we define it as

p(x) = (1− τ)l(x). Thus the probability of getting caught after committing

a corrupt activity is proportional to the population income. Note that
∂p

∂x2
< ∂p

∂x1
< 0. An increasing share of corrupt as well as fair government

employees decreases p(x). The reason is that only private activities generate

income where government employees are financed over taxes and do not

contribute to population income.

The clean equilibrium exists for p(τ, 0) > 1
2−τ

, i.e. for τ < 1
2
(3 −

√
5) =

0.38. The corrupt equilibrium exists for p(0, 1) < τ , which is always satisfied

because p(0, 1) = 0. The critical point is a saddle because condition (1.20)

is satisfied for x̄2 evaluated at (1.13). Note that x̄2 increases in τ .

According to these results, the model predicts the following for a society

in which the detection probability of corrupt activity depends positively on

income: If tax burden is moderate, it either converges to the clean or the

corrupt equilibrium, depending on the initial strategy state. If taxes are

very high, it converges to the corrupt equilibrium.

We display the solution trajectories in Figure 1.3. The bottom left vertex

of the simplex represents the strategy state (1, 0) (only fair government

23We think that earnings from corrupt activities must not be included when construct-

ing an indicator of property rights value.
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Figure 1.3: The dynamics of corruption with feedback effect.

employees), the bottom right vertex the strategy state (0, 1) (only corrupt

government employees), and the top vertex the strategy state (0, 0) (only

private entrepreneurs). The six pictures in Figure 1.3, are calculated with

the tax rates τ = {0.1; 0.15; 0.2; 0.3; 0.5; 0.8}. As mentioned above, the

basin of attraction of the corrupt equilibrium broadens with τ increasing.

The reason is that a high τ reduces the incentive of private activity because

of a smaller relative payoff; firstly because more taxes have to be paid and

secondly because government wage is higher.

How can we interpret the shape of the basins of attraction? The sepa-

ratrix of point (0, x̄2) separates the two basins of attraction. We find it by

numerical simulation and plot it as a solid line in Figure 1.4 for a τ = 0.15.

The figure suggests that it is an approximately straight line parallel to
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x1=1 x 2 =1 

x 3 =1 

iso-income curves 

separatrix 

Constant 
corruption rate 

Figure 1.4: The basins of attraction and iso-income curves.

the edge of the simplex where x2 = 0. All solution trajectories that start

from an initial strategy state below this separatrix converge to the corrupt

equilibrium. All others converge to the clean equilibrium. We discuss this

observation in the following paragraph.

In empirical corruption research, the corruption rate is measured as the

frequency of corrupt government employees within the government.24 In

our model such a measure coincides with the expression

ρ(x) =
x2

x1 + x2

.

The corruption rate is constant on straight lines connecting the strategy

state (0, 0) with points on the simplex boundary where x3 = 0:

 

x2 = 1 x1 = 1 

x3 = 1 

low corruption rate high corruption rate 

24The most frequently used data is the CPI (corruption perception index) provided

by TI (Transparency International), an international non-governmental organization de-

voted to combating corruption. The CPI “ranks countries in terms of the degree to which

corruption is perceived to exist among public officials and politicians ”, http://www.-

transparency.org/cpi/index.html#cpi.
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In Figure 1.4 we also depict iso-income curves. They are defined as

sets of strategy states which generate the same legal income l(x) defined

in (1.8). The higher an iso-income curve lies in the simplex (the greater

x3), the greater is the income generated by its strategy states. The corrupt

equilibrium generates an income of zero, i(0, 1) = 0, the clean equilibrium

generates an income of one, l(τ, 0) = 1. We see that the separatrix crosses

some of the iso-income curves. An intersection point that is more to the

right of the simplex results in a higher income of the respective iso-income

curve. We conclude that a population with a high income may start off

with a high corruption rate and still converge to the clean equilibrium.

Contrarily, a population with a low income that starts off with the same

corruption rate may converge to the the corrupt equilibrium.

Paldam (2002) detects a similar effect empirically. In his paper, he first

tests if cross-country data supports a model explaining corruption by cul-

tural factors or a model containing economic factors. He finds that the

economic model is superior and that GDP is the best predictor of the cor-

ruption rate. However, he also observes that countries either become too

corrupt or too clean for their cultural affiliation. He proposes a seesaw dy-

namics to explain this observation. A so-called pivot line is defined as a

corruption rate threshold. A corruption rate above the pivot line amplifies,

a corruption rate below the pivot line dampens corruption. The data sup-

ports a pivot line such that most rich countries are above and most poor

countries below. This observation is in accordance with the results of our

model. We have shown analogously that the separatrix does not run along

a constant corruption rate. The corrupt equilibrium’s basin of attraction

extends to lower corruption rates for small income populations than for high

income populations.

Finally note that the shape and location of the separatrix depends on

our exogenous variable τ . An enlargement of the basin of attraction of the

clean equilibrium can be reached by lowering the tax rate. The empirical

fact that government spending has a strong positive influence on corruption

(Goel and Nelson, 1998) can therefore be seen as supportive of our model.
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1.4 Conclusions

We analyze corruption in an evolutionary game where players choose be-

tween three strategies: to be a fair government employee, a corrupt gov-

ernment employee, or a private entrepreneur. Players are matched pairwise

to play a stage game; each game played can be interpreted as an economic

interaction. In such a model, the size of the government is endogenous. The

stage game defines the following payoffs for the three strategies: Govern-

ment employees have, regardless of their opponents, government wage as a

payoff. However, the corrupt government employee additionally seizes the

surplus of private economic activity and bears individual costs of corruption

when playing against an entrepreneur. The private entrepreneur generates

a surplus which he loses when playing against a corrupt entrepreneur. We

assume that players observe the expected payoff of other opponents infre-

quently and with some noise. They imitate a strategy if they observe that

it yields a higher expected payoff than their own strategy. Under certain

assumptions this imitation rule leads to the replicator dynamics.

Although this evolutionary game generally captures the payoff transfers

in a society where corrupt behavior interacts with private activity, this setup

does not yield any plausible equilibria. The reason is that not all dynamical

effects of corruption can be included in the standard setup.

Evolutionary games are defined by constant stage games which do not

allow for feedback effects. Consequently, they are not suited to analyze eco-

nomic situations in which population behavior affects the strategy payoffs

of the stage game. However, there are many applications requiring this.

Let us give an example to emphasize our point: People must choose to

acquire a specific working skill in order to compete in the labor market.

The expected salary is the higher, the less people possess a specific skill in

the population. This situation can be modelled as a standard evolutionary

game which perfectly describes individual decisions for different frequencies

of skills. However, the standard setup does not allow to include more com-

plex coherences like specialization effects. If many people possess the same

skills, the probability of innovations rises which can have a major impact

on the salaries paid in this sector.

Feedback effects are crucial for studying the dynamics of corruption:

The incentives for private activity are smaller if income is lost to corrupt
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government employees. However, this is not the only effect of a high corrup-

tion rate. The reduced population income decreases government wage and

the possibility to punish corrupt behavior, which increases the incentives

for corrupt activity.

In order to comprehend feedback effects, we propose a new class of

games, which we name the class of frequency dependent evolutionary games.

We prove that frequency dependent evolutionary games fulfill the condi-

tions for well defined dynamics under weak assumptions on the payoff func-

tions. By analyzing the dynamics of corruption, we exemplarily solve a

frequency dependent evolutionary game. The main difficulty of applying

our new framework concerns the determination of the asymptotic stabil-

ity of the game’s equilibria. Therefore we present a theorem that extends

Liapunov’s Method to all possible equilibria of frequency dependent evolu-

tionary games. Thereby we provide one approach that significantly reduces

the technical difficulties of frequency dependent evolutionary games.

Let us now consider the frequency dependent evolutionary game describ-

ing corruption. It disposes an endogenous government wage and allows for

the specification of institutional quality which can depend on population

income. Our analysis of the corruption dynamics leads to the following

conclusion: A society either converges to a clean equilibrium, a corrupt

equilibrium, or a hybrid equilibrium.

In the clean equilibrium all players either choose to be a fair government

employee or a private entrepreneur. It does only exist if the institutions

punish corrupt behavior efficiently in case of a low corruption rate. Note

that a society with weak institutions due to a high corruption rate can still

converge to this equilibrium. The only condition for its existence is that

institutions improve their efficiency with a decreasing corruption rate.

In the corrupt equilibrium all players choose to be corrupt government

employees. This equilibrium exists whenever there is little punishment of

corrupt behavior in case of a high corruption rate. Thus, if corrupt behavior

decreases the individual costs of corruption or if institutions are generally

weak, a society can converge to this equilibrium.

In the hybrid equilibrium all players either choose to be corrupt govern-

ment employees or private entrepreneurs. This equilibrium exists if punish-

ment of corruption is not strongly affected by the corruption rate and if it

is neither severe nor weak.
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If we include the feedback effects between population income and the

corruption rate, i.e. if the quality of a society’s institutions depends on the

population income, the following results apply: The clean equilibrium only

exists for tax rates below a certain threshold, the corrupt equilibrium does

exist in any case. Let us assume that the tax rate is moderate enough for

the clean equilibrium to exist. Our main finding then is the following: A

society converges to the clean equilibrium if its corruption rate is below a

certain threshold and it converges to the corrupt equilibrium if its corruption

rate is above this threshold. The lower the population income is, the lower

is this threshold. In other words, the lower the population income, the

smaller must the corruption rate be for a society to converge to the clean

equilibrium. High income populations however may start off with quite

a high corruption rate but still converge to the clean equilibrium. A low

income country with a high corruption rate is always trapped in the corrupt

equilibrium.
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1.A Appendix: Proofs

1.A.1 Proof of Proposition 1

The replicator dynamics (1.2) are invariant under positive affine transfor-

mations of payoffs (see e.g. Weibull, 1995, p. 73), hence we can redefine A

as

A =





0 0 0

0 0 s − c

s − w −w s − w



 . (1.9)

In order to find the critical points of the system defined by ẋ = F (x), we

have to solve

F (x) =





x1

(
e1

T Ax − xAx
)

x2

(
e2

T Ax − xAx
)

x3

(
e3

T Ax − xAx
)



 = 0 .

Due to the fact that the replicator dynamics is simplex invariant, we can

drop one equation and replace one variable. We choose to drop the equation

for ẋ3, and eliminate x3 by 1 − x1 − x2. This leaves us with the reduced

system

x1(1 − x1 − x2)(w + x2c − s) = 0

x2(1 − x1 − x2)(w + x2c − c) = 0 .

We redefine F : IR2 → IR2 as the left hand side of the reduced system.

The function F is differentiable on IR2 and therefore Lipschitz continu-

ous on IR2. Thus the Fundamental Existence-Uniqueness Theorem (Picard-

Lindelöf) applies (Perko, 2000, p. 74). The critical points are listed in the

first column of Table 1.1. Note that we assume that s 6= w and s 6= c. The

Jacobian DF (x) is

(
(1 − 2x1 − x2)(w + x2c − s) x1(s − w + c − c(x1 − 2x2))

x2(c − w − x2c) (1 − x1 − 2x2)(w − c + 2x2c) + x2
2c

)

.

The critical points (0, 0) and (0, w−c
c

) are hyperbolic because both DF (0, 0)

and DF (0, w−c
c

) have non-zero eigenvalues. We can therefore apply the
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Hartman-Grobman Theorem (Perko, 2000) and derive the conditions for

asymptotic stability from these eigenvalues. We find these conditions for

asymptotic stability in the forth column of Table 1.1. It is obvious that

(0, c−w
c

) cannot be asymptotically stable.

Let us now tackle the stability of the nonhyperbolic critical points (x1, 1 −
x1). We know that the non-zero eigenvalue has to be negative for a critical

point to be asymptotically stable (see Perko, 2000, Theorem 2, p. 130), so

only x ∈ Σ2, for which w > x1s is true, can be asymptotically stable points.

Table 1.1 summarizes the results of this proof.

Table 1.1: Critical points of the basic corruption game.

Critical Point Conditions to Eigenvalues Asymptotic

parameters of JF (x1, x2) stability if

for existence

x1 = 0, x2 = 0 none w − s, w − c w < min{s, c}
x1 = 0, x2 = c−w

c
w ∈ (0, c] w(c−s)

c
, w(c−w)

c
c < min{s, w}

x1 = x1, x2 = 1 − x1 none 0, x1s − w w > x1s

1.A.2 Proof of Proposition 2

Proposition 2 follows directly from The Fundamental Existence-Uniqueness

Theorem (Picard-Lindelöf), Perko (e.g. 2000).

1.A.3 Proof of Proposition 3

For simplex invariancy of the replicator dynamics of a frequency dependent

evolutionary game the following three conditions must be satisfied:

N∑

i=1

ẋi = 0 (1.10)

lim
xi→0+

ẋi = 0 (1.11)
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lim
xi→1−

ẋi = 0 (1.12)

Condition (1.10) guarantees that the solution of the system satisfies
∑N

i=1 xi =

1 if the initial condition is an element of simplex Σ. Conditions (1.11) and

(1.12) impose the upper bound 1 and the lower bound 0 on the solution

x(t). The three together limit the solution xi(t) to the simplex Σ.

We introduce the following notation for row i of matrix A:

Ai = (ai1, ai2, ..., ai n−1, ai n) .

Condition (1.11) can be written as

lim
xi→0+

ẋi = lim
xi→0+

xi

(

(Aix) −
(

N∑

j=1

xj(Ajx)

))

= lim
xi→0+

xig(x) ,

where we denote the function in brackets by g(x). If all elements of A

are continuous functions on simplex Σ, then g(x) is a continuous function

on Σ because sums and products of continuous functions are continuous

functions. The simplex Σ is compact, from this it follows (Theorem of

Weierstrass) that g(x) is compact (and therefore bounded). So we have

lim
xi→0+

ẋi = 0 .

We next consider condition (1.12),

lim
xi→1−

ẋi = lim
xi→1−

xi

(

(Aix) −
(

N∑

j=1

xj(Ajx)

))

,

under the assumption that aij(x) are continuous functions. By the reasoning

above we know that sums and products of the functions aij(x) are bounded

and that limits on Σ are finite therefore. Thus we can write

lim
xi→1−

ẋi = lim
xi→1−

xi(Aix) − lim
xi→1−

N∑

j=1

xj(Ajx)

= lim
xi→1−

(Aix) −
N∑

j=1

lim
xi→1−

xj(Ajx)

= −
∑

j 6=i

lim
xi→1−

xj(Ajx)
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For xi → 1−, we have that xj → 0+ for j 6= i. Again continuity of the

functions aij(x) on Σ implies that

lim
xj→0+

xj(Ajx) = 0

and therefore we have

lim
xi→1−

ẋi = 0 .

Finally condition (1.10) can be shown by summation of all equations in

(1.4):

N∑

i=1

ẋi =
N∑

i=1

xi (e
′
iA(x)x − x′A(x)x)

=
N∑

i=1

xi(e
′
iA(x)x) −

N∑

i=1

xi(x
′A(x)x)

=
N∑

i=1

(xie
′
i)A(x)x − (x′A(x)x)

N∑

i=1

xi

=

(
N∑

i=1

xie
′
i

)

A(x)x − x′A(x)x

= x′A(x)x − x′A(x)x = 0 .

From the above it is clear that if xi = 0, we have ẋi = 0. Thus the boundary

of Σ is invariant. When rewriting equation (1.4) as

ẋi

xi

=
(
σT A(x)x − xA(x)x

)
∀ i ∈ S

we see that the differential equation system intuitively describes the relative

change of the solutions xi(t). From this it is obvious that if xi(0) > 0 ⇔
xi(t) > 0. So the interior of Σ is invariant, too.

1.A.4 Proof of Proposition 4

If we multiply all payoffs with λ > 0, we can write the replicator dynamics

as

ẋi = xi

(
σT λA(x)x − xλA(x)x

)
= λxi

(
σT A(x)x − xA(x)x

)
,
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which is a system with the same solutions xi(t) as (1.4).

Now let B(x) be a matrix with n identical rows, which we denote by

b(x) = (b1(x), b2(x), ..., bn−1(x), bn(x)) .

The elements of B(x) are continuous functions on Σ.

ẋi = xi

(
σT [A(x) + B(x)] x − x [A(x) + B(x)] x

)

= xi

(
σT A(x)x + b(x)x − xA(x)x − xb(x)x

)

= xi

(
σT A(x)x − xA(x)x

)
.

1.A.5 Proof of Proposition 5

We accomplish this proof in two parts. First, we apply the local theory of

nonlinear systems and second, we use theorems of global theory of nonlinear

systems to show that we have found all attractors of (1.7).

Local Theory of Nonlinear Systems

From Proposition 2 and the differentiability (and therefore Lipschitz-conti-

nuity) of the functions w(x) and c(x) we know that the differential equation

system (1.7) has a unique solution. We redefine F : IR → IR as the right

hand side of system (1.7).

F (x) =

(
F1(x)

F2(x)

)

=

(
x1(1 − x1 − x2) [(1 − τ)(w(x) − 1) − x2(τ1 − c(x))]

x2(1 − x1 − x2) [(1 − τ)w(x) + (1 − x2)(τ1 − c(x))]

)

.

In order to find the critical points of the system, we set F (x) = 0:

x1(1 − x1 − x2) [(1 − τ)(w(x) − 1) − x2(τ1 − c(x))] = 0

x2(1 − x1 − x2) [(1 − τ)w(x) + (1 − x2)(τ1 − c(x))] = 0 .

There are nine possibilities which are solution candidates for this equation

system.

1) x1 = 0 ∧ x2 = 0

1.A. APPENDIX: PROOFS 41

2) x1 = 0 ∧ (1 − x1 − x2) = 0

3) x1 = 0 ∧ (1 − τ)w(x) + (1 − x2)(τ − c(x)) = 0

4) (1 − x1 − x2) = 0 ∧ x2 = 0

5) (1 − x1 − x2) = 0 ∧ (1 − x1 − x2) = 0

6) (1 − x1 − x2) = 0 ∧ (1 − τ)w(x) + (1 − x2)(τ − c(x)) = 0

7) (1 − τ)(w(x) − 1) − x2(τ − c(x)) = 0 ∧ x2 = 0

8) (1 − τ)(w(x) − 1) − x2(τ − c(x)) = 0 ∧ (1 − x1 − x2) = 0

9) (1 − τ)(w(x) − 1) − x2(τ − c(x)) = 0

∧ (1 − τ)w(x) + (1 − x2)(τ − c(x)) = 0 .

Conditions 1), 2), and 4) state that the vertices of the simplex are fixed

points.

Condition 5) gives us the edge of the simplex where x3 = 0 as a set of critical

points, conditions 6) and 8) give two single points in this set as fixed points.

Condition 3) gives us a critical point on the edge of the simplex where

x1 = 0. It only exists if there is a solution x̄2 which satisfies

(1 − τ)w(0, x̄2) + (1 − x̄2)(τ − c(0, x̄2)) = 0 . (1.13)

By plugging

w(0, x̄2) =
τ

1 − τ

(1 − x̄2)
2

x̄2

into (1.13), we receive

c(0, x̄2) =
τ

x̄2

.

We substitute the expression for c(0, x̄2) given by (1.15) into the last equa-

tion and get

p(0, x̄2) =
τ

τ(1 − x̄2)2 + x̄2

.

So the potential critical point (0, x̄2) only exists if p(0, x2) intersects with

the function g(x2) = τ
τ(1−x2)2+x2

at least once on ]0, 1[ for a given τ . The

function g(x2) is strictly increasing in the parameter τ and can take values
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that are greater than one. We conclude that for high τ , an x̄2 will not exist.

The function g(x2) is decreasing in x2 when its image is in the interval ]0, 1[.

Condition 7) implies

(1 − τ)(w(x1, 0) − 1) = 0

w(x1, 0) = 1
τ

1 − τ

1 − x1

x1

= 1 ⇒ x1 = τ ,

so (τ, 0) is a fixed point.

Finally, condition 9) supports a critical point if there is a solution to

(1 − τ)(w(x1, x2) − 1) − x2(τ − c(x1, x2)) = 0

(1 − τ)w(x1, x2) + (1 − x2)(τ − c(x1, x2)) = 0 .

We rewrite the system as

(1 − τ)w(x1, x2) − (1 − τ) − x2(τ − c(x1, x2)) = 0

(1 − τ)w(x1, x2) + (τ − c(x1, x2)) − x2(τ − c(x1, x2)) = 0

and find

c(x1, x2) = 1

by subtracting the two equations. Plugging this result into the first of the

equations of the system gives

(1 − τ)(w(x1, x2) − 1) − x2(τ − 1) = 0

(w(x1, x2) − 1) + x2 = 0 → w(x1, x2) = 1 − x2 .

We now use the explicit expression for w(x1, x2) and find

w(x1, x2) = 1 − x2 → τ

1 − τ

(1 − x1 − x2)(1 − x2)

x1 + x2

= 1 − x2

τ

1 − τ
(1 − x1 − x2) = x1 + x2

τ = x1 + x2 .
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Let us denote x̂2 as the solution of c(τ − x̂2, x̂2) = 1, and we derive further

c(τ − x̂2, x̂2) = 1

p(τ − x̂2, x̂2)((1 − τ)(1 − x̂2) + 1) = 1

p(τ − x̂2, x̂2) =
1

(1 − τ)(1 − x̂2) + 1
.

So, only if we assume a p(x1, x2) such that p(τ − x̂2, x̂2) intersects with a

function h(x2),

h(x2) =
1

(1 − τ)(1 − x2) + 1
,

on [0, τ ], there exists a fixed point (τ − x̂2, x̂2). Note that h(x2) is increasing

in τ and increasing in x2. The image of the function h(x1) is in [1
2
, 1].

We enlist the critical points we have found in the first column of Table 1.2.

