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Abstract

The thesis addresses the application of multiple classifier systems (MCS) methods in the do-
main of handwriting recognition. To evaluate the MCS methods two different state-of-the-art
handwritten word recognizers are used. Both recognizers are based on Hidden Markov Models
(HMMs) and process handwritten words in the same manner: First the word image is normal-
ized in respect to slant, skew and height. Then a sequence of feature vectors is extracted from
the image. Finally the HMMs are used to determine the most likely word class from a set of
candidate word classes. As the performance of every MCS method depends on the performance
of the classifiers it is applied to, the optimization of the recognizers is also addressed in the
thesis.
There are mainly two kind of MCS methods: The ensemble methods which create several classi-
fiers out of one base classifier and the combination schemes which combine the output of several
classifiers to a single output. Both kind of methods are addressed in the thesis. Also the optimal
values of the parameters of the MCS methods, such as the number of classifiers created by the
ensemble methods, are evaluated in the thesis.
There are two objectives of the thesis. The first objective is to the design new MCS methods
and the second objective is to evaluate some classic and the new MCS methods in large scale
experiments. Four new categories of ensemble methods and two new combination schemes are
proposed in the thesis. In addition the adaption of some classic combination schemes for the use
with HMM classifiers is addressed. All methods are tested in a handwritten word recognition
task where the recognizer, given an image of a word, has to choose a word from 3997 possible
word classes.
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Chapter 1

Introduction

1.1 Handwriting recognition

The task of handwriting recognition is the transcription of handwritten data into a digital
format. The goal is to process handwritten data electronically with the same or nearly the same
accuracy as humans. By doing the processing with computers a large amount of data can be
transcripted at a high speed. The field of handwriting recognition is divided into the sub-fields
of on-line and off-line recognition. In on-line recognition special devices are used to track the
movement of the pen and the temporal information is recorded. In off-line recognition an image
of the handwritten text is scanned and recorded. In general off-line recognition is considered
the more difficult task, because of the lack of temporal information. It is possible to construct
the image of the handwriting using the information of the movement of the pen, however it is
not possible to reconstruct the information of the movement of the pen using only the image.
In this thesis the task of off-line handwriting recognition is considered.
There are already many commercial applications where off-line handwriting recognition systems
are used, such as automatic address reading [44, 88] and bank check processing [40]. Other
possible applications of off-line handwriting recognition are: The automatic reading of personal
notes and communications, and the transcription of handwritten archives into digital libraries.
The performance of state-of-the-art systems is in general still too low for those two applications
and so there is a need to improve their performance.
The field of off-line handwriting recognition has been a topic of intensive research for many
years now. At first, only the recognition of isolated handwritten digits and characters was
investigated [91]. Later the recognition of whole words [85] was addressed. The main problem
when recognizing whole words is segmenting the words into their individual characters. There
are two main approaches used in solving this problem. In the first a set of candidate character
boundaries are determined. Normally many more boundaries are found than actually exist
in the word. Then the dynamic programming technique is used to determine which of those
candidates are the real boundaries and which characters comprise the word. The problem with
this approach is that the set of boundary candidates must contain all real boundaries. In
addition, the dynamic programming will be very slow if too many candidate boundaries are
used. The second segmentation approach is to use a Hidden Markov Model (HMM) recognizer
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2 CHAPTER 1. INTRODUCTION

[75] which implicitly segments the word during recognition. In the last few years the HMM based
approach has become dominant [44, 65, 98]. Therefore the work in this PhD thesis focuses on
HMM recognizers. Good summaries of the state of the art in off-line handwriting recognition
are given in [10, 94].
In an HMM recognizer each class of the recognition problem normally has a corresponding HMM,
so for example, there are ten HMMs for a digit recognizer. Often in word recognition characters
are modeled instead of the words. The word models are then constructed by concatenating the
corresponding character models. The main reason for not using HMM for whole words is the
small number of data samples available per word. In addition the assumption that the instances
of the same characters are similar and that the shape of the character instances is not too
strongly influenced by the context in the word seems to be reasonable. To construct the word
HMMs the recognizer needs to know which words should be recognized. The list of recognizable
words, the vocabulary, is application dependent and the output of the classifier can only be
one of these words. The problem that the true class of the test word is not in the vocabulary
was addressed in [93, 96]. In this thesis the vocabulary always contains the true classes of
all test patterns. Most of the systems reported in the literature to date consider constrained
recognition problems based on small vocabularies from specific domains, e.g. the recognition of
handwritten check amounts [40] or postal addresses [44]. Free handwriting recognition, without
domain specific constraints and large vocabularies, which will be considered in this thesis has
been addressed only recently [47, 65, 96, 105].
In some recent studies [64, 65, 93, 96] the recognition of a whole line of text was considered.
These studies assumed that each line consists of a sequence of words from the vocabulary.
To prune the search space of all possible word sequence and to increase the performance of
the system a language model is applied. A language model defines the probability of a word
appearing giving the precedent words. In the most simple case, the uni-gram model, only the
word itself is considered. The n-gram model considers also the n − 1 last words. To compute
those probabilities a large collection of text, the corpus, is used. In [105] the recognition of whole
sentences of handwritten text was examined and the recognition performance was increased by
incorporating a stochastic grammar which was automatically generated using the corpus. In the
actual work only the task of word recognition is addressed and no language model is applied.
For the design of a recognizer often a large set of data is needed. This set of data is called the
training data and the process of setting the free parameters of a recognizer is called training.
A training pattern is labeled when the true class of the pattern is known. The true class of an
unlabeled pattern is unknown. In off-line handwriting recognition we normally use labeled data.
There are many databases of handwritten text known from the literature [26], e.g. CEDAR [33],
NIST [100], the “Senior”-database [84] and the IAM database [66]. The IAM database which
was used for this work is described in Section 2.4.
An off-line handwriting recognizer which is trained using only the data of a single writer and
then used to classify the patterns of the same writer is called a single writer system. Normally
a recognizer should be able to classify data of several writers and so it is trained and tested
using words written by many people. Such systems are denoted as multi writer systems. We
can sub-classify multi writer systems into writer dependent (WD) and writer independent (WI)
systems. In WD systems the training words and the words used for the recognition task were
written by the same people. In WI systems the test patterns were written by people who didn’t



1.2. MULTIPLE CLASSIFIER SYSTEMS 3

contribute to the training data. In applications we normally use writer independent systems.
For example, in the application of address readers, there are a lot of people who write addresses
who didn’t contribute to the training data. In some applications it may be useful to adapt a
multi writer system to the data of a single writer. Such an application is the transcription of
personal notes. In [95] methods to achieve this adaption were studied.

1.2 Multiple classifier systems

In pattern recognition problems the correct classes of input patters should be determined. A
system which solves a pattern recognition problem is denoted as a classifier. In this work,
where off-line handwriting recognition is addressed, the term classifier is used as a synonym
for recognizer. A classifier may output a single class, a ranked list of classes or it may reject
the pattern. Often a score value is output with each class. Sometimes this score value is an
estimation of the probability of the class being correct, but normally holds less information. In
case of rejection the classifier is unable to classify the pattern with any high degree of confidence.
In this thesis most experiments were conducted using classifiers which do not reject patterns.
In early studies of pattern recognition only one classifier was used to solve a classification prob-
lem. The research domain of multiple classifier systems (MCS) examines how several classifiers
can be applied together to obtain better classification systems. It was shown that the MCS meth-
ods may improve the recognition performance in difficult pattern recognition problems [51, 52].
MCS methods may also be used to increase the speed of the system [13, 57] or to reduce the time
taken for the design of the classification system. The second goal may be achieved by combining
several suboptimal classifiers. As will be shown later in this thesis such combination may lead
to similar or better performances than a single optimized classifier. There are two main issues
in MCS research. The first issue is how the individual classifiers are created or designed, and
the second is how those classifiers are combined.
Often several classifiers with different architectures already exist that solve the same classification
problem. This is because the first step in the design of a classic pattern recognition system is
to find the best classifier for the problem. Therefore classifiers with different architectures
were tested. Additionally several research groups used different approaches to solve the same
problem, so that each of these groups designed its own different classifier. Another approach to
obtain a set of classifiers is to produce a large number of classifiers and then to reduce the set
[45]. Recently a number of methods that automatically generate several classifiers when given
a single classifier have been proposed in the field of machine learning [16]. These methods are
called ensemble methods and the single classifier input to these methods is denoted as the base
classifier. The different classifiers are produced by modifying the training set [8, 21], the used
feature set [28], the input data by injecting randomness [17], or the parameters and architecture
of the base classifier [73]. A summary of ensemble methods is given in [16] and the methods
applied in this work are described in Chapter 4.
There are three basic structures of classifier combination: serial, parallel and conditional. In
a serial combination the output of a classifier is the input of the next classifier. Normally a
classifier in a serial combination reduces the set of candidate classes so that the final classifier
output is only one class. Serial combination of classifiers was applied in [24, 77]. In conditional
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Figure 1.1: The different structures of classifier combination: Serial (top), conditional (center)
and parallel (bottom).

combination some classifiers are only applied if the output of other classifiers meets a certain
condition. In an often used conditional classifier combination the second classifier classifies only
the pattern rejected by the first classifier [13, 57]. The second classifier deals with the “difficult”
patterns and is normally more complex and slower than the first. In a parallel combination the
output of all classifiers is combined in a last step to a single output. This combination [49, 91] is
very popular, because each classifier that solves the classification problem may be used (for the
serial and conditional combination normally special classifiers are used). In addition classifiers
produced by an ensemble method are normally combined in parallel. In Figure 1.1 the different
structures of combinations of classifiers are illustrated.

A combination that is a mixture of the above mentioned basic structures is denoted as hybrid
combination. Such a combination was for example applied in [27]. In this thesis we focus on
parallel combination, because it is the most popular one and because it is the combination used
for classifiers created by ensemble methods.
There are many ways to combine in parallel the results of a set of classifiers, depending on the
type of the classifiers’ output [19, 90]. If the output is only the best ranked class then majority
voting can be applied. More sophisticated voting schemes also look at the probability of the
classification error for a specific class (Bayesian Combination Rule [49]) and the dependencies
between the classifiers (Behavior-Knowledge Space [31]). Some classifiers have a ranked list
of classes as output. For them often Borda count [29] or related methods are used. Some
classifiers also generate a score value for each class. In this case the sum, product, maximum,
minimum, or the median of the scores of all classifiers can be calculated and the class with
the highest value is regarded as the combined result [49]. It is also possible to first weight
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each classifier according to its individual performance and then apply a combination rule [30].
Another approach is to use the score values output by the individual classifiers as input for a
trainable classifier, e.g. a neural-network [99], which acts as the combiner (this method may
be regarded as a hybrid combination). There are many papers in the literature which compare
these combination schemes on several problems. In [1] the schemes are compared depending
on the degree of perturbation imposed on the input patterns. Under small perturbations the
product and minimum rule were best, whereas for large perturbations median and sum rule
were superior. In [59] a system is presented, which perturbates the output of the classifiers
when tested on the training set, and then chooses the combination scheme that leads to the best
recognition performance for a wide range of perturbation parameters. More details on the topic
of combination methods are given in Chapter 5.

1.3 MCS in handwriting recognition

Handwriting recognition is one of the most difficult problems in pattern recognition and it has
been shown that MCS methods may increase the recognition performance for such difficult prob-
lems. So it is straightforward to apply MCS methods to the problem of handwriting recognition.
There are many previously published studies of such applications. In most cases optimized in-
dividual classifiers have been combined. A combination of three classifiers using the sum rule is
described in [62] for the problem of handwritten numerals recognition. Often specialized combi-
nation structures for specific tasks are used. In [5] a multilayer perceptron is trained to classify
handwritten numerals. For each pair of numerals that is likely to be confused a support vector
machine is trained. If the two best classes output by the multilayer perceptron are the digits
of such a pair, the specialized classifier is invoked. Otherwise the best class of the multilayer
perceptron is output. In [61] a rule-based classifier is serially combined with four Hopfield neural
networks, which are only used when the first classifier rejects the input. The task of the first
neural network is to select one of the other three as the final classifier. This system was also
used for recognition of handwritten digits.
For cursive handwritten word recognition, Hidden Markov Models have become a standard tool
[40, 44, 46, 65]. Consequently, combinations of HMMs with other classifiers have been proposed.
In [68] an HMM classifier is combined with a pattern matching classifier. A holistic classifier to
reduce the vocabulary for an HMM classifier is described in [46]. Another example of combining
an HMM with a classifier of another type is given in [7], where the calculation of the observation
probabilities in an HMM is accomplished by a neural network. Surprisingly, the combination of
several HMM classifiers is rare. In [6] a pseudo 2-dimensional HMM and a 1-dimensional HMM
were combined with the sum rule. A special way to combine HMM classifiers is described in
[60, 97] which is similar to the one described in Section 5.4. This combination takes advantage
of the HMM architecture of word recognizers.
Although the popularity of multiple classifier systems in handwritten recognition has grown
significantly, not a great deal of work on the use of ensemble methods for HMM classifiers has
been reported in the literature. An exception is [71], where Bagging was applied in an isolated
handwritten characters recognition task.
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1.4 Goal and structure of the thesis

The goal of this thesis is to evaluate classic and new MCS methods in handwriting recognition
problems. A significant part of this thesis addresses the use of ensemble methods for HMM
classifiers in handwriting recognition. The author hopes that this work will help to increase our
knowledge of this little researched area. Not only the classic ensemble methods, like Bagging
and Boosting, are evaluated, but also some other methods that are introduced in this work. The
produced ensembles were combined by several classic and some newly developed combination
schemes.
The structure of this thesis is as follows. In Chapter 2 the handwritten word classifiers and
the handwritten text database used in the experiments are introduced. In the following chapter
some methods to optimize those classifiers are described. These methods were applied in the
experiments to produce state-of-the-art base classifiers. Chapter 4 contains the description of
classic and new ensemble methods used in the experiments. In Chapter 5 the topic of parallel
classifier combination for the problem of handwritten word recognition is addressed. Some classic
and some new combination methods are discussed in detail. In Chapter 6 the results of initial
experiments are given. To goal of these experiments is to find an optimal base classifier and to
select some well performing ensemble methods and combination schemes. In addition the best
values of the free parameters of the ensemble methods, for example the number of classifiers
in the ensemble, are determined. In Chapter 7 the results of the best ensemble methods and
combination schemes using an optimized base classifier are presented. Conclusions of the results
are then drawn in Chapter 8 and possible future work is discussed.



Chapter 2

Handwritten word recognizers and
database

In this chapter, the handwritten word recognizers and the database used in the experiments
are introduced. Two different Hidden Markov Model classifiers were used in the experiments
of this thesis. These classifiers are described in detail in Sections 2.2 and 2.3. In Section 2.1 a
description of the common characteristics of the two classifiers is given. The IAM database is
described in Section 2.4.

2.1 HMM classifiers for handwriting recognition

HMM based handwritten word recognizers normally consist of three main modules (see Fig. 2.1):
the preprocessing, where noise reduction and normalization take place, the feature extraction,
where the image of a handwritten word is transformed into a sequence of numerical feature
vectors, and the recognizer, which converts these sequences of feature vectors into a word class.

The first step in the processing chain, the preprocessing, is mainly concerned with text image
normalization. The goal of the different normalization steps is to produce a uniform image of
the writing with less variation of the same character or word across different writers. The aim
of feature extraction is to derive a sequence of feature vectors which describe the writing in such
a way that different characters and words can be distinguished, but which do not contain too

preprocessing feature extraction

HMMrecogntion result

image of a
handwritten word

feature vectors

normalized
word image

Figure 2.1: System overview
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skew
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upper baseline
lower baseline

upper margin

lower margin

Figure 2.2: Normalized features of the handwriting: Skew, slant and baseline positions

much redundant information. At the core of the recognition procedure is an HMM. It receives a
sequence of feature vectors as input and outputs a word class. Instead of a sequence of numerical
feature vector a sequence of integers, which corresponds to classes of input values, is input to
some HMM classifiers. Such HMM classifiers are denoted as discrete HMM classifiers, while
the classifiers that use numerical feature vectors are denoted as continuous HMM classifiers. A
semi-continuous HMM classifier type for which the numerical feature vectors are clustered, and
the same input class is assigned to all vectors of a resulting cluster does also exist. Gaussian
mixtures are often used to model the distributions of the feature vectors of the clusters. The
probability of outputting a feature vector of a cluster is stored in the states of HMMs. The
feature extraction depends on the type of HMM classifier, of course. As both classifiers that
are used in the experiments are continuous HMM classifiers, only this type of HMM classifier
is described in Subsection 2.1.3. A more detailed description of the general properties of HMM
classifiers for handwriting recognition is given in [64, 65].

2.1.1 Preprocessing

Each person has a different writing style with its own characteristics. This fact makes the
recognition of handwriting complicated. To reduce variations in the handwritten texts as much
as possible, a number of preprocessing operations are applied. The input for these preprocessing
operations are images of text lines or words extracted from a database. The normalized features
of the handwriting are normally the skew, the slant and the positions of the baselines. Figure 2.2
illustrate the meaning of these terms. An example of these normalization operations is shown
in Fig. 2.3.
The following normalization steps are therefore executed:

• Skew Correction: The word is horizontally aligned, i.e. rotated, so that the baseline is
parallel to the x-axis of the image.

• Slant Correction: By applying a shear transformation, the writing’s slant is transformed
into an upright position.

• Line Positioning: The word ’s total extension in a vertical direction is normalized to a
standard value. Moreover, applying a vertical scaling operation the location of the upper
and lower baseline are adjusted to a standard position. In both systems used in this thesis
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Figure 2.3: Preprocessing of the images. From left to right: original, skew corrected, slant
corrected and positioned. The two horizontal lines in the picture on the far right are the two
baselines.

window

Figure 2.4: Illustration of the sliding window technique. A window is moved from left to right
and features are calculated for each position of the window.

the normalized height of the parts between the upper margin and the upper baseline,
between the upper baseline and the lower baseline and between the lower baseline and the
lower margin is 40 pixels.

It should be noted that all preprocessing steps were executed on whole text lines of the underlying
database (compare Section 2.4), despite the fact that the recognition task is carried out for words.
So the quality of the preprocessing may be higher than in the case when only preprocessing the
words alone, because more data is available.

2.1.2 Feature extraction

The HMM classifiers take a sequence of numerical feature vectors as input. In the feature
extraction a sequence of some informative key values (the features) are extracted from the
image. The HMM classifiers used in the experiments apply a so-called sliding window approach.
A window is moved from left to right over the image and at each position a feature vector is
extracted. The height of this window is equal to the height of the image. The width of the
window for the two classifiers is 1 and 16 pixels respectively. After the extraction of a feature
vector, the window is shifted only one pixel to the right. Therefore the number of extracted
feature vectors is equal to the width of the image. A graphical representation of this sliding
window technique is shown in Fig. 2.4.
The two classifiers described in Sections 2.2 and 2.3 differ mainly in the features that are ex-
tracted from the sliding window.

2.1.3 Hidden Markov models

Hidden Markov models (HMMs) are widely used in the field of pattern recognition. Their original
application was in speech recognition [76]. Because of the similarities between speech and cursive
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handwriting recognition, HMMs have become very popular in handwriting recognition as well
[55].
When using HMMs for a classification problem, an individual HMM is designed for each pattern
class. For each observation sequence, i.e. for each sequence of feature vectors, the likelihood that
this sequence was produced by an HMM of a class can be calculated. The class whose HMM
achieved the highest likelihood is considered as the class that produced the actual sequence of
observations.
An HMM consists of a set of states, and transition probabilities between those states. One or
several of the states are defined as final states. For each state a likelihood value for each possible
observation is defined. To define this likelihood value a probability distribution of the feature
vectors is used. A valid sequence of states for a observation sequence oseq = o1, o2, . . . , on is
sseq = s1, s2, . . . , sn where sn is a final state. Note that the number of states in sseq is the
same as the number of observations in oseq. The likelihood of the sequence of states sseq is
the product of the likelihood of observing oi in state si for all observations, multiplied by the
probabilities of the transitions from state si to si+1 for all i ∈ {1, . . . , n − 1}. There are two
possibilities for defining the likelihood of an observation sequence oseq for a given HMM. Either
the highest likelihood of all possible state sequences is used (Viterbi recognition), or the sum of
the likelihood of all possible state sequences is considered as the likelihood of the observation
sequence (Baum-Welch recognition). Both systems described in the next sections use the first
possibility.
In word recognition systems with a small vocabulary, it is possible to build an individual HMM
for each word. But for large vocabularies this method no longer works because of a lack of
sufficient training data. Therefore, in our systems, an HMM is built for each character. The
use of character models allows us to share training data. Each instance of a character in the
training set has an impact on the corresponding HMM, which in turn leads to a better parameter
estimation. By using character instead of word models, we assume that all the instances of a
character are similar, and are not (strongly) dependent on the context of the instance within the
word. It is obvious that this assumption does not hold, but the drawback of loosing the context
information of the character was shown to have a smaller impact on the recognition performance
than the advantage of the improved parameter estimation. To model entire words, the character
models are concatenated with each other. Thus a recognition network is obtained (see Fig. 2.5).
Note that this network doesn’t include any contextual knowledge on the character level, i.e., the
model of a character is independent of its left and right neighbor.
To achieve high recognition rates, the character HMMs have to be adapted to the problem. In
particular the number of states, the possible transitions and the type of output probability dis-
tributions have to be selected. Because of the left to right direction of writing, a linear transition
topology has been chosen for the character models of both systems used in the experiments. In a
linear topology only the same or the succeeding state can be reached from each state. A graphi-
cal representation of an HMM with linear topology and 14 states is shown in Fig. 2.6. Because of
the continuous nature of the features extracted by the classifiers, described in the following two
sections, probability distributions for the features are used. The probability distributions of all
states are assumed to be Gaussian mixtures, i.e. weighted sums of Gaussians. It is a well known
fact that any distribution may be approximated by Gaussian mixtures. The individual Gaussian
distributions are assumed to have diagonal covariance matrices. This assumption reduces the
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Figure 2.5: Concatenation of character models yields the word models
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Figure 2.6: HMM with linear topology

number of free parameters from n · (n + 1) to 2 ·n with n being the number of features, because
no covariance terms must be calculated. Yet results based on this assumption are only exact
when the features are statistically independent. This is not the case for the systems used in the
experiments, but the negative impact of only calculating approximations of the exact values is
smaller than the positive effect of getting better estimations for the free parameters.
To set the free parameters of the HMMs, the transitions probabilities, and the parameters
of the Gaussian distributions, the Baum-Welch training [76] is used. Baum-Welch training
is a version of the Expectation-Maximization technique [14] and works with labeled training
data. The product of the likelihood values for the correct word HMMs of the training patterns
is guaranteed to increase in each iteration of the algorithm, yet the recognition rate of the
classifier may decrease when using too many iterations. This is because the HMMs are overfit to
the training data. As mentioned before, the recognition is performed using the Viterbi algorithm
[76]. For each word in the vocabulary the likelihood is calculated that a given feature vector
sequence was produced by the HMM of the word. The word corresponding to the HMM with
the highest likelihood is the output of the HMM classifier. Normally the calculated likelihood
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is returned by the classifier. Often the words corresponding to the HMMs with the n best
likelihoods are output, producing a n-best result list. For more details on the topic of HMMs
see [76], for example.