In a next step we want to analyze the stability of the critical points we have

found above.

If a critical point x0 is hyperbolic,25 it is either a sink,26 a saddle,27 or a

source28 (Definitions e.g. by Perko, 2000, p. 102). It follows from the

Hartman-Grobman Theorem29 that sinks of a differential equation system

are asymptotically stable and sources and saddles are unstable. So in order

to determine if a hyperbolic critical point is asymptotically stable (and thus

an EE) or not we only need to calculate the eigenvalues of the Jacobian

of F (x) evaluated at the critical point. Therefore, we first calculate the

elements of the Jacobian DF (x1, x2).

∂F1

∂x1

= (1 − 2x1 − x2)
(

(1 − τ)(w(x) − 1) − x2(τ − c(x))
)

25None of the eigenvalues of DF (x0) has a zero real part.
26All eigenvalues of DF (x0) have negative real parts.
27All eigenvalues of DF (x0) have positive real parts.
28At least one eigenvalue of DF (x0) has a positive and at least one has a negative real

part.
29The Hartman-Grobman Theorem states that if F is differentiable then there exists

a homeomorphism that maps the trajectories in an open set around a hyperbolic critical

point x0 onto trajectories near x0 of the linear system ẋ = Ax with A = DF (x0). That

is to say that near a hyperbolic critical point x0 the nonlinear system ẋ = F (x) has the

same qualitative structure as the linear system ẋ = Ax with A = DF (x0).
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+ x1(1 − x1 − x2)

(

(1 − τ)
∂w(x)

∂x1

+ x2
∂c(x)

∂x1

)

∂F1

∂x2

= −x1

(

(1 − τ)(w(x) − 1) − x2(τ − c(x))
)

+ x1(1 − x1 − x2)

(

(1 − τ)
∂w(x)

∂x2

− (τ − c(x)) + x2
∂c(x)

∂x2

)

∂F2

∂x1

= −x2

(

(1 − τ)w(x) + (1 − x2)(τ − c(x))
)

+ x2(1 − x1 − x2)

(

(1 − τ)
∂w(x)

∂x1

− (1 − x2)
∂c(x)

∂x1

)

∂F2

∂x2

= (1 − x1 − 2x2)
(

(1 − τ)w(x) + (1 − x2)(τ − c(x))
)

+ x2(1 − x1 − x2)

(

(1 − τ)
∂w(x)

∂x2

− (τ − c) − (1 − x2)
∂c(x)

∂x2

)

.

For convenience we also restate

w(x) =
τ

1 − τ

(1 − x1 − x2)(1 − x2)

x1 + x2

and (1.14)

c(x) = p(x)
(

(1 − τ)w(x) + 1
)

with (1.15)

∂w

∂x1

= − τ

1 − τ

(
1 − x2

(x1 + x2)2

)

(1.16)

∂w

∂x2

=
τ

1 − τ

(

1 − 1 + x1

(x1 + x2)2

)

. (1.17)

We treat the critical points one by one in the order of Table 1.2.

Critical point (0,0): It is easy to see that ∂F1

∂x2
(0, 0) = 0 and ∂F2

∂x1
(0, 0) = 0.

The eigenvalues of DF (0, 0) are thus ∂F1

∂x1
(0, 0) and ∂F2

∂x2
(0, 0).30 We find

∂F1

∂x1

(0, 0) = (1 − τ)w(0, 0)

∂F2

∂x2

(0, 0) = (1 − τ)w(0, 0)(1 − p(0, 0)) + τ − p(0, 0) .

The expression (1 − τ)w(0, 0) is clearly positive, because of

lim
x1→0

x2→0

w(x1, x2) = ∞ .

30The eigenvalues of a matrix
(

a b

c d

)

are equal to a and d if either b = 0 or c = 0 or

both.
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If p(0, 0) such that ∂F2

∂x2
(0, 0) 6= 0, then the critical point (0, 0) is hyperbolic

and one positive eigenvalue is enough to know that it is unstable (see e.g.

Perko, 2000, Theorem 2, p. 130). If p(0, 0) such that ∂F2

∂x2
(0, 0) = 0, then the

second eigenvalue is equal to zero and (0, 0) is not hyperbolic. It is then an

unstable node, a saddle, or a saddle-node and unstable therefore (see e.g.

Perko, 2000, Theorem 1, p. 151).

Critical point (0,1): The critical point (0, 1) does always exist and is

not hyperbolic. In fact, we even have DF (0, 1) = 0, which indicates a very

complex behavior of the system near the critical point. For most other

critical points it is more convenient to analyze the behavior near them in

IR2 (although we are only interested in the dynamics on the simplex).31 For

showing asymptotic stability of (0, 1) however, we will restrict our analysis

to the simplex, which makes our efforts more comprehensible in this case.

One method to show stability for critical points that are not hyperbolic

is due to Liapunov. The theorem (see e.g. Perko, 2000, p. 131, Theorem

3) that states under which conditions the existence of a Liapunov function

(defined below) implies (asymptotic) stability of a critical point only applies

to critical points that are interior points of the definition space of F (x).

The critical point (0, 1) is a boundary point of the simplex though. Our

proceeding is as follows. First, we will prove a new theorem that states

that the existence of a Liapunov function guarantees asymptotic stability

for a boundary point of the simplex if the simplex is invariant under ẋ =

F (x). Second, we will give an example of a Liapunov function for the

system of the corruption game and show under which circumstances (0, 1)

is asymptotically stable.

Theorem 1 Let E be an open subset of Σ and x0 ∈ E.32 Suppose that

F (x) ∈ C1(E) and F (x0) = 0, where the simplex is invariant under ẋ =

F (x). Suppose further that there exists a real valued function V ∈ C1(E)

31One reason is that the Hartman-Grobman Theorem requires open subsets containing

the hyperbolic critical points. Most of our critical points are on the boundary of the

simplex, however.
32Notation: E is the set of osculation points of E. Point x is an osculation point of E

if E ∩Uρ(x) 6= ∅,∀ρ ∈ IR+. The set Uρ(x) is the ρ-neighborhood of x (or the open sphere

around x). It is defined as Uρ(x) = {y ∈ IRn; |x − y| < ρ}.
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satisfying V (x0) = 0 and V (x) > 0, ∀x ∈ E \ x0. If V̇ (x) < 0 ∀x ∈ E, x0

is asymptotically stable.

Proof of Theorem 1.33 Function V (x) is called a Liapunov function. We

define φt(x) as the flow of system ẋ = F (x). We can write

V̇ (x) =
d

dt
V (φt(x))|t=0 = DV (x)F (x) . (1.18)

The first equation is due to the definition of the flow of a differential equation

system, the second equation is due to the chain rule.

Choose ε > 0 sufficiently small that Nε(x0) = Uε(x0) ∩ Σ2 ⊂ E. We define

the compact set Sε,

Sε = {x ∈ IR2| |x − x0| = ε} ∩ Nε(x0) .

Since V (x) is continuous there exists a minimum mε of V (x) on Sε and

V (x) > 0 for x ∈ E \ x0 implies mε > 0. We also have V (x0) = 0 and

since V (x) is continuous there exists a δ such that |x − x0| < δ implies

V (x) < mε. Equations (1.18) imply that if V̇ (x) < 0 for x ∈ E, V (x) is

strictly decreasing along the trajectories of ẋ = F (x). It follows that for all

x̃ ∈ Nδ(x0) = Uδ(x0) ∩ Σ ⊂ E and t > 0 we have

V (φt(x̃)) < V (x̃) < mε . (1.19)

Now suppose that for x̃ with |x̃ − x0| < δ there is a t1 > 0 such that

|φt1(x̃)| = ε. Then since mε is the minimum of V (x) on Sε, this would

imply that V (φt1(x̃)) ≥ mε which contradicts (1.19). Thus for x̃ with

|x̃ − x0| < δ and t ≥ 0 it follows that |φt(x̃)| < ε.34 Note that this is

only true if the simplex is invariant under the dynamics of the differential

equation system ẋ = F (x). The reason is that simplex invariancy implies

that the trajectories through x̃ can only leave Nε(x0) by crossing Sε.

So for x̃ with |x̃ − x0| < δ and t ≥ 0, φt(x̃) ⊂ Nε(x0). Let {tk} be any

sequence with t → ∞. Then since Nε(x0) is compact, there is a subsequence

33We follow the proof of Theorem 3 in Perko (2000, p. 131) and make adjustments to

our case where necessary.
34By that, we have shown stability of x0, which is weaker than asymptotic stability.

1.A. APPENDIX: PROOFS 47

{φtn(x̃)} of {φtk(x̃)} that converges to a point y0 ∈ Nε(x0).
35 Because

V (x) is a continuous function, V (φtn(x̃)) → V (y0). Since V (x) is strictly

decreasing along the trajectories of ẋ = F (x) we have that

V (φt(x̃)) > V (y0)

for t ≥ 0. Now we have to determine y0. Assume that y0 6= x0. Then for

s > 0 we have V (φs(y0)) < V (y0). Continuity of V (x) implies that for all

y sufficiently close to y0 we have V (φs(y)) < V (y0) for s > 0. But then

for y = φtn(x̃) and n sufficiently large, we have V (φs+tn(x̃)) < V (y0) which

contradicts the above inequality. So by contradiction we have

y0 = x0 .

Since V (x) is strictly decreasing along trajectories and since the subsequence

φtn(x̃) converges to x0, it follows for every sequence tk → ∞ that φtk(x̃) →
x0. Therefore φt(x̃) → x0 as t → ∞, which means that x0 is asymptotically

stable. 2

We now have to show that there exists a Liapunov function for system (1.7)

as defined in Theorem 1. We will give evidence of existence by presenting

an example: We show in the following that function V (x),

V (x) = x2
1 + (1 − x2)

2 ,

is a Liapunov function. It is clear that V (x) > 0 ∀ x ∈ IR2 \ (0, 1), hence

V (x) > 0 ∀ x ∈ Σ2. Further V (0, 1) = 0. Let us now look at V̇ (x).

V̇ (x) = 2x1ẋ1 + 2(1 − x2)(−ẋ2)

= 2x2
1(1 − x1 − x2)[(1 − τ)(w(x) − 1) − x2(τ − c(x))]

− 2(1 − x2)x2(1 − x1 − x2)[(1 − τ)w(x) + (1 − x2)(τ − c(x))] .

We analyze V̇ (x) in E, the environment of (0, 1), which requires to evaluate

w(x) and c(x) in E.

lim
x2→1

w(x) = lim
x2→1

τ

1 − τ

(1 − x1 − x2)(1 − x2)

x1 + x2

= 0

lim
x2→1

c(x) = lim
x2→1

p(x)
(

(1 − τ)w(x) + 1
)

= p(0, 1) .

35By Bolzano-Weierstrass: Every sequence in a compact set of IRn has at least one

convergent subsequence (e.g. Koenigsberger, 2001, p. 51).
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We conclude that for a sufficiently small environment of (0, 1) and for

p(0, 1) < τ we have

V̇ (x) = 2x2
1(1 − x1 − x2)

︸ ︷︷ ︸

>0

[ (1 − τ)(w(x) − 1)
︸ ︷︷ ︸

<0

−x2(τ − c(x))
︸ ︷︷ ︸

>0

]

− 2(1 − x2)x2(1 − x1 − x2)
︸ ︷︷ ︸

>0

[ (1 − τ)w(x)
︸ ︷︷ ︸

>0

+ (1 − x2)(τ − c(x))
︸ ︷︷ ︸

>0

]

⇒ V (x) < 0 .

So if p(0, 1) < τ , (0, 1) is asymptotically stable.

Critical point (0, x̄2): The critical point (0, x̄2) does not necessarily exist

for all τ and p(x1, x2). Because of ∂F1

∂x2
(0, x̄2) = 0 the eigenvalues of the

jacobian DF (0, x̄2) are ∂F1

∂x1
(0, x̄2) and ∂F2

∂x2
(0, x̄2). By rearranging (1.13) to

(1 − τ)w(0, x̄2) − x2(τ − c(0, x̄2)) = c(0, x̄2) − τ ,

we can write

∂F1

∂x1

(0, x̄2) = (1 − x̄2)
(

(1 − τ)w(0, x̄2) − x̄2(τ − c(0, x̄2))
)

= (1 − x̄2)
(

c(0, x̄2) − 1
)

.

For the second eigenvalue we note that

(1 − τ)
∂w

∂x̄2

(0, x̄2) = τ
x̄2

2 − 1

x̄2
2

and can then derive

∂F2

∂x2

(0, x̄2) = x̄2(1 − x̄2) ·
[

(1 − τ)
∂w

∂x2

(0, x̄2) − (τ − c(0, x̄2)) − (1 − x̄2)
∂c

∂x2

(0, x̄2)

]

= x̄2(1 − x̄2) ·
[

τ

(
x̄2

2 − 1

x̄2
2

− 1

)

+ c(0, x̄2) − (1 − x̄2)
∂c

∂x2

(0, x̄2)

]

= x̄2(1 − x̄2)

[

− τ

x̄2
2

+
τ

x̄2

− (1 − x̄2)
∂c

∂x2

(0, x̄2)

]

= x̄2(1 − x̄2)
2

[

− τ

x̄2
2

− ∂c

∂x2

(0, x̄2)

]

.
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We now have to determine the algebraic sign of the two eigenvalues. The

second eigenvalue is positive if

[

− τ

x̄2
2

− ∂c

∂x2

(0, x̄2)

]

> 0 .

By replacing ∂c
∂x2

(0, x̄2) by

∂p

∂x2

(0, x̄2) [(1 − τ)w(0, x̄2) + 1] + p(0, x̄2)(1 − τ)
∂w

∂x̄2

(0, x̄2)

=
∂p

∂x2

(0, x̄2)

[

τ
(1 − x̄2)

2

x̄2

+ 1

]

− p(0, x̄2)τ
1 − x̄2

2

x̄2
2

and rearranging terms we find the condition

p(0, x̄2)τ(1 − x̄2
2) −

∂p

∂x2

(0, x̄2)
[
τ x̄2(1 − x̄2)

2 + x̄2

]
> τ (1.20)

for a positive second eigenvalue of DF (0, x̄2). We have assumed that p(x1, x2)

is decreasing in x2, so it is possible to find a p(x1, x2) that is consistent with

(1.20). The critical point (0, x̄2) is then either a saddle (if τ < x̄2) or a

source (if x̄2 < τ). We discuss respective properties of p(x1, x2) in the text.

Critical point (1,0): This critical point always exists but it is not hyper-

bolic. We will show instability by analyzing the system (1.7) in the vicinity

of (1, 0). This can be done by looking at

−∂F1

∂x1

(1, 0) .

The intuition is as follows. Since (1, 0) is a fixed point, we have that

ẋ1(1, 0) = F1(1, 0) = 0. We now check which sign F1(x) takes if we

marginally deviate from (0, 1) by decreasing x1 marginally (and increas-

ing x2 and x3 marginally). If −∂F1

∂x1
(1, 0) is negative (positive), we know

that ẋ1 is negative (positive) in the vicinity of (1, 0) since it is zero in (1, 0).

We find

−∂F1

∂x1

(1, 0) = −(−1) [(1 − τ)(w(1, 0) − 1)] = −(1 − τ) .

So marginally deviating from (1, 0) by marginally decreasing x1 causes the

function F1 to take a negative value. That means that a solution curve x(t)



50 CHAPTER 1

of system (1.7) starting in the vicinity of (1, 0) will move away from (1, 0).

So (1, 0) cannot be asymptotically stable.

Critical point {(x1,1 − x1) |x1 ∈ ]0,1[ }: This set of critical points always

exists and its elements are neither hyperbolic nor isolated critical points.

In order to show instability we can use the arguments made for the critical

point (1, 0). We will check what signs F1(x1, x2) and F2(x1, x2) take in the

vicinity of (x1, 1 − x1). Deviating from the edge of the simplex (x1, 1 − x1)

means that we marginally decrease x1 and x2 at the same time. So we are

interested in the signs of

−∂F1

∂x1

(x1, 1 − x1) −
∂F1

∂x2

(x1, 1 − x1) and

−∂F2

∂x1

(x1, 1 − x1) −
∂F2

∂x2

(x1, 1 − x1) .

Note first that

w(x1, 1 − x1) = 0 and c(x1, 1 − x1) = p(x1, 1 − x1) .

We use the expressions of we have given for the elements of the Jacobian

DF (x) and find

− ∂F1

∂x1

(x1, 1 − x1) −
∂F1

∂x2

(x1, 1 − x1)

= −
{

− x1

[

(1 − τ)(w(x1, 1 − x1) − 1) − (1 − x1)(τ − c(x1, 1 − x1))
]}

−
{

− x1

[

(1 − τ)(w(x1, 1 − x1) − 1) − (1 − x1)(τ − c(x1, 1 − x1))
]}

= 2x1

[

− (1 − τ) − (1 − x1)(τ − p(x1, 1 − x1))
]

= −2x1

[

1 − p(x1, 1 − x1) − x1(τ − p(x1, 1 − x1))
]

.

If τ > p(x1, 1 − x1) then 1 − p(x1, 1 − x1) > τ − p(x1, 1 − x1) > 0 and

hence 1− p(x1, 1− x1)− x1(τ − p(x1, 1− x1)) > 0. If p(x1, 1− x1) > τ then

0 > x1(τ−p(x1, 1−x1)) and again 1−p(x1, 1−x1)−x1(τ−p(x1, 1−x1)) > 0.

If p(x1, 1− x1) = τ then 1− p(x1, 1− x1)− x1(τ − p(x1, 1− x1)) = 0 again.

So we can state

−∂F1

∂x1

(x1, 1 − x1) −
∂F1

∂x2

(x1, 1 − x1) < 0 .
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That means that all solution curves starting in the vicinity of (x1, 1 − x1)

will move away from x1 = 1. Because this result holds for all x1 ∈ (0, 1)

the critical points in the set {(x1, 1 − x1) |x1 ∈ ]0, 1[ } cannot be stable; it

is impossible that trajectories starting in the vicinity of this edge of the

simplex move towards a point in this set. It is redundant to determine the

sign of F2(x) in the vicinity of {(x1, 1 − x1) |x1 ∈ ]0, 1[ }.

Critical point (τ,0): This critical point does always exist. It is easy to

see that ∂F2

∂x1
(τ, 0) = 0 since x2 = 0. So we know that the two eigenvalues of

DF (τ, 0) are ∂F1

∂x1
(τ, 0) and ∂F2

∂x2
(τ, 0). Note that

w(τ, 0) = 1 ,

∂w

∂x1

(τ, 0) = − 1

τ(1 − τ)
,

c(τ, 0) = (2 − τ)p(τ, 0) .

The eigenvalues of DF (τ, 0) are

∂F1

∂x1

(τ, 0) = −(1 − τ)

∂F1

∂x1

(τ, 0) = (1 − τ)[1 − (2 − τ)p(τ, 0)] .

We conclude that if 1
2−τ

< p(τ, 0), the critical point is a sink. If p(τ, 0) <
1

2−τ
, the critical point is a saddle.

Critical point (τ − x̂2, x̂2): In order to analyze the stability of (τ−x̂2, x̂2),

we evaluate the elements of DF (τ − x̂2, x̂2). Note that

w(τ − x̂2, x̂2) = 1 − x̂2

∂w

∂x1

(τ − x̂2, x̂2) = − 1 − x̂2

τ(1 − τ)

∂w

∂x2

(τ − x̂2, x̂2) = −1 − 1 − x̂2

τ(1 − τ)
.

We find

∂F1

∂x1

(τ − x̂2, x̂2) = (1 − τ)(τ − x̂2)
(

− 1 − x̂2

τ
+ x̂2

∂c

∂x1

(τ − x̂2, x̂2)
)

∂F1

∂x2

(τ − x̂2, x̂2) = (1 − τ)(τ − x̂2)
(

− 1 − x̂2

τ
+ x̂2

∂c

∂x2

(τ − x̂2, x̂2)
)



52 CHAPTER 1

∂F2

∂x1

(τ − x̂2, x̂2) = (1 − τ)x̂2

(

− 1 − x̂2

τ
− (1 − x̂2)

∂c

∂x1

(τ − x̂2, x̂2)
)

∂F2

∂x2

(τ − x̂2, x̂2) = (1 − τ)x̂2

(

− 1 − x̂2

τ
− (1 − x̂2)

∂c

∂x2

(τ − x̂2, x̂2)
)

.

Because we have assumed that ∂p

∂x2
< 0 we have ∂c

∂x2
< 0, and therefore we

know that

∂F1

∂x2

(τ − x̂2, x̂2) < 0 .

Again from Assumption 1 we derive

∂F1

∂x1

(τ − x̂2, x̂2) >
∂F1

∂x2

(τ − x̂2, x̂2)

∂F2

∂x1

(τ − x̂2, x̂2) >
∂F2

∂x2

(τ − x̂2, x̂2) .

Let us abbreviate the elements of DF (τ − x̂2, x̂2) by ji, such that

DF (τ − x̂2, x̂2) =

(
j1 j2

j3 j4

)

.

The standard formula for eigenvalues of 2×2-matrices yields for DF (τ −
x̂2, x̂2)

λ1 =
1

2

(

j1 + j4 +
√

j2
1 − 2j1j4 + j2

4 + 4j2j3

)

,

λ2 =
1

2

(

j1 + j4 −
√

j2
1 − 2j1j4 + j2

4 + 4j2j3

)

.

We are only interested in the real parts of the eigenvalues, for they determine

the stability of the critical point. A square root of a real discriminant ∆

always either has a zero real part (if ∆ ≤ 0) or a positive real part (if

∆ > 0). Therefore we have that λ1 ≥ λ2. If (τ − x̂2, x̂2) is stable if and only

if λ1 < 0 ∧ λ2 < 0. So the necessary condition for stability of (τ − x̂2, x̂2) is

λ1 < 0
1

2

(

j1 + j4 +
√

j2
1 − 2j1j4 + j2

4 + 4j2j3

)

< 0

j1 + j4 < −
√

j2
1 − 2j1j4 + j2

4 + 4j2j3

(j1 + j4)
2 > j2

1 − 2j1j4 + j2
4 + 4j2j3

j1j4 > j2j3 .
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We substitute the explicit elements of DF (τ − x̂2, x̂2) into the last equation.

Simplifying the expression leaves us with

1

τ
(1 − τ)2(τ − x̂2)x̂2(1 − x̂2)

(
∂c

∂x2

(τ − x̂2, x̂2) −
∂c

∂x2

(τ − x̂2, x̂2)

)

> 0

⇒ ∂c

∂x2

(τ − x̂2, x̂2) >
∂c

∂x2

(τ − x̂2, x̂2) .

This is contradictory to Assumption 1. Thus, as long as we adhere to

Assumption 1, (τ − x̂2, x̂2) cannot be stable.

Table 1.2: Critical points of the corruption game.

Critical point Conditions on τ and Asymptotic stability

(x1, x2) p(x1, x2) for existence

of critical point

(0, 0) none unstable

(0, 1) none asymptotically stable

if p(0, 1) < τ

(0, x̄2) x̄2 such that asymptotically stable

p(0, x̄2) = τ
τ(1−x̄2)2+x̄2

if τ < −x̄2
2

∂c
∂x2

(0, x̄2)

(1, 0) none unstable

(x1, 1 − x1) none unstable

with x1 ∈ ]0, 1[

(τ, 0) none asymptotically stable

if 1
2−τ

< p(τ, 0)

(τ̄ − x̂2, x̂2) x̂2 such that unstable

p(τ − x̂2, x̂2) = 1
(1−τ)(1−x̂2)+1
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Global Theory of Nonlinear Systems

It is left to show that no other attracting sets exist 36 and attractors 37 than

those found in the last subsection.

The Generalized Poincaré-Bendixson Theorem for Analytic Systems states

that the ω-limit set 38 of any trajectory of a two-dimensional, relatively-

prime, analytic system is either a critical point, a cycle, or a compound

separatrix cycle. We show below that the solution trajectories of system

(1.7) cannot be closed. This allows us to exclude limit cycles and compound

separatrix cycles as ω-limits. We will then be able to conclude that only

evolutionary equilibria can be attractors.

In order to show that our system does not have any closed trajectories, we

apply index theory, a method that describes global behavior of the solutions

to a differential equation system (see e.g. Strogatz, 1994, Chapter 6). In

Proof 1.A.5 we have calculated all critical points of system (1.7). They all

are on the boundary of the simplex except (τ − x̂2, x̂2), which is a saddle.

We now assume that there exists a closed trajectory to (1.7). Figure 1.5

shows all qualitatively different locations a closed trajectory could occupy,

they are indicated by the dotted curves T1, T2, and T3. The index at each

of the critical points is also shown in the figure (for an explanation of how

to calculate the index at critical points, see Strogatz, 1994, Chapter 6).

We can rule out closed trajectories as follows. Trajectories like T1 are im-

possible because they cross the boundary of the simplex. The reason is

the following. From Proposition 3 we know that the simplex boundary

is invariant under system (1.7). So the boundary of the simplex contains

straight-line trajectories. Since trajectories cannot cross,39 we can exclude

trajectories like T1. Trajectories like T2 can be excluded as well because

they do not enclose any fixed points at all. And trajectories like T3 violate

36A closed invariant set A ∈ E is called an attracting set of a system ẋ = F (x) if

there is some neighborhood U of A such that for all x ∈ U , φt(x) ∈ U for all t ≥ 0 and

φt(x) → A as t → ∞.
37An attractor is an attracting set containing a dense orbit (a dense orbit is an orbit

that comes arbitrarily close to each point in the attractor).
38A point p ∈ E is an ω-limit point of the trajectory φ(t, x0) of the system ẋ = F (x)

if there is a sequence tn → ∞ such that limn→∞ φ(tn, x) = p.
39This follows directly from the Fundamental Existence-Uniqueness Theorem.
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Figure 1.5: Locations of closed trajectories.

the requirement that the indices inside the closed trajectories must sum

up to 1 (see e.g. Strogatz, 1994, Theorem 6.8.2., p. 180). We conclude

that system (1.7) does not have any closed trajectories. Consequently, the

ω-limit set of any trajectory of our system is a critical point. It is clear

from the definition of an attractor and the concept of asymptotic stability,

that only an asymptotically stable critical point can be an attractor. We

conclude that almost every trajectory through a point x ∈ Σ approaches

an EE in the limit. The sole exceptions are those trajectories that are the

separatrices of the system.

From the Poincaré-Bendixson Theorem we know that if a trajectory of a

planar system is confined to a closed, bounded region, then the trajectory is

either attracted by a critical point or a closed trajectory. Since the simplex

is invariant under the dynamics of system (1.7) and since we have shown

that system (1.7) has no closed trajectories, we can conclude, that there

always exists an attractor in the corruption game. This results holds for all

p(x) and all τ .
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1.B Appendix: Games with two Strategies

In this Appendix, we analyze frequency dependent evolutionary games with

two strategies. From Proposition 4 we know that we can write a the payoff

matrix of a two-strategy frequency dependent evolutionary game by the

matrix

B(x) =

(
a(x) 0

0 b(x)

)

,

where a(x) and b(x) are Lipschitz-continuous by assumption. The replicator

dynamics (1.4) can be written as

ẋ1 = a(x)x1 −
(
a(x)x2

1 + b(x)x2
2

)

ẋ2 = b(x)x2 −
(
a(x)x2

1 + b(x)x2
2

)
.

By Proposition 3, ẋ2 = −ẋ1 and we therefore concentrate on only one

equation. We substitute x2 by 1 − x1 which leaves us with

ẋ1 = a(x)x1 −
(
a(x)x2

1 + b(x)(1 − x1)
2
)

= x1(1 − x1) (x1a(x1) − (1 − x1) b(x1)) = F (x1) .

For arbitrary functions a(x) and b(x) the replicator dynamics can yield very

complicated behavior because F (x1) may have many critical points which

qualify for EE. It is therefore interesting to state a theorem concerning

the number of critical points. Proposition 6 assumes that a(x) and b(x)

are polynomials. Polynomials are a proper subset of the set of Lipschitz-

continuous functions, so our proposition does not apply for all games.40

Proposition 6 Assume that a(x) and b(x) are polynomials while one of

them has a non-zero degree. The number of interior EE in a two-strategy

frequency dependent evolutionary game with replicator dynamics is equal to

or smaller than the degree of the polynomial with the higher degree.

40However, the Weierstrass polynomial approximation theorem assures us that there is

a sequence of polynomials which converges uniformly to the function F (x1) on [0, 1]. This

means that we can find a polynomial that approximates F (x1) on [0, 1] to any desired

degree of accuracy.
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We prove this Proposition at the end of this Appendix.

Apart from the interior EE, the games can additionally have one or two EE

at x1 = 0 (if F (0) ≤ 0) and x1 = 1 (if F (1) ≥ 0).

Most economic interpretations will not need highly nonlinear payoff func-

tions. For many applications it will be sufficient to model whether a payoff

increases or decreases with the frequency of a strategy, and if these changes

become stronger or weaker the higher the frequency of the strategy. Even

with quite simple payoffs, the number of critical points of F (x1) cannot be

determined generally. The only class of payoff functions that allows for a

more precise description of equilibrium behavior is the class of linear func-

tions. We can derive the result from Proposition 6 because linear functions

are polynomials of degree one.

Lemma 1 If a(x) and b(x) are linear functions, a two-strategy frequency

dependent evolutionary game with replicator dynamics has at most one in-

terior EE and at most one unstable critical point.

We now compare the standard games with their frequency dependent coun-

terparts. Of the former, we distinguish between three categories: Prisoners’

Dilemma (Type I and II), Coordination Games, and Hawk-Dove Games

(see Weibull, 1995, p. 75). Analogous to these categories we assume for the

frequency dependent Prisoners’ Dilemma I a(x) > 0 and b(x) < 0, for the

frequency dependent Prisoners’ Dilemma II a(x) < 0 and b(x) > 0, for the

frequency dependent Coordination Game a(x) > 0 and b(x) > 0, and for

the frequency dependent Hawk-Dove Game a(x) < 0 and b(x) < 0. Table

1.3 summarizes our findings, which are proved in the end of this Appendix.

We see that no matter how the payoffs in a Prisoners’ Dilemma change

with the frequency of a strategy, the EE will be the same as in a game with

constant payoffs. However, for Coordination Games the situation is differ-

ent: depending on the payoff function, it is now possible that x1 = 1 is no

longer an EE, or that it is replaced by an EE in the interior of the strategy

space. In the case of the Hawk-Dove Game, frequency dependent payoffs

can change the dynamics of the game too. While the game with constant

payoffs featured a unique interior EE, the frequency dependent game can

either have a (different) unique interior EE, too or have an EE at x1 = 1,

or both.
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Table 1.3: Evolutionary Equilibria of standard and FD-games.

Game Category EE of EE of
Standard Game FD-Game

PD I x1 = {0} x1 = {0}
PD II x1 = {1} x1 = {1}
CG x1 = {0, 1} x1 = {0} or x1 = {0, 1} or x1 = {0, pcg}
HD {x1 = b

a+b
} x1 = {1} or x1 = {phd, 1} or x1 = {phd}

Our extension to FD-games allows to conjoin the different categories of

games. We demonstrate this with the next example.

Example 1

Agents parking their cars have the choice to pay the official fee of 1

(Strategy 1) or to park illegally (Strategy 2). The expected fine for

illegal parking decreases with the number of illegally parked cars (e.g.

because officers do not manage to make out tickets for all illegally

parked cars in a given time interval). We assume that the expected

fine is 2x1(t). Then the payoff matrix is

A(x) =

(

−1 −1

−2x1(t) −2x1(t)

)

.

For x1 = 0 this game is a Prisoners’ Dilemma I, for x1 = 1 it is a

Prisoners’ Dilemma II. The set of EE is {x1 = 0, x1 = 1}. If we start

off with less (more) than half of the agents paying the fee, nobody

(everybody) pays in the equilibrium. While if we would have a fixed

expected fine we would observe equilibria that are independent of

the initial condition: either x1 = 0 for an expected fine smaller than

one, or x1 = 1 for an expected fine greater than one.

Proof of Proposition 6

We define the function f(x1) as

f(x1) = x1a(x1) − (1 − x1) b(x1) which implies

F1(x) = x1(1 − x1)f(x1) .
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The degree formulas for the polynomial ring imply

deg (xa(x)) = deg a(x) + 1 and

deg ((1 − x)b(x)) = deg b(x) + 1

⇒ deg f(x) = max{deg a(x), deg b(x)} + 1 .

By the fundamental theorem of algebra, the polynomial f(x) has deg f(x)

roots. So it has at most deg f(x) roots on the interval [0, 1]. We have as-

sumed that either deg a(x) > 0 or deg b(x) > 0, so deg f(x) > 1. Therefore,

f(x) has potentially two or more roots. Not all of these potential roots can

be EE, because we need f ′(x) < 0 for a root to be an EE. The number of

potential roots will be reduced by 1 at least. Thus we can say that f(x) has

at most as many roots as the polynomial with the higher degree has. Since

x1(1 − x1) > 0 on ]0, 1[, the same is true for F (x1).

Calculations for Table 1.3

Prisoners’ Dilemma I: From a(x1) < 0 and b(x1) > 0 we have that

f(x1) = xa(x1) − (1 − x1)b(x1) < 0 and the system has thus no critical

point and ẋ1 is negative on [0, 1]. Thus, x = 0 is an EE.

Prisoners’ Dilemma II: From a(x1) > 0 and b(x1) < 0 we have that

f(x1) = xa(x1) − (1 − x1)b(x1) > 0 and the system has thus no critical

point and ẋ1 is positive on [0, 1]. Thus, x = 1 is an EE.

Coordination Game: The Coordination Game requires a(x1) = a1 +

a2x > 0 and b(x1) = b1 + b2x > 0. Hence, a1 > 0 and b1 > 0. For F (x1) we

find

F (x1) = a1x1 + a2x
2
1 − (1 − x1)(b1 + b2x1)

= (a2 + b2)x
2
1 + (a1 + b1 − b2)x − b1

The roots of F (x1) are

r1,2 =
−(a1 + b1 − b2) ±

√

(a1 + b1 − b2)2 + 4(a2 + b2)b1

2(a2 + b2)
.

Note that F (0) = −b1 < 0. So if r1 ∈ ]0, 1[ and r2 ∈ ]0, 1[, then x1 = 0 and

x1 = r2 are EE. We have named r2 as pcd in Table 1.3. If either r1 ∈ ]0, 1[
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or r2 ∈ ]0, 1[ but not both, then this root is an unstable critical point and

{x1 = 0, x1 = 1} are the EE. If none of the roots lies in ]0, 1[, then F (x1) < 0

on ]0, 1[ and x1 = 0 is the only EE.

Hawk-Dove Game: We proceed analogously to the calculation for the

coordination game. In a Hawk-Dove Game, the FD-payoffs satisfy a(x1) =

a1 + a2x < 0 and b(x1) = b1 + b2x < 0. It follows that a1 < 0 and b1 < 0.

Note that F (0) = −b1 > 0 (check function above). The roots are the same

as well. If r1 ∈ ]0, 1[ and r2 ∈ ]0, 1[, then x1 = r1 and x1 = 1 are EE. We

have named r1 as phd,1 in Table 1.3. If either r1 ∈ ]0, 1[ or r2 ∈ ]0, 1[ but not

both, then this root is the sole EE. We have named that root phd,2 in Table

1.3. If none of the roots lies in (0, 1), then F (x1) > 0 on (0, 1) and x1 = 1

is the only EE.

Chapter 2

Imitating Illegal Activities -

A Spatial Model With

Heterogeneity

The problem of a rational economic order

is determined precisely by the fact that the

knowledge of the circumstances of which

we must make use never exists in concen-

trated or integrated form, but solely as

the dispersed bits of incomplete and fre-

quently contradictory knowledge which all

the separate individuals possess...

Friedrich A. von Hayek

2.1 Introduction

In Chapter 1 we modelled the dynamics of corruption as a frequency-

dependent evolutionary game with replicator dynamics. We based the latter

on a standard imitation rule as well as on the assumption that payoffs of

strategies could only be observed with some noise. However, the intro-

duction of noisy observations served as a shortcut for comprehending the

agents’ difficulties in obtaining information. In the present chapter, we ex-

plicitly focus on the informational aspect of strategic interaction of legal

and illegal strategies. Instead of applying a shortcut as in Chapter 1, we
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now model the flow of information explicitly and consider the special na-

ture of this process. In order to concentrate on the impact that the flow

of information has on game dynamics, we abandon the complex structure

of the corruption game. In the following we present a simple evolutionary

game with two strategies only, the legal one and the illegal one. As in the

previous chapter, we assume that players make their strategy decision by

imitating more successful strategies. The imitation rule is discussed below.

Note that we aim to describe the spread of illegal activities in a population.

This is done by analyzing the absorbing states of the imitation dynamics if

just one agent acts illegally in the initial period.

Before we proceed to the detailed analysis, let us first provide a motiva-

tion for our model by illustrating that imitation is a special form of social

interaction. In the next section, we firstly define the term social interaction

generally, then point out why social interactions are relevant for the study of

illegal activities, and briefly explain the kind of social interactions to which

imitation belongs. Secondly, we discuss the differences between information

on legal activities and information on illegal activities. We identify two

basic differences and then go on to show how we can include them in our

model. Finally, we present our model, the results and the related literature.

2.2 Preliminary Considerations

2.2.1 Imitation as Social Interaction

Imitation as social interaction. Gary Becker was the first to apply economic

theory to social issues such as crime. His rational choice approach later

became the standard framework for economists in studying illegal activities.

Thereby the engagement in illegal activities is understood as follows (see

Becker, 1968): An individual decides to act illegally if the expected cost of

the illegal activity is lower than the expected benefits. This implies that

exogenously increased costs of crime will imply lower crime rates.

Although this result is consistent with the findings of empirical studies

(e.g. Ehrlich, 1973), the high variance of crime rates across time and space

cannot be explained with this approach and remains one of the oldest puzzles

in social sciences (see Glaeser et al., 1996).

In order to understand the circumstances under which illegal activities
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can arise and persist, it is important to know all the factors that additionally

or alternatively influence the decision of the individual. Many researchers

identify social interaction as an important determinant of criminal activity.

Social interaction is generally defined as the impact of one individual’s

action on the actions of others. Models of social interaction explaining

variations in the crime rate have included spatial (e.g. Glaeser et al., 1996)

as well as dynamic models (e.g. Sah, 1991). In an experiment testing for

criminal behavior, Falk and Fischbacher (2002) find that almost half of the

persons under examination behave conditionally on their environment, i.e.

they are more likely to commit criminal acts in a high crime environment.

An individual’s actions can affect other individuals’ actions in different

ways. Manski (2000) identifies three channels of social interaction: con-

straints, expectations and preferences. Expectations interactions imply that

individuals facing a decision form expectations concerning an action’s out-

come by observing the actions chosen and outcomes experienced by others.

This chapter focuses on this form of social interaction by adopting an imi-

tation rule. However, in contrast to the existing literature, we consider the

special nature of information concerning illegal activities when modelling

expectations interactions.

2.2.2 Informational Distortions

Information on illegal activities differs in two ways from information on legal

activities: The first specific attribute of information on illegal activities is

that it must be hidden and is thus hard to obtain. We therefore say that

information on illegal activities is scarce.

The reason why knowledgeable individuals prefer to hide their informa-

tion is twofold: They do not want to reveal involvement in illegal activities

in the first place nor do they wish to be prosecuted for offering services em-

powering others to engage in an illegal activity. As a consequence, agents

have to rely on secretly passed on knowledge and are only willing to disclose

any information if they consider their counterpart to be trustworthy.1

This leads us to the second specific attribute of information on illegal

1This feature of our model can also be interpreted differently. The disclosure of

information need not occur deliberately. We could also envisage situations where agents

are incapable of hiding their activities and outcomes from all their opponents.
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activities. When deciding whether or not to engage in an illegal activity,

individuals have to put up not only with scarce information but also with

private information. In the case of an illegal activity, individuals miss out

on research results, expert reports, and user evaluations. They must rely on

what they learn in secrecy. In the absence of any large sample results, agents

will not be able to detect distortions or failings in this information due to

personal factors. Therefore we say that information on illegal activities is

non-verifiable.

In this analysis, we include both informational distortions – scarcity

and non-verifiability. Scarcity is included by choosing a spatial model and

claiming that only agents located next to each other exchange information.

That is, spatial neighbors are assumed to be confidants.2 In the model, we

allow for small and large groups of confidants, which we denote by local

and global information. In order to include non-verifiability in our model,

we assume different types of agents. An agent’s type affects his payoff but

cannot be detected by himself or any other agent. The heterogeneity of

agents leads to possible over- and underestimating of the illegal activity by

the agents.

2.2.3 The Theoretical Approach

We consider an evolutionary game in which a finite number of infinitely

lived agents are matched pairwise to play a 2 × 2 stage game. The stage

game has the following structure: The two agents compete for a prize w

by choosing either the legal activity (playing fair) or the illegal activity

(cheating). Agents are of two types and are nicknamed high types and low

types. High types have a natural advantage over low types: they obtain the

prize w with certainty if they meet a low type and if both use the same

strategy. If, however, a low type cheats against a fair playing high type, the

low type beats the high type with certainty and receives the prize w. If two

players of the same type meet and both use the same strategy, they share

the prize w. Cheating is costly with cost c satisfying 0 < c < w.

As our agents are heterogenous, there are two stage games. Firstly, if

2Either confidants or observers that cannot be held off, see Footnote 1. Lambsdorff

(2002) discusses the reasons for agreements between individuals not to denounce each

other in the case of corruption.
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two agents of the same type meet, the stage game is a Prisoner’s Dilemma,

where acting illegally (or playing fair) is the dominant strategy if the cost

of cheating is sufficiently low (or high respectively). Secondly, if two agents

of opposite type meet, the stage game is an asymmetric game similar to a

matching penny game (e.g. Kreps, 1990). In this game, the low type’s best

response is the strategy that is not being used by the high type, and the

high type’s best response is the strategy that the low type is using.

In this chapter, we analyze the absorbing states of the imitation dynam-

ics when initially all but one agent are playing fair. Note that the agent

who has the illegal strategy at his disposal in the first period, is called the

innovator. Under what circumstances can an illegal activity spread in a

population of agents competing fairly?

There are two reasons why we we limit our considerations to the special

class of initial strategy states in which only one agent acts illegally. Firstly,

only by restricting the classes of initial strategy states, a complete analysis

of the imitation dynamics is practicable for some selected type distribu-

tions. Secondly, there are many applications that suggest a single innovator

of illegal activities. One application of this setup are illegal technologies

that require a profound knowledge to be developed. It is unlikely that a

challenging invention is made simultaneously by different agents of a popu-

lation.3 Uncertainty can be another reason why there is just one innovator

of an illegal technology. If there are high costs involved that are hardly

assessable up-front, or if there is uncertainty about the effectuality or the

detection probability of the illegal activity, it needs an extraordinarily risk-

loving agent that tests the illegal activity. However, it is natural to assume

that such agents are rare.

In each period every agent is matched sequentially to all other agents

to play the stage game, i.e. agents interact globally. At the end of the

period, each agent observes the strategies and average payoffs of a subset of

all agents, called the information set of an agent. In the following period,

agents imitate the strategy with the highest average payoff in their infor-

3A demonstrative example of this setup is the spread of a new doping substance in

sports, whereby athletes with different talents may learn how to use this substance to

improve their winning probabilities. Other applications are sophisticated software system

for password theft on the internet, corruption, or loopholes in international financial

controls of anti-money laundering agencies.
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mation set.4 To formalize these sets, we locate the agents on a circle as in

Ellison (1993).