Both HMM classifiers described in the next two sections were implemented using the Hidden
Markov Model Toolkit (HTK) [102], which was originally developed for speech recognition.

2.2 Geometric features based recognizer

The system described in this section was designed by Dr. Urs-Victor Marti [64, 65]. To extract
the features from the image, a sliding window approach is used, where the width of the window
is one pixel, i.e. the window contains one image column. Nine geometrical features are extracted
from this column. The first three features are the weight of the window (i.e. the average grey
value), its center of gravity, and the second order moment of the window. This set characterizes
the window from the global point of view. It includes information about the amount of pixels
and their position within the window. The other features represent additional information about
the writing. Features four and five define the position of the upper and the lower contour in
the window. The next two features, numbers six and seven, give the orientation of the upper
and the lower contour in the window by the gradient of the contour at the window’s position1.
For feature number eight, the number of black-white transitions in the vertical direction is used.
Finally, feature number nine gives the average grey value between the upper and lower contour.
It must be noted that features four to eight are calculated on binary images, while the other
features are calculated on grey value images. In the implementation, this was addressed by using
grey value images, and doing an implicit binarization using a threshold of 200 for features 4 to 8.
This means that for these features, pixels with grey values between 201 and 255 are regarded as
white pixels, and all others are regarded as black pixels. In summary, the output of the feature
extraction phase is a sequence of 9-dimensional feature vectors.

In the base system used in this thesis the probability distributions of the states are single
Gaussians. Most character HMMs consist of 14 states, similar to the original system of Dr.
Urs-Victor Marti [64, 65]. Exceptions are the HMMs corresponding to the the comma and the
period where two states were used. The number 14 for the quantity of states has been found
empirically [64]. This rather high number can be explained by the fact that the sliding window
used for feature extraction is only one pixel wide, and that many different writing styles are
present in the used database. The training of the system consists of 4 iterations of the Baum-
Welch algorithm, and only one Gaussian is used in the Gaussian mixture distributions of the
states. This number of 4 iterations was found to be optimal for the above described system for
a large range of vocabulary and training set sizes. Several optimization methods for the above
described system are introduced in Chapter 3.

1To calculate the contour direction, the next image column is also considered. This means that for these two
features the window width is actually two.
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2.3 Sub-sampling features based recognizer

The feature extraction of the system described in this section is based on the system designed
by Dr. Alessandro Vinciarelli [93, 96]. All the other parts of the system were adopted from the
system of Dr. Urs-Victor Marti (see last section). Therefore the system used in the experiments
in this thesis differs from the one introduced in [93, 96] and may therefore produce different
results. There is, for example, another preprocessing mechanism and another HMM architecture
(the system in [93, 96] used Bakis HMMs). In addition, the optimization methods described in
Chapter 3 were not applied in [93, 96].
As in the system of the last section, a sliding window approach is used for the feature extraction,
but for the actual system the window has a width of 16 pixels. Given the content of this window
the following steps are applied:

1. All connected components2 are determined. Components which have no pixels between
the upper and lower baselines are removed. The goal of this step is to eliminate horizontal
strokes belonging to neighboring characters, as in the top stroke of the letter “T”.

2. The part of the window above the upper most black pixel and below the lower most black
pixel are removed. Therefore the height of the window may decrease.

3. The window is partitioned into 16 cells arranged in a 4 × 4 grid. Each cell always has a
width of 4 pixels, but the height of the cells may vary.

4. The number of black pixels in each cell divided by the total number of black pixels in the
window is then used as a feature.

Because there are 16 cells per window, the output of the feature extraction phase is a sequence of
16-dimensional feature vectors. Those 16 features are strongly correlated, which has a negative
impact on the performance of the recognizer. In [93, 96] some transformations were applied
on the extracted feature vectors to solve this problem. For the system used in this thesis, the
Karhunen-Loeve transformation [48], a linear Principal Component Analysis, was applied. This
transformation is described in Section 3.4.

2.4 Handwritten text database

All the handwritten text data used to train and test the recognizers originate from the IAM
database [66]. The IAM data has been collected at the Institute of Computer Science and
Applied Mathematics at the University of Bern during the last five years. The raw data consists
of 1,500 forms of handwritten English text from over 500 writers. These 1,500 forms include over
10,000 handwritten lines and 100,000 word instances. The forms were scanned with a resolution
of 300 dpi. A description file in XML format for each form of handwritten text also exists. The
description, together with some programs, allows the extraction of individual lines and words
from the forms, and provides the normalization parameters, i.e. the slant and skew angles, and

2Connected components are connected regions of black pixels. Here each pixel with a lower grey value then
200 is regarded as black.
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Figure 2.7: Sample of words from the IAM database

the baseline positions of the text lines. The semi-automatic line segmentation procedure applied
to obtain the word boundaries is described in [104]. This procedure is not always successful. If
a line is mis-segmented, which happens in roughly 10 % of all cases, the position of the words
in that line are undefined and the individual words can not be extracted.
The transcriptions of the texts of the forms were adopted from the LOB corpus, which is available
electronically. The LOB corpus contains text from different domains, e.g. reports, press reviews
and books. Each form of the database has an identification tag. The first letter of this tag
indicates the domain of the original text. The IAM database contains forms from 15 domains.
In the experiments in this thesis only words from 5 domains were used, so the full potential of
the database was not exploited. The reason for only using a part of the available data was the
limited computational resources (the time complexity of the HMM classifiers described in the
two last sections is rather high).
The IAM database is freely available to other researchers upon request3. A small sample of
words from the IAM database is shown in Figure 2.7.

3see http://www.iam.unibe.ch/˜zimmerma/iamdb/iamdb.html for details or contact office@iam.unibe.ch



Chapter 3

Classifier optimization methods

This chapter contains descriptions of several methods to optimize the handwritten word rec-
ognizers introduced in Chapter 2. In Section 3.1 methods to optimize the number of states of
the HMMs are presented. Section 3.2 contains descriptions of methods to optimize the training
procedure and to establish the optimal number of Gaussians used in the Gaussian mixtures
distributions. In the following section some methods to select a “good” subset of all features are
presented. The quality of the feature set is defined as the performance of the classifier which uses
only those features to recognize words, or an estimation of its performance. Section 3.4 discusses
which method for transforming the feature vector is most suitable for the considered application.
The goal of the transformation is to achieve an increased performance of the classifier using the
transformed features. Finally a rejection mechanism is presented in Section 3.5. The aim of the
rejection mechanism is to increase the accuracy of the classifiers. Most optimization methods
introduced in this chapter would also work for HMM classifiers other than the two described in
Chapter 2.

3.1 State number optimization

The base systems of the classifiers described in Chapter 2 use the same number of states for
almost all HMMs. The optimal number of states was determined simply by testing the system
with different values for this parameter. For the system of Dr. Urs-Victor Marti, best perfor-
mance was achieved when using 14 states per HMM [64, 65]. By using the same number of
states for all HMMs, we assume that the optimal number of states is the same for all characters.
Unfortunately but naturally this assumption is flawed. Consider for example the two letters “u”
and “w”. The letter “w” is basically two “u”s fused together, so the optimal number of states
for “w” should be roughly double that of the optimal number of states for “u”. The approach
using the same number of states for all HMMs is denoted as const-state.
In [103] two approaches used to to determine the optimal state numbers of the individual HMMs
were presented. Both methods set the state number of a character HMM based on the distri-
bution of the lengths of the feature vector sequences corresponding to this character. For the
classifiers described in Chapter 2 the length of the feature vector sequence is equal to the width
of the image of the character in pixels. So we need to calculate the distribution of the widths

15
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of images of the character. This was done by training the system using a very low number of 8
states per HMM1 and testing it in “forced alignment” mode on the training set. In the “forced
alignment” mode the recognizer knows the correct class label of each input word and has only
to provide the optimal alignment of the sequence of feature vectors with the HMM states. From
this optimal alignment, the character boundaries and the width of the character images can be
derived. Although the system has a suboptimal architecture (due to the low fixed number of
states) it is still able to find good estimates of the character boundaries, because the correct
labels are given to the recognizer. Please note that since the HMMs have eight states, eight is
the minimum measured width of a character. The two methods described in [103] to set the
state numbers as follows:

• Bakis method: The Bakis method [4] sets the number of states of each HMM to the
average width of the corresponding character images multiplied by a constant f . The
theory of the Bakis method is that the optimal number of the HMMs is always the same
fraction of the average width of the corresponding character images. The optimal value
for f must be determined by experiment.

• Quantile method: In the Quantile method the number of states of an HMM is set to the
highest number with the following property: The fraction of images of the corresponding
character that have a smaller width than this state number is smaller than a constant q.
This means that at most a fraction of q of all images are too small for the model. The
theory of the method is that the models should be as large as possible, so that all the
structure of the data can be modeled, but not so large that the model is too large for a
significant part of the training data. The optimal fraction q of images that can not be
modeled is assumed to be the same for all characters. Also for this method the optimal
value of the only parameter, q, must be determined.

In Figure 3.1 an example of a character image width distribution is shown where the widths of
a total of 10 character images were recorded. The average character width is 11.2, so using the
Bakis method with f = 0.54 we obtain a (rounded) state number of 6. For the Quantile method
we obtain a state number of 8 if q is smaller than 0.1. If q is between 0.1 and 0.3, the Quantile
method gives a state number of 10.
Normally the Quantile method produces larger HMMs than the Bakis method. This is because
the HMMs produced by the Quantile method always have state numbers which are larger than
two values. One of this values is 8, the fixed state number of HMMs used by the system to
extract the character boundaries. The other value is the smallest estimated width of all images
of the character. There is no such limit for the state numbers in the Bakis method, e.g. by
setting f to 0 all state numbers of the characters are 0 (the resulting system would of course be
completely useless).

3.2 Training method optimization

The training of the system introduced in [64, 65] is quite simple. The single Gaussian distribu-
tions of the states were initialized by the global mean and variance of the features and a fixed

1For special characters, like punctuation, the state number was set even lower.
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Figure 3.1: Example of a width distribution of character images

number of 4 training iterations of the Baum-Welch algorithm was applied. The number of 4
training iterations has shown to be the optimal value for many recognition tasks with different
training and test sets and different vocabulary sizes. When using less than 4 iterations poorly
trained models were produced, but if more than 4 training iterations were used, the models
overfit the training data. If Gaussian mixture distributions are used, the initialization of the
parameters is no longer straightforward. A possible initialization would be to set the variance
and the mean of the Gaussians to the global value and to randomly distort the mean of each
Gaussian. It was observed that this initialization lead to poorly estimated distributions, because
the models “got stuck” in local maxima of the search space. So the standard approach to train
HMM classifiers is as follows: Firstly a classifier with single Gaussian distributions is trained
with the optimal number of training iterations. Then the number of Gaussians in the distribu-
tions is gradually increased. The classifier using single Gaussian distributions is already quite a
good performing classifier and by gradually increasing the number of Gaussians the classifier is
gradually refined. This approach does not tend to “get stuck” in local maxima.
To increase the number of Gaussians in a Gaussian mixture distribution the splitting procedure
is applied. The splitting procedure replaces the Gaussian with the highest weight by two new
Gaussians. The means of the two new Gaussians are distorted versions of the mean of the original
Gaussian. In the Hidden Markov Model Toolkit (HTK) [102] the length of the distortion vector
is 0.2 times the standard deviation of the original Gaussian. The variance of the two new
Gaussians is set to the variance of the removed Gaussian. Because the sum of the weights of all
Gaussians must be 1, the weights of the new Gaussians is set to half the weight of the original
Gaussian. If the number of Gaussians is to be increased by more than one then several sequential
splitting procedures are executed.
Based on the above mentioned standard approach to training classifiers with Gaussian mixtures,
three strategies to find the optimal training method are proposed. They all use a validation set
to measure the quality of the produced classifiers and they differ in the number of training
iterations applied between increasing the number of Gaussians, i.e. they differ in the way the
system is adapted to the new situation after increasing the number of Gaussians. The three
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strategies are as follows:

1. The algorithm underlying the first strategy is shown in Table 3.1. First the classifier using
single Gaussian distributions is trained with the optimal number of training iterations.
Then the number of Gaussian mixtures is iteratively increased. After each increase of
the number of Gaussians a fixed number, C, of training iterations is performed. When
the desired number of Gaussians per distribution is reached, the classifier is tested on the
validation set immediately after each training cycle to find the optimal number of training
iterations for the final system, i.e. the system with the desired number of Gaussians. The
system is tested up to MAXITER training iterations. The training is then continued until
the performance of the system doesn’t increase any longer. The motivation of this approach
is that the system should adapt itself to the new configuration after each increase of the
number of Gaussians. For this adaption a fixed number of training cycles is executed.

2. The second strategy is identical to the first, when C=0. This means that the number of
Gaussian mixtures is increased up to the desired number without any training iterations
after an increase of the number of Gaussians. The second part, i.e. establishing the optimal
number of training iterations for the system with the desired number of Gaussians, is the
same as in the first strategy. In this approach it is assumed that it is not necessary to
adapt the system immediately after each increase of the number of Gaussians.

3. The algorithm of the third strategy is shown in Table 3.2. In this strategy the optimal
number of training iterations is searched after each increase of the number of Gaussians,
which means that the system is optimized immediately after a new Gaussian has been
added. It is assumed that the optimal number of training iterations is not smaller than
MINITER. Also here the system is trained with more than MAXITER iterations if the
performance of the system keeps increasing. The algorithm adds Gaussians until the
minimal number of Gaussians GAUSSIANS are produced. More Gaussians are added
until the performance of the system no longer increases.

In the first two strategies the desired number of Gaussians, GAUSSIANS, must be defined. To
establish the optimal training method the algorithms of these two strategies must be executed
with a suitable range of values for GAUSSIANS, which is application dependent. In the third
strategy the constant GAUSSIANS is the minimal number of Gaussians for the classifier. If this
value is too low, it may occur that the best solution isn’t found, because the algorithm stops in
a local maximum. If the value of GAUSSIANS is set appropriately, the third strategy must only
be applied once to find the optimal training method. The constants MINITER and MAXITER
are also application dependent, and good values for them must be found empirically. If one
wants to be certain of not missing the optimal number of training iterations, a low value for
MINITER and a high value for MAXITER should be used.
In all three strategies the number of Gaussians is increased for all states of all HMMs at the
same time. So the number of Gaussians is optimized globally for all states. To avoid strong
overfitting effects, the HTK splitting procedure prohibits the splitting of a Gaussian when the
estimation of the parameters of that Gaussian was done using too few feature vectors [102].
The three strategies introduced above search for the optimal training method. There are two
possibilities in using this training method to train the final system:
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B is the optimized base classifier with single Gaussian distributions;
for(i = 2;i <GAUSSIANS;i++)

increase number of Gaussians of B by 1;
train B with C iterations;

increase number of Gaussians of B by 1;
B′ is a copy of B;
for(i = 1;(i ≤MAXITER) or (best iterations = i− 1);i++)

train B′ with 1 iteration;
test B′ on the validation set;
if(B′ is the best tested classifier yet)

best iterations = i;
train B with best iterations iterations;
return B and the used training method of B;

Table 3.1: First strategy to find the optimal training method

B is the optimized base classifier with single Gaussian distributions;
for(i = 2;(i ≤GAUSSIANS) or (performance of B increased);i++)

increase number of Gaussians of B by 1;
B′ is a copy of B;
for(j=MINITER;(j ≤MAXITER) or (best iterations = j − 1);j++)

train B′ with 1 iteration;
test B′ on the validation set;
if(B′ is the best tested classifier with i Gaussians)

best iterations = j;
train B with best iterations iterations;

return best tested classifier and its training method;

Table 3.2: Third strategy to find the optimal training method

1. The final system is trained with the optimal training method on the training set only. In
this case the final system is the classifier returned by the algorithms given in Tables 3.1
and 3.2.

2. The final system is trained with the optimal training method on the union of the training
and validation set.

The second possibility has the advantage that more training data is available and it is a well
known fact that systems trained on larger datasets normally outperform systems trained on
smaller ones. Yet there may be a bias in the sense that the derived parameter values are
only optimal for the original training set. Consider for example a k-nearest neighbor classifier.
Assume the training and validation set have roughly the same size and the validation set is used
to determine the best number of k. This number corresponds to an “optimal” region around
test patterns where training patterns are considered for the classification. By combining training
and validation sets the density of patterns is doubled and this region will be much smaller. To
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Figure 3.2: Different regions where elements are considered in a 5-Nearest Neighbor classifier.
When only the training elements are used, the radius of the circle containing the considered
elements is r. If also the validation elements are used then this radius becomes r′.
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Figure 3.3: 4-fold cross-validation

have regions with a size similar to the one used in the validation process, a larger value of k
must be used. This situation is illustrated in Fig. 3.2.
In order to measure the performance of a system to optimize some parameter values, cross-
validation may be used instead of splitting the whole data set into a training and a validation
set. In cross-validation the training set is randomly split into n equally sized partitions. Then
the system is trained on n− 1 partitions and the performance of the system is measured on the
remaining partition. Each partition is once used as a validation set and the final result is the
average over all n tests. A cross-validation with n = 4 is depicted in Figure 3.3. Because each
element of the original training set is included once into a validation set, the training of the final
system always follows the second possibility mentioned above when using cross-validation.

3.3 Feature selection

In the feature extraction process as much information as possible should be gathered from the
input pattern. So it would seem to be reasonable to produce large feature vectors. Yet the use
of feature vectors of too high a dimensionality leads to the so-called Curse of Dimensionality
[48]. This phenomena can be explained through the following example [43]. Consider a space
partitioned into regularly arranged cells. By increasing the dimension, the number of cells
increases exponentially. In a modeling problem the distribution of the data is estimated and
this can only be done reliably if the space occupied by the data is well sampled. As the number of
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cells increases exponentially, also the number of patterns necessary for good sampling increases
with the number of dimensions. So the use of too many features leads to poorly estimated
distributions.
A way to overcome the Curse of Dimensionality is to start with a set of candidate features
and to reduce them. It may also be appropriate to transform the feature vector before the
reduction. This approach is discussed in the next section. Many ways exist to reduce a given set
of features [50], and they all need an objective function to validate the quality of the considered
subset of the features. In Subsection 3.3.1 approaches using a validation set are described.
Objective functions based on the analysis of the trained Hidden Markov Models are discussed
in Subsection 3.3.2 and in Subsection 3.3.3 an approach is introduced where the results of the
different feature sets are simulated.

3.3.1 Feature selection using validation set

To validate the quality of a feature set, often a validation set is used on which the recognition rate
is measured. With this objective function the selection of the best subset of features becomes
a search problem. An optimal approach is to calculate the objective function for all possible
subsets. This approach will be denoted as exhaustive search in the following and is only feasible
for a rather small number of features. Branch & Bound algorithms [69] use a priori knowledge
to reduce the search space. However, there is often no such a priori knowledge available and a
suboptimal approach, such as Sequential Forward/Backward Search [15], Floating Search [74]
or Oscillating Search [86], is used.
In this thesis we use a modified version of the “plus 1 - take away 1” search algorithm [74]. The
original algorithm is changed so that a feature is only added or removed from the working feature
set if the objective function is increased by that action. The “backward” version of the used
search algorithm is given in Table 3.3 and will be simply denoted as the backward feature search
in the following chapters. The previously mentioned objective function f is the performance of
the system on the validation set using the considered feature set s. As in the floating search
method [74] the feature to be added or removed is not fixed and there are conditional inclusions
and exclusions of features depending on the values of the objective function. In contrast to the
floating search the objective function of the working feature set does always increase. This leads
to fewer search steps but may lead the search into a local minimum. However, because we only
have few features in the systems described in Chapter 2 the risk of such a stop is rather small.
Another difference to the floating search described in [74] is that in each step one feature is
added or removed at most. There is also a “forward” version of the method shown in Table 3.3.
The only difference to the “backward” version is that s is initially set equal to the empty set,
i.e. the search is started with an empty set of features. This version of the algorithm will be
denoted as the forward feature search in the following.

3.3.2 Feature selection using HMM parameters

A trained HMM contains a large amount of information which may be used to determine how
much a single feature contributes to the recognition process, i.e. how important a feature is.
This may be done by analyzing the estimated variance and mean values of the distributions
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Input: The set of all features sall and an objective function f .
Output: A good-performing feature subset s.

s is a set of features and initially equal to sall;
while(f(s) increased since last loop)

bestperformance:= f(s);
bestset:= s;
for all features i in s

snew:= s without feature i;
if(f(snew) > bestperformance)

bestperformance:= f(snew);
bestset:= snew;

s:= bestset;
for all features i not in s

snew:= s ∪ {feature i};
if(f(snew) > bestperformance)

bestperformance:= f(snew);
bestset:= snew;

s:= bestset;
return s;

Table 3.3: Backward feature search algorithm used in the experiments

corresponding to that feature (note that there are no covariance terms in the Gaussian distri-
butions used in the classifiers described in Chapter 2). To keep the descriptions of the quality
measures as simple as possible only two states s1 and s2 of a HMM and only single Gaussian
distributions are considered in the following. The mean values of a feature f of these states are
denoted as µf (s1) and µf (s2) and the variances as σf (s1) and σf (s2). If the difference of the
mean values µf (s1) − µf (s2) of the distributions of the two states is much larger than the two
corresponding standard deviations

√
σf (s1) and

√
σf (s2) for a feature f , then the distributions

are very different. In this case a clear assignment of a feature vector to one of the two states is
possible, i.e. the feature allows the identification of the state which produced the feature vector.
In the recognition process the sequence of states that produced the feature vector sequence is
searched. A clear assignment of a feature vector to a state is very favorable for this search,
so a feature is important for the recognition process when the difference of its means are large
relative to its standard deviations. Each feature quality measure applied in this thesis is based
on the above mentioned considerations.
The following feature quality measures were applied:

• Fisher criterion: For all pairs of states of the HMMs (si, sj) the term

fisherij =
(µf (si)− µf (sj))2

σf (si) + σf (sj)
(3.1)

is calculated. The quality of the feature f is then defined as the sum of the terms of all
possible pairs of different states which is the same as

∑
i

∑
j 6=i(fischerij). In the Fisher
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criterion all states are compared with each other regardless of whether they belong to the
same HMM or whether they are at the same position in the HMMs. The application of
the Fisher criterion to HMMs was introduced in [53].

• Local: This measure is specially designed for HMMs with linear topology. The linear
topology is one of the most prominent HMM architectures used in handwriting recognition.
Instead of comparing all pairs of different states, as in the Fisher criterion, only neighbor
states, i.e. states which are neighbors in the linear structure of the HMM, are compared.
This means that the same term as in equation 3.1 is used, yet the sum is only taken over
all pairs of states that are neighbors. The motivation of this measure as follows. From
each state in an HMM with linear topology there is only a transition to itself and to the
next state. So for the assignment of a feature vector to a state it must only be established
whether it belongs to the actual state or to the next state and only the distributions of such
neighbor states must be different to select the correct assignment. Because this measure
takes the linear topology of the HMMs into account, it may produce superior results than
the Fisher criterion. As a drawback of the Local measure it must be noted that states of
different HMMs are not compared.

• Root Local: This is the same as the Local measure with one modification. Instead of
the term calculated in equation 3.1 the square root of this value is used. By applying a
square root operation to the individual terms, large values are not that strongly weighted
as when using the Local measure, and so the Root Local Measure may be more robust to
outliers.

Not all HMMs have the same importance for the recognition system. Consider for example
the HMMs for the two characters “e” and “X”. The character “X” is so rare that it is almost
irrelevant if the corresponding HMM is well trained. A poor HMM for the letter “e” may
significantly lower the performance of the system. To take this consideration into account, the
above introduced measure are weighted by the occurrences of the characters in the training
set. In case of the Fisher criterion the term of equation 3.1 is multiplied by the product of the
number of occurrences of the two characters to which the two states belong. In the case of the
two other measurements the compared states always belong to the same HMM and so term of
equation 3.1 is only multiplied by the number of occurrences of the character corresponding to
that HMM.
When using Gaussian mixture distributions instead of single Gaussian distributions the term of
equation 3.1 is calculated for each pair of Gaussians where the first Gaussian belongs to the first
state s1 and the second Gaussian to the second state s2. The final value of fisherij is then the
weighted sum of the terms for all those pairs of Gaussians. The weight of a pair of Gaussians is
the product of the weights of the Gaussians in the corresponding distributions.
Using one of the above described measures, the features may now be sorted according to their
quality. The final selected feature set contains the m features with the highest quality. The
best choice for m is not obvious. One way to choose m is to search for large gaps in the vector
containing the ordered quality measures (e.g. if this vector is [1.0,0.9,0.2,0.1] a good choice for
m may be 2). In this thesis we applied a different approach. For all possible choices of m, we
tested the resulting feature set on a validation set. The value of m which leads to the highest
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recognition rate on the validation set is selected. Alternatively the test of the feature sets could
also be done on the training set.

3.3.3 Feature selection using simulations

In this Subsection a method is introduced which simulates the recognition results of classifiers
using different features sets. The simulation is done for all elements of a given validation set and
is based on two simplifications. The simulation often produces inexact results, yet it is much
faster than the calculation of the correct results.
It was empirically observed that two HMM classifiers using different feature sets but the same
HMM topology often have a similar (or identical) optimal assignment of the features vectors
to the states of the HMM of the correct class, even when the outputs of the two classifiers
differ from each other. This optimal assignment is returned by the Viterbi algorithm (compare
Subsection 2.1.3) and will be denoted as an optimal path.
Based on the above mentioned observation the first simplification is the following: It is assumed
that the optimal path for a given input sequence and a given HMM is the same for all feature
sets. The assumption will be only approximatively true in most applications, but the optimal
paths of the HMMs must be calculated once only for all feature sets. Ideally, the optimal paths
are calculated with the classifier using the full set of features, because it is reasonable to assume
that this set already produces rather good results. For all other feature sets only the score for
this path must be re-calculated for each HMM. A similar simplification was proposed in [12].
It was also observed that the HMM with the highest score given one feature set occurs often
among the HMMs with very high scores using another feature set. This observation leads to
another simplification: We assume that the output of the classifier using any feature set is
among the classes with the N best score values obtained with the full set of features. Using this
simplification only the scores of HMMs that are in the N -best list of the test with the classifier
using the full set of features needs to be calculated. A pattern is regarded as correct if the HMM
corresponding to the correct class has a higher score than any other HMM in this list2.
The two simplifications mentioned above allow us to very quickly calculate simulations of the
recognition results for any feature set. Those simulations may be used to calculate estimations
of the recognition rate of the classifier for those features. The method requires the testing of
the classifier using the full set of features on the validation set producing an N-best list for each
pattern. Note that the estimated recognition rate is usually different from the real one and that
the quality of the estimation depends on the value of N .
The above described method may be used to calculate an estimated recognition rate for any set
of features. So the method can be used in conjunction with classic feature selection methods
by using the estimated instead of the real recognition rate as the objective function (compare
Subsection 3.3.1). Because of the high speed of the method, the estimated recognition rate was
calculated for all possible feature sets, i.e. an exhaustive search was carried out.
In this thesis we used two approaches to select the final feature set from the obtained results:

1. The feature set with the highest estimated recognition rate is selected.

2In the experiments N denotes the number of incorrect HMMs compared to the correct HMM, i.e. a (N + 1)-
best list is used.
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2. For each feature set size the classifier using the feature set with the highest estimate
recognition rate is tested on the validation set. The feature set that achieves the highest
real recognition rate on the validation set is selected.

The motivation for the second approach is that the estimated recognition rate depends strongly
on the size of the feature set. Especially for small values of N small feature sets often obtain
values that are too large. By validating the best feature sets for each feature set size the negative
impact of this effect can be abolished.

3.4 Feature transformation

Instead of the selection of a subset of features, like in Section 3.3, the quality of the feature
vector may also be increased by transformation3. The literature presents several methods to
transform the feature vector (see e.g. [48] for details). In our work we used a linear Principal
Component Analysis (PCA), the Karhunen-Loeve transformation [48], which we simply denote
as PCA. There are three reasons why PCA is an appropriate transformation method for the
systems described in Section 2. Firstly, PCA as a linear transformation method is very simple.
Secondly, the components of the transformed feature vector are statistically independent. Such
independence was implicitly assumed by using diagonal covariance matrices of the Gaussian
distributions, and by using such transformed feature vectors the assumption is no longer flawed.
Another reason for using PCA is that the feature components are ordered according to their
importance. By removing the last n components, the dimensionality of the feature vector may
be reduced without losing too much information. The optimal value for n must be empirically
determined for each application. Note that the application of feature selection methods to feature
vectors transformed by PCA is not very promising, because the non relevant part of the feature
vector, i.e. the last components of the feature vectors, are already determined by the PCA. On
the other hand it is also not promising to apply PCA to a feature set which was found by a
feature selection method, because the most irrelevant features will have already been removed
and the dimensionality of the feature vector is already low. In the system of Dr. Alessandro
Vinciarelli described in Subsection 2.3 PCA was always applied, because the features used in
this system are strongly correlated. For details of the topic of PCA see for example [48, 93] .

3.5 Rejection method

In some applications it is useful to allow the rejection of patterns for which the classifier gives a
result with a low confidence. To express the quality of such a system the three terms recognition
rate, rejection rate and accuracy are used. The recognition rate is the fraction of patterns which
are classified correctly and the rejection rate is the fraction of patterns which are rejected by
the classifier. The accuracy of the classifier is the fraction of non-rejected patterns which are
classified correctly. In some applications a high accuracy is needed, while a rather high rejection
rate is tolerated. Consider for example the application of bank check reading. Even if 20 % of

3Feature selection may also be regarded as a transformation, namely a projection
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all checks are rejected, the automatic reading is economic, because only a fifth of all checks must
be read by a human. It is, of course, very important that the case of a misread remains rare.
As mentioned above, the rejection is based on a confidence measure. The systems described in
Chapter 2 output a score value which could be used as this measure. Unfortunately the score
value is an unnormalized likelihood value and no strong correlation of the correctness of a result
and the score value was observed, even when some normalization methods were applied. In this
thesis we use one of the confidence measures introduced in [67] and which is called the dictionary
dependent anti-model criterion with duration coefficient. It is based on the score values of the
best score scorebest and the second best score score2nd best for each pattern. Therefore a 2-best
list of each test pattern must be calculated when using this confidence measure. The confidence
of a result for a pattern x is then defined as:

conf(x) =
scorebest(x)− score2nd best(x)

length of x
(3.2)

Here the length of a pattern x is the length of the feature vector sequence corresponding to this
pattern. The values of confidence measure calculated using equation 3.2 strongly depend on
the used classifiers, so it is reasonable to normalize it. The normalized confidence measure of a
pattern is defined as:

conf ′(x) =
scorebest(x)− score2nd best(x)

length of x
·
∑
y∈T

(
length of y

(scorebest(y)− score2nd best(y)) · |T |) (3.3)

where T is the training set and so the average is calculated over all patterns of the training
set4. When using the confidence measure of equation 3.3 for several classifiers (compare Subsec-
tion 5.3.4 and Section 5.5), the average of the confidence was calculated over all training patterns
and classifiers in the experiments. Yet it may also be reasonable to calculate the average for
each classifier alone and to normalize the confidence values with the averages corresponding to
the actual classifier.
A pattern x is rejected if its confidence value is smaller than a fixed threshold t. The threshold
t controls how many patterns are rejected. High values for t lead to high rejection rates, but
should also increase the accuracy of the classifier.

4In the implementation of the system the average was calculated on the patterns of the test set, because a
2-best recognition on the whole training set is very time consuming. If the test set is large enough and similar
to the training set this should lead to similar averages. Note that only score values of the test patterns, and not
their class labels are used.



Chapter 4

Ensemble methods

This chapter contains the description of classic and new ensemble methods used in the exper-
iments. In Section 4.1 some properties of well performing ensembles will be discussed and an
explanation for using ensembles instead of single classifiers is given. The following section in-
cludes descriptions of the classic ensemble methods used in the experiments. The next section
presents methods which partition the training set and train the individual classifiers on one or
more partitions. In Section 4.4 new ensemble methods based on AdaBoost, one of the classic
ensemble methods, will be introduced. The following section contains descriptions of ensemble
methods which use feature selection algorithms to select the feature sets for the individual clas-
sifiers of the ensemble. In Section 4.6 ensemble methods which work with several base classifiers
will be introduced.

4.1 Properties of ensembles of classifiers

In [16] three reasons why an ensemble method may work better than a single classifier are given.
These reason are enumerated as follows and illustrated in Figure 4.1:

1. A classifier may be regarded as a point in the space of all possible classifiers. When only
little training data is available, many different classifiers that have good performances on
the training set may be trained. But only few of them will be good for the recognition of
other patterns. It was shown that by combining several of these classifiers, e.g. by voting,
we are likely to find a solution that has better generalization properties. (A solution has
a high generalization property if the performance on the training set is similar to the
recognition rate of new patterns).

2. Many learning algorithms, including the Baum-Welch algorithm, work by performing some
form of local search that may get stuck in local maxima of the search space. It may be that
the optimal classifier will never be found, because the learning method always stops at a
local maximum. An ensemble consisting of the classifiers produced by running the learning
method with many different start parameters, e.g. different training sets, may provide a
better approximation of the optimal classifier than any of the individual classifier.

27



28 CHAPTER 4. ENSEMBLE METHODS

f

f

f

f1

f2

f3
f

search spacef1

f3

f

f2

search path of
the classifiers

: 
search space

f1 f2f

classifers with
good performance
on the training set

search space

f3

Figure 4.1: Three reasons why an ensemble may work better than a single classifier: f1, f2 and
f3 denote the individual classifiers, f̄ is the combined classifier and f the optimal classifier. First
the “average” of several good performing classifiers on the training set is likely to have a higher
generalization property, i.e. is closer to f , than any individual classifier. Secondly the search
of the optimal classifier may be get stuck in a local maximum. The third reason is that the
optimal classifier f may be outside of the search space.

3. It may be that the optimal classifier can not be obtained by the used classifier architecture
and training set, i.e. the optimal classifier is outside of the search space. The combined
classifier of an ensemble of classifiers may also be outside the search space of single clas-
sifiers, and therefore such a combined classifier may be a better approximation of the
optimal classifier.

A well performing ensemble has two key properties: Firstly, the classifiers of the ensemble are
diverse and secondly, the individual classifiers have good performance. The goal of any ensemble
method is to produce ensembles with both key properties.
A ensemble contains diverse classifiers, when misclassification of patterns has a low correlation
across different classifiers (in other words, the recognition rate of a classifier Ci on the patterns
misclassified by another classifier Cj should be close to the average recognition rate of Ci). Ide-
ally, independent classifiers are created, but this is almost impossible in real world applications.
The diversity of classifiers is crucial, because all of the known combination rules can only increase
the performance of single classifiers if they are used with an ensemble of diverse classifiers. For
a more detailed discussion of classifier diversity, which is also called classifier ambiguity, see [54].
The second key property of a good ensemble is that the ensemble only contains classifiers whose
recognition rates are not much lower than that of the best individual classifier. It is obvious
that the recognition rate of an ensemble using a combination rule depends on the performance
of its individual members. If the diversity of the classifiers is high than the ensemble usually
outperforms any of its individual classifiers. However, if many members of an ensemble have
a poor performance they may eventually become dominant over the well-performing classifiers
and thus, lower the overall performance of the ensemble.

4.2 Classic ensemble methods

In this section the classic ensemble methods Bagging, AdaBoost, random subspace method and
a special version of the architecture variation ensemble method are described. In addition a
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literature reference and a short description of a fifth classic ensemble method is given.

4.2.1 Bagging

Bagging [8], an acronym for bootstrapping and aggregating, was among the first methods
proposed for ensemble creation. Given a training set S of size n, bagging generates m new
training sets S1, . . . , Sm, each of size n, by randomly drawing elements of the original training
set, where the same element may be drawn multiple times. If the probability of being drawn is
equally distributed over S, as is the case here, then about two thirds1 of all training elements
will be contained in each modified training set Si, some of them multiple times. Each of the
new sets Si is used to train exactly one classifier. Hence an ensemble of m individual classifiers
is obtained from m new training sets.

4.2.2 AdaBoost

Boosting is one of the most popular ensemble methods. In [82] a good overview of this category
of ensemble methods is given. The first boosting algorithms were introduced by Schapire in 1989
[80] and by Freund in 1990 [20]. The most prominent algorithm, AdaBoost, was developed in
1995 [21]. Similarly to Bagging, AdaBoost [21] modifies the original training set for the creation
of the ensemble. To each pattern of the training set a selection probability is assigned, which
is equal for all elements of the training set in the beginning. Then elements for a new training
set are randomly drawn from the original training set taking the selection probabilities into
account. The size of the new training set is equal to the size of the original one. After the
creation of a new training set, a classifier is trained on the new set. Then the new classifier
is tested on the original training set. The probability of selecting correctly classified patterns
is decreased and the probability of selecting misclassified patterns is increased. During the
execution of the AdaBoost procedure the selection probabilities constantly change. Hence, unlike
Bagging, where the classifiers are created independently, the classifiers generated by AdaBoost
are created dependent on selection probabilities, which in turn depend on the recognition results
of previously generated classifiers.
The main aim of AdaBoost is to concentrate the training on “difficult” patterns. Note that the
first classifier is trained in the same way as the classifiers in Bagging. The original AdaBoost
algorithm only works for two-class problems, but several extensions were proposed and tested in
applications. AdaBoost.M1 [21] is a straightforward extension of the two-class AdaBoost that
basically regards the multi-class problem as a two-class problem with the two classes “correct
class” and “incorrect class”. It is quite obvious that this simplification has its drawbacks.
AdaBoost.MH [83] and AdaBoost.M2 [21] work by reducing the multi-class problem to a larger
binary problem. Those methods need well adapted base learners to function properly. Another
approach is to combine the method of error-correcting output codes [18] with boosting [3, 81].
Here any two-class base classifier may be used. However, a disadvantage of all these approaches
is that for problems with a large number of classes, like word recognition, the complexity or the
number of the induced two-class problems may be very large. In this thesis the AdaBoost.M1
algorithm was applied, because it works with any base classifier, does not modify the underlying

163.21 %, or 100 % · (1− 1
e
), for a training set of infinite size
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Input: Base classifier C, training set T = {e1, . . . , en}, selection probabilities p(ei) for all
elements ei of T , and the number of classifiers to produce m.
Output: m classifiers and m weights for these classifiers.

p(x) is set to 1
n for all x ∈ T ;

for(i=1;i≤m;i++)
sample n elements of T using the selection prob. p(x) → Ti;
train C on Ti → classifier Ci;
test classifier Ci on all elements in T ;
error=0;
for(j=1;j≤n;j++)

if(Ci misclassifies ej)
error = error + p(ej);

if(error>0.5)
p(x) is set to 1

n for all x ∈ T ;
i=i-1;

else
β = 1−error

error ;
set weight of classifier Ci to ln(β);
for(j=0;j<n;j++)

if(C misclassifies ej)
p(ej) = p(ej) · β;

normalize p(ej), so that
∑n

j=1(p(ej)) = 1;
return C1, . . . , Cm (with their weights);

Table 4.1: AdaBoost.M1 algorithm

classification problem and is easy to implement. The algorithm of AdaBoost.M1 is shown in
Table 4.1. AdaBoost.M1 provides weights for each classifier, and the recommended combination
of the produced classifiers is weighted voting using those weights. As it will be shown in Chapter 6
AdaBoost.M1 is able to produce good ensembles, yet the combination by weighted voting using
the calculated weights may lead to inferior results compared to other combination schemes. In
the algorithm shown in Table 4.1, the selection probabilities of all elements are reset to the same
value, if the error is higher than 0.5, to avoid the production of poor performing classifiers. Note
that the iteration counter is decreased and that the classifier with the high error is replaced.
The error calculated for the classifiers is weighted by the selection probabilities of the training
patterns.

4.2.3 Random subspace method

In the random subspace method [28] an individual classifier uses only a subset of all features for
training and recognition. The size of the subset is fixed and the features are randomly chosen
from the set of all features where each feature may only be selected once. So instead of a re-
sampling of the training set, as in Bagging, a new reduced feature set is chosen. Note that the
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sampling is done without replacement in the random subspace method, but with replacement
in Bagging. The individual classifiers are trained on the whole training set.
For the classifiers described in Section 2 the situation is special in the sense that the number of
available features is rather low. Therefore, the original random subspace method was slightly
modified so that the following property always holds: If the number of classifiers which use
feature fi is denoted by n(fi), then ∀(i, j |n(fi)− n(fj)| ≤ 1). This means that each individual
feature is used in approximately the same number of classifiers. Therefore, all features have
approximately the same importance. By means of this condition it is enforced that the informa-
tion of every feature is exploited as much as possible. By contrast, when choosing completely
random feature sets, it is possible that certain features are not used at all. The modification of
the algorithm does not have an impact on the probability of a feature set to be selected for one
of the classifier, i.e. this probability is the same for all feature sets of the fixed size.
When applying the random subspace method with the classifier introduced in Section 2.2 always
6 of the 9 features were randomly chosen.

4.2.4 Architecture variation

In the architecture variation ensemble method the structure or the parameters of the architecture
of the classifier is varied. In a feed-forward neural network, for example, one may change the
number of hidden layers or the number of neurons in each layer [73]. For the HMM classifiers
described in chapter 2 there are several properties which may be varied:

• Number of training iterations

• Number of Gaussians of the output distributions of the states

• Number of states per HMM

• HMM topology

• Reading direction (left-to-right or right-to-left)

In preliminary experiments it was found out that the variation of the HMM topology and the
reading direction have a very positive impact.
Four different HMM topologies, namely linear, Bakis, semi-jumpin and semi-jumpout, were
considered. The structure of these topologies are depicted in Figure 4.2. The linear topology is
the original topology used in the classifiers described in Chapter 2. In the Bakis topology the
transition from one state to the second next state is also possible. This topology allows more
flexibility in the decoding process by skipping certain states. The HMM models used in our
base classifier do not include any ligature states2. But the transition from one character to the
next is often context dependent. Therefore, if certain character pairs are not sufficiently well
represented in the training set, misalignments at the beginning and at the end of a character
model during decoding may be expected. To account for this kind of problem, the semi-jumpin
and semi-jumpout topologies shown in Fig. 4.2 were introduced. Here the first or last n−2

2 states

2Here the term ligature denotes a connection stroke between two consecutive characters
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linear

bakis

semi-jumpin

semi-jumpout

Figure 4.2: Different HMM topologies for a small HMM with 6 states.

of the linear model may be skipped (with n denoting the total number of states of the considered
HMM).
Normally the columns of a word image are read form left to right. Another possibility is to read
them from right to left. Because the Viterbi search used in the decoding phase of the classifiers
described in Chapter 2 is a suboptimal procedure that prunes large portions of the search space,
the results of a forward and a backward scan of the word are not necessarily the same. To
implement a right-to-left scan of the image, only the concatenation of character HMMs needs
to be changed appropriately.
Apparently, left-to-right as well as right-to-left scanning can be combined with any of the topolo-
gies shown in Fig. 4.2. Therefore, a total of eight different classifiers can be generated. Each of
these classifiers is trained on the full training set.