In most parts of the chapter, we focus on two information settings:

local information and global information. With local information, agents

observe the strategies and payoffs of their immediate neighbors on the circle

only. If agents have global information, they observe the strategies and

payoffs of all agents.5 In other words: the first informational distortion for

illegal activities, i.e. scarcity, is captured by local information in our model.

Global information depicts a situation in which all agents would share their

knowledge about the illegal strategy.

Now let us turn to the second informational distortion, which we re-

ferred to as non-verifiability. As discussed above, we capture this aspect by

assuming heterogeneity of agents. With heterogenous agents there are four

crucial factors that determine the spread of the illegal strategy: the loca-

tion of the innovator, the type of the innovator, the distribution of types on

the circle, and the information available to the agents. These factors deter-

mine whether the innovator is able to infect his neighbors and eventually

to contaminate the entire population. Since many different distributions of

types on the circle are feasible - each of them having potentially different

implications for the absorbing states - we focus on two polar cases: maximal

segregation on the one hand and minimal segregation on the other hand. In

a maximally segregated population, high types and low types are located

in two clusters so that there are only two players of each type that have a

4In the case of corruption, government employees share information about the ex-

pected income from bribes. Note that only corrupt government employees can provide

this information because all others do not know about the chances of being caught or the

amount of money that can be asked for as a bribe. The imitation rule implies a certain

inertia in the behavior of agents, which can be interpreted as cautiousness: As long as

an agent does not know the expected payoff of a strategy, he will not choose to adopt the

strategy. Kandori et al. (1993) discuss in more detail the assumption that uncertainty

leads to inertia. We would like to mention another interpretation of the imitation rule

here. If an agent does not adopt a strategy that he does not observe, the reason can also

be that he is incapable of doing so. If an illegal activity involves a technology, an agent

will need to be in contact with someone who has the technology at his disposal. Doping

in sports is an example of an illegal technology.
5In sports, for example tennis, all agents compete against all other agents (global

interaction). Nevertheless, the players for obvious reasons only share information about

the use of illegal performance-enhancing drugs with their best mates (local information).
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neighbor of the opposite type. In a minimally segregated population, each

agent has two neighbors of opposite type.

How can the results we observe from the model with heterogenous agents

and local information, i.e. the model which depicts scarcity and non-

verifiability of information for illegal activities, be summarized? In short,

there are three important outcomes. Firstly, the population is more likely

to end up in an absorbing state whereby all agents cheat if the innovator is

a low type. Secondly, if the innovator is a low type, then a minimally segre-

gated population is more resistant to the illegal strategy than a maximally

segregated population. The reason for this result is that in a minimally seg-

regated population, each low type (including the innovator) is surrounded

by high types, who are less prone to imitate the illegal strategy. Thirdly, by

contrast, if the innovator is a high type, a maximally segregated population

is more resistant to the illegal strategy than a minimally segregated popu-

lation. The reason for this result is that the innovator is again surrounded

by high types, who are less prone to imitate the illegal strategy.

What is the role of information for these results? In order to answer

this question, we describe the effect of local and global information on the

absorbing states. First, with global information, in contrast to local infor-

mation, the location and the type of the innovator of the illegal strategy

and the distribution of types on the circle are irrelevant. Second, local in-

formation reduces the spread of the illegal strategy if agents are minimally

segregated relative to a situation where agents have global information. For

a maximally segregated population this result is only true if the innovator

is a high type. Third, with local information some agents under- and some

overestimate the true benefit of the illegal strategy. There is no such effect

with complete information where each player type knows the true benefit of

each strategy for his type.

Note that our analysis is most closely related to the work of Ellison

(1993), Eshel et al. (1998), and Kandori et al. (1993). Kandori et al. (1993)

consider the limiting distribution when individual mutation rates go to zero

for the class of 2 × 2 stage games. The players’ period payoffs are the ex-

pected values of the stage game given the (distribution of) strategy choices

of all players. As in Kandori et al. (1993) we assume “global interaction.”

Ellison (1993) investigates the limiting distributions and the speed of con-

vergence in a similar model as Kandori et al. (1993). The crucial difference
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between his and the Kandori et al. (1993) approach is, however, that players

interact and obtain information locally.

In short, Kandori et al. (1993) investigate global interaction and global

information, while Ellison (1993) focusses on local interaction and local

information. In contrast to both of them, we combine local information with

global interaction. Moreover, we introduce heterogeneity among agents,

which generates different stage games. Finally, we adopt the imitation rule

of Eshel et al. (1998) where players can only play the strategies they observe

in their information set. Like Ellison (1993), Eshel et al. (1998) may be

classified as a local interaction and local information game.

The rest of this chapter is organized as follows. In Section 2.3, we de-

scribe the basic model with homogenous agents. Sections 2.4 and 2.5 analyze

the model with heterogenous agents and global and local information, re-

spectively. In Section 2.6.1, we allow for mutations. Section 2.7 covers some

concluding remarks. We direct all proofs of Propositions to the Appendix

2.A.

2.3 Homogeneity of Agents

In this section, we set up the model with homogeneous agents. We first

describe the stage game, specify how agents are located and how they adopt

or choose new strategies. We then analyze the absorbing strategy states.

2.3.1 The Stage Game

We consider a finite population with N > 1 infinitely living agents denoted

by i = 1, ..., N . In each period t, every agent is sequentially matched to all

other agents to play a 2 × 2 stage game. In each stage game, the agents

compete for a prize w. The strategy space is {C,D}, where C stands for

playing “clean”, i.e. fair, and D for cheating, i.e. playing “doped.” Within

a period, a player cannot change his or her pure strategy. Furthermore,

mixed strategies are ruled out.

The payoffs of the stage game are as follows. If both agents play strategy

C, each receives w
2
. If both play D, each gets w

2
− c, where c ∈ (0, w) is

the cost of cheating. This reflects the fact that each agent prefers to obtain

the prize w by playing C rather than by using D. Finally, if an agent plays
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D against a clean player, he gets w − c and the clean player 0. Thus, the

payoff matrix is

A =

(
w
2

0

w − c w
2
− c

)

. (2.1)

The stage game defined in (2.1) is a Prisoner’s Dilemma (see Weibull, 1995).

If c ≶ w
2
, D, respectively C, is the dominant strategy.

Agent i’s period payoff in period t, ui,t, is the average payoff from the

N − 1 matches,

ui,t(σi,t, σ−i,t) =
1

N − 1

∑

−i

a(σi,t, σ−i,t)

where σi,t is his strategy in period t, σ−i,t are the strategies chosen by

all other players in period t, and the payoffs a(., .) are the corresponding

elements of A in (2.1).

2.3.2 Location and Imitation

In order to model incomplete information, we assume that agents are located

on a circle on the positions 1, 2, 3, ..., N . In each period, each agent i obtains

information about the period payoffs and the strategies chosen by the agents

i±k (modulo N) with k ∈ {1, ..., bN
2
c}, where bN

2
c is the largest integer ≤ N

2
.

Dropping the arguments in ui,t(σi,t, σ−i,t), we define agent i’s information

set Gi,t(k) as

Gi,t(k) = {(uj,t, σj,t) | j = i − k, ..., i + k} .

If k = bN
2
c, the information set contains information about all agents on the

circle. In this case, we say that agents have global information. If k < bN
2
c

the information set contains not all relevant information. If k = 1, agents

observe strategies and payoffs of their direct neighbors only. We call this

information setting local information.

Now let us turn to the question how agents use information. Following

Eshel et al. (1998), we assume that at the end of a period t, the agents

observe Gi,t(k). In the following period, they play the strategy that has
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Figure 2.1: Positions and information set.

generated the highest average payoff.6 If they observe but one strategy

within their information set, they play this strategy next period.

Let dj,t denote an indicator variable, which takes the value 0 if agent

j plays C and the value 1 if he plays D. Then, if strategies C and D are

observed in Gi,t(k), the observed payoff difference ∆i,t is

∆i,t =

∑i+k

j=i−k dj,t · uj,t
∑i+k

j=i−k dj,t

−
∑i+k

j=i−k(1 − dj,t) · uj,t
∑i+k

j=i−k(1 − dj,t)
. (2.2)

The first term is the average payoff of those agents in the information set

that play D and the second term is the average payoff of those agents that

play C. The imitation dynamics satisfies the following rule.

Definition 1 The imitation rule is

σi,t+1 =







σi,t if ∆i,t = 0

C if ∆i,t < 0

D if ∆i,t > 0

. (2.3)

if both strategies C and D are observed in Gi,t(k). Otherwise, the agent

continues to use the strategy played in the prior period.

6Agents who choose strategies according to an imitation rule can interpret the infor-

mation they receive in two different ways. They can either imitate the most successful

player or the most successful strategy they observe. The former imitation rule is used by

Vega-Redondo (1997) and Alos-Ferrer et al. (2000) and others, the latter e.g. by Ellison

and Fudenberg (1995). We will adhere to an imitation rule of the second kind, where

success of a strategy is measured by its average payoff.
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The imitation rule implies that if ∆i,t = 0, then σi,t+1 = σi,t. For

∆i,t ≶ 0, we have σi,t+1 = C, respectively D. If a strategy is not observed

in an agent’s information set, then the agent continues to use the strategy

of the current period. Note that an agent’s behavior depends solely on the

strategies observed in his neighborhood in the immediate past. That is,

neither the shadow of the future nor the shadow of the more distant past

bear any weight for the choice of strategy (Berninghaus et al. 2003).

In the following we will suppress the time index t. By y we denote the

number of agents playing C. This allows us to write agent i’s payoff of

playing di ∈ {0, 1} as

ui(di, y) =
y − 1

N − 1

w

2
+ di

(
N

N − 1

w

2
− c

)

. (2.4)

The first term in (2.4) is the period payoff of an agent who plays C (di = 0).

The second term, which depends only on the population size N and the

cost c, is the additional payoff for an agent of playing D (di = 1). For

a homogeneous population, (2.4) implies that an agent i who observes C

and D in Gi(k) compares uj(1, y) and uh(0, y) for some j, h. Thus, ∆i =

uj(1, y) − uh(0, y) = N
(N−1)

w
2
− c. Note that ∆i is independent of y.

The model exhibits a finite population effect. Because agents do not

play against themselves, ∆i only approaches the value w
2
− c as N goes

to infinity. Thus, for any finite N and for c ∈
(

w
2
, N

N−1
w
2

)
, D is a strictly

dominated strategy. Nevertheless ∆i > 0 for all i who observe the strategy

D in their neighborhood. That is, despite D being a strictly dominated

strategy, all individuals will end up playing it. The reason for this result is

that an agent playing D is matched with N −y−1 players that are cheating

too, while an agent playing C is matched with N−y agents playing D. This

increases the benefit of using strategy D relative to C, such that a strictly

dominated strategy is played.

2.3.3 Absorbing States

A state is a specification of which agents play C and which play D. At time

t, we describe the state st of the system by an N -tuple

st = (σ1t, σ2t, ..., σNt) ∈ S ≡ {C,D}N ,
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where S is the set of possible states. If i and j are two possible strategy

states in S, pij is the probability that the imitation rule changes the system

to state j given that i is the current state. The imitation rule in (2.3) and

the non-stochastic nature of the payoffs result in a deterministic process

such that pij is either 0 or 1. The collection {pij}i,j∈S , together with an

initial state, is a Markov process on S. We will refer to this Markov process

as the imitation dynamics of our model.

We are interested in the absorbing states of the imitation dynamics,

which are defined as in Eshel et al. (1998).

Definition 2 A set of states is absorbing if it is a minimal set of states

with the property that the Markov process can lead into this set but not out

of it.

An absorbing set of states may contain only one state. If an absorbing

set contains more than one state, the Markov process cycles between the

states contained in the absorbing set.

From now on, we normalize w = 1 (and consequently c is now assumed

to be c ∈ (0, 1)). Moreover, we concentrate on the polar cases; i.e., either

the size of the information set is k = 1 or k = bN
2
c. In the case of local

information (k = 1), each agent observes the strategies and the payoffs of

his direct neighbors only. In the case of global information (k = bN
2
c), each

agent obtains information about the strategies and the payoffs of all agents

on the circle.

2.3.4 The Role of Information

As was discussed in Section 2.2.3, throughout this chapter we study the

spread of D in a population which is characterized by the feature that in

t = 1 all agents but one play C.

Global Information

If σi = C (D) ∀i, we denote this state by ~C ( ~D). Under global information,

we obtain the following result.

Proposition 1 Suppose agents are homogenous and have global informa-

tion. If c ≶ N
2(N−1)

, the absorbing state ~D, respectively ~C, is reached in

period 2.
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The proof is straightforward. If all agents observe the strategies and

payoffs of all other agents, ∆i is identical for all i = 1, 2, ..., N . Consequently,

when an agent introduces D in period 1, depending on whether ∆i is positive

or negative, all agents will play C or D from period 2 on until the end of

time. This result has been shown to hold by Kandori et al. (1993) in a

more general setting.

Local information

We now consider the case where the agents observe their immediate neigh-

bors only (k = 1).

Proposition 2 Suppose agents are homogenous and have local information.

If c < N
2(N−1)

, the absorbing state ~D is reached in period t = 1 + bN
2
c. If

c > N
2(N−1)

, the absorbing state ~C is reached in period 2.

By intuition the proof of Proposition 2 is established as follows. If

c < N
2(N−1)

, ∆i is positive and all agents that are aware of strategy D

imitate it in the following period. Because k = 1, it takes bN
2
c periods

until all agents have learned and adopted D. If c > N
2(N−1)

, ∆i is negative.

Consequently, D dies out immediately.

Comparing Proposition 1 and Proposition 2 makes obvious that the size

of the information set only affects the time elapsing until the absorbing

state is reached. In particular, it does not matter which player introduces

strategy D because all agents are identical. This motivates to introduce

heterogeneity among the agents to see how this influences the imitation

dynamics.

2.4 Heterogenous Agents with Global Infor-

mation

In this section we investigate the role of heterogeneity when agents are

globally informed. Local information is then analyzed in Section 2.5.



74 CHAPTER 2

2.4.1 Asymmetric Games

Heterogeneity of agents is introduced by assuming that agents are either of

high type (H) or low type (L). An agent’s type is neither known by himself

nor by any other agent. As before, agents are matched pairwise and the

payoffs are as follows:

If an H-type is matched to an L-type and both agents use the same

strategy, the H-type wins with certainty.

If an H-type is matched to an L-type and only the L-type uses D, then

the L-type wins with certainty. Thus, an L-type prevails over an H-type if

and only if he plays D and the latter plays C.

The payoff matrices for the asymmetric matches are

AH,L =

(
w 0

w − c w − c

)

and AL,H =

(
0 0

w − c −c

)

,

where, for example, AH,L denotes the payoffs to agent of type H when

playing against an agent of type L. For symmetric matches, the matrices

are AH,H = AL,L = A as in (2.1).

If two agents of the same type meet, the stage game is a prisoner’s

dilemma with D as the dominant strategy if c < 1/2. This is similar as

with homogenous agents. But in contrast to that, if two agents of opposite

type meet the game is asymmetric and has a unique Nash equilibrium in

mixed strategies. In this case, the stage game is a matching penny game

where each player’s best response is the strategy not chosen by the other

agent.

We denote by yH the number of H-types playing C, and by yL the num-

ber of L-types playing C. The numbers of H-types and L-types prevailing

in a population are denoted by nH and nL, respectively, with nH +nL = N .

The period payoffs of H-types and L-types are

uH(di, yH , yL) =
yH + 2yL − 1

2(nH + nL − 1)
+ di

(
nH + 2nL − 2yL

2(nH + nL − 1)
− c

)

(2.5)

uL(di, yH , yL) =
yL − 1

2(nH + nL − 1)
+ di

(
nL + 2yH

2(nH + nL − 1)
− c

)

. (2.6)

Note that the second term in (2.5) depends negatively on yL, while the

second term in (2.6) depends positively on yH . The additional value of

playing D for H-types (i.e. the second term in (2.5)) decreases with the
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number of L-types playing C. The additional value of playing D for L-

types increases with the number of H-types playing C.

This is quite intuitive. Since an H-type prevails over an L-type playing

C with certainty, playing D becomes less attractive the more L-types play

C. On the other hand, because an L-type prevails over an H-type if and

only if he plays D and the H-type C, D becomes more attractive to L-types

as the number of H-types playing C increases.

2.4.2 The Role of Information

The imitation rule (2.3) still applies and we continue to study the spread of

D from an initial situation where all agents but one play C. A state where

all agents of the same type play the same strategy is denoted by −→σH
−→σL where

the first component means that all H-types play σH , the second component

that all L-types play σL.

Proposition 3 Suppose agents are heterogenous and have global informa-

tion. If c ≶ nH+nL

2(nH+nL−1)
, the absorbing state ~D ~D ( ~C ~C) is reached in period

2.

Proposition 3 states that if information is global, it is immaterial which

type of player innovates D. Intuitively, this sounds convincing. With global

information all agents have the same information. Consequently, all agents

follow the same decision rule.

From Propositions 2 and 3 follows that heterogeneity does not affect the

absorbing states, if agents have information about strategies and payoffs

of all agents but no information about types. However, as we will see,

heterogeneity matters either if agents can recognize the types of all agents,

or if they are locally informed only about strategies and payoffs.

Before we consider local information in Section 2.5, let us consider the

model for the case that agents observe all strategies, all payoffs, and all

types. We call this information structure the “complete information” bench-

mark. With complete information, agents of the same type make the same

strategy decisions. Note that for the complete information benchmark we

interpret the imitation rule (2.3) as follows. When applying (2.3), agents

of the same type compare only payoffs and strategies across agents of their
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own type. 7 Based upon this, we obtain the following result.

Proposition 4 Suppose agents are heterogenous and have complete infor-

mation. If c < min{ nH

2(N−1)
, nL

2(N−1)
}, the absorbing state is ~D ~D. If

c ∈
[

min{ nH

2(N − 1)
,

nL

2(N − 1)
}, max{nH + 2nL

2(N − 1)
,
2nH + nL

2(N − 1)
}
]

,

the absorbing set is
{

~C ~D, ~D ~D, ~D ~C, ~C ~C
}

. If c > max{nH+2nL

2(N−1)
, 2nH+nL

2(N−1)
}, the

absorbing state is ~C ~C.

Since all players have both strategies available at any point in time, agents

of the same type will always play the same strategy. Obviously, if costs are

small (large), all agents play D (C). However, in contrast to the game with

global information, there is an absorbing set in which agents cycle between

C and D. This absorbing set is attained if costs are such that D (C) pays

for a single agent of either type when all others play C (D).8

2.5 Heterogenous Agents with Local Infor-

mation

With heterogeneity among agents and local information, the allocation of

types along the circle matters because it affects the payoffs of the strategies

C and D which an agent observes in his information set Gi(1). Conse-

quently, in contrast to the case with homogeneous agents, Gi(1) does not

reveal the true benefit of a strategy to a player. For example, a large pay-

off of a neighbor can now be due to either the strategy chosen (which is

observed) or the unobservable H-type. In this section, we first classify the

agents according to their location, which determines the perceived period

7If no agent of one type plays D (C), we assume that agents of this type can calculate

the hypothetical payoff of playing D (C) for their type and have both strategies at their

disposal at any point in time. Otherwise, D would trivially at most spread among the

types where innovation occurred.
8Cycling also occurs in Berentsen and Lengwiler (2004). In this model the authors

consider the replicator dynamics in a model with heterogenous agents. The stage game

is a Prisoner’s Dilemma when two agents of the same type meet or a matching penny

game when two agents of opposite type meet.
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payoff of the strategies C and D. We then investigate the implication of

local information and heterogeneity for the imitation dynamics.

2.5.1 The Role of Information

We introduce the following notation in order to classify the agents according

to their location on the circle:

An agent whose immediate neighbors are of the same type is called an

interior player. We denote interior players by H I and LI , respectively. An

agent who has an H-type as a neighbor on one side and an L-type on the

other side is called an edge player. We denote edge players by HE or LE,

respectively. A further case has to be defined: the double-edge players.

An H-type whose two neighbors are L-types, is a double-edge player and

abbreviated by HEE. Accordingly, an LEE is an L-type who is located such

that both his neighbors are H-types. For the purpose of clarification, we

display an example:

 HI 

HE HI 
HEE 

LE 
HE 

LI 

LEE 
HI 

LE 

HI 
HE 

LE 

LE 

HE 

HI 

In order to simplify the display of populations, we will write populations

and fragments of populations as a sequences of types. Consequently, the

above example can be depicted as

HIHELELILEHEELEEHEHIHIHIHELELEHEHI .

Note that the players at both ends (H I on the left and HI on the right) are

immediate neighbors on the circle.

Let us now determine the strategy choices for the three locations by

calculating the decision terms ∆ introduced above.

Interior Player An interior player has only information about agents of

his own type. Consequently, an interior player only observes differences
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in payoffs if different strategies have been played. We write these payoff

differences as

∆HI (yH , yL) = uH(1, yH , yL) − uH(0, yH , yL) =
nH + 2nL − 2yL

2(N − 1)
− c (2.7)

∆LI (yH , yL) = uL(1, yH , yL) − uL(0, yH , yL) =
nL + 2yH

2(N − 1)
− c . (2.8)

If ∆HI ≶ 0 (or ∆LI ≶ 0) , then HI (LI) plays C, respectively D next period.

Edge Player Let us first consider an edge player of type H. Such a player

has an L-type and an H-type as neighbors, i.e. either LHEH or HHEL is

the respective sequence on the circle. We concentrate on LHEH because

HHEL can be analyzed in the same way. An HE-player faces eight (= 23)

possible strategy strings in Gi,t(1). Two strings are CCC and DDD. In

this case the agent does not change his strategy. The other six strings are

CDD
︸ ︷︷ ︸

1st

CCD CDC
︸ ︷︷ ︸

2nd

DDC DCD
︸ ︷︷ ︸

3rd

DCC
︸ ︷︷ ︸

4th

. (2.9)

Consider, for example, the first term in (2.9). It means that “L plays C,

HE plays D and H plays D.” The strategy strings CCD and CDC do

not differ with respect to the observed average payoffs. In either case, the

L-type and one H-type play C, while the other H-type plays D. Similarly,

the strategy strings DDC and DCD yield also the same average payoffs for

D and C, respectively.

We can summarize the decisions of HE by considering the observed

differences ∆q

HE , where the superscript q refers to the rank of the term in

(2.9). In the Appendix we show that the ranking orders as follows:

∆1
HE ≥ ∆2

HE ≥ ∆HI ≥ ∆3
HE ≥ ∆4

HE (2.10)

Thus, if for a clean edge player in a DCC string ∆4
HE > 0, all edge players

and all interior players will play D in the following period.

An edge player of type L has an H-type and an L-type in his information

group. We analyze HLEL because LLEH can be analyzed accordingly. The

possible strategy strings in the information group of LE are given in (2.9).

As is shown in the Appendix

∆4
LE ≥ ∆3

LE ≥ ∆LI ≥ ∆2
LE ≥ ∆1

LE . (2.11)
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Next we show that some agents systematically over- or underestimate the

true benefit of the illegal strategy D. Recall that an interior player only

observes agents of his own type. Consequently, his decision term ∆LI (or

∆HI ) reflects the true payoff difference of the two strategies for his type, i.e.

an interior player’s assessment of a strategy is not distorted by heterogeneity.

However, according to (2.10) and (2.11), edge players systematically over-

or underestimate the payoffs of C or D to their type as defined below.

Definition 3 An agent overestimates (underestimates) the payoff of strat-

egy D for his type if his decision term ∆ is greater (smaller) than the deci-

sion term of an interior player of his type.

For example, edge players of type H overestimate D whenever their L-type

neighbor plays C, i.e. ∆1
HE ≥ ∆2

HE ≥ ∆HI . The reason for this is that the

payoff of an L-type using C is always zero except when matched to another

L-type player using C. In the later case his payoff is 1/2. In contrast, an

H-type who plays C receives a positive payoff when matched to another

H-type or to an L-type using C. Consequently, an edge player of type

H underestimates the benefit of strategy C, respectively overestimates D,

when his L-type neighbor plays C.

To recapitulate, there are two crucial features of local information. First,

certain agents (edge players and double-edge players) under- or overestimate

strategy D, respectively, C. There is no such effect with complete informa-

tion where each player type knows the true benefit of each strategy for his

type.

Second, local information permits some agents (interior players) to ob-

serve the true payoff difference of the two strategies for his type as explained

above. In contrast, with global information and heterogenous players no

agent ever observes the true payoff difference for his type.

Double-Edge Player Finally, let us investigate the behavior of double-

edge players. The information group for an HEE-type and an LEE-type

respectively are composed of the following types:

LHEEL and HLEEH.

Thus, the relevant strategy strings are

DCD
︸ ︷︷ ︸

1st

CCD DCC
︸ ︷︷ ︸

2nd

DDC CDD
︸ ︷︷ ︸

3rd

CDC
︸ ︷︷ ︸

4th

. (2.12)



80 CHAPTER 2

In the Appendix we show that the following ranking holds,

∆3
HEE > ∆HI > ∆2

HEE and ∆2
LEE > ∆LI > ∆3

LEE . (2.13)

Like edge players, double-edge players over- or underestimate the payoff of

strategy D to their type.

2.5.2 Maximal Segregation

Recall the main question of this analysis: How does strategy D evolve in

a population in which initially all players but one play C? Two factors

determine the spread of D: The allocation of types along the circle on the

one hand, and the location and type of the innovator on the other.

In the following we consider a distribution of types that we call maximal

segregation. In such a population H-types and L-types are allocated in two

clusters as follows:

HHH...HHLLL...LLL .

In a maximally segregated population, there are only two edge players for

each type and no double-edge players. In order to simplify the analysis, we

assume that nH = nL = n = N
2
.

Innovation and absorbing states

As explained above, for each type there are three classes of agents; interior,

edge and double-edge players. Within the same class agents may choose dif-

ferent strategies because they have different information sets. Consequently,

we have to distinguish the location of the innovator. Innovation by an in-

terior player has a different implication for the imitation dynamics than an

innovation by an edge player. Moreover, we have also to distinguish among

interior players. An innovation through an interior player who is located

within other interior players has different consequences than an innovation

from an interior player who is located next to an edge player. We call these

special interior players next-to-edge players and give them the superscript

NE, while we still denote all other interior players by superscript I.

Proposition 5 The innovator can either be an L-type or an H-type.

(I) Suppose the innovator is an L-type:
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For c < 2n
2(N−1)

the absorbing state is ~D ~D, for c ∈
(

2n
2(N−1)

, 3n
2(N−1)

)

it is

~C ~D∗, and for c > 3n
2(N−1)

it is ~C ~C.

(II) Suppose the innovator is an H-type:

(i) If he is an interior player, then for c ≶ n
2(N−1)

, the absorbing state is

~D ~D, respectively ~C ~C.

(ii) If he is a next-to-edge player, then for c < n+1
2(N−1)

, the absorbing state

is ~D ~D, for c ∈
(

n+1
2(N−1)

, n+2
2(N−1)

)

, it is ~D ~C∗, for c ∈
(

n+2
2(N−1)

,
2n− 1

2

2(N−1)

)

it is ~D ~D, and for c >
2n− 1

2

2(N−1)
, it is ~C ~C.

(iii) If he is an edge player, then for c < n+1
2(N−1)

, the absorbing state is ~D ~D,

for c ∈
(

n+1
2(N−1)

, n+2
2(N−1)

)

, it is ~D ~C∗, for c ∈
(

n+2
2(N−1)

,
2n− 1

2

2(N−1)

)

it is ~D ~D,

for c ∈
(

2n− 1

2

2(N−1)
, 3n−1

2(N−1)

)

, it is ~C ~D∗, and for c > 3n−1
2(N−1)

, it is ~C ~C.

The absorbing state ~C ~D∗ ( ~D ~C∗ ) is identical to ~C ~D ( ~D ~C) except that

edge players of type L play C or cycle between C and D depending on

c and n. Interestingly, the location of the innovator is irrelevant if the

innovator is an L-type. However, if the innovator is an H-type, the location

matters. Finally, the number of agents playing C can decrease in c when

the innovation occurs through an HN - or an HE-type.
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Figure 2.2: Absorbing states in a maximally segregated, finite population.



82 CHAPTER 2

Let us illustrate Proposition 5 for n = 8. As Figure 2.2 shows, if the cost

c is drawn at random, then the population is more likely to end up in

the absorbing state ~D ~D when the innovator is an L-type than when he is

an H-type. Furthermore, Figure 2.2 illustrates, that among the H-types

the location of the innovator is crucial. If the innovation arises from an

HN - or an HE-type, then again ~D ~D is more likely than if the innovation

arises from an HI-type. In this sense, innovations by edge or next-to-edge

H-types have similar consequences for the imitation dynamics as those by

L-types. Finally, Figure 2.2 shows that the number of agents playing C is

non-monotonic in c.

An interesting case is the limiting case when there is no finite population

effect (n → ∞), as depicted in Figure 2.3. In this case the absorbing state
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Figure 2.3: Absorbing states in a maximally segregated, infinite population.

~D ~C∗ disappears. Indeed, without a finite population effect, the difference

between an innovation by an HI-type and a HN - or HE-type can be seen

more easily. For c ∈ (1/4, 1/2) innovating HE- and HN -types infect L-type

players, which does not happen if the innovator is an H I-type. Note that

in this case innovations by L-types or HE- and HN -types have almost the

same consequences for the imitation dynamics.
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2.5.3 Minimal Segregation of Types

After having characterized the absorbing states when the population is max-

imally segregated, we now consider the polar case of a minimally segregated

population. This means that we look at a population in which types are

located as follows:

HLHLHLHL...HLHLHLHL. .

Evidently, a minimally segregated population consists of double-edge players

only. Consequently, there are only two different positions where the strategy

D can be introduced. These are HEE and LEE, respectively. Again, let us

assume nH = nL = n.

Absorbing States

Recall that in a maximally segregated population, all agents of the same

type play the same strategy in the absorbing state (with the only exception

of edge-players of type L in some absorbing states, see Proposition 5). In

contrast to that, in a minimally segregated population, agents of the same

type will not necessarily end up playing the same strategy. For analyzing

this, we have to introduce some additional notation.

We denote by C̃yH
C̃yL

a strategy state where the number of H-types and

L-types playing C is yH and yL, respectively. In such a state, all agents of

either type who play the same strategy are next to each other. Let ȳ be the

greatest nonnegative odd (even) integer smaller than

2c (N − 1) − n − 1

2

if n is even (odd). Note that if 2c (N − 1)−n− 1
2

< 0, i.e. c <
n+ 1

2

2(N−1)
, then

ȳ = 0. In this case, the absorbing state is C̃0C̃0 where all agents play D.

It is again possible that an absorbing set is attained in which two L-types

cycle between D and C. We denote such an absorbing set by C̃yH
C̃∗

yL
.

Proposition 6 The innovator can either be an L-type or an H-type.

(I) Suppose the innovator is an H-type:

For c <
n+ 1

2

2(N−1)
, the absorbing state is C̃0C̃0, for

n+ 1

2

2(N−1)
< c <

2n− 1

2

2(N−1)
it is

C̃ȳC̃
∗
ȳ−1, for

2n− 1

2

2(N−1)
< c < 3n−1

2(N−1)
it is C̃n−1C̃n, and for c > 3n−1

2(N−1)
, it is
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C̃nC̃n.

(II) Suppose the innovator is an L-type:

For c <
n+ 1

2

2(N−1)
, the absorbing state is C̃0C̃0, for

n+ 1

2

2(N−1)
< c <

2n+ 1

2

2(N−1)
it is

C̃ȳC̃
∗
ȳ−1, and for c >

2n+ 1

2

2(N−1)
it is C̃nC̃n.

Several comments seem to be helpful for a better understanding of the

results. First, in a minimally segregated population the type of the inno-

vator does not affect the absorbing states significantly. It only matters if
2n− 1

2

2(N−1)
< c < 3n−1

2(N−1)
. In this case, the absorbing state is C̃n−1C̃n if the

innovator is an H-type.

Second, if the innovator infects its neighbors such that strategy D begins

to spread, the spread can be only blocked by H-types. Consequently, in

any absorbing state where both strategies survive and where more than one

player adopts strategy D there will be always one L−player more using D

than H-players, i.e. the absorbing state is of type C̃ȳC̃
∗
ȳ−1.

Third, the absorbing state C̃n−1C̃n is special because the innovator is

a H−type, which is not able to infect his L-type neighbors. Nevertheless,

he continues to use D because strategy D yields a higher payoff in his

information set. Consequently, the initial strategy string is stationary.

We illustrate Proposition 6 for n = 8 in Figure 2.4.
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Figure 2.4: Absorbing states in a minimally segregated, finite population.

Figure 2.4 shows that the absorbing states are independent of the innovator’s

type for costs smaller than
2n− 1

2

2(N−1)
and costs higher than 3n−1

2(N−1)
. For the

remainder of the cost interval, the absorbing states for an H-type innovator

can maximally differ by the strategy choice of two agents from the absorbing

states for an L-type innovator.
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Finally, we also consider the limiting case without finite population effect

(n → ∞). With n going to infinity, ȳ goes to infinity too. So we cannot

indicate the respective absorbing state with ȳ. We use the share of agents

playing C in dependence of the costs c instead. Consequently, an absorbing

state C̃4c−1C̃4c−1 means that for c = 0.3 one fifth (= 4 ∗ 0.3 − 1) of the

H-types and one fifth of the L-types play C.

From Figure 2.5 we can see that without finite population effect the type

of innovator is irrelevant. If c < 1/4, then all players will end up using D.

 
              
 

 

 Costs c 

   0 
 

4

1    
2

1    
1 

       
       
        
Innovator 
is an H-type 

 
00

~~
CC  1414

~~
−− cc CC  11

~~
CC  

        
Innovator 
is an L-type 

 
00

~~
CC  1414

~~
−− cc CC  11

~~
CC  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.5: Absorbing states in a minimally segregated, finite population.

For 1/4 < c < 1/2, the fraction of H-types and L-types using C is equal

and strictly increasing in c. Finally, for c > 1/2, all agents play C. This

is interesting because with global information in the limiting case when the

number of players is large we get the result that if c ≶ 1
2
, the absorbing

state is ~D ~D ( ~C ~C) (see Proposition 3). Thus, local information reduces the

spread of the strategy D if agents are minimally segregated.

2.5.4 Maximal versus Minimal Segregation

Finally, let us compare the absorbing states of a maximally and of a mini-

mally segregated population. To this end, we calculate the expected share

of agents playing C in the absorbing state when each agent is equally likely

to innovate D. We focus on large populations (n → ∞) such that the finite

population effects can be neglected. Another consequence of this assump-

tion is that the role of edge players (of which there are but two of each

type in the maximally segregated population and none in the minimally

segregated population) becomes negligible.
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Figure 2.5.4 depicts the expected shares of agents playing C in the ab-

sorbing states for maximally and minimally segregated populations. The

left-hand panel displays the shares for both populations when D is intro-

duced by an H-type. The right-hand panel displays these shares if innova-

tion occurs by an L-type.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

costs c

ex
p.

 s
ha

re
 o

f 
ag

en
ts

 p
la

yi
ng

 C

Innovation by H

max. seg.
min. seg.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

costs c

ex
p.

 s
ha

re
 o

f 
ag

en
ts

 p
la

yi
ng

 C

Innovation by L

Figure 2.6: Comparing maximal and minimal segregation.

There are two observations worth pointing out. First, in a minimally

segregated population the location of the innovator does not matter. Con-

sequently, for a minimally segregated population the curves depicting the

share of agents playing C (the dotted curves in Figure 2.5.4) are identical

in both panels.

Second, if the innovator is a low type, then a minimally segregated

population is more resistant against the illegal strategy D than a maximally

segregated population: The curve of the maximally segregated population

lies more to the right than the one of the minimally segregated population.

This means that in a maximally segregated population the costs leading to a

higher share of C-playing agents are higher than in a minimally segregated

population. The reason for this result is that in a minimally segregated

population each low type (including the innovator) is surrounded by two

high types who are less prone to imitate D. In contrast, if the innovator

is a high type, then a maximally segregated population is more resistant

against D than a minimally segregated population. The reason for this

result is that in a maximally segregated population the innovator is again

surrounded by high types which are less prone to imitate D.
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Proposition 7 Consider a large population (n → ∞) and suppose that

each agent is equally likely to innovate the illegal strategy D.

If c < 2
8
, all agents play D in the absorbing state for both distributions of

types.

If 2
8

< c < 3
8
, more agents play D in a minimally segregated population than

in a maximally segregated one.

If 3
8

< c < 6
8
, less agents play D in a minimally segregated population than

in a maximally segregated one.

Finally, if c > 6
8
, all agents play C in the absorbing state for both distribu-

tions of types.

These results immediately follow from Propositions 5 and 6.
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Figure 2.7: Comparing maximal and minimal segregation, one panel.

As Figure 2.7 shows, for c ∈ ( 3
8
, 6

8
) the minimally segregated population

exhibits a higher share of agents playing C in the absorbing state than

the maximally segregated population. The reason is that being located

between L-types, the H-types are able to block the spread of strategy D.

However, for sufficiently low cheating costs, i.e. for c ∈ ( 2
8
, 3

8
), the maximally

segregated population exhibits a higher share of agents playing C, simply

since in a maximally segregated population L-types never observe D if the

innovator is a H-type. However, in a minimally segregated population, if

D is introduced by a H-type, two L-type will observe it. And since L-types

are more likely to be infected than H-types, the population share of agents
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playing D is larger with minimal segregation.

2.6 Extensions

Of course our analysis so far might be extended into several directions. Two

of them will be discussed at some detail.

In Section 2.6.1 we first consider mutations. So far we have studied

how an illegal activity spreads in a fair playing population, if only a single

agent discovers it. We have neither considered that there could be more

than just one innovating agent at the same time nor that innovations could

take place after the first period. By considering mutation, we now allow for

random innovations in all periods. How robust are our results with respect

to random innovations? Can we expect similar results if an illegal strategy

appears randomly in a population?

In Section 2.6.2 we consider gradual heterogeneity and gradual effec-

tiveness of D. Our results so far have been based on the assumption that

a cheating agent always wins against a fair playing agent, and that a high

type always prevails over a low type if both play the same strategy. Both

are strong assumption which we intend to generalize in Section 2.6.2. We

sketch how the absorbing states change when D is less than perfectly ef-

fective or when H-types do not win with certainty over L-types when both

types use the same strategy. Our previous results are confirmed to hold

when we give up the two assumptions.

2.6.1 Mutations

How can we introduce mutations? One option is to suppose that in each

period, after imitations have occurred, an agent’s strategy changes with

a small probability ε.9 As mentioned before, the imitation dynamics is a

Markov chain evolving over the strategy space S. A probability distribution

over S in time t is represented as a row vector ν which is an element of the

2N -dimensional simplex. The simplex ΣN is the set

ΣN =

{

ν ∈ IR2N

∣
∣
∣
∣
∣
νi ≥ 0 and

∑

i

νi = 1 for i = 1, 2, ..., 2N

}

.

9See Kandori et al. (1993, p.38) or Ellison (1993, p.1050) for an interpretation of ε.
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The process evolves according to νt+1 = νtP , where P is the transition

probability matrix as defined in Section 2.3. Now since strategies change

with probability ε after imitation, the transition probability pij is positive

for all i and j, i.e. the Markov chain is regular. Thus, there exists a unique

probability distribution µ ∈ ΣN such that10

µP = µ .

The vector µ is the unique stationary distribution of the regular Markov

process, which does not depend on the initial probability distribution. The

stationary distribution µ is stable, i.e.

lim
t→∞

νP t = µ ∀ ν ∈ ΣN .

From the law of large numbers for regular Markov chains we get

E

[

1

T

T∑

t=1

zi,t

]

→ µi with zi,t =

{
1 if st = i

0 otherwise

as T goes to infinity.11 Therefore, the probabilities in the limiting distri-

bution can be interpreted as average share of time the process spends in a

given state.

The transition matrix P (ε) and the stationary distribution µ(ε) depend

on ε. The stationary and stable probability distribution µ(ε) describes the

long-run behavior of the imitation dynamics with mutations. Since we are

interested in the imitation dynamics for small ε, we consider the limiting

distribution µ∗:

µ∗ = lim
ε→0

µ(ε) .

The limiting distribution µ∗, if it exists, depends on the parameter values

{c, n} of our model. Even for very small populations, evaluating µ∗ involves

solving a large equation system of 22n variables. Instead of finding µ(ε)

explicitly and taking the limit for ε → 0, we approximate µ∗ numerically.

We will describe µ∗ for a maximally segregated population and the smallest

population size (n = 5) that provides all relevant positions of innovation

(i.e. HI , HN , HE, and L) as described previously. Our simulations suggest

the following results.

10See e.g. Kemeny and Snell (1960), Theorem 4.1.6.(b).
11See e.g. Kemeny and Snell (1960), Theorems 4.1.6.(a) and 4.2.1.
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Conjecture 1 Suppose a population is maximally segregated and the in-

dividual mutation rate ε goes to zero. If c < n
2(N−1)

, then Pr( ~D ~D) = 1,

if n
2(N−1)

< c < 2n−2
2(N−1)

then Pr( ~D ~C∗) = 1, if 2n−2
2(N−1)

< c < 2n+2
2(N−1)

, then

Pr(M) = 1, if 2n+2
2(N−1)

< c < 3n
2(N−1)

then Pr( ~C ~D∗) = 1, and if c > 3n
2(N−1)

,

then Pr( ~C ~C) = 1.

The set M is defined as M =
{

~D ~D, ~D ~C∗, ~D ~C, ~C ~D, ~C ~D∗, ~C ~C
}

. We illus-

trate our conjecture for n = 5 and n → ∞ in the following Figures.

~D ~D ~D ~C∗ M ~C ~D∗ ~C ~C

c

0 5
18

8
18

12
18

15
18

1

Figure 2.8: Maximal segregation with mutations, n = 5.

Figure 2.8 demonstrates that the absorbing state ~D ~D arising from the costs

c ∈
(

n+2
2(N−1)

,
2n− 1

2

2(N−1)

)

in the model without now mutations disappears. Nev-

ertheless, we still observe non-monotonicity because ~D ~D is an element of

the absorbing set M and is played with strictly positive probability.

Again, an interesting case is the limiting case when n → ∞ as depicted

in Figure 2.9.

~D ~D ~D ~C∗ ~C ~D∗ ~C ~C

c

0 1
4

1
2

3
4

1

Figure 2.9: Maximal segregation with mutations, infinite n.

For c < 1
4
, the model with mutations and the deterministic model both

give way to the absorbing state ~D ~D. If 1
4

< c < 1
2
, the absorbing state

~D ~C∗ is reached with probability 1 in the model with mutations. In the

deterministic model, however, the absorbing state is ~C ~C if the innovator is

an HI-type and ~D ~D otherwise. From this we conclude that our results in

the deterministic model are not robust with respect to mutations. This is
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not so surprising, since due to the imitation rule, agents can only imitate

strategies they observe in their information set. Thus, in the absorbing

states ~C ~C and ~D ~D, the population is locked in. This cannot occur with

mutations. For 1
2

< c < 3
4
, the model without mutations exhibits another

lock-in, which arises if the innovation occurs through an H I- or an HN -type.