4.2.5 Half and half Bagging

Half and half Bagging was introduced in [9]. In this ensemble method the training sets of the
classifiers consist half of training elements misclassified by the ensemble of already produced
classifiers. The other half of the training set contains only elements correctly classified by this
ensemble. As half and half Bagging is only used for a few experiments in this thesis, no further
description of this ensemble method is given. For details see [9]. The reason that half and half
Bagging is not widely used in the experiments is that in the first experiments the results of this
ensemble method were not better than the results of the other classic ensemble methods, but
the other methods were more often applied in the literature.

4.3 Ensemble methods using a partitioning of training set

In this section ensemble methods using a partitioning of the training set are introduced. These
ensemble methods will be denoted as partitions based ensemble methods. The basic algorithm
of the partitions based ensemble methods as follows. First, the whole training set is split into
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several partitions. Then each classifier is trained on one or several of these partitions. Note that
the training set of a classifier always includes all or no elements of a partition. The training sets
of the classifiers may overlap, but the overlapping always contains all elements of one or several
partitions. To design a partitions based ensemble method two key parameters must be set:

1. The partitioning algorithm (including the number of partitions).

2. The assignment of the partitions to the training sets of the individual classifiers.

The most simple partitioning algorithm is random partitioning where the training set is ran-
domly divided into n equally sized parts. In preliminary experiments it was observed that such
partitioning is not very effective.
In this thesis an ensemble method is used where the partitioning is based on a clustering of the
words according to their writing style. In this method the whole training set is first clustered
into clusters of words with similar writing style. Each of these clusters is then regarded as
one partition and each partition is used for the training of one classifier. If only a few writers
contributed to the training set and if the identity of the writers of the words of the training set is
known, each cluster may simply be composed of all words of a writer and no clustering algorithm
must be applied. This approach is not feasible when the training set consists of words from a
large number of writers and if the sizes of the sets of contributed words vary heavily among those
writers. In this case some features of the words must be defined, so that a clustering algorithm
may be applied. As we are using the data of the IAM database, we always have complete forms
of handwritten text at our disposal (compare Section 2.4). Therefore the features were extracted
from the whole form and all words of the form belong to the same cluster. The features used
for the clustering are the following:

• Components per word (CPW): The average number of connected components per
word is calculated over the whole form. All the components with a bounding box smaller
than 500 pixels are ignored, as they are likely to be noise. Single characters, like punctua-
tion, and numbers are also not considered. A value of one for this feature corresponds to
a complete cursive handwriting.

• Words per component (WPC): This is simply the inverse of CPW.

• Character width (CW): The average width of the characters is calculated over the whole
form. Again single characters are not considered and components with smaller bounding
boxes than 500 pixels are ignored. To calculate the width of the characters the bounding
boxes of the words are used and so the white spaces between the words are not taken into
account.

The first and the second features contain in principle the same information, but may lead to
different clustering results. The third feature may be used together with the first or the second
feature but to use the first two features together is not promising as they are redundant. So there
are five possible feature sets: All features alone (CPW,WPC,CW) and the two sets containing
CW and one of the other features (CPW/CW and WPC/CW). In the experiments a k-means
clustering [63] with the mentioned features was executed where the features were first linearly
normalized so that the mean of the features was 0 and the standard deviation was 1.
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Input: Base classifier C, training set T of size n, and number of classifiers to produce m.
Output: m classifiers.

p(x) is set to 1
n for all x ∈ T ;

train C on T → classifier C1;
for(i=2;i ≤ m;i++)

test classifier Ci−1 on T ;
modify p(x) using information derived from the results of C1, . . . , Ci−1 on T ; (*)
sample n elements of T using the selection prob. p(x) → Ti;
train C on Ti → classifier Ci;

return C1, . . . , Cm;

Table 4.2: Basic algorithm of the new boosting ensemble methods

4.4 New boosting algorithms

As mentioned in Subsection 4.2.2 most multi-class AdaBoost extensions do not work well with
problems with a very large number of classes, like the word recognition task considered in this
thesis. The AdaBoost version used for the experiments of this work, the AdaBoost.M1, is easy
to implement, but by regarding the multi-class problem as a two-class problem with the two
classes “correct” and “incorrect” a lot of information is lost. In this Section three new boosting
algorithms are presented which work well for classification tasks involving a large number of
classes and which take all information into account. They are all derived from the original
AdaBoost algorithm.

4.4.1 Basis algorithm of the new boosting methods

All new boosting methods work with a distribution p of selection probabilities over the training
set, similarly to AdaBoost [21]. So p(x) is the probability than an element x of the original
training set T is selected when sampling elements for the training set of a new classifier. The
basic algorithm of all new boosting ensemble methods is given in Table 4.2.

This algorithm is very similar to AdaBoost where the selection probabilities are also adapted
according to the results of the previously created classifiers on the training set. The sampling is
also done with replacement. Note however, that in contrast to the AdaBoost algorithm, the first
classifier is trained on the full training set. The difference of the three new boosting methods is
the modification of the selection probabilities p(x) (line with star sign in Table 4.2). Contrary
to AdaBoost, the new boosting algorithms don’t produce any weights for the classifiers and so
no constraints on the combination scheme to be used are imposed.

In the following the details of the novel selection probability modification schemes of the proposed
boosting methods and their underlying ideas are presented.
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4.4.2 Simple probabilistic boosting (SPB)

The main theory of this boosting algorithm is to set the selection probability p(x) of a training
element x at proportion to the probability e(x) that the ensemble of classifiers will misclassify
elements similar to element x3. Similarly to AdaBoost, the selection probability of “hard” ele-
ments, i.e. elements which are likely to be misclassified, are set to a high value. It was decided to
make the selection probabilities linearly dependent on the misclassification probability, because
this approach is simple and the optimal function o : e(x) → p(x) is unknown anyway. The
question remains of how to calculate e(x) from the results of the classifiers C1, . . . , Cm that were
already created. Four different functions are considered in this thesis where the ensembles are
always combined by the voting combination scheme:

• If the ensemble of the classifiers C1, . . . , Cm classifies x correctly then e1(x) is set equal
to 0, otherwise it is set equal to 1. Although correct for the actual ensemble this is a
poor estimation, because it does not reflect how many classifiers classified x correctly even
though the ensemble as a whole misclassified x.

• Let k(x) be the number of classifiers of C1, . . . , Cm which output the correct class label
for x. Then e2(x) is 0 if the ensemble of the classifiers C1, . . . , Cm classifies x correctly.
Otherwise it is 1−k(x)

m . In contrast to e1(x), we also take here the information of the number
of classifiers into account which had a correct output although the ensemble output was
incorrect.

• Let k(x, y) be the number of occurrences of label y in the output of the classifiers C1, . . . , Cm

for training element x. The probability that one classifier of the ensemble outputs y is
therefore k(x,y)

m . The probability of the ensemble to be wrong is then defined as the prob-
ability that the correct label c is not output more often than all other labels y, given the
output probabilities k(x,y)

m and an ensemble of size m. This is the most exact estimation of
the probability of the misclassification of elements similar to element x, but may be very
difficult to calculate. Consequently, two approximations will be considered as follows:

– Only the label i of the incorrect class that occurs most frequently in the output of the
classifiers C1, . . . , Cm and the correct label c are considered and the probability e3(x)
is calculated that i will occur more frequently than, or as often as, c in the output of
an ensemble of size m.

– The output probabilities k(x,y)
m are used and a number of simulations of the output

of an ensemble of size m are run. The fraction of simulations where the correct label
c was not the most frequent label is the error probability e4(x). In the experiments
of this thesis the number of simulations was set to 1,000.

Note that under e3(x) and e4(x) the results of C1, . . . , Cm are only used for the calculation
of the probabilities k(x,y)

m that one classifier outputs label y for training element x. This
means that e(x) may be less than 1 even when the actual ensemble misclassifies the element.

3Note that a well trained classifier should not only classify training elements correctly, but also patterns which
are similar to the training elements.



36 CHAPTER 4. ENSEMBLE METHODS

On the other hand e(x) may also be larger than 0 for an element x which is classified
correctly by the ensemble. The reason why the actual results are not directly used is that
we are not interested in the optimization of the ensemble for the training set, but in the
optimization for elements similar to the ones in the training set. So by using the results
only indirectly we may avoid overfitting effects.

For a better understanding of the functions e1(x), e2(x), e3(x) and e4(x) consider the following
example: Assume four classifiers were produced for a classification problem with three classes
X, Y and Z. The correct class of the test pattern t is X and the output of the classifiers
for t are X, Y , Y and Z. The value of function e1(t) is equal to 1, because the wrong label
Y appears more often than the correct label X. The value of function e2(t) is equal to 0.75,
because one of the four labels in the output is correct. For e3(t) and e4(t) the value of function
k must be calculated first. Here, k(t,X) = k(t, Z) = 1

4 and k(t, Y ) = 1
2 . The value of e3(t) is

the probability that Y appears more often than X using the output probabilities of the labels
given by k. Here e3(t) = 0.81640. For e4(t) the same values for k as for e3(t) are used for the
simulations, and e4(t) = 0.846 was obtained for this example.

4.4.3 Effort based boosting (EBB)

The main theory of this method is that the selection probabilities p(x) of the training elements
are regarded as resources and that those resources should be distributed to, or shared among,
the elements, for which a high value of p(x) has the largest positive effect on the ensemble
performance. Unlike in SPB when using functions e3(x) or e4(x), the results of the ensemble
of already produced classifiers are directly used to optimize the ensemble performance on the
training set.
To understand the EBB algorithm two new terms must be introduced: The effort ef(x) and
the required resources r(x) of a training element x. The effort ef(x) of a training element x is
defined as the average number of instances of x required to be present in the training set so that
the trained classifier makes a correct decision for x. We can estimate ef(x) as follows:

ef(x) =
total number of instances of x in all training sets of all classifiers

number of correct decisions for x made by all classifiers
(4.1)

As mentioned before, the performance of the ensemble should be optimized. So the resources,
i.e. the selection probabilities, should be distributed to the elements for which a correct voting
result of the ensemble is achieved with minimum effort, i.e. with as few resources as possible.
The quantity r(x) is defined as the average total number of required training instances, so that
the ensemble consisting of the already produced classifiers and some new classifiers outputs the
correct result for x. Moreover, n(x) is the number of classifiers with the correct result for x
needed to be added to the actual ensemble to get a correct voting result for x. Because we need
to train n(x) classifiers outputting the correct result for x to get a correct voting result of the
ensemble and because we need in average ef(x) training instances in the training set of each of
this classifier, we can calculate r(x) by the equation r(x) = n(x) · ef(x). If n(x) is larger than
the number of classifiers which are still to be added to the ensemble, then it is impossible to
achieve a correct voting result of the final system for x and r(x) is set to infinity.
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First classifier
# instances in T1 result of C1 ef r

a (class A) 1 A 1 0
b (class B) 1 A ∞ ∞

Second classifier
# instances in T2 result of C2 ef r

a (class A) 0 A 0.5 0
b (class B) 2 B 3 3

Table 4.3: Example of values of the effort ef and the required resources r of two training elements.

Consider the following example illustrated in Table 4.3. The training set consists of the elements
a and b which belong to class A and B, respectively. The first classifier is trained with both a
and b and tested on the training set. Element a is classified correctly, but b isn’t. The second
classifier is then trained on two instances of b and when tested on the training set it classifies
both a and b correctly. After the creation of the second classifier the effort of a is the number
of instances in the training sets of the classifiers which is equal to 1 divided by the number of
classifiers with correct result which is equal to 2, so ef(a) = 1

2 . Similarly, we get ef(b) = 3.
Because the voting result for a is correct, n(a) and r(a) are both 0. For b, we need one more
classifier which outputs the correct result to achieve a correct voting result, so n(b) = 1 and
r(b) = 3.
In Table 4.4 the method for setting the selection probabilities p(x) of the training elements is
shown. All elements with r(x) > 0 are considered in ascending order of r(x) and the selection
probabilities are set to the value ef(x) · α · 1

n until the sum of the selection probabilities reaches
1. Note that with this equation the average number of instances in the training set of the
new classifier is ef(x) · α. If the sum of the selection probabilities gets larger than 1 for a set
of elements {x1, . . . , xn} with the same value of r then the selection probabilities of all those
elements is set equal to the value c · ef(x) · α · 1

n where c it the constant which leads to a sum
of the selection probabilities equal to 1. If this sum doesn’t reach the value 1 for the elements
with r(x) 6= ∞, then the rest of the sum of selection probabilities is equally distributed among
the elements with r(x) = ∞4. However, often the selection probabilities of many elements with
large, finite values of r are not set by the algorithm, i.e. the selection probabilities of these
elements remain 0. Note that in the algorithm of Table 4.4 the elements with r(x) = 0, i.e. the
elements which are classified correctly by the actual ensemble, also have a selection probability
of 0. The algorithm separates the elements of the training set in three groups. The first group
contains elements which are already correctly classified by the ensemble. The second group
contains elements which are misclassified by the ensemble, but for which a correct voting result
of the ensemble may be achieved by including only rather few instances in the training sets of
new classifiers. The third group consists of elements which are also misclassified by the ensemble
and for which a large number of instances in the training sets of new classifiers would be needed

4Alternatively the elements with infinite effort, i.e. elements which were never classified correctly by any
classifier, could be excluded, because it’s very likely that they are outliers.
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Input: Training set T of size n, and required resources r(x) and effort ef(x) for all elements
x ∈ T .
Output: Selection probabilities p(x) for all elements x ∈ T .

p(x) is set to 0 for all elements of x ∈ T ;
sort all elements x in ascending order according to the value of r(x) → list L;
remove all elements x with r(x) = 0 from L;
totalprob=0;
while(totalprob<1 and minx∈L r(x) 6= ∞)

S holds all elements of L with the smallest value of r;
remove all elements in S from L;
totalneeded = 0;
for(all elements x in S)

totalneeded= totalneeded + ef(x) · α · 1
n ;

fraction = 1;
if(totalneeded>(1-totalprob))

fraction = (1-totalprob) · 1
totalneeded ;

for(all elements x in S)
p(x)=ef(x) · α · 1

n · fraction;
totalprob = totalprob + totalneeded · fraction;

if(totalprob<1)
for(all elements x in L)

p(x) = (1-totalprob) · 1
|L| ;

return p(x) for all elements x ∈ T ;

Table 4.4: Calculation of the selection probabilities in EBB

to obtain a correct voting result. The main idea of the algorithm is to train exclusively on
elements of the second groups. This is because elements of the first group are already correctly
classified and to achieve a correct result for the elements of the third group too many training
instances would be needed. As mentioned previously, unlike SPB, the focus of this method is
on the optimization of the actual ensemble, so it is not necessary to include correctly classified
patterns in the training set.

Because ef(x) is the number of training instances of x needed on average for the correct clas-
sification of x by the new classifier, the training set should contain more elements than ef(x)
to ensure that the classifier correctly classifies x. This is the reason why the parameter α is
introduced. The larger the value of α, the more likely the elements with p(x) > 0 are classified
correctly by the created classifier. On the other hand the smaller α is, the higher the number
of elements that have positive selection probabilities. The optimal value of α is application
dependent and must be determined by experiment.
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4.4.4 Simple probabilistic boosting with effort (SPBE)

The idea of this algorithm is to train on elements for which a correct voting result may be
easily achieved and for which, at the same time, the probability of a misclassification of similar
elements by the ensemble is high. It uses the concepts of the methods described in the two last
subsections, and therefore may be regarded as a sort of combination of them.
SPBE is identical to SPB with one exception. The only modification to SPB is a different
procedure for the calculation of the selection probability p(x) which is given by the following
equation:

p(x) ∝ e(x) · (1 +
α

ef(x)
) (4.2)

The effect of α is as follows. The higher the value of α, the higher the selection probabilities of
the elements with low effort values, but the less selection probability is “distributed” to elements
with higher effort values. Similarly to EBB, there is a tradeoff between the number of elements
to be emphasized and the likelihood of the correct classification of an element when emphasizing
it. The optimal value of α is also application dependent and must be experimentally determined.
In the experiments of this thesis the special case of SPBE where α is set to a very high value is
used. The equation 4.2 can then be simplified to the equation given below:

p(x) ∝ e(x)
ef(x)

(4.3)

An advantage of this special case is that the equation no longer contains the parameter α.

4.5 Feature selection ensemble methods

One of the most successful ensemble methods is the random subspace method introduced in
Subsection 4.2.3. In this ensemble method each individual classifier uses its own subset of the
given features for both training and recognition. The subsets contain elements randomly selected
out of the whole feature set, where the size of the feature subset is usually the same for each
classifier. The main goal of the algorithm is not to select good subsets of features, but to create
diverse classifiers to get a good performance of the ensemble of the classifiers.
The key idea of the new method proposed in this section is not to select subsets of features
randomly, but to apply an algorithm that selects well performing subsets of the features for
the individual classifiers of the ensemble. In Subsection 4.5.1 the basic version of the ensemble
methods which use underlying feature selection algorithms is described. The following subsection
introduces an extension of the basic version which allow the use of several feature selection
algorithms. Subsection 4.5.3 contains the description of some ensemble methods which work
with the results of an exhaustive feature search. In Subsection 4.5.4 a heuristic version of the
methods introduced in the other subsections is presented.

4.5.1 Methods using one underlying feature selection algorithm

The algorithm of the proposed methods is summarized in Table 4.5. By sequentially calling the
underlying algorithm some well performing feature sets are expected to be found. In principle
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Input: A feature selection algorithm S(f, L), where f is the objective function and L a list of
feature sets, which are prohibited as result; n is the desired number of classifiers.
Output: Classifiers C1, . . . , Cn.

for(i:=1;i≤n;i++)
feature set fsi = S(f, {fs1, . . . , fsn−1});
Ci is a new classifier which uses the features set fsi;

return C1, . . . , Cn;

Table 4.5: Basic algorithm of ensemble methods using feature selection

any known algorithm for feature selection can be used. The only modification needed is that the
feature selection algorithm should not return the same set of features multiple times. Hence the
particular feature selection algorithm has, as an additional parameter, a list of feature sets that
are forbidden to be the result of the algorithm. Each of the feature sets found by the underlying
algorithm is used by a classifier. In Table 4.5, f denotes the objective function to be optimized
by the feature selection algorithm. That is, the feature selection algorithm tries to find the set
of features that results in the best value of f . In this thesis only feature selection algorithms
which use a validation set to measure the performance of a classifier are applied.
When using the algorithm of Table 4.5 with any objective function known from the literature,
for example, the minimization of the classification error rate on a validation set, the selection of
the new feature set is independent of the sets selected before. That is, function f is optimized
without taking any of the sets selected before into account. This behavior may be not desirable,
because of the following reasons. Firstly, some feature selection algorithms tend to only produce
results that are near to a global or local maximum of the objective function, so that very similar
feature sets are selected, which also cause the classifiers to be similar. However, this contradicts
the requirement that an ensemble should consist of diverse classifiers. Secondly, the available
information is not fully exploited. In this thesis we propose to use the objective function f
in such a way that the information about the feature sets already selected is actually used.
Therefore we use the performance of the ensemble consisting of the already produced classifiers
plus the classifier using the actually considered feature set as the objective function f . In the
following four possibilities of measuring the performance of the ensemble are discussed.

• Objective function f1: This function is the recognition performance, on the validation
set, of the ensemble using the voting combination scheme. Function f1 is based on the mere
percentage of patterns correctly classified by the ensemble. It doesn’t take into account
any additional available information about the misclassified patterns. In particular, it
doesn’t consider how many classifiers made a correct decision although the ensemble as
a whole gave a wrong vote. This kind of information is included in the next objective
function.

• Objective function f2: This function is defined as f2 = f1 + (1− f1) · p, where p is the
average percentage of classifiers that correctly classify the patterns which are misclassified
by the ensemble. As an example, consider the situation in Table 4.6. Assume one classifier
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has already been generated, two classes are to be distinguished, and there are three patterns
in the validation set. Evaluating a new set of features, i.e. a new classifier, we observe that
voting only classifies pattern 1 correctly, so f1 is 1

3 . (We assume that an input is rejected
if a tie between two or more classes occurs). For pattern 2 and 3 one classifier out of two
is correct, so p = 0.5 and f2 = f1 + 2

3 · 1
2 = 2

3 .

There are three reasons supporting using this function instead of f1. Firstly, even if an
ensemble outputs a wrong class for a pattern, the output class may become correct, when
adding more classifiers to the ensemble. Consider again Table 4.6. Here patterns 2 and
3 are rejected, i.e. they are not correctly recognized, because for both classes there is
one vote. When we add a third classifier which produces the same output for the three
patterns of the validation set as either the first or the second classifier, the ensemble has
a correct voting result for either pattern 2 or 3, i.e. the performance of the ensemble will
improve. Function f2 takes this potential of a wrong voting decision to become correct
into account. Secondly, at the beginning of the algorithm more diverse classifiers are
produced. When using f1 then the second classifier is selected so that its results are as
similar as possible to the results of the first classifier. This leads to a decrease of classifier
diversity, which can be prevented by using f2. The third reason is that objective function
f2 is less susceptible to overfitting than f1. In preliminary experiments it was observed
that when using f1 classifiers with poor individual performances were chosen, because the
voting performance of the ensemble on the validation set slightly increased when including
that classifier. Yet on the test set the ensemble performance decreased. When using f2

we also take the individual classifier performance into account (in the term p). So good
performing classifiers are favored and a classifier with poor performance is only chosen
if the voting result would significantly increase by adding it. Consider the example in
Table 4.7. The two existing classifiers each classify six out of eight patterns correctly. The
voting result is correct for four patterns. By adding the new classifier the correct voting
result increases from four to five patterns although the new classifier only classifies one
out of eight patterns correctly. It is quite unlikely that the performance of the ensemble
will increase on any set other than the given validation set. Calculating f2 for the first two
classifiers, we get p = 1

2 because one classifier is always correct for the patterns 1,2,7 and
8 which are misclassified by the ensemble. Therefore f2 = f1 · p · (1 − f1)=1

2 + 1
2 · 1

2 = 3
4 .

After adding the new classifier f1 increases to 5
8 , as mentioned before. For the patterns

2,7 and 8, which are still misclassified by the ensemble, only one out of three classifiers is
correct, so p′ = 1

3 . This leads to f ′
2 = f ′

1 · p′ · (1 − f ′
1)=

5
8 + 1

3 · 3
8 = 3

4 . So the value of f2

doesn’t increase when we add the third classifier.