For c > 3
4
, the model with mutations and the deterministic model have the

same absorbing state, ~C ~C.

2.6.2 Gradual Heterogeneity and Effectiveness of D

So far, we have assumed that H-types prevail with certainty over L-types

if both play the same strategy. We call this complete heterogeneity. We

have also used the assumption that D is perfectly effective, i.e. an L-type

playing D prevails with certainty over an H-type playing C. In order to

show that our results can be generalized, we now relax both assumptions.

Let p1 denote the probability that an agent of either type playing D

prevails over an agent of the same type playing C and p2 the probability that

an H-type playing C wins against an L-type playing D. The probability

that an H-type wins against an L-type when both play the same strategy is

denoted by p3, while the probability that an H-type playing D wins against

an L-type is denoted as p4. With perfect effectiveness we thus had p1 = 1

and p2 = 0 and p4 = 1, while complete heterogeneity implies p3 = 1.

When relaxing the assumption of perfect effectiveness of D, we let p1

decrease while increasing p2 (e.g. p2 = 1− p1). When relaxing the assump-

tion of complete heterogeneity, we simply can decrease p3 (see Figure 2.10).

We will use a maximally segregated population to show these extensions.

What are the effects of allowing heterogeneity to be only gradual rather

than complete? Our simulations are summarized in Figure 2.10. The panel

on the right shows the effects of gradual heterogeneity. Gradual heterogene-

ity is captured by varying the parameter p3, which is the probability that

an H-type wins against an L-type when both play the same strategy.

The panel on the left shows the effects of gradual effectiveness of D.

Gradual effectiveness of D means that a cheating agent does not prevail

over a fair playing for sure. Therefore we vary p1, the parameter for the

probability that an agent playing D wins against an agent of his own type

playing C. Both simulations are run with a population size of N = 40.
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Figure 2.10: Gradual heterogeneity and gradual effectiveness of D.

The curves depicting the fraction of agents who play C are step functions

in the case of complete heterogeneity, as has been shown in section 2.5.2.

As heterogeneity becomes gradual, these functions become smoother and

resemble more and more straight lines, as the right panel in Figure 2.10

shows. This panel depicts the fraction of agents playing C for five different

values of p3, i.e. the probability that an H-type prevails over an L-type if

both play the same strategy. The resulting smoother line is not much of a

surprise, given the behavior of the model with homogenous agents analyzed

in Section 2.3. As the probability p3 becomes smaller until it eventually

approaches 1
2
, agents becomes more and more homogenous, so that the

model eventually collapses to the model of Section 2.3.

The consequences of relaxing the assumption of perfect effectiveness are

also easily summarized. The left panel in Figure 2.10 depicts the share of

agents playing C as a function of c. Not surprisingly, as strategy D becomes

less effective, the share of agents who play C increases for any value of the

costs c.

We think it is fair to conclude from these two extensions that the model

is robust with respect to the assumptions maintained through out the largest

parts of the chapter. Qualitatively, the results do not change as we allow for

less than complete heterogeneity of types and less than perfectly effective

D.
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2.7 Conclusions

In this chapter, we are concerned with the spread of illegal activities. Let

us consider a population in which agents compete with fair means. We

now assume that one agent invents an illegal activity and study the circum-

stances under which other agents imitate it. The innovation of this research

is that we include the distortions of the information on illegal activities in

our considerations: these are scarcity and non-verifiability.

In order to study these issues, we consider an evolutionary game in which

agents can either use a legal or an illegal strategy. An agent playing the

illegal strategy bears some direct utility cost but wins the stage game against

a fair playing agent with certainty. Agents interact globally, i.e. compete

against all other agents of the population. They imitate the strategy which

they observed to yield the highest average payoff.

We model informational scarcity by introducing the concept of local

information. With local information agents observe the payoffs received

and the strategies played only of a subset of opponents. Depending on the

application we may say that information cannot be hidden from all agents

or that information is shared with confidants. We use a spatial model

to capture this feature: Agents are allocated on a circle and under local

information only neighbors observe payoffs and strategies of each other. In

contrast to local information, global information implies that agents observe

the strategies and the outcomes of all other agents.

The consideration of non-verifiability requires a further extension of

the standard evolutionary game framework: By assuming heterogeneity of

agents we introduce different payoffs for agents playing the same strategy.

In an evolutionary game heterogeneity of agents is equivalent to the imple-

mentation of more than one stage game. Our evolutionary game consists of

two stage games, one that defines the outcomes between agents of the same

type, and one that defines the payoffs between two agents of different types.

There are two types of agents where high types have a natural advantage

over low types, i.e. they win the stage game with certainty if both agents

apply the same strategy. We assume that the type of an agent cannot be

observed by the agents. Consequently, the payoffs an agent observes for a

strategy may not equal the payoff he would receive playing it. We there-

fore say that due to non-verifiability agents can over- or underestimate the
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payoff of a strategy.

Whether an agent over- or underestimates the payoff of a strategy de-

pends on the types of agents he shares information with. It is obvious that

a low type that observes the payoff of a high type overestimates the value

of the strategy played by the high type. The reason is that the high types

receive higher payoffs because of their natural advantage in competition.

Consequently, the low type is more likely to imitate the strategy played by

the high type than a strategy played by other low types. This example

shows that the distribution of types matters for the absorbing states of the

imitation dynamics. Naturally, the type and the location of the innovator

are also decisive for the imitation dynamics.

We focus on two distribution of types: maximal (equal types are located

next to each other) and minimal (agents have always neighbors of opposite

type) segregation. What are the differences between the absorbing states

of the two distributions?

First, the population is more likely to end up in an absorbing state

where all agents act illegally if the innovator is a low type. Second, if the

innovator is a low type, then a minimally segregated population is more re-

sistant against the illegal strategy than a maximally segregated population.

Third, in contrast, if the innovator is a high type, a maximally segregated

population is more resistant against the illegal strategy than a minimally

segregated population.

In a minimally segregated population, the location and the type of the

innovator does not matter. Neither do we observe that the share of fair

playing agents in an absorbing state changes significantly for small changes

in the costs of the illegal activity. The reason is that high types which are

less prone to imitate the illegal strategy can block the spread of the illegal

strategy in every other period.

However, if a low type innovates the illegal strategy in a maximally seg-

regated population, all low types observing it imitate it because it strength-

ens their position in competition. For a large number of cheating low types,

high types are better off to act illegally too. Therefore a population can

actually end up in an absorbing state with all agents acting illegally even for

relatively high costs of the illegal activity. Consequently, we observe large

changes in the frequency of the illegal activity for small changes of its costs.

By extending our model we show that these results are robust with re-
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spect to the assumption on the effectiveness of the illegal strategy. Similarly,

heterogeneity can be reduced gradually without changing the nature of our

results.
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2.A Appendix: Proofs

2.A.1 Proof of Proposition 3

If the innovating agent is an H-type, the initial numbers of clean agents are

yH = nH − 1 and yL = nL. If the innovator is an L-type, these numbers are

yH = nH and yL = nL − 1. We first notice that due to global information

we have that

∆H(yH , yL) = ∆L(yH , yL) .

We therefore drop the type group index of the decision terms.

If the innovation arises from an H-type, the decision term for all agents is

∆(nH − 1, nL) = uH(1, nH − 1, nL)

− (nH − 1) uH(0, nH − 1, nL) + nLuL(0, nH − 1, nL)

N − 1
.

From (2.5) and (2.6) we get

uH(di, nH − 1, nL) =
N + nL − 2

2(N − 1)
+ di

(
nH

2(N − 1)
− c

)

and

uL(di, nH − 1, nL) =
nL − 1

2(N − 1)
+ di

(
N + nH − 2

2(N − 1)
− c

)

, respectively.

Using this information we get

∆(nH − 1, nL) =
nL + nH

2(nL + nH − 1)
− c.

If the innovation arises from an L-type agent, the difference in the average

payoffs is

∆(nH , nL − 1) = uL(1, nH , nL − 1)

− nHuH(0, nH , nL − 1) + (nL − 1) uL(0, nH , nL − 1)

N − 1
.

From (2.5) and (2.6) we get

uH(di, nH , nL − 1) =
N + nL − 3

2(N − 1)
+ di

(
nH + 2

2(N − 1)
− c

)

and

uL(di, yH , nL − 1) =
nL − 2

2(N − 1)
+ di

(
N + nH

2(N − 1)
− c

)

, respectively.
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Using this information we get

∆(nH , nL − 1) =
nL + nH

2(nL + nH − 1)
− c.

Note that

∆(nH , nL − 1) = ∆(nH − 1, nL) .

Consequently, the origin of the innovation does not matter if agents have

no type information.

2.A.2 Proof of Proposition 4

If agents have complete information, they have both strategies available at

any point in time, distinguish types and are able to calculate the payoff

they would have gotten having played the other strategy. Under these

circumstances the imitation rule (2.3) can be interpreted as a best response

dynamics. As before, we can define suitable decision terms. We have

∆H(yH , yL) = uH(1, yH , yL) − uH(0, yH , yL) =
nH + 2nL − 2yL

2(N − 1)
− c ,(2.14)

∆L(yH , yL) = uL(1, yH , yL) − uL(0, yH , yL) =
nL + 2yH

2(N − 1)
− c . (2.15)

At the end of the first period the agents decide either to play

• ~D ~D, if c < nH

2(N−1)
when H innovates (from ∆H(nH − 1, nL) > 0)

or if c < nH+2
2(N−1)

when L innovates (from ∆H(nH , nL − 1) > 0)

• ~C ~D, if nH

2(N−1)
< c < 2nH+nL−2

2(N−1)
when H innovates (from ∆H(nH −

1, nL) < 0 and ∆L(nH − 1, nL) > 0)

or if nH+2
2(N−1)

< c < 2nH+nL

2(N−1)
when L innovates (from ∆H(nH , nL−1) < 0

and ∆L(nH , nL − 1) > 0)

• ~C ~C for 2nH+nL−2
2(N−1)

< c when H innovates (from ∆L(nH − 1, nL) < 0)

or if 2nH+nL

2(N−1)
< c when L innovates (from ∆L(nH , nL − 1) < 0).
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Note that ~D ~C will not be played in the second period because of ∆H(nH −
1, nL) < ∆L(nH −1, nL) and ∆H(nH , nL −1) < ∆L(nH , nL −1). What kind

of ∆H and ∆L do these strategy states imply?

• All play C (situation ~C ~C), implies

∆H(nH , nL) =
nH

2(N − 1)
− c and ∆L(nH , nL) =

2nH + nL

2(N − 1)
− c ,

• all play D (situation ~D ~D), implies

∆H(0, 0) =
nH + 2nL

2(N − 1)
− c and ∆L(0, 0) =

nL

2(N − 1)
− c ,

• group H plays C and group L plays D (situation ~C ~D), implies

∆H(nH , 0) =
nH + 2nL

2(N − 1)
− c and ∆L(nH , 0) =

2nH + nL

2(N − 1)
− c ,

• group H plays D and group L plays C (situation ~D ~C), implies

∆H(0, nL) =
nH

2(N − 1)
− c and ∆L(0, nL) =

nL

2(N − 1)
− c .

From (2.14) and (2.15) it is clear that ~C ~C is an equilibrium strategy state

if

c > max{nH + 2nL

2(N − 1)
,
2nH + nL

2(N − 1)
}

and ~D ~D is an absorbing state if

c < min{ nH

2(N − 1)
,

nL

2(N − 1)
} .

If c does not satisfy one of these two conditions we can work out the following

cycle by using the ∆-functions above:

... → ~C ~D → ~D ~D → ~D ~C → ~C ~C → ~C ~D → ~D ~D → ~D ~C → ...

For c in an interval [min{ nH

2(N−1)
, nL

2(N−1)
}, max{nH+2nL

2(N−1)
, 2nH+nL

2(N−1)
}] we will ob-

serve an absorbing set of strategy states. The imitation dynamics cycles

between the four strategy states
{

~C ~D, ~D ~D, ~D ~C, ~C ~C
}

, where a single agent

plays C for two periods followed by D for two periods etc. The strategy

states specific to the two type groups are shifted in time by one or three

periods, depending on where in the cycle we start to count.
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2.A.3 Decision Terms for Edge Players

The decision terms for an edge player of type H are

∆1
HE(yH , yL) = uH(1, yH , yL) − uL(0, yH , yL)

=
nH + 2nL + yH − yL

2(N − 1)
− c , (2.16)

∆2
HE(yH , yL) = uH(1, yH , yL) − 1

2
[uH(0, yH , yL) + uL(0, yH , yL)]

=
nH + 2nL + 1

2
yH − 3

2
yL

2(N − 1)
− c , (2.17)

∆3
HE(yH , yL) =

1

2
[uH(1, yH , yL) + uL(1, yH , yL)] − uH(0, yH , yL)

=
1
2
nH + 3

2
nL + 1

2
yH − 3

2
yL

2(N − 1)
− c , (2.18)

∆4
HE(yH , yL) = uL(1, yH , yL) − uH(0, yH , yL)

=
nL + yH − yL

2(N − 1)
− c . (2.19)

For an edge player of type L we get

∆1
LE(yH , yL) = uL(1, yH , yL) − uH(0, yH , yL)

=
nL + yH − yL

2(N − 1)
− c , (2.20)

∆2
LE(yH , yL) = uL(1, yH , yL) − 1

2
[uH(0, yH , yL) + uL(0, yH , yL)]

=
nL + 3

2
yH − 1

2
yL

2(N − 1)
− c, (2.21)

∆3
LE(yH , yL) =

1

2
[uL(1, yH , yL) + uH(1, yH , yL)] − uL(0, yH , yL)

=
1
2
nH + 3

2
nL + 3

2
yH − 1

2
yL

2(N − 1)
− c , (2.22)

∆4
LE(yH , yL) = uH(1, yH , yL) − uL(0, yH , yL)

=
nH + 2nL + yH − yL

2(N − 1)
− c . (2.23)
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2.A.4 Decision Terms for Double-Edge Players

For a double-edge player of type H the decision terms are

∆1
HEE(yH , yL) =

nL + yH − yL

2(N − 1)
− c , (2.24)

∆2
HEE(yH , yL) =

nL + 3
2
yH − 1

2
yL

2(N − 1)
− c , (2.25)

∆3
HEE(yH , yL) =

1
2
nH + 3

2
nL + 3

2
yH − 1

2
yL

2(N − 1)
− c , (2.26)

∆4
HEE(yH , yL) =

nH + 2nL + yH − yL

2 (N − 1)
− c , (2.27)

and for a double-edge player of type L they are

∆1
LEE(yH , yL) =

nH + 2nL + yH − yL

2(N − 1)
− c , (2.28)

∆2
LEE(yH , yL) =

nH + 2nL + 1
2
yH − 3

2
yL

2(N − 1)
− c , (2.29)

∆3
LEE(yH , yL) =

1
2
nH + 3

2
nL + 1

2
yH − 3

2
yL

2(N − 1)
− c , (2.30)

∆4
LEE(yH , yL) =

nL + yH − yL

2(N − 1)
− c . (2.31)

2.A.5 Proof of Proposition 5

We accomplish the proof of Proposition 5 in two parts. We first consider

the absorbing states when an L-type introduces D.

L-type introduces D.

In the following we assume that the innovator is an interior player LI . The

absorbing states are the same when an LNE or an LE innovates D.

(a) If c > 3n
2(N−1)

, in the absorbing state all players play C because from

(2.6) ∆LI (n, n − 1) < 0. Consequently, D dies out immediately.

(b) If c ∈
(

2n
2(N−1)

, 3n
2(N−1)

)

the absorbing state is ~C ~D∗. This interval can be

divided into two subintervals. First, if c ∈
(

5

2
n−1

2(N−1)
, 3n

2(N−1)

)

in the absorbing
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state all LI play D, and the two LE and all H-types play C. If c < 3n
2(N−1)

,

interior players of type L imitate D because ∆LI (n, yL) = 3n
2(N−1)

− c > 0.

(Note that ∆LI (n, yL) does not depend on yL). At one point in time, an

LE observes D. He adopts it if ∆2
LE(n, yL) =

5

2
n− 1

2
yL

2(N−1)
− c > 0. Since ∆2

LE

depends negatively on yL, ∆2
LE is increasing when the number of LI using

D increases. Thus, ∆2
LE(n, yL) is maximal when yL = 2. Consequently, if

5

2
n−1

2(N−1)
− c > 0, the edge players of type L never adopt D, and an absorbing

state is reached.

Second, if c ∈
(

2n
2(N−1)

,
5

2
n−1

2(N−1)

)

, in the absorbing state all H play C, all

LI play C, and the LE cycle between D and C. If c <
5

2
n−1

2(N−1)
, an LE-

type imitates D. The first HE-agent observing D has the decision term

∆4
HE(yH , yL) = n+yH−yL

2(N−1)
− c. He adopts D if ∆4

HE(yH , yL) > 0. Since

all H−types still use C we have yH = n. Let us first assume that c is

such that he does not imitate D. Then, the number L-types adopting D is

increasing because their decision term does not depend on yL. Consequently,

yL decreases to 0 implying ∆4
HE(n, 0) = N

2(N−1)
− c.12 Thus, if 2n

2(N−1)
< c <

5

2
n−1

2(N−1)
all H-types play C and the LE-types cycle between C and D because

∆1
LE(n, 0) < 0 and ∆2

LE(n, 2) > 0.

(c) If c < 2n
2(N−1)

, in the absorbing state all players play D. If c < 2n
2(N−1)

,

∆4
HE(yH , yL) > 0. Then, from (2.10) all other H-types will also imitate D.

Note that L-types continue to use D because they do not observe strategy

C in their information set anymore. Consequently, in the absorbing state

all players play D.

H-type introduces D.

(i)

If an HI introduces D, we have to consider the intervals c ∈
(

0, n
2(N−1)

)

12Note that yL can only become 1 and not 0 if n is even. Start counting outward from

an LI inventing D. Since n is even, it takes an uneven number of periods from the period

the the first LE observes D until the second LE observes D. As explained in the text,

the LE cycle between C and D for the interval under consideration. Hence the two LE

do not play the same strategies in any given period. This shifts the lower bound of the

respective interval to c ∈
(

2n−1
2(N−1) ,

5

2
n−1

2(N−1)

)

for even n. In the Proposition we state the

result for odd n.
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and c ∈
(

n
2(N−1)

, 1
)

.

(a) If c > n
2(N−1)

, then ∆HI (n − 1, n) < 0 and D is extinguished in the

second period. The absorbing state is ~C ~C.

(b) If c < n
2(N−1)

, then ∆HI (n − 1, n) > 0, and the HI that observe D will

play it in the second period. In the following periods, more and more H I

will switch to D since ∆HI is unchanged as long as only H-types observe

D. At some point an HE will observe D. His decision term is ∆2
HE , which

from (2.10), is always higher than ∆HI (n − 1, n). So he will adopt. The

next player to consider is LE. His decision term is ∆4
LE(yH , n). He also

adopts D because ∆4
LE(yH , yL) > ∆HI (yH , yL) > 0. Now all LI adopt D

too, since ∆LI > 0 for c < n
n(N−1)

. The last question we have to answer is

whether the decreasing yH or yL can stop the spreading in either of the two

groups. For the H-types this is not the case because ∆HI is decreasing in

yL. For the L-types we find that if c < n
2(N−1)

, then ∆LI is always positive.

Consequently, if c < n
2(N−1)

, the absorbing state is ~D ~D.

(ii)

If an HN invents D, one HI and one HE observe D. For this reason, it is

convenient to divide the proof into three subsections: we consider the cost

intervals
(

0, n
2(N−1)

)

,
(

n
2(N−1)

,
2n− 1

2

2(N−1)

)

, and
(

2n− 1

2

2(N−1)
, 1
)

separately.

(a) If c < n
2(N−1)

, one can show that all decision terms are strictly positive.

Consequently, the absorbing state is ~D ~D.

(b) For n
2(N−1)

< c <
2n− 1

2

2(N−1)
, we find several absorbing states. We derive

them one by one. In the first period we have ∆2
HE(n − 1, n) > 0 but

∆HI (n − 1, n) < 0. In period t = 2, HE is thus the only agent playing D,

since HN who invented D abandons it (he decides according to ∆HI ) and

HI does not adopt it. So now LE, HE and HN face the decision to imitate

D or not. Their decision terms are ∆4
LE , ∆2

HE and ∆HI , valued at (n−1, n).

With c ∈
(

n
2(N−1)

,
2n− 1

2

2(N−1)

)

we have

∆4
LE(n − 1, n) =

3n − 1

2 (N − 1)
− c > 0

∆2
HE(n − 1, n) =

2n − 1
2

2 (N − 1)
− c > 0
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∆HI (n − 1, n) =
n

2 (N − 1)
− c < 0 .

So we know that in period t = 3 LE as well as HE play D and LI , LE, HE,

and HI have to decide to adopt or abandon D. By looking at these four

decision terms (∆LI , ∆3
LE , ∆3

HE , and ∆HI ) evaluated at (n − 1, n − 1), it

becomes clear that the process now is not unique for the whole interval of

c ∈
(

n
2(N−1)

,
2n− 1

2

2(N−1)

)

.

∆LI (n − 1, n − 1) =
3n − 2

2 (N − 1)
− c > 0

∆3
LE(n − 1, n − 1) =

3n − 1

2 (N − 1)
− c > 0

∆3
HE(n − 1, n − 1) =

n + 1

2 (N − 1)
− c ≷ 0

∆HI (n − 1, n − 1) =
n + 2

2 (N − 1)
− c ≷ 0 .