• Objective function f3: This function is similar to f2, from the global point of view.
It takes the number of correctly classified patterns under the voting scheme, i.e. the
value of function f1, and adds a fraction p of the number of misclassified patterns. For
each misclassified pattern the number of votes nc for the correct class c and the number
of votes nw for the not correct class w with the most votes are determined. (The case
nc = nw indicates a tie.) For pattern 2 in the example of Table 4.6 the correct class c is
B and the class w is A. Because each of the classes A and B have one vote, nw = nc = 1
holds.
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results of the validation patterns
1 2 3

correct class A B A
results of existing classifier A A A
results of new classifier A B B

Table 4.6: Example for the description of the different objective functions

Once nc and nw have been determined, the probability is calculated that there are nc−nw+
1 more votes for the correct class c then for class w in the results of the remaining classifiers
(so that the correct class c is the result of the ensemble when using the voting combination
scheme). The fraction p is then defined as the average of the above mentioned probability
for all misclassified elements. The probability of a classifier outputting class i is estimated
by the number of votes in the actual ensemble for this class, divided by the number of
classifiers. Similarly to f2, this function takes into account the potential of a wrong voting
decision to become correct, but it uses a different, more complex mathematical procedure
(at the cost of an increased computation time). Again consider the situation in Table 4.6.
For f3 the number of classifiers to be generated is important. The probability of a classifier
outputting the correct result for patterns 2 and 3 is estimated to be 50 %. If only two
classifiers are produced then f3 = f1+0·(1−f1) = 1

3 , because for the pattern 2 and 3 there
is no chance that the correct result receives more than one vote, as no more classifiers will
be added. In case of a total of three classifiers the chance is 50% for each pattern 2 and 3,
so for this scenario f3 = f1 + 2

3 · 1
2 = 2

3 .

• Objective function f4: This function is similar to f3. It adds the average estimated
probability that an incorrect voting result may become correct (when adding the remaining
classifiers) to the voting performance. In f3 only two classes are considered per pattern,
the correct class and the most frequent not correct class, while under f4 all classes are
considered. Again the probability of a classifier outputting class i is estimated by the
number of votes in the actual ensemble for this class, divided by the number of classifiers.
The calculation of f4 proceeds as follows. For the remaining classifiers the results are
randomly selected N times using the estimated class output probabilities and the frequency
n of the correct class being the final voting result is determined. The average of n

N for all
misclassified patterns in then defined as p4 and finally f4 = f1 + (1 − f1) · p4 is obtained.
So the creation of the remaining classifiers is simulated N times and the percentage of the
simulations where the correct result became the voting result is counted. The reason for
using such simulations is that the calculation of the exact probability is too complex. In
the experiments of this thesis, N = 1000 was chosen. Similarly to f3, the value of f4 also
depends on the total number of classifiers.

Note that there is a strong similarity between the four objective functions f1, f2, f3 f4 described
in this section and the four ensemble error functions p1, p2, p3 and p4 introduced for the simple
probabilistic boosting (SPB) ensemble method in Subsection 4.4.2. The ensemble error func-
tions measure the error and the objective function the performance of the ensemble. The first
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patterns of validation set
1 2 3 4 5 6 7 8

correct class A A A A B B B B
results of classifier 1 B A A A B B A B
results of classifier 2 A B A A B B B A
results of new class. A B B B A A A A

Table 4.7: Example for possible overfitting when using f1 objective function

functions, f1 and p1, only take the voting result into account. In the second functions, f2 and
p2, the percentage of correct classifiers for a misclassified element is also considered. In f3 and
p3 the exact value when only considering the most frequent not correct class and the correct
class is calculated. Finally, results of ensembles are simulated in f4 and p4. The main difference
of the calculation of the objective function f and the error probability p is that for f3 and f4,
unlike to p3 and p4, the results of the actual ensemble are not directly used. The reason for not
directly using the results in SPB is to avoid overfitting. Such overfitting effects occur when the
recognizer is trained on sets consisting of instances of only few original training samples. As the
ensemble methods considered in this section always train the classifiers on the full training set
and only varies the feature set, this overfitting avoidance is not needed.
When executing the algorithm of Table 4.5 it may happen that the objective function f is
calculated for the same feature set several times. When using a validation set, all patterns
of this set must be classified for the calculation of the value of f , which may be very time
consuming. It is therefore useful to save all calculated results and to check in each call of the
objective function whether the results for the considered feature set were already computed
before.
As noted before any feature selection method may be used in conjunction with the proposed
ensemble methods. In this work we always use the forward or backward version of the feature
search method presented in Subsection 3.3.1.
An ensemble method using feature selection was already introduced in [2]. In this method, a
classifier always selects the single feature that leads to the best recognition rate of the whole
classifier ensemble. In contrast to the algorithm proposed in this subsection, a feature may only
be used by one classifier and the selection of the features is not reversible, i.e. features that have
been selected can not be abandoned at a later time.

4.5.2 Extension to several underlying algorithms

As mentioned before, a good ensemble consists of classifiers that are as diverse as possible. One
way to create diversity among the classifiers produced by the algorithm of Table 4.5 is to use
one of the objective functions introduced in the last section. Another way is to use different
feature selection algorithms. By doing this the returned feature sets are likely to be more diverse
than in the case of using just one selection algorithm and so it may also be expected that the
classifiers using these divers feature sets are also more diverse. The extended ensemble method
which employs multiple feature selection algorithms is shown in Table 4.8.
The feature selection algorithms can be randomly chosen or selected according to a special order.
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Input: A set of feature selection algorithms S = {S1(f, L), . . . , Sm(f, L)}, where f is the
objective function and L a list of subsets, which are prohibited as result; n is the desired
number of classifiers.
Output: Classifiers C1, . . . , Cn.

for(i:=1;i≤n;i++)
select feature selection algorithm CS from set S;
feature set fsi = CS(f, {fs1, . . . , fsn−1});
Ci is a new classifier which uses the features set fsi;

return C1, . . . , Cn;

Table 4.8: Extended version of the ensemble method using feature selection

The best selection strategy obviously depends on the available feature selection algorithms and
the application. Note that if we use the objective functions discussed in the last section the
order of the selection algorithm may be important even in case the set of selected algorithms is
the same.
In this thesis we only use the method given in Table 4.8 with two feature selection methods; the
forward and backward versions of the feature search method presented in Subsection 3.3.1. The
two versions are alternately applied, starting with the backward feature search.

4.5.3 Methods using exhaustive feature search

If the full set of features is small, as it is the case for the classifier described in Section 2.2,
the objective function f may be calculated for all possible feature sets. This means that an
exhaustive search of the best feature set is possible. As noted before, the algorithm of Table 4.5
may be executed with any underlying feature selection algorithms, so the exhaustive search may
also be used. This method will be denoted as the ensemble method using exhaustive feature
search.
The most time consuming part of calculating of the objective functions is the calculation of
the recognition results on the validation set of the classifier using the considered feature set.
As mentioned before, it is therefore a good idea to save those results, as the calculation of the
objective function is very fast when those results are given.
The algorithm of Table 4.5 is a greedy algorithm, i.e. a once selected feature set is never
removed. There are two reasons for doing so: Firstly, it is the simplest approach and secondly
it is the approach for which the least classifiers have to be tested on the validation set. As the
results for all feature sets are calculated in the approach discussed in this subsection anyway,
it may be promising to use a more sophisticated search approach. The following approach
was used in the experiments: The algorithm starts with an empty list of feature sets. After
adding the best feature set, i.e. the feature set which achieved the highest value for one of the
objective functions described in Subsection 4.5.1, repeated checks are carried out as to whether
the replacement of any existing feature set by any other lead to a better value of the objective
function. The replacement which yields the largest improvement over the current solution is
adopted. If no replacement improves the solution, the next feature set is added. At the end a
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Input: Objective function f and the desired number of classifiers n. C(fsi) denotes the classifier
using feature set fsi. Method rep(L, i, e) replaces the i-th element of a list L with element e.
Output: n classifiers.

for(i=1;i≤n;i++)
fsi = arg(maxfs 6∈{fs1,...,fsn} f(C(fs1), . . . , C(fs)));
replaces =0;
while(f(C(fs1), . . . , C(fsi)) not increased or replaces=0)

replace id = 0;
bestf = f(C(fs1), . . . , C(fsi));
for(j=1;j<i;j++)

fs = arg(maxfs6∈{fs1,...,fsn} f(rep((C(fs1), . . . , C(fsi)), j, C(fs))));
if(f(rep((C(fs1), . . . , C(fsi)), j, C(fs))) > bestf)

replace id = j;
bestfs = fs;
bestf = f(rep((C(fs1), . . . , C(fsi)), j, C(fs)));

if(replace id > 0)
fsreplace id = bestfs;

replaces= replaces + 1;
return C(fs1), . . . , C(fsn);

Table 4.9: Ensemble method using exhaustive feature search with replacement

classifier is returned for each feature set in the list. The algorithm of this approach is shown in
Table 4.9. Unlike the greedy algorithm of Table 4.5, once selected feature sets may be replaced
by another. Note that the number of selected feature sets never decreases. The above described
method is denoted as ensemble method using exhaustive feature search with replacement in the
experiments.

4.5.4 Heuristic versions of the feature selection ensemble methods

In Subsection 3.3.3 a method was introduced which simulates the recognition results of classifiers
using different features sets. All the methods described in the previous part of this section
repeatedly test classifiers on a validation set where the classifiers are using different feature sets
for the recognition. Instead of calculating the real results, only the simulated results may be
used to decrease the computational complexity of the ensemble methods. The disadvantage
of this approach is that only approximated results are produced which may lead to inferior
ensembles. The ensemble methods using feature selection where the results of the validation
set are simulated are denoted as heuristic ensemble methods using feature selection. Similarly
the method described in Subsection 4.5.3 using simulated results is denoted as the heuristic
ensemble method using exhaustive feature search.
It was observed that the method of Section 3.3.3 assigns too high recognition rates to small
feature sets and that the inclusion of classifiers using such small feature sets has a negative
impact on the performance of the ensemble. Therefore the minimal size of a selected feature set
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Input: Base classifiers C1, . . . , Cn, original ensemble method EM and number of classifiers per
ensemble m.
Output: Ensemble of m · n classifiers.

CS is an empty set of classifiers;
for(i:=1;i<=n;i++)

use EM with Ci as base classifier to produce m classifiers;
put all m classifiers produced using Ci in CS;

return CS;

Table 4.10: Extension of ensemble methods using one base classifier to ensemble methods using
several base classifiers

used for the training and the recognition of a classifier was set to 3 for the heuristic ensemble
method using exhaustive feature search in the experiments. Note that the best value for this
minimal size is application dependent.

4.6 Ensemble methods using several base classifiers

One common feature of all the ensemble methods discussed before is that they start from a single
classifier, the base classifier, to derive an ensemble. In this section some ensemble methods are
proposed which start from a set of classifier prototypes, the base classifiers, to create an ensemble.
In Subsection 4.6.1 a simple approach to extend the ensemble methods using one base classifier to
ensemble methods using several base classifiers will be described. In Subsections 4.6.2 and 4.6.3
a more advanced algorithm will be introduced which takes the diversity of the base classifiers
into account. The basis of the algorithm will be described in Subsection 4.6.2 and the details of
the algorithm which is based on the simple probabilistic boosting ensemble method is given in
Subsection 4.6.3.

4.6.1 Extension of classic ensemble methods

The idea of the proposed extension of the ensemble methods is quite simple. Rather than starting
with a single base classifier, as it is done in the classic ensemble methods, we initially consider
the set of base classifiers and use the original ensemble method to generate an ensemble out of
each individual base classifier. Then we merge all classifiers of these ensembles to get a single
ensemble. This procedure is described in Table 4.10.
The produced classifiers using a base classifier are independent from the classifiers produced
using the other base classifiers, because the ensemble method is executed separately for each
base classifiers. So the diversity of the classifiers is not explicitly exploited (there is an implicit
exploitation by merging the classifiers to a single ensemble). The method described in the
two next subsections incorporates a mechanism which try to exploit the diversity of the base
classifiers.
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Input: Base classifiers C1, . . . , Cn, training set T of size s, and number of classifiers per
ensemble m.
Output: m · n classifiers.

pi is the selection probability distribution for base classifier i;
pi(x) is set to 1

s for all x ∈ T and i ∈ {1, . . . , n};
for(i=1;i ≤ n;i++)

train Ci on T → classifier C1
i ;

for(i=2;i ≤ m;i++)
for(j=1;j ≤ n;j++)

test classifier Ci−1
j on T ;

modify pi(x) using information derived from all tested classifiers; (*)
for(j=1;j ≤ n;j++)

sample s elements of T using the selection prob. pj(x) → T i
j ;

train Cj on T i
j → classifier Ci

j ;
return classifiers C1

1 , . . . , C1
n, C2

1 , . . . , C2
n, . . . , Cm

1 , . . . , Cm
n ;

Table 4.11: Basic algorithm of the advanced boosting ensemble method using several base
classifiers

4.6.2 Advanced boosting ensemble methods using several base classifiers

The basic algorithm of the advanced boosting ensemble methods using several base classifiers
introduced in this thesis is given in Table 4.11. First each base classifier is trained on the whole
training set, producing a classifier for each base classifier. Then repeatedly one classifier for
each base classifier is produced using a separate selection probability distribution for each base
classifier. The most important line of the algorithm is indicated by the star sign. Here the
selection probabilities are modified using the information of all previously created classifier, i.e.
the classifiers produced using a base classifier are also considered when modifying the selection
probability distributions of other base classifiers and so they may have an indirect impact on
classifiers produced by those other base classifiers.
In Figure 4.3 the difference of a boosting algorithm extended with the method introduced in
Subsection 4.6.1 and the boosting algorithm introduced in this subsection is illustrated in the
case of two base classifiers. In this illustration the feedback loop of the production of the
classifiers is shown. Note that this loop is several times repeated, i.e. several classifiers are
produced for each base classifiers, and that the test results denote the results of all previously
created classifiers. The only difference of the methods is that in the first case the modification of
the selection probabilities of a base classifier is done using only the results of classifiers produced
by this base classifier.
Different boosting methods were used for the design of advanced boosting algorithms. So meth-
ods based on AdaBoost (compare Subsection 4.2.2), simple probabilistic boosting (compare
Subsection 4.4.2), effort based boosting (compare Subsection 4.4.3) and simple probabilistic
boosting with effort (compare Subsection 4.4.4) were designed, were only the one based on sim-
ple probabilistic boosting produced promising results. This promising method will be introduced
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Figure 4.3: The difference of the extended boosting algorithms using several base classifiers (top)
and the advanced boosting algorithms using several base classifiers (bottom) illustrated for the
case of two base classifiers

in the next subsection.

4.6.3 Multi simple probabilistic boosting (MSPB)

The basic algorithm of the multi simple probabilistic boosting ensemble method is given in
Table 4.11. The modification of the selection probability distributions is based on the same idea
as in simple probabilistic boosting (compare Subsection 4.4.2), i.e. the selection probability of
an element x is set proportional to the probability of a misclassification of this element by the
ensemble. The detailed algorithm for setting the selection probabilities is given in Table 4.12.
First the probability pglobal(x) of a misclassification of the training element considering the
whole ensemble of already produced classifies is calculated. This value indicates how large the
average selection probabilities of the base classifiers should be and the selection probability of
element x is set proportional to pglobal(x) for all base classifiers. The different base classifiers
may not be equally suited for the recognition of an element. The ability of a base classifier
Ci to recognize a training element x is estimated by calculating the probability plocal(i)(x) of
a misclassification of that element by the ensemble consisting only of the classifiers produced
by this base classifier. The previously mentioned ability is then assumed to be proportional to
the value of 1 − plocal(i)(x). In this algorithm the base classifiers which are most suited for the
recognition of an element x receive the highest selection probabilities for the element, because we
want each base classifier to “focus” on the elements which they are most suited to recognize5.
So the selection probability of the i-th base classifier of the element x is set proportional to
1− plocal(i)(x). To ensure that the sum of the selection probabilities of all base classifiers is 1 a

5The reason for doing this is similar to the reason stated for the effort based boosting (compare Subsec-
tion 4.4.3). We want to distribute the resources in a way so that the ensemble performance is optimized.
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Input: Training set T and results of all classifiers Cj
i with i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

with n the number of base classifiers and m the number of classifiers already produced for each
base classifier. The function p({C1, . . . , Ck}, x) calculates the misclassification probability of x
by the ensemble consisting of the classifiers C1, . . . , Ck.
Output: The selection probabilities pi(x) for all elements x of T and i ∈ {1, . . . , n}.

for(all elements x of the training set T )
pglobal(x) = p({Cj

i |i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}, x)
for(i=1;i≤ n;i++)

plocal(i)(x) = p({Cj
i |j ∈ {1, . . . ,m}}, x);

for(i=1;i≤ n;i++)
pi(x)= pglobal(x) · 1−plocal(i)(x)

Pn
j=1(1−plocal(j)(x))

;

for(i=1;i≤ n;i++)
normalization of the selection probabilities pi(x) so that

∑
i∈T (pi(x)) = 1;

Table 4.12: Calculation of the selection probabilities pi(x) for MSPB

normalization is done at the end of the modification of the selection probabilities.
To calculate the misclassification probability of an ensemble the same four functions as for SPB
may be used (compare Subsection 4.4.2).



50 CHAPTER 4. ENSEMBLE METHODS



Chapter 5

Combination methods

As noted in the introduction, only parallel combination schemes are examined in this thesis.
In Section 5.1 an explanation is provided as to why some well-known combination schemes
do not work for the classifiers introduced in Chapter 2, when applied to the word recognition
task. The following section briefly describes some classic combination schemes which work
for the considered application, and which were applied in the experiments. In Section 5.3
some adaptions to the score combination schemes are introduced which render these schemes
applicable for the classifiers used in the experiments. A combination scheme for special HMM
classifiers is presented in Section 5.4. Finally, a combination scheme is introduced in the last
section which first reduces the set of classifiers and then applies another scheme to combine only
the results of the classifiers which are in this set.

5.1 Inapplicable combination schemes

This section explains why some well-know combinations schemes are inapplicable for the classi-
fiers used in the experiments.

5.1.1 Bayesian combination rule and behavior knowledge space

The Bayesian combination rule [49] calculates the probability of a pattern to belonging to class
i when the classifier outputs class j for all pair of classes and all classifiers is calculated. We
normally deal with a large number of classes in word recognition. So it is not possible to estimate
the above mentioned probability accurately. Consider the following example: The training set
consists of 20,000 training patterns and there are 2,000 classes. There are 2000·1999

2 = 1, 999, 000
possible pairs of classes, which is far more than the number of training patterns.
In a simpler version of the Bayesian combination rule only the classification performance of
the classifiers for each class is considered. In word recognition there are often only very few
instances of the same word class in the training set, so even for this simpler version of the
Bayesian combination rule the probability would be estimated inaccurately.
As the estimated probabilities are unreliable, both versions of the Bayesian combination rule
are not promising and were not applied in the experiments.

51
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In the Behavior knowledge space method [31], which may be regarded as a refinement of the
Bayesian combination rule, even more probabilities must be estimated (the number of proba-
bilities is MK+1 where M is the number of classes and K the number of classifiers). For the
same reason as for the Bayesian combination rule the Behavior knowledge space is inapplicable
for word recognition.

5.1.2 Score combination schemes and trained combiner

In the score combination schemes the score for all classes and for all classifiers are considered
and the maximum, minimum, average or the median of the scores for each class is calculated.
The calculation of the scores of the classes for the classifiers described in Chapter 2 is not easily
possible because of the following reasons:

• The Hidden Markov Model Toolkit (HTK) [102] used by the classifiers limits the size of
the output list to a maximum of 128, i.e. only the 128 best classes may be output. Note
that in word recognition tasks often a very large number of classes, e.g. more than 2000,
are considered.

• The memory and time complexity of the recognition increases with the size of the output
list.

• The output scores are unnormalized and it is expected that the scores of classes which
were not in the first ranks do not hold a lot of information.

Because of the above mentioned reasons, the classic score combination schemes were not applied
in the experiments.
In the literature, often the combination of the output scores of every class and every classifier
of the ensemble by a new classifier is presented, e.g. see [99]. The new classifier has to be
trained to optimize the combination. This approach will not work for the classifiers described
in Chapter 2 because it is difficult to calculate the scores, as mentioned above, and because the
number of input features of this new classifier would be too large (e.g. if there are 2000 classes
and 10 classifiers, the feature vector input to the new classifier has a dimensionality of 20000).

5.2 Classic combination schemes

In this section some classic combination schemes which were applied in the experiments are
described. The following notations will be used. The i-th best class output by the classifier C
for the pattern x is denoted by class(C, i)(x). Similarly score(C, i)(x) denotes the score of the
i-th best class output by the classifier C for the pattern x. Because a higher score value signifies
a better result, score(C, j)(x) > score(C, i)(x) holds for all j < i. C1, . . . , Cn are the classifiers
of the ensemble which should be combined and c1, . . . , cm are the classes of the classification
problem. The score value of the class cj output by the classifier Ci for the pattern x is denoted
as score(Ci, cj)(x) and the rank of the class cj in the k-best list of classifier Ci for x is given by
rank(Ci, cj)(x). If the class cj is not in the k-best list output by the classifier then rank(Ci, cj)
is defined as k + 1.
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5.2.1 Voting

Voting is the simplest combination method and was used as early as 1974 [87]. Voting considers
only the best class output by each classifier and regards the class which appears most often in
the output of the classifiers as output of the combined classifier. So the following equation holds:

vote(C1, . . . , Cn)(x) = arg( max
ci∈{c1,...,cm}

|{Cj |class(Cj , 1)(x) = ci}|) (5.1)

If there are several classes which appear a maximum number of times in the output of the
classifiers then a tie occurs. These classes are then denoted as tied classes. To resolve such ties
the following approaches may be used:

• Ties handling by rejection: All patterns for which a tie occurs are rejected by the
combined classifier.

• Random ties handling: Randomly one of the tied classes is selected as output of the
combined classifier.

• Ties handling by another combination scheme: Another combination scheme is
applied to the results of the tied classes. Note that often the combination is done only
with a part of the whole ensemble, because there may be many classifiers which do not
output one of the tied classes.