The HE who has the choice will only adopt D if c < n+1
2(N−1)

. In this case,

D will be played by the whole population: all H I and LI have a positive

decision term such that yH and yL decline by one each period. Also the last

two agents confronted with D, HE and LE imitate D, because

∆2
HE(1, 1) =

3n − 1

2 (N − 1)
− c > 0

∆2
LE(1, 1) =

n + 1

2 (N − 1)
− c > 0 . (2.32)

So for n
2(N−1)

< c < n+1
2(N−1)

, the absorbing state is ~D ~D.

It is clear that for a slightly higher c, c ∈
(

n+1
2(N−1)

, n+2
2(N−1)

)

, D spreads too

in both populations, but once all agents but two play D, LE will not adopt

it, according to (2.32). Because of

∆LI (0, 1) =
n

2 (N − 1)
− c < 0 ,

C will be imitated by the LNE next to LE in the following period, in which

case LE switches to D (the decision term for LE now is ∆3
LE , which is

positive for the c under consideration). All L-players but the edge players
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adopt C then. The edge players’ decision term ∆2
LE cannot be negative for

the c under consideration and thus the H-types are cut off the strategy C.

For the interval n+1
2(N−1)

< c < n+2
2(N−1)

we thus find the absorbing state ~D ~C∗.

Rising c again, c ∈
(

n+2
2(N−1)

,
2n− 1

2

2(N−1)

)

, in period t = 4 none of the H-players

will imitate D and it will spread in group L. Once yL is small enough, group

H will adopt strategy D. The absorbing state here is ~D ~D.

(c) If
(

2n− 1

2

2(N−1)
, 1
)

, we have ∆2
HE(n−1, n) < 0 and ∆HI (n−1, n) respectively.

So all players give up D in the second period and the absorbing state is ~C ~C.

(iii)

If an HE introduces D, an LE and an HI and the introducing HE can decide

to play D or not in the second period. The respective decision terms are

∆4
LE(n − 1, n) =

3n − 1

2 (N − 1)

∆2
HE(n − 1, n) =

2n − 1
2

2 (N − 1)

∆HI (n − 1, n) =
n

2 (N − 1)
.

It is convenient to look at the cost intervals
(

0, n
2(N−1)

)

,
(

n
2(N−1)

,
2n− 1

2

2(N−1)

)

,
(

2n− 1

2

2(N−1)
, 3n−1

2(N−1)

)

, and
(

3n−1
2(N−1)

, 1
)

separately.

(a) If 0 < c < n
2(N−1)

, the absorbing state is ~C ~C because all decision terms

are positive.

(b) If n
2(N−1)

< c <
2n− 1

2

2(N−1)
then ∆2

HE(n − 1, n) > 0 and ∆4
LE(n − 1, n) > 0,

and ∆HI (n − 1, n) < 0. So in the second period HE and LE only play D.

This situation is what we have analyzed in Part (ii), subsection (b) of this

proof. We can therefore take over these results and conclude the similar

dynamics for this range of the costs.

(c) If
2n− 1

2

2(N−1)
< c < 3n−1

2(N−1)
) only LE plays D in the second period. All

LI adopt D in the following because ∆LI is always negative for the given

cost interval. The spread of strategy D among the L-types will not affect

the H-types strategy choice, they keep playing C because ∆4
HE < 0 for the

2.A. APPENDIX: PROOFS 105

cost interval under consideration. As discussed before, the LE either cycle

between C and D or play D, the absorbing state for this cost interval is
~C ~D∗.

(d) If 3n−1
2(N−1)

< c < 1, the strategy D becomes extinct and the absorbing

state is ~C ~C, because all decision terms are negative.

2.A.6 Proof of Proposition 6

We first assume that an H-type plays D in period t = 1. If ∆4
HEE > 0 he

will keep playing D and his two neighbors adopt D if ∆2
LEE > 0. We have

∆4
HEE(n − 1, n) > ∆2

LEE(n − 1, n) and so D becomes extinct if c > 3n−1
2(N−1)

.

For
2n− 1

2

2(N−1)
< c < 3n−1

2(N−1)
the equilibrium is the initial strategy distribution,

because the neighbors of the inventor do not adopt D, but the HEE keeps

playing it.

We focus on c <
2n− 1

2

2(N−1)
now. As just seen, in t = 2 only the innovator HEE

and his two neighbors play D. Four players can choose between C and D

now, two HEE (playing C) that have the decision term ∆2
HEE and two LEE

(playing D) that have the decision term ∆3
LEE . Since ∆2

HEE(n− 1, n− 2) >

∆3
LEE(n − 1, n − 2) and ∆2

HEE(n − 1, n − 2) > 0, there are two cases to be

distinguished t = 3: either all of them adopt D, or the two HEE adopt

D and the two LEE do not. The two cases will actually lead to the same

absorbing state: the two LEE will have the decision term ∆1
LEE(yH , yL) in

period t = 4 which is greater than ∆2
HEE(yH , yL) for all yH and yL, so they

will adopt D then. Thus, this second case does not influence the absorbing

state. It is clear that if the two HEE choose to play D, the LEE will do the

same one period later. We neglect it from now on.

There are only two different kind of strategy states in this dynamics. The

first one is of the kind of period t = 3: two HEE with decision term ∆2
HEE

and two LEE with ∆3
LEE choose between D and C. We call this state

L-dominated because more L-types than H-types play D (to be precise:

yL − yH = 1). Picture period t = 3 to get the intuition. In t = 3, three
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agents play D, these are located as follows:

...HLHLH
︸ ︷︷ ︸

C

LHL
︸ ︷︷ ︸

D

HLHLHL...
︸ ︷︷ ︸

C

.

The second kind of strategy state is of the kind of period t = 4: two LEE

with decision term ∆2
LEE and two HEE with decision term ∆3

HEE have to

decide between the two strategies. We call this state H-dominated because

more H-types than L-types play D (yH − yL = 1).

...HLHL
︸ ︷︷ ︸

C

HLHLH
︸ ︷︷ ︸

D

LHLHL...
︸ ︷︷ ︸

C

.

Note that for any positive integer x, ∆2
LEE(x−2, x−1) as well as ∆3

HEE(x−
2, x − 1) are larger than ∆2

HEE(x, x − 1). So if we have reached an H-

dominated state, we will also reach the L-dominated state that features two

more L-types playing D.

We conclude that the absorbing state is reached when ∆2
HEE is negative

(∆2
HEE depends positively on yH). So only an L-dominated state can be an

absorbing state. The interpretation is that it will always be an H-type that

stops the spread of D. An H-type will at one point halt the spread of D

and act as a blocker to the L-types playing C who would adopt D if they

would observe D. The higher c is, the earlier the spread of D is halted,

that means, the less agents use D in the absorbing state. We conclude that

there exist many different absorbing states, depending on population size

N and the costs c.

We calculate the number of agents playing C in the absorbing state. Since

the absorbing state is L-dominated, we can substitute yL with yH − 1.

∆2
HEE =

n + yH + 1
2

2 (N − 1)
− c < 0

→ yH < 2c (N − 1) − n − 1

2
.

The solution yH to this inequality must be an odd (even) number if n is

even (odd). This comes from the fact that whenever HEE have the decision

term ∆2
HEE , there is an odd number of H-types playing D. This is because

yH decreases by steps of two.

The same arguments apply if the innovator is an L-type.

Chapter 3

Informational Deficits and

Strategy Clustering

3.1 Introduction

In Chapter 2 we have studied the role of information and the role of het-

erogeneity for a competition in which agents could either adopt a fair or an

illegal strategy. We did so by means of an evolutionary game with imita-

tion dynamics. We briefly repeat its basic structure. The underlying game

represents the competition of two agents for a prize of value w. The agents

choose between two strategies, they can either act legally (playing fair) or

illegally (cheating). An agent acting illegally wins the prize when playing

against a fair playing agent, but bears the costs c. An agent’s payoff in every

period is the sum of outcomes received from playing the game against all

other agents. We have presented a model variant with homogenous agents

and one with heterogenous agents. Heterogeneity implies that agents either

are of high or of low type. The high types have a natural advantage over

the low types in that they win the prize when competing against a low type

with the same strategy. However, a low type wins the prize against a high

type if the low type cheats and the high type plays fair. The agents are

located on a circle which allows us to define local and global information.

These two concepts constitute different information sets for the agents. We

assume that agents imitate the observed strategy with the highest average

payoff. For this setup, we have formally described the absorbing states of

the imitation dynamics for initial situations where only one agent has the



108 CHAPTER 3

illegal activity at his disposal. Furthermore, we have explained how the

type of the innovator, the segregation of the population, and the size of

information sets influence the absorbing states.

We have argued, that the model variant with heterogenous agents and lo-

cal information depicts the information deficits – scarcity and non-verifiabili-

ty – prevailing for decisions concerning the adoption of illegal activities. In

this chapter we take up this model variant in order to describe its absorb-

ing states for a broader set of initial strategy states. We again interpret the

results as the outcomes from imitation dynamics of illegal activities under

information deficits.

Instead of calculating the imitation dynamics explicitly like we have done

in the last chapter, we here display the characteristics of absorbing strategy

states found by numerical simulations. The initial strategy states used for

the simulations are drawn at random. So in contrast to the last chapter, we

do not restrict ourselves to initial strategy states with only one agent acting

illegally. The model therefore applies to situations where illegal activities

emerge at diverse locations in a population simultaneously. Or similarly to

situations where a population newly forms up both from agents that have

knowledge of the illegal activity and from agents that do not. One appli-

cation of the setup treated here is corruption in a government department.

People are hired from different work environments and may or may not have

been in contact with corruption in their precedent occupation. It is easily

conceivable that those that have been involved in corrupt manipulation be-

fore will bring in this behavioral strategy to the newly formed group. If they

then build up confidence relationships (corresponding to local information)

independently from their knowledge about corruption, our model applies.

We also abandon the assumption on specially ordered type distributions,

that is, we allow for more type distributions than just maximally and mini-

mally segregated populations. As well as the initial strategy states, we now

draw the type distribution of a population randomly.

We are interested in answering the following questions concerning the

characteristics of absorbing states: Do high types or low types use the illegal

strategy more often at a given cost level? Do neighbors tend to play the same

strategies regardless of their types, i.e. are strategies played in clusters? If

there is a clustering of strategies, where do we have to expect these clusters

to be with respect to the type distribution? Does the initial share of agents
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playing the illegal activity matter? What kind of type distributions exhibit

a low share of agents playing the illegal activity in the absorbing states? The

simulation results are displayed graphically, and in dependence of the cost

parameter c. In most of the figures, the dependent variable is the expected

frequency of the legal strategy in the absorbing states.

The chapter is organized as follows. In Section 3.2 we briefly explain the

applied simulation method. Additionally we explain the standard settings

for our simulations. In section 3.3 we describe the characteristics of the

absorbing strategy states when the type distributions are drawn randomly.

First, we investigate how the probability that a high type acts illegally

differs from the probability that a low types acts illegally. Second, we

analyze what kind of positions in the type distribution account for the last

result. Third, we show that the two strategies are played in clusters in our

model. In section 3.4, we depart from the standard setting that have been

used for the simulations so far. We vary the share of agents playing fair

initially, study initial strategy states with clusters, and look at populations

where high types outnumber low types and vice versa. In Appendix 3.A

we exemplarily display the imitation dynamics of our evolutionary game

for a randomly drawn initial strategy state and a randomly drawn type

distribution. We list the played strategy state for every period such that

the reader gets an idea of how the imitation dynamics changes the initial

strategy state to the absorbing state.

3.2 Monte Carlo Simulations

We apply a Monte Carlo Method (see e.g. Greene, 2000; Judd, 1998) to

study the characteristics of the absorbing states.

3.2.1 The Procedure

Assume that we are interested in a characteristic γ of the absorbing states.1

For our model, the mean of γ, E[γ], is the most important moment to gen-

erally describe the characteristic. Since we allow for random initial strategy

1Note that absorbing state always refers to the strategy state, and not the type dis-

tribution. The type distribution does not change in the evolutionary game under con-

sideration.
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states, we can view a characteristic γr of an absorbing state arising from

a given initial strategy state as a realization of a stochastic process. Pro-

ducing a large number of random realizations allows us to calculate the

average

γR =
1

R

R∑

r=1

γr

of the characteristics γr, r = 1, ..., R. According to a strong law of large

numbers, this average γR converges to E[γ], the mean of γ (Amemiya, 1998).

The procedure consists of five steps.

1. We draw the initial strategy state and the type distribution randomly.

Alternatively we might determine some properties of either of the two,

depending on what kind of characteristics of the absorbing states we

aim to analyze. Note that the type distribution remains unchanged

for the computation of an absorbing state.

2. We compute the strategy state of the next period. This is done by

counting through the type distribution and the initial strategy state

which yields nH , nL, yH , and yL. These numbers are used to evaluate

the decision term (2.2) of every agent, which defines his strategy choice

of the next period according to the imitation rule (2.3). The strategy

state of the next period is defined herewith.

3. The second step is repeated until the strategy state does not change

anymore. If this is the case, we have found an absorbing state. Alter-

natively, we stop repeating the second step, if we find a strategy state

that has been played in an earlier period already. Such a state is an

element of a set of absorbing states.

4. The absorbing strategy state (or the set of absorbing states) is ana-

lyzed on the characteristic γ under consideration (e.g. size of strategy

clusters). The characteristics is listed as the number γr.

5. All above steps are repeated R times.

6. We average over the results collected and get the average of the char-

acteristics, γR.
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Since we draw randomly, our averages converge to the means almost surely.

Note that the above procedure needs to be completed for every value of c.

3.2.2 Standard Simulation Settings

In this section we display the standard settings for our simulations. Unless

otherwise noted, the following settings are used for the simulations. In order

to keep the descriptions as simple as possible, we adhere to the notation of

Chapter 2 in the following.

We accomplish our simulations with a population size of 40 players, i.e.

N = 40.

We draw the type distribution simultaneously with an initial strategy

state. For the type distribution we assume, that the probability that an

agent is an H-type is 1
2
. This implies that

E[nH ] = E[nL] =
N

2
.

We deviate from this assumption in section 3.4.2.

For the initial strategy state we assume that the probability that an

agent plays D is the same as that he plays C. This implies that

E[yH ] = E[nH − yH ] and E[yL] = E[nL − yL] .

We analyze deviations from this assumption in section 3.4.1.

For the analysis of a specific characteristic γ, we generate at least 500

random realizations γR, i.e. R ≥ 500. That means, that we draw at least

500 pairs of type distributions and initial strategy states, wherefrom we

calculate the absorbing states.

We perform all simulations for 101 values of c, c = 0, 0.01, 0.02, ..., 0.99, 1.

3.3 Characterizing the Absorbing States

In this section we display the results from simulations that are run with

the standard settings described in section 3.2.2. We focus on three char-

acteristics of the absorbing states: First, we describe if either H-types or

L-types play D more frequently at given costs c. Second, we define the term

position in the type distribution and explain, how the agents on different
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positions vary in their probability to play C in the absorbing state. Third,

we define strategy clusters and compare the number of strategy clusters in an

absorbing state with the number of strategy clusters in a random strategy

state.

Note that the expected share of agents playing a given strategy in the

absorbing state can always be interpreted as the probability of a single agent

to play this strategy. We switch between these two interpretations without

mentioning their analogy in the following.

3.3.1 Discerning Strategy Choices of H- and L-Types

Before looking at the strategy choices for H-types and L-types separately,

we want to know how many agents of the whole population choose D for

given costs c. The (average) share of C-playing agents for the costs c, σ(c),

is defined as

σ(c) =
1

R

R∑

r=1

yr
H(c) + yr

L(c)

N
.

In Figure 3.1 σ(c) is displayed as the black line. We summarize our obser-

vations concerning σ(c) from Figure 3.1 in Result 1.

Result 1 For randomly drawn type distributions and randomly drawn ini-

tial strategy states the expected share of agents playing C increases smoothly

and monotonously.

The shares of H-types and L-types choosing C differ for almost all costs c.

σH(c) =
1

R

R∑

r=1

yr
H(c)

nr
H

6= σL(c) =
1

R

R∑

r=1

yr
L(c)

nr
L

In Figure 3.1 σH(c) (red line) and σL(c) (blue line) are displayed. We

summarize our insights from Figure 3.1 in the next result.

Result 2 There exists a cost-threshold c̃, where σH(c̃) = σL(c̃). For c < c̃,

the share of H-types playing C is smaller than the share of L-types playing

C, i.e. σH(c) < σL(c). For c > c̃, the opposite is true.
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Figure 3.1: The share of agents playing C.

Of course we have that σH(c) = σL(c) = 0 (= 1) for very low (high) costs

c. For the range of c where both strategies are played, H-types exhibit a

greater probability to play D than L-types if costs c are low. For high costs

however, L-types play D with the greater probability.

We have described analytically the absorbing state of maximally and

minimally segregated populations in Chapter 2. Maximally and minimally

segregated populations are the two extreme cases of type distributions.

However, Result 2 is quite different from what we have found in Propositions

5 and 6. In a maximally segregated population, the shares of H-types and

L-types playing C have only been different for a small cost interval (see Fig-

ure 2.3). In a minimally segregated population, the shares of agents playing

C has even been the same for both types at all costs c. In contrast, we

now observe that H- and L-types exhibit unequal shares of agents playing

C. This motivates us to analyze, which positions in the type distributions

account for this result.

3.3.2 Different Positions in the Type Distribution

In Chapter 2 we have analyzed the decision terms of different positions in

the type distribution: we have distinguished interior players, edge players,

and double-edge players. We refine this idea of positions by attaching a
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position number g to every agent. If an agent has position number g, then

there are exactly g other agents between him and the next agent of different

type. Consequently, an edge player is assigned the position number 0. An

agent whose neighbor is an edge player but is not an edge player himself

gets the position number 1. An example clarifies our intention. In the type

distribution

HHHLHHLLHHHHHL ,

the players are assigned the position numbers

H
︸︷︷︸

0

H
︸︷︷︸

1

H
︸︷︷︸

0

L
︸︷︷︸

0

H
︸︷︷︸

0

H
︸︷︷︸

0

L
︸︷︷︸

0

L
︸︷︷︸

0

H
︸︷︷︸

0

H
︸︷︷︸

1

H
︸︷︷︸

2

H
︸︷︷︸

1

H
︸︷︷︸

0

L
︸︷︷︸

0

.

In the following we call a player with position number g a g-player. We

abbreviate the number of H-types (L-types) with position number g by

nHg (nLg). Analogously, yHg (yLg) are the H-types (L-types) with position

number g, that play C. We simulate our model again and list the share of

agents playing C for every position number separately.

σg
H(c) =

1

R

R∑

r=1

yr
Hg(c)

nr
Hg

and σg
L(c) =

1

R

R∑

r=1

yr
Lg(c)

nr
Lg

∀ g .

The population size is N = 60 for these simulations. In Figure 3.2 we plot

σHg(c) and σHg(c) for g = 0, ..., 5.2 We summarize our observations in the

next result.

Result 3 H-types as well as L-types with position number 0 (edge players

and double-edge players) exhibit probabilities to play C that are different

from the players with other position numbers.3 Players of one type with

position numbers greater than 0 exhibit similar probabilities to play C.

We discuss the H-types first. The probability that a 0-player plays C

rises more or less linearly with the costs c for the interval c ∈ [0.2, 0.8].

This is not true for agents with a different position number. The higher

the position number of a player is (the further away an H-type is from the

2In the hundred thousands of type distributions we drawed randomly with N = 60,

we did not observe any agent with position number 6.
3Statistically significant for almost all c ∈ [0, 1].
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Figure 3.2: Share of agents playing C for different positions.

next L-player), the more extreme his behavior becomes. An H-type with

position number 5 does practically not react to c except that his strategy

choice tips over at a c = 0.5. As long as c is below that threshold, the

probability that he plays D is almost 1. For costs above this threshold he

most likely plays C.

The pattern is different for the L-types. While the 0-players again react

very smoothly to c, the behavior of the agents with other positions numbers

is a little bit more complicated. They tend to play C more often than the

0-players for c < 1
2
, and more rarely than the edge-players for high c > 1

2
.

Their probability to adopt C increases quite sharply for low costs, but drops

drastically for costs around 1
2
. Note that there are not enough players with

position numbers greater than 0 in the population, such that the population

behavior would mirror this non-monotonicity in the probability to play C

(compare the blue line in Figure 3.1).

We plot σ0
H and σ0

L in Figure 3.3. Are the probabilities for 0-players to

play C significantly different for the two types? They actually are, except

from a small number of cost levels. It has to be noted though, that σ0
H and

σ0
L cross three times (see Figure 3.3) for moderate c which does not comply

with the behavior of other positions at all. And in comparison with the

other agents, they exhibit very similar probabilities of playing C.

We conclude that those agents who exchange information with agents of

the other type (0-positions), disclose strategy choices that differ consider-

ably from those only exchanging information with their own kind (all other
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Figure 3.3: Shares of 0-positions playing C.

positions). This is true for all non-negligible cost intervals. Although the

0-players of the two types feature statistically different probabilities to play

C, the two probabilities run closely. Obviously, for 0-position, the type

looses its (otherwise crucial) impact on the expected probability to choose

a strategy.

3.3.3 Strategy Clusters

In the previous section, we deal with the probabilities agents with different

positions in the type distribution exhibit in playing C. We now neglect

the type distribution and address a different characteristic of the absorbing

states. We analyze if the absorbing states are similar to random strategy

states or if they exhibit a certain pattern. For this reason, we define a

strategy cluster. Remember that the players are located on a circle.

Definition 1 A cluster is a sequence of players choosing the same strategy

in a strategy state.

An example clarifies the concept. We look at the following strategy state

DCDCDDDDCDDDCDCCDDCCCCC .

We divide the strategy state into the minimum number of parts that only

contain one strategy (these are the clusters). Then we count through, which
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yields the number of clusters in a strategy state.