5.2.2 Weighted voting

The voting combination scheme introduced in the last subsection treats all classifiers equally.
This may not be appropriate if the individual classifiers have very different performances.
Weighted voting is a more sophisticated approach which assigns a weight wi to each classi-
fier Ci and regard the class which has the highest sum of weights of classifiers outputting this
class as the result of the combined classifier. The following equation defines the weighted voting
combination:

wvote(C1, . . . , Cn)(x) = arg( max
ci∈{c1,...,cm}

(
∑

{j|class(Cj ,1)(x)=ci}
wj)) (5.2)

In this thesis two approaches to set the weights of the classifiers were examined, which take the
results of the classifiers on the training set into account:

• Performance weights: The weight wi of the classifier Ci is set equal to the recognition
rate of Ci on the training set. In this combination, better performing classifier get a
higher weight. If the classifiers have similar performances it is rather unlikely that this
weighted voting approach will produce different results other than voting in cases where
no tie occurs. Yet if there is a tie, this combination scheme is likely to produce a unique
result. So this scheme may be regarded as a slight modification of voting.

• Optimized weights: The weights w1, . . . , wn of the classifiers C1, . . . , Cn are set to values
for which an optimal ensemble performance is achieved on the training set. To optimize
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the weights a genetic algorithm [23, 89] is used in this thesis. The same approach to set the
weights of the classifiers was also used in [56, 58]. In the genetic algorithm the genomes
are arrays of real numbers between 0 and 1 where the value at position i of the array
corresponds to the weight of the i-th classifier. For details of the used genetic algorithm
see [25].

As an alternative to measuring the performance of the classifiers or the ensemble on the training
set, these values could also be measured on a validation set to avoid overfitting effects. The
disadvantage of using a separate validation set is that more data is needed for the design of the
system.

5.2.3 Borda count and other ranked list based combinations

Voting and weighted voting only take the best class of each classifier into account. The classifiers
described in Chapter 2 are able to output a k-best list of classes, instead of only the best class.
There are some combination schemes working with such k-best lists in the literature of which
Borda count [29] is the most popular. It is defined by the following equation:

bcount(C1, . . . , Cn)(x) = arg( max
ci∈{c1,...,cm}

n∑
j=1

(k − rank(Cj , ci)(x) + 1) (5.3)

To each result in the k-best lists the number (k-rank of the result+1) is assigned and for each
class the number is summed over all classifiers. The class with the highest sum is the output
of the combined classifier. Borda count only works if a rank is assigned to each class for all
classifiers. Like voting, Borda count requires no training and is very simple to compute. There
are several disadvantages of Borda count: It does not take the different abilities of the classifiers
into account and it lacks a theoretical underpinning. As in voting, in Borda count ties may occur.
They are normally quite rare, but as in voting a tie breaking mechanism must be defined.
A more complex combination than Borda count based on ranked lists is given by the following
equation:

rcombi(C1, . . . , Cn)(x) = arg( max
ci∈{c1,...,cm}

n∑
j=1

(aj + wj(rank(Cj , ci)(x)))) (5.4)

For each classifier Cj there is a weight function wj(rank) and in addition a weight aj is assigned
to each classifier Cj. Borda count is a special version of this combination with aj = 0 and
wj(rank) = k − rank + 1. The parameters of the combination may be set by hand, as is done
in Borda count, or may be set to optimize the performance of the combined classifier on the
training or a validation set. In this thesis only Borda count and another method where the
weights are set by hand are tested.

5.2.4 Maximum score scheme

As mentioned in Subsection 5.1.2 the score combination schemes are inapplicable for the clas-
sifiers described in Chapter 2, because the score values for all classes and classifiers must be
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calculated. There is however one exception: The maximum score combination scheme. This
scheme is defined in the following equation:

maxscore(C1, . . . , Cn)(x) = arg( max
ci∈{c1,...,cm}

n
max
j=1

(score(Cj , ci)(x))) (5.5)

The output of the combined classifier is the class with the highest score of all classes and all
classifiers. Because score(C, j)(x) > score(C, i)(x) holds for all j < i, equation 5.5 can be
transformed in:

maxscore(C1, . . . , Cn)(x) = class(arg( max
Ci∈{C1,...,Cn}

(score(Ci, 1)(x))), 1) (5.6)

So only the score of the best class for each classifier must be known and therefore the maximum
score combination scheme is applicable for the considered classifiers.

5.3 Adaptions of the score combination schemes

In this section some adaptions of the classic score combinations schemes are shown. In Subsec-
tion 5.3.1, schemes in which the score values of only a few classes are calculated, are presented.
The following section contains the description of schemes which only work with the score values
of the best results of the classifiers. In Subsection 5.3.3 a way to normalize the score of the
classifiers is introduced. In the last subsection score schemes based on a confidence measure are
presented.

5.3.1 Class reduced score combination schemes

The main idea of the class reduced score combination scheme is to calculate the score values for
only a few candidate classes. This reduced set of candidate classes should contain the classes
which are most likely to be the correct. A straightforward approach is to use the classes for
which the highest score for one of the classifiers was achieved, because it is reasonable to assume
that at least one classifier output the correct class. (In the case where no classifier outputs the
correct class as best result, a correct classification of the pattern using any combination scheme
is rather unlikely). The algorithm of the new combination schemes is shown in Table 5.1. Here
the average score scheme is used. By replacing the sum operator with a minimum, maximum
or median operator the other schemes may also be implemented. Firstly, the best classes of all
classifiers for pattern x are calculated. Those best classes comprise the set of candidate classes.
The vocabulary which contains all the words that can be output by the classifier is set equal to
this set. In the next step the classifiers are used again for the recognition of x, but this time we
calculate a k-best list where k is the size of the set of candidate classes. It is therefore ensured
that each classifier outputs results for all candidate classes. (The number of classes n and the
size of the ensemble k may not be the same as some outputs of the classifiers may be the same).
Note that any pruning mechanism of the classifiers must be deactivated so that all these results
are really produced. Finally the score scheme is applied to the results of the candidate classes.
The whole procedure is illustrated in Figure 5.1.
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Input: A pattern x and classifiers C1, . . . , Cn.
Output: Output of combined classier.

for(i:= 1;i≤n;i++)
recognition of x by Ci producing a 1-best list;

set L = {class(C1, 1)(x), . . . , class(Cn, 1)(x)};
let L = {l1, . . . , lk};
set the vocabulary of recognizable patterns to L;
for(i:= 1;i≤n;i++)

recognition of x by Ci producing a k-best list;
return arg(maxli∈{l1,...,lk( 1

|n| ·
∑n

j=1(score(Cj , li))));

Table 5.1: Class reduced average score combination scheme

5.3.2 Best class score combination schemes

The method of the last subsection has a rather high time complexity as the classifiers are run
twice for the recognition of a pattern. In the first run the best result is output, and in the
second run a list of the k-best output list is produced. The best class score scheme introduced
in this subsection only uses the score values of the best classes and is therefore quite fast. The
equation of the best class average score scheme is the following:

av score(C1, . . . , Cn)(x) = arg( max
ci∈{c1,...,cm}

(

∑
{Cj |class(Cj ,1)(x)=ci} score(Cj , 1)(x)

|{Cj |class(Cj , 1)(x) = ci}| )) (5.7)

The sum operator is applied on all best results of the classifiers which belong to the same class.
If there are no such results, i.e. if a class is not among the best result of the classifiers, the class
is not considered for the maximum operator in equation 5.7. By replacing the sum operator with
a minimum, maximum or median operator the other score schemes may also be implemented.
As in the class reduced score scheme, only the best classes of the classifiers may be output by
the combined classifier. As mentioned before, the advantage of this combination scheme is that
the classifiers must only provide the best result. The fact that the compared score values were
output by different classifiers, and therefore may not have the same range of values, is a rather
strong disadvantage of this scheme.
Note that the best class maximum score scheme, the reduced class maximum score scheme and
the classic maximum score scheme are equivalent. They all output the class with the highest
score of all classifiers.

5.3.3 Normalization

The score value output by the classifiers described in Chapter 2 is a likelihood value where a
higher likelihood corresponds to a higher probability that a pattern is classified correctly. It
is not guaranteed that classifiers with different HMM topologies, different feature sets or even
different training sets have the same range of likelihood values. For example a likelihood value
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Figure 5.1: Class reduced score combination scheme

which indicate a classification with low confidence for one classifier may indicate a very confident
classification for another classifier. The different meaning of the same likelihood value for the
classifiers may bias the results of the adapted score combination rules introduced in this section.
This is especially the case for the best class score combination schemes. A way to reduce this
bias is to normalize the score values of the different classifiers. The normalization equation is
the following:

scorenew =
score

| (score− score) | − score (5.8)

The averages in equation 5.8 are taken over the whole training set. The score values are linearly
transformed so that the average score is 0 and the standard deviation of the scores is 1 on the
training set. Note that there is a different normalization equation for each classifier. After the
normalization the score values of different classifiers are comparable (e.g. a score of 0 corresponds
to the average score).
Instead of using the training set to calculate the normalization parameters, a validation set may
also be used. This reduces overfitting effects, however more data is needed in the design phase
of the classifiers.
The normalization procedure introduced in this subsection may be applied to any score combi-
nation scheme, including the schemes presented in this section.

5.3.4 Confidence combination schemes

As mentioned before, the score value output by the classifiers used in the experiments is a
likelihood value which is not a reliable measure of the quality of the recognition. In Section 3.5
a confidence measure for classifiers was introduced which may be more reliable. This measure
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is defined in equation 3.3. The confidence is the normalized difference of the score of the best
and the second best class. (There is already a normalization term included in equation 3.3.)
For each classifier we can calculate the confidence of the recognition of the best class using this
measure. The average confidence combination scheme is defined by the following equation:

conf av(C1, . . . , Cn)(x) = arg( max
ci∈{c1,...,cm}

(

∑
{Cj |class(Cj ,1)(x)=ci} conf(Cj)(x)

|{Cj |class(Cj, 1)(x) = ci}| )) (5.9)

Here the confidence of the classifier Cj , when classifying element x, is denoted as conf(Cj)(x).
By replacing the sum operator with a minimum, maximum or median operator the minimum,
maximum and median confidence combination schemes may also be implemented. The equa-
tion 5.9 is almost the same as the equation of the best class average score scheme (compare
equation 5.7). The maximum confidence combination is the same as the dynamic classifier se-
lection when the confidence value of the classifiers is used as the selection criteria (for more
information about the topic of dynamic classifier selection see for example [22]).

5.4 Special HMM classifier combination scheme

In this section a new classifier combination method for special HMM classifiers is proposed. The
classifiers to be combined must satisfy two constraints. First, the HMMs for the classes must
be composed of smaller HMMs corresponding to basic elements of the classes, e.g. in the word
recognition character HMMs are often used and the word models are built by concatenating the
appropriate character models. The HMMs corresponding to the basic elements will be denoted
as basic HMMs in the following. The second constraint is that the feature vectors input to the
HMMs must be the same for all classifiers. The classifiers described in Chapter 2 satisfy the first
constraint and classifiers produced by ensemble methods which just modify the training sets, like
Bagging or AdaBoost, satisfy the second constraint. There are other domains than handwritten
text recognition where the proposed method may be applied. One example is speech recognition,
where the basic HMMs often are on the phoneme level and the word HMMs are composed of
these phoneme HMMs.
The main idea of the combination is to combine the basic HMMs of the different classifiers instead
of the class HMMs. In the case of word recognition this means that the character HMMs of the
different classifiers are combined. The class models of the combined classifiers are then built
from the combined basic HMMs. The algorithm of the combination is shown in Table 5.2. In
Table 5.3 the method to combine different HMMs corresponding to the same basic element is
shown. Here a “dummy” state denotes a state which does not emit any observation symbols
(i.e. it doesn’t consume any input feature vector). The combined HMM contains the states of
the HMMs of all classifiers and there is a transition from the start state of the new HMM to
the start state of each HMM of the classifiers (with equal probability for all those transitions).
The end states of the combined HMM include all end states of the individual HMMs. Here it is
assumed that each HMM has only one start state, but only a small modification of the method
is needed for the combination of HMMs with many start states. Note that none of the output
distributions of the states, and none of the transition probabilities between states originating
from the same HMM are changed.
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Input: Classifiers C1, . . . , Cn, the set of the basic elements e1, . . . , ek, and the set of the classes
c1, . . . , cm where the class ci is build from the basic elements in sequence Ei. HMM(Ci, ej)
denotes the HMM of the classifier Ci corresponding to the basic element ej.
Output: Combined classifier C.

create new classifier C;
for(i:=1;i≤k;i++)

HS is a set of HMMs;
for(j:=1;j≤n;j++)

put HMM(Cj , ei) in HS;
Mk is the combination of all HMMs in HS;

for(i:=1;i≤m;i++)
let Ei = {ei1, . . . , eio};
CMi is build from the models Mi1, . . . ,Mio;
the model of class ci for classifier C is set to CMi;

return C;

Table 5.2: Algorithm for the special combination of HMM classifiers

In Figure 5.2 the combination of two HMM based word recognizers is shown. The character
models for “t”, “h” and “e” of the combined classifier are constructed from the corresponding
character models of the two classifiers, and the word model for “the” is the concatenation of the
new character models.
The motivation of the proposed combination approach is the following: Consider a test pattern
which consists of several basic elements. The model best suited to the recognition of the basic
elements may not all belong to the same classifier. For example in the situation illustrated
in Fig. 5.3, where two classifiers are each trained on one pattern instance of the word “is”, it
is obvious that for character “i” of test pattern 1, the HMM of the first classifier is the most
suitable, whereas character “s” is better modeled by the HMM of the second classifier. In the
combination scheme introduced in this section the optimal path found by the Viterbi recognition
algorithm (compare Subsection 2.1.3) may include the character models of both classifiers, e.g.
in the example of Figure 5.2 all the paths shown in Figure 5.4 are possible. So if the two classifiers
of Fig. 5.2 are combined by the proposed scheme, the optimal path for the test pattern 1 includes
the HMM of the character “i” of the first classifier and the HMM of the character “s” of the
second classifier, and a high score for the word “is” may be obtained, as it is accurately modeled.
If the test pattern is best modeled by basic HMMs that all belong to the same classifier, as it is
the case for the test pattern 2 in the example of Figure 5.3, the new combination scheme does
not result in any improvement, compared to the maximum score combination scheme (compare
Subsection 5.2.4), where the best suited class model, i.e. the model which output the highest
likelihood, is selected.
The new method proposed in this section has some similarity with the concept of allographs.
Allographs of a character are shapes which correspond to different writing styles of the character.
When using allographs for a recognition system the shape of a character in a word may be like
any allograph of that character. Allographs are often used in on-line handwritten character
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Input: The HMMs M1, . . . ,Mn corresponding to the same basic element.
Output: New HMM M for the basic element.

for(i:=1;i≤n;i++)
Include all states of Mi (with all transitions) in M ;

create dummy start state ss for M ;
for(i:=1;i≤n;i++)

let si be the start state of Mi;
set the transition probability from ss to si to 1

n ;
for(i:=1;i≤n;i++)

all end states of Mi are also marked as end states of M ;
return M ;

Table 5.3: Algorithm for the combination of the HMMs corresponding to the same basic element
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Figure 5.2: Combination of two HMM based word recognizers for the model of the word “the”

recognition [92, 101]. There are however some important difference between using allographs
and the proposed method. Firstly, the different allographs of a character must usually be
determined. To do this, the data must be manually labeled or some clustering algorithm must
be applied (for word recognition a segmentation of the words into characters is also needed).
Secondly, the proposed method may be applied to arbitrary HMMs, e.g. HMMs trained on
different random subsets of the whole training set. In addition, the proposed method is not
limited to the domain of word recognition.

5.5 Confidence based classifiers reduction scheme

The results of all classifiers of an ensemble are usually considered for the combination to produce
the output of the ensemble. In this section a combination scheme is introduced which combines
only the results of classifiers which recognized the pattern with a high confidence. The idea
of the confidence based classifiers reduction combination scheme is that only the classifiers for
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Figure 5.3: Two example of test patterns. For the first pattern the character models best suited
for its recognition don’t belong to the same classifier, which is not the case for the second test
pattern
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Figure 5.4: The 8 possible combinations of inclusions of different character models in the optimal
path for the word “the” when using the combined classifier of Figure 5.2

which it is likely that the pattern is classified correctly, should have an impact on the ensemble
result. The likelihood of a correct classification is estimated by a confidence measure. The
combination scheme proposed in this section uses an underlying combination scheme which is
applied to combine the reduced set of results. The detailed algorithm of the confidence based
classifiers reduction combination scheme is given in Table 5.4. Only classifiers whose confidences
are not lower than a threshold t are used for the combination. If there is no such classifier then
the underlying combination scheme is applied to the ensemble containing only the classifier with
the highest confidence (which normally leads to the output of the result of this classifier).
In this thesis the confidence measure introduced in Section 3.5 and defined in equation 3.3 was
used for the combination scheme described in this section. This confidence measure already
includes a normalization step which maps the average confidence value of all training patterns
and classifiers to the value 1. Note that the confidence based classifiers reduction scheme may
be used in conjunction with any other combination scheme, e.g. with all schemes introduced in
this chapter.
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Input: Given is an underlying combination scheme S, a rejection threshold t, a set of classifiers
C1, . . . , Cn and a test pattern x. cf(C, x) is the confidence of classifier C for pattern x.
Output: Combined result for pattern x.

CS is an empty set of classifiers;
for(i=1;i≤n;i++)

if(cf(Ci, x) ≥ t)
put Ci in CS;

if(CS is an empty set)
Cmax = arg(maxCi∈{C1,...,Cn}(cf(Ci, x)));
put Cmax in CS;

return the combination of the results of all classifiers in CS for element x using S;

Table 5.4: Algorithm of the confidence based classifiers reduction combination scheme



Chapter 6

The selection of good parameters
and methods

In this section initial experiments are presented. The goal of these experiments was to determine
the best methods in optimizing the parameters of the classifiers described in Chapter 2, the best
ensemble methods, the best values of the parameters of the ensemble methods and the best
combination schemes. As the two classifiers of Chapter 2 are very similar, only the classifier in
Section 2.2 was used in the experiments described in this chapter.
In Section 6.1 the different experimental setups used in this thesis are described. The next sec-
tion introduces abbreviations for the most frequently applied combination schemes. Section 6.3
describes some statistical tests used in the analysis of the experiments. In the following sections
the properties and the optimization of the single classifier are addressed. In Section 6.4 the
stability of the used classifier is measured. The following section evaluates the rejection crite-
rion. Experiments with feature selection algorithms and PCA are then discussed in Sections 6.6
and 6.7. In Section 6.8 experiments with the optimization of the number of states are described.
The optimal order in which to apply two kinds of optimization methods is then determined in
Section 6.9 and experiments with the strategies to find the optimal training method are pre-
sented in Section 6.10. Time and memory complexities of the classifier are examined in the
following section. The question of whether an N -list should be output by the classifier or just
the best class is addressed in Section 6.12.
The following sections evaluate different combination schemes. In Section 6.13 the score schemes
which were adapted for the application with the considered classifier are evaluated. The score
schemes based on the confidence measure are then examined in the next section. The nor-
malization of the adapted score schemes is examined in Section 6.15. Experiments with the
combination scheme that first reduces the set of classifiers before the combination are described
in Section 6.16. In Section 6.17 the special HMM classifier combination scheme is compared to
other schemes.
The rest of the chapter addresses ensemble methods. In Sections 6.18 and 6.19 experiments
with the classic ensemble methods are shown. The influence of the vocabulary and training
set sizes on the performance of the classic ensemble methods is studied in the following sec-
tion. Experiments with the partitioning and the new boosting ensemble methods are shown in

63
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Section 6.21 and Section 6.22, respectively. The ensemble methods using feature selection are
tested in Section 6.23. The extension of the classic ensemble methods for the use of several base
classifiers is evaluated in the next section. In Section 6.25 experiments with the multi simple
probabilistic boosting ensemble method are shown. In the final section, methods to find the
optimal classifier number of the ensemble methods using feature selection are evaluated.

6.1 Experimental setups

In this section all experimental setups used are described. As mentioned in Section 2.4 the data
for the experiments was extracted from the IAM database. The following terms are used to
describe an experimental setup:

• Training set: The free parameters of the classifiers are set using the data of the training
set. For the classifiers presented in Chapter 2 the Baum-Welch algorithm was used with
all patterns of the training set.

• Validation set: Values of some meta-parameters of the classifiers are determined by mea-
suring the performance of the classifier on the validation set. For the classifiers introduced
in Chapter 2, such parameters are, for example, the number of training iterations of the
Baum-Welch algorithm (compare Section 3.2), the number of states for each HMM (com-
pare Section 3.1) or the features used by the individual classifiers (compare Section 4.5).
Some ensemble methods also use a validation set, e.g. the ensemble methods introduced
in Section 4.5.

• Test set: The performance of a classifier or an ensemble of classifiers is measured with
the test set. To avoid overfitting effects, the test set must not be used to determine
optimal values for any parameters of the classifiers, ensemble methods or combination
schemes. This means that the recognition of the test patterns is always the last step in
any experiment.

• Cross-validation: In the first step of cross-validation, the original training set is split
into n equally sized partitions. Then n − 1 partitions are used as the new training set,
and the remaining partition as the validation set. So each partition may be used once
as a validation set, and n validation processes with different training and validation sets
may be executed. A cross-validation with n = 4 is depicted in Figure 3.3. The reason for
using cross-validation is that when using fixed training and validation sets, the estimations
obtained for the optimal values of the meta-parameters may be unstable. By repeating
the validation process using cross-validation and averaging over all n runs, more stable
estimations are obtained.

• Partial cross-validation:Similar to cross-validation the original training set is split into n
partitions. Instead of using each of the n partitions once as validation set, only k partitions
are used. This means that the results are only averaged over k validations processes. The
reason for doing so is that the time complexity of a full cross-validation is often too high,
but more stable estimations are needed, than obtained when using a fixed training and
validation set.
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• Vocabulary: The classifiers described in Chapter 2 use a list of recognizable words, called
the vocabulary. In most experiments in this thesis the vocabulary contains all word classes
which occur in the union of the training, validation and test set. Note that by defining the
vocabulary in this way the correct classes of the test patterns are always included in the
vocabulary. The problem of the correct class of the test words not being in the vocabulary
was addressed in [93, 96].