1
︷︸︸︷

D C
︸︷︷︸

2

3
︷︸︸︷

D C
︸︷︷︸

4

5
︷ ︸︸ ︷

DDDD C
︸︷︷︸

6

7
︷ ︸︸ ︷

DDD C
︸︷︷︸

8

9
︷︸︸︷

D CC
︸︷︷︸

10

11
︷︸︸︷

DD CCCCC
︸ ︷︷ ︸

12

It is clear that the number of clusters always is an even number. Addi-

tionally, for a population with N players, the number of clusters and the

size of the clusters are negatively related. We simulate our model as before

and list the number of clusters for every absorbing state. From these, we

calculate the average number of clusters for the costs c, ηR(c). Again, ηR(c)

converges to η(c). The average numbers of clusters in the model are com-

pared with two other series. The first concept we compare η(c) with, is the

potential number of clusters for costs c. The second concept we use for the

comparison, is the random number of clusters for costs c.

The potential number of clusters for costs c, ηpot(c), denotes the number

of clusters that could maximally appear at costs c in our model. In order

to calculate ηpot(c), we have to take the average number of agents playing

each strategy at the costs c into account.4 The maximal number of clusters

is

ηpot(c) = 2 · min{yH(c) + yL(c) , N − yH(c) − yL(c)} ∀c .

The reason is, that always the strategy played by fewer agents gives the

upper bound for the number of clusters possible.

The random numbers of clusters, ηran(c), is the average number of clus-

ters in strategy states drawn randomly. Analogously to the case of ηpot(c),

we use the share of agents playing C-players given by the model for draw-

ing the random strategy states. For all costs c, we draw R random strategy

states, where the probability of an agent to play C is equal to

yH(c) + yL(c)

N
.

4We calculate the average number of C-playing agents for all cost levels in our model:

yH(c) =
1

R

R∑

r=1

yr
H(c) and yL(c) =

1

R

R∑

r=1

yr
L(c) .

The average number of C-playing agents is therefore yH(c) + yL(c) for costs c.
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We then count the clusters in these random strategy states and calculate

their average, which gives us ηran(c).

In Figure 3.4 we display the results. We notice that the absorbing states

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

costs c

nu
m

be
r 

of
 s

tr
at

eg
y 

cl
us

te
rs

potential numbers 
of clusters            

random numbers
of clusters        

numbers of   
clusters in 
the model   

Figure 3.4: Comparing η(c) with ηpot(c) and ηran(c).

of our model are characterized by only a fraction of the clusters that could

maximally appear. As well, the absorbing states show only a fraction of

the clusters randomly drawn strategy states exhibit. Since we look at a

population of a fixed number of players, we can conclude that at least some

of the clusters must be relatively large in the absorbing states. We conclude

the observations from Figure 3.4 in Result 4.

Result 4 The absorbing strategy states of our model exhibit only a frac-

tion of clusters a randomly drawn strategy state does. They are therefore

characterized by relatively large strategy clusters.

In Figure 3.4 we observe, that the numbers of clusters are symmetric with

respect to c. So for the formation of clusters it does not matter, what

strategy is played more frequently in the absorbing state. Neither it is im-

portant, if H-types or L-types constitute the majority of the agents playing

C. Taking into account that the type distribution is drawn at random,

this supports the interpretation that there exists a non-negligible number

of agents for which the strategies played by neighbors are more important
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than their actual type for the strategy choices. The probability that an

agent has a neighbor using the same strategy as he does, is much larger

in our model than it is if we draw their strategies randomly. This is true

though the type distribution is drawn at random. We can therefore say that

strategy choices are contagious in our model.

The reason for the relatively big strategy clusters in the absorbing states

is, that 0-players (edge and double-edge players) over- and underestimate

the value of a strategies in certain strategy states. The degree of how

this feature determines the absorbing states is quite large: The model’s

absorbing states feature only 35% to 45% of the numbers of clusters of an

equivalent random strategy state.

3.4 Varying the Standard Settings

In this section we vary the standard settings presented in section 3.2.2. First,

we consider initial strategy states with uneven shares of the two strategies.

This allows us to analyze, how an increasing share of agents playing C affects

the frequency of C in the absorbing states. Additionally, we describe how

strategy clusters in the initial strategy states influence the frequency of C

in the absorbing states. Second, we vary the type distribution and describe

how this impacts the frequency of strategy C in the absorbing states.

The considerations in this section could also be viewed as the analysis

of policy implications. The requirement is that a policy maker can either

control the initial strategy state or the type distribution. In this sense, our

investigations provide information how to choose initial strategy states or

type distribution in order to targets a low frequency of the illegal strategy

in the absorbing states.

3.4.1 Varying the Initial Strategy State

We first investigate how the characteristics of an initial strategy state affect

the frequency of C in the absorbing state. We do not make any assumptions

on the type distribution and draw it randomly as described in section 3.2.2.

This means that an agent’s probability to be an H-type or an L-type is
1
2

in both cases. We address the following two questions: Does the share

of agents playing C in an initial strategy state significantly influence the
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frequency of C in the absorbing state? Do strategy clusters in the initial

strategy state have an effect on the frequency of C in the absorbing state?

In order to answer the first question, we draw initial strategy states

with different frequencies of C. We denote the frequency of strategy C in

the initial strategy state by σISS. For our simulations, we draw R initial

strategy states with the property

E[σISS] = a with a ∈ [0, 1]

where we attribute a the values a = 0.1, 0.2, ..., 0.9. From these initial strat-

egy states, we compute the absorbing states and evaluate their frequency

of C, which we abbreviate by σa(c). We display the simulation results in

Figure 3.5. We depict our conclusion from Figure 3.5 in Result 5.
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Figure 3.5: Different frequencies of C in initial strategy states.

Result 5 The higher the share of agents playing C in the initial strategy

state, the higher is the expected frequency of C in the absorbing state.

However, the differences of initial strategy states with respect to their fre-

quencies of C, are not mirrored to the same extend in their absorbing states.

Let us choose σ0.1(c) and σ0.9(c) as an example. While the according ini-

tial strategy states differ by 80% of agents playing C, we do not observe a

difference bigger than 57% of σ0.9(c) − σ0.1(c) for any c.

Nevertheless, a policy maker targeting a low frequency of D in the ab-

sorbing state would aim to implement initial strategy states with the lowest

σISS possible.
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We turn to the second question raised above. In the following we aim

to describe how strategy clusters in the initial strategy states effect the

frequency of C in the absorbing states.

We perform our analysis with initial strategy states characterized by

E[σISS] = 1
2
, that is, initial strategy states exhibit the same expected num-

ber of C- and D-players. Again, the type distribution is drawn randomly,

with the expected ratio E[nH

nL
] = 1

2
. For our simulations, we assign a cer-

tain number of agents one of the two strategies directly and only draw the

strategies of the remaining agents randomly. By doing so, we assure that

the initial strategy states contain a strategy cluster of a given size. The size

of the designed strategy cluster is denoted by b; by bC if the cluster is of

strategy C, and by bD if it is of strategy D. Note that we frame the de-

signed cluster with an agent playing the other strategy on both sides, such

to make sure it cannot change size when the remaining strategies are drawn

randomly. An example in a population of N = 30 displays the notation.

bD = 3 : ⇒ CDDDC
︸ ︷︷ ︸

fix

CCDDDCCDDDCCDCCCDDCDDDCCD
︸ ︷︷ ︸

drawn randomly for every r

bD = 8 : ⇒ CDDDDDDDDC
︸ ︷︷ ︸

fix

CCDCDCCCCDCCCDCCDDCC
︸ ︷︷ ︸

drawn randomly for every r

bC = 10 : ⇒ DCCCCCCCCCCD
︸ ︷︷ ︸

fix

CCDCDDDDCDDDDDDCDD
︸ ︷︷ ︸

drawn randomly for every r

In the following we explain, how the random parts of the initial strategy

states have to be drawn. Note that the probability of an agent to play C

initially cannot be 1
2

anymore, since we want to compare initial strategy

states with the property E[σISS] = 1
2
. We derive the following probabilities

for agents in the random part of the initial strategy state:

bC given ⇒ an agent plays C with probability
N
2
− bC

N − bC − 2

bD given ⇒ an agent plays C with probability
N
2
− 2

N − bD − 2
.

The −2 in the above formulas are due to the fact that we enclose our fix

part of the initial strategy state with two agents playing the other strategy.

We also note that bC and bD are smaller than N
2
.
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For small b, we expect to receive the same results as in section 3.3, since

the fix part in the initial strategy state most likely appears in a random

strategy state anyway. It will therefore not influence the absorbing states.

The higher b is though, the more different results we expect. Further we can

also note the following. The higher bC is, the larger the strategy clusters

of D are that appear in the randomly drawn part of the initial strategy

state, and vice versa. Thus we expect similar results for high bC and bD.

We display the simulation results in Figure 3.6. We plot the share of agents

playing C in the absorbing states that evolve from initial strategy states

with different b. We state our findings from Figure 3.6 in the next result.
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Figure 3.6: Strategy cluster in initial strategy states

Result 6 If costs c are low, initial strategy states that exhibit a big cluster

of strategy C (D), lead to absorbing states with a higher frequency of C than

initial strategy states with small clusters only. For high costs c, the opposite

is true.

3.4.2 Varying the Type Distribution

We finally investigate how the ratio of H- and L-types affects the absorbing

states. We define the ratio h = nH

N
and draw R = 500 type distributions

with the property E[nH

N
] = h. Simultaneously, initial strategy states are

drawn randomly according to the standard settings. We then calculate the

expected share of agents playing C in the absorbing states σh(c). See Figure

3.7 for the results. We conclude the findings in the next result.
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Figure 3.7: Different ratios of H- and L-types

Result 7 The more the ratio h = nH

N
diverges from 1

2
, the steeper σh(c) is.

For c < 1
2

a ratio h close to 1
2

yields the highest frequency of C, while for

c > 1
2

disproportionate numbers of types yield higher frequencies of C in the

absorbing states.

If we apply this result to policy implications, we can say that policy maker

facing small costs c chooses a population that has equally many H- and

L-types. If he faces high costs c though, a population with mainly H- or

L-types will feature lower shares of C-playing agents.

3.5 Conclusions

In this chapter we take up the model of Chapter 2 in order to study the

characteristics of its absorbing states under more general assumptions. We

are concerned with the model variant that features local information and

heterogenous agents. This type of model is ideally suited to analyze how

illegal activities spread in a population. The reason is that agents making

a decision wether to adopt an illegal activity or not, face two informational

deficits: scarcity and non-verifiability (see 64, Chapter 2). These two infor-

mational deficits are comprehended by local information, heterogeneity, and

imitation in our model. As a consequence, some agents under- or overesti-

mate the value of the illegal activity (see 79, Chapter 2). We are interested

in how this feature affects the absorbing states under general initial strategy

states and type distributions.
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Since the imitation dynamics of the model are analytically intractable

when acting on the assumption of random initial strategy states and type

distributions, we choose to simulate the model with a Monte Carlo method.

This allows us to calculate the expected value of a given characteristic of

an absorbing state. We are interested in three categories of characteristics.

The first category is interesting to interpret at the agent level. We find

that high types exhibit a greater probability of acting illegally than low

types, if the illegal activity bears small costs. If the illegal activity bears

large costs, the low types are more likely to act illegally than the high types.

We further find out, that agents surrounded only by types of their own type

(interior players), display very different probabilities from agents that share

information with agents of the other type (0-players). High types that

are 0-players show very similar probabilities to adopt the illegal activity as

low types that are 0-players. However, for interior players, the type does

crucially matter for the probability to act illegally in the absorbing states.

The second category of characteristics concerns the sequence of the two

strategies in the absorbing states. We find out that the absorbing states of

our model exhibit strategy clusters, that are two to three times larger than

those of a randomly drawn strategy state. The probability that an agent

acts illegally if his neighbor does, is much larger in the model’s absorbing

states than in a random strategy state. We conclude that activities, both

illegal and legal, exhibit a contagious character in our model.

The third category of characteristics is interesting if a policy maker is

able to design either the initial strategy state or the distribution of types.

An initial strategy state with a low share of agents acting illegally, leads

to an absorbing state with a lower frequency of the illegal activity than an

initial strategy state with a high share of agents acting illegally. If costs are

low, initial strategy states with big strategy clusters lead to absorbing states

with a lower frequency of the illegal activity than initial strategy states with

little strategy clusters. The opposite is true for high costs.

The results of our model are evidence that social interactions offer ex-

planations for the observed high variance of crime rates. We show that

informational deficits can account for significant differences in the frequen-

cies of illegal activities. Although our model includes features of social

interactions and bounded rationality, it is still in line with the empirical

fact, that high costs of an illegal activity, reduce its frequency.
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3.A Appendix: An Example of the Evolu-

tionary Game

We display an example of our evolutionary game here such that the reader

gets an impression of how the imitation dynamics evolves from the initial

strategy state to the absorbing state. To get a convenient table that can

be included in the text, we choose a moderate population size of N =

12. In the top line of the table we display the type distribution which is

drawn randomly. It is followed by the initial strategy state (labelled by

t = 1) that also is drawn randomly. In the lines below we list the strategy

state of every period. The agents change their strategies according to the

imitation rule (2.3) and the payoffs they observe. The payoffs are listed

below the respective strategy state. The strategy states are noted as the di

(see the imitation rule in Chapter 2) of every agent: 0 stays for an agent

playing C, while a 1 indicates a player that uses D. In the second table

TS H H L H H H L L H L H H

t = 1 0 0 0 0 1 1 0 0 1 0 0 1

0.5 0.5 0.14 0.5 0.36 0.36 0.14 0.14 0.36 0.14 0.5 0.36

t = 2 0 0 0 1 0 1 1 1 1 1 1 0

0.23 0.23 0 0.36 0.23 0.36 0.05 0.05 0.36 0.05 0.36 0.23

t = 3 0 0 1 1 1 0 1 1 1 1 0 1

0.14 0.14 0 0.36 0.36 0.14 0 0 0.36 0 0.14 0.36

t = 4 1 0 1 1 1 1 0 1 1 1 1 1

0.23 0.09 −0.23 0.23 0.23 0.23 0 −0.23 0.23 −0.23 0.23 0.23

t = 5 1 0 0 1 1 1 0 0 1 1 1 1

0.23 0.27 0.09 0.23 0.23 0.23 0.09 0.09 0.23 −0.14 0.23 0.23

t = 6 0 1 1 1 1 1 1 1 0 1 1 1

0.05 0.27 −0.18 0.27 0.27 0.27 −0.18 −0.18 0.05 −0.18 0.27 0.27

t = 7 1 1 1 1 1 1 1 0 0 1 1 1

0.23 0.23 −0.23 0.23 0.23 0.23 −0.23 0 0.09 −0.23 0.23 0.23

t = 8 1 1 1 1 1 1 0 0 0 0 1 1

0.23 0.23 −0.14 0.23 0.23 0.23 0.09 0.09 0.27 0.09 0.23 0.23

t = 9 1 1 1 1 1 1 1 0 0 1 1 1

0.23 0.23 −0.23 0.23 0.23 0.23 −0.23 0 0.09 −0.23 0.23 0.23

we exclusively list the strategies so that one can easily see how the illegal

technology evolves. We can check out all the features of the model that have

been discussed in Chapter 2. First of all, let us look at a typical decision

process. Agent 2 for instance cannot observe the technology in the first

period and must play C in the following. In contrast, position 5 observes

his left neighbor who plays C and gets the payoff 0.5, and his right neighbor

who has a lower payoff with strategy D. From that, agent 5 concludes that

it is not worth to keep playing D and plays C in period t = 2. Agent 4 and
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TS H H L H H H L L H L H H

t = 1 0 0 0 0 1 1 0 0 1 0 0 1

t = 2 0 0 0 1 0 1 1 1 1 1 1 0

t = 3 0 0 1 1 1 0 1 1 1 1 0 1

t = 4 1 0 1 1 1 1 0 1 1 1 1 1

t = 5 1 0 0 1 1 1 0 0 1 1 1 1

t = 6 0 1 1 1 1 1 1 1 0 1 1 1

t = 7 1 1 1 1 1 1 1 0 0 1 1 1

t = 8 1 1 1 1 1 1 0 0 0 0 1 1

t = 9 1 1 1 1 1 1 1 0 0 1 1 1

agent 11 both underestimate (see Chapter 2, Definition 3, on page 79) the

strategy C and they do not choose the strategy that presently yields the

highest payoff for them. Both of them underestimate C because they each

have an L-type in their information set that does play C.

As we can see over the nine periods, there are many effects responsible for

the absorbing state. Agents are under- or overestimate strategies, the envi-

ronment changes too fast for the myopic agents to adopt, and the technology

is not always available. Although we face complex dynamics where similar

effects can have contradictory consequences, we show in this chapter that

some positive statements about the absorbing states can be found.

Notation

Chapter 1

A payoff matrix of basic corruption game

ahk elements of A

Ã payoff matrix of basic corruption game

ãkl elements of A

A(x) payoff matrix of basic corruption game

α parameter of distribution function Φ

β parameter of distribution function Φ

c individual cost of corruption in the basic corruption game

c(x) strategy state dependent individual cost of corruption

ε random variable with cumulative distribution function Φ

f(σ, x) expected payoff function for strategy choice σ and strategy

state x

F right hand side of differential equation system defining the

imitation dynamics

h general index

i strategy index

j general index

k general index

l strategy state dependent legal population income

n dimension of S

õ(x) expected payoff from corruption

p(x) detection probability of a corrupt activity

ϕj
i (x) probability that a player with strategy i switches to strategy

j when reviewing his strategy

Φ cumulative distribution function of random variable ε

Pr probability
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r(x) tax revenue

ρi(x) probability that a player with strategy i reviews his strategy

choice at any given t; in the model we set ρi(x) = 1

s surplus from private activity in basic corruption game

s̃(x) strategy state dependent surplus from private activity

before taxes

s(x) strategy state dependent surplus from private activity

after taxes

S pure-strategy set of corruption game

σ strategy choice of a player, a vector over S

Σ simplex of dimension n − 1, corresponds to strategy state

space of corruption games

t time, continuous

τ tax rate

w government wage in the basic corruption game

w̃(x) strategy state dependent government wage before taxes

w(x) strategy state dependent government wage after taxes

yT transpose of vector y

x(t) or x strategy state of the game (at time t), x ∈ Σn

xi(t) or xi frequency of strategy i (at time t)

xG(t) or xG frequency of public servants

x0 strategy state in t = 0: initial condition

ẏ(t) or ẏ derivative of x with respect to t; if y a vector,

derivatives are taken element-wise

y a general variable

Chapter 2

A payoff matrix of stage game for agents of the same type

AH,L payoff matrix of stage game for H-type against L-type

AL,H payoff matrix of stage game for L-type against H-type

a(σi,t, σj,t) corresponding element of A, given the strategy choices of

agent i and agent j

c individual cost of cheating

C strategy: playing fair
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~C strategy state in which all agents play C
~C ~C strategy state: all H-types and all L-types play C
~C ~D strategy state: all H-types play C and all L-types D
~C ~D∗ strategy state: identical to ~C ~D except that LE can play C

C̃yH
C̃yL

strategy state: yH H-types and yL L-types play C, the

agents playing C are all neighbors

C̃yH
C̃yL

strategy state: identical to C̃yH
C̃yL

except that two

LE can cycle between C and D

di,t indicator variable: di,t = 0 if σi,t = C, di,t = 1 if σi,t = D

D strategy: playing with illegal means, cheating
~D strategy state in which all agents play D
~D ~C strategy state: all H-types play D and all L-types C
~D ~C∗ strategy state: identical to ~D ~C except that LE can play D
~D ~D strategy state: all H-types and all L-types play D

∆i,t difference observed by agent i in period t between the

average payoff of agents playing D and the average payoff

of agents playing C

ε probability of a mutation after strategy choice

Gi,t(k) information set of agent i in period t

H high type agent

HE H-type edge player

HEE H-type double-edge player

HI H-type interior player

HN H-type interior player who has an HE as a neighbor

h general index

i specific agent

j general index

k size of information set

L low type agent

LE L-type edge player

LEE L-type double-edge player

LI L-type interior player

LN L-type interior player who has an LE as a neighbor

l general index

M set of stationary strategy states

µ unique stationary probability distribution of Markov process
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N number of agents

nH number of H-types

nL number of L-types

n equals N
2

bN
2
c largest integer smaller than N

2

ν element of ΣN

pab probability that strategy state sa is followed by sb

P transition probability matrix of Markov process

S strategy state space

s strategy state in period t

σi,t strategy choice (either C or D) of agent i in period t

σ−i,t strategy choices of all but agent i in period t

ΣN 2N -dimensional simplex

t period of time, discrete

ui,t agent i’s payoff in period t

w value of prize, normalized to 1 in the model

y number of agents playing C (homogenous agents)

yH number of H-types playing C

yL number of L-types playing C

zi,t a random variable

Chapter 3

Notation of Chapter 2 is used in Chapter 3 too. Additionally, we have the

following notation:

bC size of a C-strategy cluster

bD size of a D-strategy cluster

η(c) average number of strategy clusters in absorbing state

ηpot(c) maximal number of strategy clusters in absorbing state

ηran(c) random number of strategy clusters in a strategy state

g position number of an agent concerning type state

γ a characteristic of an absorbing state

h expected share of H-types in a population

R number of random realizations of stochastic process

σ(c) average share of C-playing agents in absorbing state

NOTATION 131

σH(c) average share of H-types playing C in absorbing state

σL(c) average share of L-types playing C in absorbing state

σg(c) average share of C-playing agents with position g

in absorbing state

σISS share of agents playing C in initial strategy state

σa(c) average share of agents playing C in absorbing state if

in initial strategy state the share of C-playing agents is a
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