• Writer independent setup: In a writer independent setup, the writers of the words of
the test set did not contribute words to the training and validation set. On the contrary,
in a writer dependent setup there are some writers who contributed both to the test set,
and either to the training or validation set.

Six data sets with different setups were used in the experiments:

1. Preliminary set: This data set was used for initial small experiments. Unlike the other
sets, the words of the text lines are segmented by the algorithm introduced in [65]. This
segmentation algorithm filters out most of the punctuation and has a rather high error rate
of about 45 %. In addition, the definition of a word is slightly different than when using
the segmentation algorithm of [104]. The data set comprises all correctly segmented words
from the forms whose names start with c03, which is a total of 2,153 words. Those forms
were written by 6 writers, and the identity of the writer of each form is known. Therefore
the data set is suitable for experiments where the classifiers are trained on words of only
one or few writers. The size of the vocabulary of the data set is 383 words. The following
four experimental setups were used with this data set:

(a) A fixed training set of 1,953 words and a fixed test set of 200 words.
(b) A fixed training set of 1,753 words and a fixed test set of 400 words.
(c) The test set contains 1,000 randomly sampled words from the whole data set and

the training set consists of the remaining 1,153 words. For each experiment with this
setup the sampling is repeated, i.e. the training set is never the same for different
experiments.

(d) The whole set is divided randomly into three equal sized subsets. Each subset assumes
the position as test set for the other sets. This results in three independent tests which
each set being used as the test set once and as a part of the training set twice. Unlike
setup (1c) the division in the three subsets is done only once and the same subsets
are always used.

In all cases no validation process is done and therefore no validation set are defined. The
writers of the words in the training set and the test set are always the same, so the
experimental setups are all writer dependent.

2. Small set: This data set contains the words in the same forms as the preliminary set, yet
the more sophisticated word segmentation of [104] is used to extract the words. A total
of 3,850 words were segmented correctly. As there are more words in this data set than
in the preliminary set, the size of the vocabulary increases to 412. Several experimental
setups were used with this data set:
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(a) The test set contains 1,000 randomly sampled words and the training set consists
of the remaining 2850 words. For each experiment with this setup the sampling is
repeated, i.e. the training set is never the same for different experiments. As the test
elements are randomly sampled, the experimental setup is writer dependent.

(b) The training set consists of the words of 5 writers, and the test set holds the words
of the remaining writer. This setup is obviously writer independent. There are 6
different such setups, as there are 6 different writers.

(c) The training set consists of the words of 4 writers and the test set contains the words
of the two remaining writers. This setup is also writer independent. There are 15
different setups.

(d) The whole data set is separated into 3 partitions by a clustering algorithm. The
training set consists of the words of two clusters, while the test set comprise the
words of the last cluster. The training and test set are dependent on the clustering
algorithm and there are 3 possible setups for each clustering (each cluster may form
the test set). If the words of each writer are all in the same cluster, the setup is writer
independent. In the experiments where this setup was used, this was not the case.
Therefore the experiments were writer dependent.

(e) The whole set is randomly divided into three equal sized sets. Each subset assumes
the position as test set for the other sets. This results in three independent tests
which each set being used as the test set once and as a part of the training set twice.
The division into three subsets is done only once and always the same subsets are
used. As the test elements are randomly sampled, the experimental setup is writer
dependent.

There is no validation set, because no validation process is done with these experimental
setups.

3. Large set: This set may be regarded as the standard set, because it is used in most of
the experiments in this chapter. It contains all words correctly segmented from the forms
whose names start with a. The whole data set contains 10,927 words, and a total of 86
writers contributed to it. The vocabulary for this data set contains 2,296 word classes.
Three experimental setups were used:

(a) A fixed training set of 9,861 words and a fixed test set of 1,066 words. The training
set contains the words of 75 writers and therefore the test set contains the words of
the remaining 11 writers, thus the experimental setup is writer independent.

(b) The same test set of 1,066 words as in the previous experimental setup is used. The
original training set was split into a fixed training set of 8,795 words and a fixed
validation set of 1,066 words. The setup is also writer independent.

(c) The original set is three times randomly divided into a fixed training set of 9,861 and
a test set of 1,066 words. The three divisions are carried out only once and the same
three training and three test sets are always used. As the division is random, this
setup is writer dependent.
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The first and third setups do not include a validation set.

4. Reduced large set: This data set contains all words correctly segmented from the forms
whose names start with a01-0. It is a subset of the large set which is described above,
and contains 3495 words. There is only one experimental setup with this data set. The
words are split into a training and a test set in the same way as in the experimental setup
(3a), i.e. the training set of this setup is a subset of the training set of setup (3a). The
3,290 training words are written by 13 writers, and 5 writers contributed to the 205 words
of the test set. There are 651 words in the vocabulary. This setup is writer independent,
because the experimental setup (3a) is writer independent.

5. Combined set: This data set contains all words from the small and large set. Therefore
the data set consists of a total of 14,777 words. The sets of writers of the small and large
set are disjoint, therefore 92 writers contributed to the combined set. The vocabulary has
2,578 entries. In the only setup of this data set, the training set of setup (3a) is used as
the training set and the test set of setup (3a) is used as the validation set. The whole
small set is then used as the test set. The setup is writer independent.

6. Final set: The final data set is used for the evaluation of the optimized classifiers, ensemble
methods and combination schemes. Experiments using this set are presented in the next
chapter. This final set contains all words correctly segmented from the forms whose names
start with b, d and g. With a total of 22,184 words written by 153 writers, the final set
is by far the largest data set. The vocabulary has 3,997 entries. Therefore we are dealing
with a 3,997 class problem. Three different setups were used:

(a) All the words originating from forms whose names start with b and g are used for the
training set of the setup. This results in a training set consisting of 18,920 words.
The test set is composed of the remaining 3,264 words. The set of 116 writers of the
training patterns and the 37 writers of the test patterns are disjoint.

(b) The same test set as in setup (5a) is used. This setup employs a kind of partial cross-
validation. The original training set is partitioned three times into a fixed training
set of 17,920 words, and a fixed validation set of 1,000 words. The partitioning is
done once, and in such a way that the three validation sets are disjoint. Apart from
the previously mentioned constraint, the elements of the validation set are chosen
randomly.

(c) The same test set as in setup (5a) is used and a normal 10-fold cross-validation is
applied, i.e. the original training set is split in 10 partitions (each of 1,892 words).
9 partitions are used for training and one partition is used for validation. Therefore
there are 10 validation processes.

All setups are writer independent. The setups (b) and (c) are used to determine the best
values for the parameters of the base classifiers and ensemble methods. Therefore the test
set is only used to test the classifiers, or the ensemble methods, which have optimized
parameters.
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nr data set total train valid test voca writers wi
1a prelim. 2,153 fix 1,953 - fix 200 383 6 no
1b prelim. 2,153 fix 1,753 - fix 400 383 6 no
1c prelim. 2,153 random 1,153 - random 1,000 383 6 no
1d prelim. 2,153 3*fix 1,436 - 3*fix 718 383 6 no
2a small 3,850 random 2,850 - random 1,000 412 6 no
2b small 3,850 5 writers - 1 writer 412 6 yes
2c small 3,850 4 writers - 2 writers 412 6 yes
2d small 3,850 2 clusters - 1 cluster 412 6 (no)
2e small 3,850 3*fix 2,566 - 3*fix 1,283 412 6 no
3a large 10,927 fix 9,861 - fix 1,066 2,296 86 yes
3b large 10,927 fix 8,795 fix 1,066 fix 1,066 2,296 86 yes
3c large 10,927 3*fix 9,861 - 3*fix 1,066 2,296 86 no
4 red. large 3,495 fix 3,290 - fix 205 651 18 yes
5 combined 14,777 fix 9,861 fix 1,066 fix 3,850 2,578 92 yes
6a final 22,184 fix 18,920 - fix 3,264 3,997 153 yes
6b final 22,184 3* fix 17,920 3*fix 1,000 (fix 3,264) 3,997 153 yes
6c final 22,184 10* fix 17,028 10*fix 1,892 (fix 3,264) 3,997 153 yes

Table 6.1: Summary of all experimental setups

In all experimental setups where several possible combinations of training, validation and test
sets exist, the results are always averaged over all possible combinations.
Table 6.1 summarizes the experimental setups used in this thesis. The column nr contains the
number of the experimental setup, which will be used to refer to the setups in the following.
The abbreviated name of the used data set is given in column data set. The number of words
in the training, validation and test set is given in the column train, valid, and test, respectively,
and the sum of these numbers is shown in column total. Under columns voca and writers, the
size of the vocabulary and the number of writers in the data set are given. The last column
states whether the experimental setup is writer independent.

6.2 Abbreviations for the most used combination schemes

In this section, the abbreviations for the most frequently used combination schemes are intro-
duced. These abbreviations will be used in the descriptions of the experiments of this, and of
the next Chapter.
The most used combination schemes are:

• score: The maximum score combination scheme as described in Subsection 5.2.4.

• perf. weight: The weighted voting scheme using performance weights as described in
Subsection 5.2.2.
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• ga weight: The weighted voting scheme using optimized weights as described in Subsec-
tion 5.2.2.

• The voting combination scheme as described in Subsection 5.2.1. The ties are handled in
five different ways:

– vote reject: Ties handled by rejection.

– vote random: Random ties handling.

– vote best: Ties handling by the best class score combination scheme, as described in
Subsection 5.3.2. According to the applied operator, the combination scheme is called
vote best ave (average operator), vote best max (maximum operator), vote best
min (minimum operator) and vote best med (median operator).

– vote perf.: Ties handling by perf. weight (see above).

– vote ga: Ties handling by ga weight (see above).

• special: The special HMM classifier combination scheme introduced in Section 5.4.

6.3 Statistical tests

In this section some statistical tests are described, which are used to analyze the results. All
of these tests compare the results which are produced by two different methods. In the null
hypotheses it is assumed that both methods produce results of the same quality. A significance
test is then applied to a test measure to calculate the probability that the null hypotheses is
false. If this probability is high, the null hypothesis is rejected. Often a fixed significance level
is used. Yet in this thesis always the lowest meaningful significance level is stated for which
the null hypotheses is still rejected. This is done so as to provide more information about the
comparison of the methods.

6.3.1 Standard comparison test

In many experiments of this thesis, results are produced by applying both a new method and
a standard method. To evaluate the quality of the new method (in respect of the standard
method) those results are compared. Often only the word recognition rate for both methods is
known. In the following, r1 denotes the recognition rate obtained by the new method, and r2

the recognition rate obtained by the standard method. To compare the results the t-test is used.
The null hypotheses is that the recognition rate of both methods is the same and we therefore
assume the independence of the results of both methods. The test measure is given as:

Z =
r1 − r2√

1
n · (r1 · (1− r1) + r2 · (1− r2))

(6.1)

where n is the number of test patterns. If the null hypotheses holds, then the mean of Z is 0 and
the standard deviation is 1. The distribution of the the test measure Z is approximately normal
for a large number of test patterns n. Assuming the normal distribution of the test measure of
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equation 6.1, we can check the probability, or significance level, of the null hypotheses not being
rejected. Because we only check the results of experiments in which the new method was better
than the standard method, a rejection of the null hypotheses means that the new method is
better than the standard one. For the same reason a one-sided, and not a two-sided, significance
test is applied.

6.3.2 Advanced comparison test

In the standard comparison test presented in the last subsection, the independence of the results
of the two methods is assumed. This is a very conservative approach, as the results of the two
methods are likely to be correlated, and a difference in the recognition rates is more significant
when the results are correlated. A statistical test which takes this correlation into account is
the paired t-test. For this test a new random variable X is introduced. If m1(w) and m2(w)
denote the results of the two methods corresponding to the same word w then the value of X
for w, is defined by the following equation:

X(w) =




1 if m1(w) is correct and m1(w) is incorrect
0 if m1(w) and m1(w) are both correct or incorrect
−1 if m1(w) is incorrect and m1(w) is correct

(6.2)

Using the same null hypotheses as in the last subsection, we assume that X has a normal
distribution with mean 0. The test measure for this test is given as:

Z =
µx

1√
n
· σx

(6.3)

where µx is the mean and σx the variance of the random variable X estimated using the results.
Again n is the number of test patterns. If the null hypotheses holds then the mean of Z is 0,
the standard deviation is 1 and Z is normally distributed for large values of n. So we can once
again apply again a one-sided significance test.
The advanced comparison test was applied to some of the results in Chapter 7.

6.3.3 Sign test

In many experiments the new method and the standard method were applied with a range of
different configurations. To compare the two methods using the obtained results, the sign test
[32] may be used. The sign test takes only pairs of corresponding recognition rates into account.
How often the result of the new method is better than the result of the standard method is
counted. The null hypothesis of the test is that both methods are of the same quality, i.e.
that the likelihood of the first method being better than the second is 50 %. So a binomial
distribution of the counter variable mentioned above is expected (with p = 0.5) and we can
again apply a one-sided significance test.

6.4 Test of the stability of the classifier

A classifier type is called stable when the classifier trained on a set T is similar to the classifier
trained on a modified version of T . This means that the behavior of a stable classifier changes
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only slightly when the training set is modified. For instable classifiers only a small modification
of the training set may have a large impact on the behavior of the classifier. Decision trees
and neural nets are unstable classifiers and nearest neighbors and linear discriminant analysis
classifiers are stable [8].
Bagging (see Subsection 4.2.1) and other ensemble methods which modify the training set are
known to work best with instable classifiers, because the instability leads to diverse classifiers
being created by these ensemble methods. To estimate the benefit of Bagging for the classifier
described in Section 2.2, an experiment to measure the stability of this classifier was done and
the results are shown below.
The setup (1b) in Table 6.1 was used for this experiment. Classifiers trained on subsets of the
whole training set were tested, where two kinds of subsets were used:

1. A fixed number of elements was drawn randomly without replacement from the original
training set to form the new training set. This kind of subset is denoted as the sampled
subset.

2. A fixed number of randomly chosen elements were removed from the whole training set to
build the new training set subset. This kind of subset is denoted as the reduced subset.

All tests were repeated ten times and the results of the single runs were compared to each other
by measuring the correlation of the recognition results. Here the correlation is defined as:

E(X · Y )− E(X) · E(Y )√
V ar(X) · V ar(Y )

(6.4)

where X and Y are the random variables for the correct classification using the first and the
second classifier, respectively. E(Z) is the expectation and V ar(Z) the variance of random
variable Z. The value of the random variables X and Y is 1 when the classification is correct,
and in all other cases it is 0. All values of the correlation are in the interval [-1,1], where a value
close to 0 indicates the independence of the results of the two classifiers, and the value 1 signifies
that the results are completely correlated1 The correlation can be estimated by the equation:

c12 − c1 ∗ c2√
(c1 − c1 ∗ c1)(c2 − c2 ∗ c2)

(6.5)

where c1 and c2 denote the fraction of correctly classified test patterns of the first classifier and
second classifier, respectively, and c12 is defined as the fraction of the test patterns, for which
both classifiers output the correct result.
The results of the experiments are shown in Table 6.2, where mean signifies the mean of the
recognition results, dev denotes the standard deviation of the recognition results, and num is the
number of sampled, respectively removed, elements. The average correlations of the classifiers
are shown in column corr.
The standard deviation of the recognition rate first increases with the number of elements, which
can be expected due to the increase of the recognition rate. But with larger sets the classifiers
become more correlated and so the deviation decreases again.

1Complete correlation only occurs if the results of the two classifiers are always both correct or both incorrect.
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sampled subset reduced subset
num mean dev corr num mean dev corr
10 5.45 % 2.08 % 0.130 5 82.8 % 0.44 % 0.963
20 15.1% 2.84 % 0.257 10 82.975 % 0.57 % 0.955
40 33.23 % 4.22 % 0.302 20 82.65 % 0.21 % 0.934
80 57.88 % 3.15 % 0.479 40 83.175 % 0.53 % 0.913
160 68.48 % 1.82 % 0.647 80 83.125 % 0.68 % 0.909
320 73.58 % 1.48 % 0.679 160 82.175 % 0.72 % 0.863
640 78.98 % 1.46 % 0.706 320 81.65 % 1.28 % 0.805
1280 82.53 % 0.89% 0.810

Table 6.2: Results of the stability test

The correlation between classifiers is large even with rather small training sets. For example
when using training sets of 160 the average correlation was 0.647. Two such classifiers with the
same recognition rate of 58 % are considered in the following. The probability that a pattern
correctly recognized by the first classifier is misclassified by the second classifier is 0.35 times
lower than the overall error rate of the second classifier, i.e. the probability that the second
classifier will also classify the pattern correctly is 83 %. Note that when using training sets of
160, two classifiers have on average only 15 shared training elements.
The fact that classifiers trained on small training sets are moderately strongly correlated, and
that the classifiers trained on reduced training subsets are strongly correlated, lead to the con-
clusion that the considered classifier is very stable.
An interesting observation is that the classifiers trained on reduced subsets with a small number
of removed elements, e.g. 5 or 10, are not completely correlated. Consider for example the
case of five removed training patterns. The training sets of the classifiers differed only by 10
from a total of 1753 training words. Yet on average more than 2 test patterns from 400 were
misclassified by one classifier but not by the other. Therefore it seems that the classifier is not
completely stable for very small modifications of the training set.
In summary it may be concluded that the classifier is in general very stable, but is slightly
unstable when the modification of the training set is very small. From this it may be concluded
that the potential of Bagging and similar methods to improve the performance of the classifier
is not great.

6.5 Error-rejection curve

In Section 3.5 a rejection mechanism of the classifier described in Section 2.2 was introduced.
To evaluate the quality of this rejection mechanism the experimental setup (3a) in Table 6.1 was
used. In Figure 6.1 the error-reject curve is shown. The x-axis of the plot shows the fraction of
test patterns which are rejected by the classifier, and the value in the y-axis is the corresponding
error rate of the non-rejected patterns, i.e. one minus the accuracy of the classifier. The rejection
threshold t was continuously increased to create the plot. The error rate of the classifier which
does not reject any patterns is 33.8%.
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Figure 6.1: Error-rejection curve using the rejection criteria in Section 3.5

The quality of the rejection criterion is moderately good. It is certainly far better than random
rejection (which would be a horizontal line with error rate=33.8 %). The error-rejection curve is
for the most part below the curve for which the rejection rate is equal to the reduction rate of the
error, i.e. if we reject a fraction x of the patterns, we have an error rate lower than (1−x)·33.8%.
Note that in some pattern recognition problems far better error-rejection curves were obtained,
e.g. curves where the error rate drops much faster and has an asymptotic behavior to the x-axis.

6.6 Feature selection for one classifier

In this section the methods introduced in Section 3.3 are applied using the experimental setup
(3b) in Table 6.1. The following methods were tested:

• validation: Feature selection using a validation set (compare Subsection 3.3.1). Three
different search algorithms were tested.

• parameters: Feature selection using HMM parameters (compare Subsection 3.3.2). Three
different measures were tested.

• simulation: Feature selection using simulated results (compare Subsection 3.3.3). Two
methods to determine the final feature set were tested:

– best: The best found feature set is used.

– validation: The best found feature set of each size is validated on the validation set
and the feature set which obtained the best recognition rate is used.

For each method the parameter N was varied from 1 to 5.
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method parameter valid test time
validation backward take 1- remove 1 71.48 % 68.76 % 45
validation forward take 1- remove 1 73.08 % 67.73 % 25
validation exhaustive 73.08 % 67.73 % 511
parameters fisher 71.39 % 68.01 % 9
parameters local 71.39 % 68.01 % 9
parameters root local 71.39 % 68.01 % 9
simulation best, N = 1 62.57 % 57.97 % 1.6
simulation best, N = 2, 4 71.53% 67.83 % 1.65 + 0.05 ·N
simulation best, N = 3, 5 70.83 % 68.11 % 1.65 + 0.05 ·N
simulation validation, N = 1 72.23 % 67.54 % 10.6
simulation validation, N = 2, 3, 4, 5 73.08 % 67.73 % 10.65 + 0.05 ·N
original all 9 features 70.45 % 66.23 % -

Table 6.3: Results of the feature selection methods

Table 6.3 shows the results of the experiment. The type of method tested is given in column
method and the details of the tested method are given in column parameter. The performance
of the classifier using the best found feature set on the validation and test set is given in valid
and test, respectively. The approximate time complexities of the methods are shown in the last
column, and were measured in multiples of the time needed for the validation of one feature set
(more information on the topic of time complexities is presented in Section 6.11). The classifier
using all 9 feature achieved a recognition rate of 70.45 % on the validation set and 66.23 % on
the test set. For the simulation methods some parameter values produced the same results and
are therefore written in the same row. The results of the simulation method with the parameter
best, N = 2, 4 were averaged over two feature sets which both obtained the maximal simulated
recognition rate.

All methods, with the exception of the simulation methods with N = 1, produced good results.
The performance of the base classifier was increased by 1.5 % to a maximum of 2.53 %. The
validation methods produced the best results, yet their time complexity is very high. Note that
the exhaustive search did not produce the best results. The parameters methods all had the
same performance of 68.01 % (they all found the same feature set). For the simulation methods
the first version was superior to the second as better recognition rates were achieved and the time
complexity was smaller. Yet the second method obtained much better results on the validation
set. It seems that the correlation between the performances on the validation and the test set
is not very strong. There are two reasons for this. Firstly, only a small validation set of 1066
words was used. Secondly, the writers of the validation set and the training set are the same,
which is not the case for the training and the test set. By using a larger validation set, or by
applying a cross-validation scheme, the correlation between the performances on the validation
set and the test set may be increased. So the second version of the simulation methods may
still be useful when using more representative validation sets, as very good performances on the
validation set were achieved.
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size of transformed feature vector
1 2 3 4 5 6 7 8 9
26.83 % 49.91 % 61.91 % 62.85 % 63.13 % 65.29 % 64.82 % 65.20 % 65.10 %

Table 6.4: Recognition rates of the classifiers trained and tested on feature vectors transformed
by PCA. The performances of the classifier that use the original features is 66.23 %.

In summary, all methods but the simulation methods with N = 1 are promising. If the training
set and validation set are large, the parameters and simulation methods should be preferred, as
their time complexity is low. As the simulation methods did not produce significantly different
results for N = 2, 3, 4, 5, it is not expected that the performance will increase when higher
numbers for N are used. Therefore only the values N = 4 and N = 5 will be tested in the
experiments in Chapter 7.

6.7 Experiments with PCA

In this section the results of the application of the PCA method described in Section 3.4 with
the experimental setup (3a) in Table 6.1 are shown. The PCA method transforms the feature
vectors and reduces their size. Table 6.4 shows the results of the classifiers trained and tested
on PCA transformed feature vectors, where the size of the transformed feature vectors is varied
from 1 to 9. The recognition rates were measured on the test set, where the classifier using the
original feature vectors achieved a performance of 66.23 %.
All results obtained when using PCA to transform the feature vectors were worse than the results
of the classifier using the original feature vectors. Please note that the best feature vector size is
a priori not known, and must be determined in a validation procedure. Even with knowledge of
the best feature vector size, the system’s performance could not be increased when using PCA.
It seems that the PCA method is not promising for the classifier described in Section 2.2 and it
will therefore not be applied in the experiments in Chapter 7 for this classifier.

6.8 Experiments to determine the optimal state numbers

In this section the methods described in Section 3.1 are applied using the experimental setup
(5) in Table 6.1. The validation set was used to estimate the optimal values of the parameters
for the two methods. The optimal values obtained in [103] (f = 0.4 for Bakis and q = 0.04 for
quantile method) were regarded as references and only values close to them were examined.
In Figure 6.2 the recognition rates measured on the validation set are displayed, where only values
near to the optimum are shown. The recognition rate of the const-state system, the system using
a fixed number of 14 states per HMM, was 66.23 %. For both q = 0.028 and q = 0.032 the
quantile method achieved a optimal recognition rate of 70.73 %. Here it is reasonable to choose
q = 0.028, because performances of the classifiers using q values near 0.028 are much better than
those near 0.032. This indicates that the measured performance for q = 0.028 is more reliable.
The optimal performance when using the Bakis method was 70.92 %.
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Figure 6.2: Recognition rates of the classifiers optimized by the quantile (left) and the Bakis
(right) method with different values for parameters q and f on the validation set. The recognition
rate of the original classifier was 66.23 %.

As the Bakis method produced better results, this method was used to choose the number of
states of the HMMs for the recognition of the words in the test set. The optimal value of 0.36
was of course used for the parameter f . The recognition rate of the optimized system was 72.46
%, whereas the const-state system only recognized 70.91 % of the test words correctly. The
difference in the recognition rates between the optimized and the base system dropped from
4.69 % in the validation set to 1.55 % in the test set. It seems that the Bakis method overfit
on the validation set and it is also likely that the quantile method suffered from overfitting
effects. Please note that only a small validation set of 1066 words was used. By using larger
validation sets, or by employing a cross-validation scheme, the overfitting effects may be reduced.
The obtained performance increase on the test set is still quite large and statistically significant
using a significance level of 7 %. Therefore the methods for the optimization of the state numbers
will be applied in the experiments in Chapter 7. As the Bakis method is not significantly better
than the quantile method, both methods will be tested.

6.9 Optimization order

In Section 3.1, methods to optimize the state numbers of HMMs were given, and in Section 3.2
strategies to find the optimal training method for HMM classifiers were described. For the final
system we want to optimize both the state numbers and the training method. Because it is not
very feasible to optimize both at the same time, first the state numbers and then the training
method is optimized in this thesis. In this section, results of an experiment are given which show
that the optimization of the training method does not strongly interfere with the optimality of
the state numbers of the HMMs. The methods described in Section 3.2 were applied to the
following two systems:

• 14-states: The base system described in Section 2.2 where all HMMs have 14 states

• 12-states: The base system described in Section 2.2 with a lowered number of 12 states
per HMM
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system strategy validation test
12-states 1, C = 3 76.64 % 78.96 %
14-states 1, C = 2 78.33 % 80.30 %
12-states 1, C = 4 76.83 % 78.12 %
14-states 1, C = 3 78.71 % 79.04 %
12-states 1, C = 5 76.74 % 77.86 %
14-states 1, C = 4 78.14 % 79.07 %
12-states 3 77.02 % 77.07 %
14-states 3 78.14 % 80.43 %

Table 6.5: Recognition rates of the two classifiers with different state numbers per HMM. The
classifiers use optimized training methods found by the different strategies.

The experimental setup (5) in Table 6.1 was used. The performance of the classifier using one
Gaussian on the validation set is 65.1 % for the 12-states system, and 66.23 % for the 14-states
system. The same systems achieved recognition rates of 69.06 % and 70.91% on the test set.
In the experiments in this section the classifiers are trained on the training set only, i.e. the
validation set is only used for the validation procedure. Only the first and the third strategy
were tested2. For the first strategy the values for C for which the best results on the validation
set were achieved are shown as well as the next smaller and next larger numbers.
There are values for several parameters that belong to the methods in Section 3.2 which must
be set. The parameter GAUSSIANS was set to 5, 6, 7, 8 and 9 for the first and to 6 for the
third strategy. For the first strategy the two constants MINITER and MAXITER were set
to 20 and 60, respectively, as the same constants were set to 5 and 20, respectively, for the
third strategy. The values of the constants and the parameter ranges are based on results of
preliminary experiments using smaller sets of words.
It seems reasonable to assume that the optimal number of states per HMM will drop when using
more Gaussians per state, as the states with Gaussian mixtures are better in modeling more
complex distributions. So we may expect that the 12-states system improves considerably in
respect of the 14-states system.
In Table 6.5 the results of the experiment are shown. In column system, the classification system
used for the test is given. The entries in column strategy denote the strategy for finding the
optimal training method. The recognition rates of the systems on the validation and on the test
set are given in the columns validation and test, respectively.
The results of the 14-states system are always better than the corresponding results of the 12-
system. Using the sign test, we discover that this finding is significant using a significance level
of 7%. So the 14-states system is still better than the 12-states system even when Gaussian
mixtures are used. The optimization of the training method did not change the optimality of
the 14-state system. This indicates that in general the optimization of the training method does
not have a strong impact on the optimality of the state numbers of the HMMs. So the approach
used in this thesis to first optimize the state numbers and then to optimize the training method

2The second strategy produced inferior results in the experiments in Section 6.10. Please note that the
chronological order of the experiments was not the same as their order in this Chapter.
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state strategy training iterations gauss valid test 1 test 2
const. 1, C = 2 4,2,2,2,2,2,13 7 78.33 % 80.30 % 81.22 %
var. 1, C = 2 4,2,2,2,2,2,11 7 79.74 % 81.02 % 82.05 %
const. 1, C = 3 4,3,3,3,3,32 6 78.71 % 79.04 % 79.68 %
var. 1, C = 3 4,3,3,3,19 5 80.58 % 79.18 % 80.53 %
const. 1, C = 4 4,4,4,4,4,57 6 78.14 % 79.07 % 79.96 %
var. 1, C = 4 4,4,4,4,4,10 6 80.21 % 82.13 % 81.07 %
const. 2 4,0,0,0,0,45 6 76.17 % 77.35 % 78.66 %
var. 2 4,0,0,0,0,34 6 79.27 % 80.47 % 81.02 %
const. 3 4,12,14,15,15,8 6 78.14 % 80.43 % 80.73 %
var. 3 4,11,12,17,11,16,12 7 80.86 % 80.93 % 81.27 %

Table 6.6: The optimized training methods and the performance of the trained classifiers

does not seem to be flawed.

6.10 Methods for selection of optimal training strategy

In this section results of the methods described in Section 3.2 using the experimental setup (5)
in Table 6.1 are shown. Unlike the experiments in the last section, where the impact of the
optimization of the training methods on the optimality of the state numbers was discussed, the
main goal of this section is to compare the different optimization strategies. The same parameter
ranges and constants as in the last section were used where the second strategy used the same
values as the first strategy.
The three strategies to optimize the training method were applied to following two systems:

• const-state: The base system described in Section 2.2, where all HMMs have 14 states.

• var-state: The system found to be optimal in the experiments in Section 6.8. The Bakis
method with parameter f = 0.36 was applied to the base system to optimize the state
numbers.

Table 6.6 shows a summary of the experimental results. The entry in column state denotes the
used system. The strategy used is shown under strategy. In the column training iterations the
optimal training method found is described, where the number of training iterations between
each increase of the number of Gaussians is given (separated by commas). The number of
Gaussians in the trained system is shown in column gauss. The performance of the trained
classifier on the validation set is shown in column valid. There are two possibilities for using the
discovered training method to train the final system: Firstly, the classifier may be trained on
the training set only. In the second case classifiers are trained on the union of the training and
validation set. Results of classifiers trained using the first possibility are shown in column test1
and results of classifiers trained using the second possibility are presented in column test2.
For all strategies the var-state system did better than the const-state system, i.e. in 5 out of
5 times the var-state system was superior. Using the sign test we discover that this finding
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is significant using a significance level of 4%. Please note that the superiority of the var-state
system holds for all three recognition results valid, test1 and test2. So it could be argued that not
only in 5 out of 5, but in 15 out of 15 times the var-state system was better than the const-state
system. Yet all pairs of corresponding results are assumed to be independent in the sign test
which may not be the case for the three recognition rates.
In 9 out of 10 tests the performance of the system trained on both the training and the validation
set was better than the system trained only on the training set. When we again use the sign
test we conclude that this finding is significant using a low significance level of 2 %.
The best results overall (82.13 % for test1 and 82.05 % for test2) were achieved using the first
strategy. Unfortunately there is little correlation among the optimal value of C for the two test
versions, i.e. test1 and test2, and for the validation set. When using the optimal value of the
validation set (C = 3), quite low recognition rates on the test set were obtained with both test
versions. Therefore the problem with the first strategy is that the best value for the constant
C is a priori unknown. If the validation set is very similar to the test set, e.g. if the words of
both sets originate from the same writers, we may assume that the optimal value for parameter
C is the same for the validation and test set. However in the experiments shown, the set of the
writers of the validation and test set were disjoint. This explains the need for different values
of parameter C for the test and validation sets.
For the second and third strategy no constants must be determined. The results produced
by the third strategy were always better than those of the second strategy. By assuming the
independence of the three different recognition results of the same strategy (which, as mentioned
before, may not be the case), we conclude that this finding is significant using a significance
level of 2%.
In summary it may be stated that the first strategy should be used when the validation set is
similar to the test set; otherwise the third strategy is recommended.
In the experiments in Chapter 7, the best strategies found in this section were used: the var-
state approach in finding the optimal number of states per HMM, the training on the union of
the validation and training set, and the third strategy to find the best training method. The
third strategy in finding the training method was used because, due to two disjoint populations
of writers in the experiments in Chapter 7, the validation and test sets are not expected to be
similar.

6.11 Time and memory complexities and performance

In this section the time and memory complexities and the performances of three versions of the
classifier described in Section 2.2 are examined. Only the time and memory complexity of the
recognition process was addressed and the size of the N -best list, the list of classes output by
the classifiers, is varied. The experiments were done with the setup (5) in Table 6.1.
The three tested classifiers are:

1. The base classifier as described in Section 2.2.

2. The base classifier trained with the training method found by the third strategy introduced
in Section 3.2. This classifier corresponds to the classifier whose results are shown in the
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second last row in Table 6.6.

3. The base classifier whose state numbers are optimized using the Bakis method with a value
of 0.36 for parameter f . is trained with the training method found by the third strategy
introduced in Section 3.2. This classifier corresponds to the classifier whose results are
shown in the last row in Table 6.6.

For each system, all patterns of the validation set were recognized and an N -best list was
produced for each word. The size N of the output list was set to the following values: 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 75, 100 and 125. No values larger than 125 were tested for
N , because in HTK [102] the maximal value for N is 128.
The Figures A.1, A.2 and A.3 show the results of the experiments. For each tested size N
the time complexity of the recognition of all validation words in seconds, the average memory
complexity during the recognition in kilo Bytes and the recognition rate is measured. A test
pattern is regarded as correct if the correct word class is in the output list. The memory
complexity is estimated by averaging about 10 check samples and is therefore not very reliable.
Please note that the Figures have a logarithmic scale for the x-axis.
The behavior when varying N of the time and memory complexities and the performance is very
similar for the three systems. The time complexity increases strongly from N = 1 to N = 2,
increases again significantly from N = 2 to N = 3, and then remains roughly constant. This
means that a system outputting only the best class is much faster than a system outputting an
N -best list with N > 1, yet the size of the output list when doing an N -best recognition with
N > 2 does not have a strong impact on the time complexity. The memory complexity increases
rapidly until N = 30 and then remains constant. It is noteworthy that there are large variations
due to the unreliable measurement process. The recognition rate also increases strongly at first,
but the performance gain slows down for high N . For example from N = 75 to N = 125 there
is no improvement for all three systems.
The performance of system 3 is always better than that of system 2 which in turn has a better
performance than system 1. This ordering also applies to the memory complexity for almost
all values of N . The time complexities of the systems are quite similar. System 1 was slightly
faster for all values of N than the other two systems which have comparable time complexities.
The three systems have similar time complexities, but different memory complexities. This is
due to the fact the actual case the memory complexity is not that important, as state-of-the-
art computers have far more memory than needed by the recognition process. Therefore it is
straightforward to always use the system with the best performance, which is system 3. A system
which output only the best class is much faster than a system which output a list containing
several classes. Therefore a system designer must consider the trade-off between the benefit of
having an N -best list output and the speed of the system.

6.12 Use of N-best list instead of best result

There are several classifier combination schemes which work with classifier outputting N -best
lists (compare Subsection 5.2.3). In the experiments in the last section it was observed that a
system which outputs only the best class is much faster than a system which output an N -best
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combination scheme 1st rank 2nd rank 3rd rank
vote 1 0 0

borda2 2 1 0
borda3 3 2 1

rank5-3-1 5 3 1

Table 6.7: The numbers assigned to the ranks when using different combination schemes

list. In this section, results are presented which were used to decide whether the benefit of
producing N -best list outputs, and applying one of the above referenced combination schemes,
justifies the higher time complexity of the classifiers.
The three ensemble methods Bagging, AdaBoost and Half and half Bagging which are all de-
scribed in Section 4.2 were used in the experiments. The experimental setup (1c) in Table 6.1
was used and the results were averaged over three runs of the ensemble methods. All classifiers
produced a 3-best list output.
The classifiers produced by the ensemble methods were combined by four combination schemes:

• vote: Same as vote reject described in Section 6.2.

• borda2: The Borda count combination described in Subsection 5.2.1 was applied to the
2-best list. Please note that the class on the third rank of the output list is ignored.

• borda3: The Borda count combination described in Subsection 5.2.1 was applied to the
full 3-best list.

• rank5-3-1: The combination defined by the equation 5.4 was applied where wi(rank) =
5 − 2 · rank and aj = 0. As in Borda count, a number is assigned to each rank. Here the
number is 5 for the first rank, 3 for the second rank and 1 for the third rank.

In the case of a tie, i.e. if several classes have the same maximal sum of assigned numbers, the
pattern is rejected. In Table 6.7 the numbers assigned to each rank for all combination schemes
are shown. For the AdaBoost ensemble method the number assigned to the rank is multiplied by
the weight of the classifier calculated by the AdaBoost algorithm. Therefore weighted versions
of the above described combination schemes are used for AdaBoost.
In Table 6.8 the results of the experiments are given. The values in brackets are the percentages
of rejected patterns, i.e. patterns for which a tie occurred3. The values in column cn denote the
number of classifiers produced by the ensemble methods.
The vote and borda2 combination schemes obtained comparable recognition rates, but when using
the vote scheme a higher number of ties occurred. A higher number of ties will normally lead
to a higher number of correct results when a ties breaking mechanism other than ties rejection
is applied. Therefore the vote combination produced superior results to the borda2 scheme.
The borda3 and rank5-3-1 combination schemes produced inferior results to the other schemes.
In summary the vote combination scheme produced better results than the three combination

3There are no ties in the results of the AdaBoost algorithm, because the weights of the classifiers have contin-
uous values.
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algorithm cn vote borda2 borda3 rank5-3-1
Bagging 10 80.4 (2.6) % 80.63 (1.13) % 80.27 (0.77) % 80.53 (0.4) %

AdaBoost 10 82.03 % 81.9 % 81.73 % 81.93 %
h. & h. Bagging 20 81.4 (1.87) % 81.27 (0.83) % 80.73 (1) % 81.23 (0.2) %

Table 6.8: Recognition rates for the different combination schemes

schemes using N -best list outputs. It could be that more sophisticated combination schemes
which use N -best list outputs than the ones tested in this section would achieve better recognition
rates, but the results in Table 6.8 indicate that the performance gain over the vote combination
scheme would not be large. As the classifier which output an N -best list is much slower than
the classifier which output just the best class, only combination schemes working with the best
class output by the classifiers will be used in the following.

6.13 Adapted score schemes

In this section the adaption of the classic score schemes described in Section 5.3 are evaluated.
The experimental setup (1d) in Table 6.1 was used. The recognition rate of the base classifier
described in Section 2.2, and trained on the whole training set is 81.24 % for this setup. The
following ensemble methods were tested:

• Bagging: As described in Subsection 4.2.1. 10 classifiers were produced for the ensemble.

• rsm: Random Subspace Method as described in Subsection 4.2.3.

• AdaBoost: As described in Subsection 4.2.2. 10 classifiers were produced for the ensem-
ble.

• H. & h. Bag: Half and half Bagging as described in Subsection 4.2.5. Here 20 classifiers
were produced.

• archi: Architecture variation as described in Subsection 4.2.4.

The ensemble methods were combined by the combination schemes score, vote reject, vote ran-
dom and vote best. In addition the following two combination schemes were tested:

• class red.: The class reduced score combination scheme as described in Subsection 5.3.1.

• vote c. red.: The voting combination as described in Subsection 5.2.1, with ties handling
by the class reduced score combination scheme.

Similar to the vote best schemes, there exists a version of the class red. and vote c. red.
combination schemes for each of the four operators average, maximum, minimum and median.
In Table 6.9 the results of the experiments are summarized. The recognition rates are given as
relative change to the recognition rate of the base classifier which was 81.24 %.
It is noteworthy that the recognition rates of the score, vote best max and class red max schemes
are different. In theory all three combination methods output the class for which the highest
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combination Bagging rsm AdaBoost h. & h. Bag archi
score -0.63 % -0.17 % 1.43 % 0.91 % -30.82 %
class red. ave -1.54 % -9.78 % -2.4 % -3.66 % -15.72 %
class red. max 0.46 % -4.06 % 1.43 % 1.14 % -31.45 %
class red. min -4.29 % -10.29 % -9.09 % -11.15 % -29.16 %
class red. med -0.06 % -10.29 % -1.09 % 0.17 % -10.58 %
vote reject 0.11 % 0.97 % -0.12 % 0.57 % -1.26 %
vote random 0.63 % 1.94 % 1.26 % 1.37 % 0.0 %
vote best ave 1.43 % 2.4 % 1.83 % 1.31 % -0.69 %
vote best max 1.37 % 2.11 % 2.0 % 1.54 % -0.57 %
vote best min 1.26 % 2.23 % 1.83 % 1.26 % -0.86 %
vote best med 1.54 % 2.23 % 1.77 % 1.26 % -0.92 %
vote c. red. ave 0.69 % 1.71 % 1.71 % 1.26 % -0.17 %
vote c. red. max 1.43 % 1.83 % 1.94 % 1.54 % -0.74 %
vote c. red. min 0.57 % 1.49 % 1.31 % 0.86 % -0.11 %
vote c. red. med 0.69 % 1.54 % 1.6 % 1.14 % -0.11 %

Table 6.9: Recognition rates of the adapted score combination schemes relative to the base
classifier

score among all classifiers was achieved. This difference is caused by the pruning mechanism of
the HTK.
It is obvious that the class red. combination scheme produced very poor results. The results of
the vote best and vote c. red combination schemes were always better than the corresponding
results of the class red. scheme. In addition the results of the class red. scheme were only 1 in
20 times better than the vote random scheme. The maximum score scheme also produced quite
inferior results. Only for AdaBoost was a slightly better performance achieved than for the vote
random scheme, but for all other ensemble methods it was worse, sometimes significantly. It
seems that the voting schemes are superior to schemes which only take the score values of the
results into account. From these observations it is concluded that the class red. combination
scheme is not suitable for the actual application and this scheme is therefore not considered in
the following experiments.
For comparison purposes the results of the vote best and vote c. red combination schemes are
plotted in Figure 6.3. Results obtained from an ensemble method are shown at the same x-
coordinate. The order of the ensemble methods is the same as in Table 6.9.
For all ensemble methods except the architecture variation, the results of the class best scheme
were better than the corresponding results of the vote c. red. scheme. Please note that all
eight results of both schemes are inferior to the results of the vote random scheme for the archi
ensemble method. The reason for this is that the classifiers produced by the archi ensemble
method have very different ranges of score values, so combination schemes relaying on the score
values tend to perform very poorly. This is also shown by the extremely poor results for the
class red. scheme. In summary, the class best combination method is always better than the vote
c. red. scheme with the exception of one ensemble method where both combination methods
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Figure 6.3: Comparison of the voting schemes with ties handling by the best class score combi-
nation scheme and the class reduced score combination scheme

are poor and other combination schemes should be used. Therefore it is obvious that the vote
c. red. combination scheme is inferior to the vote best scheme for the actual application, and it
was not considered in the following experiments.

The vote best combination scheme produced better results than the vote random scheme for all
ensemble methods but archi. This indicates that this combination scheme successfully extracts
additional information from the score to improve the recognition rate. The minimum and median
versions produced only good results for the archi ensemble method, as average and maximum
versions were superior than those two versions for all other ensemble methods. As the vote best
combination scheme is not suited for the architecture variation ensemble method, the use of the
minimum and median version of the vote best scheme is not promising.

The results of the class red and vote c. red. combination schemes are disappointing. A possible
explanation for their poor performance is the following: the score value of the best class recog-
nized by the classifier contains some additional information, as it can be seen by the superiority
of the vote best combination scheme over the vote random scheme. Yet the score values of classes
which are not the best class output by the classifier do not contain a lot of additional informa-
tion. The two combination schemes class red and vote c. red. both make their decision partially
on such score values, therefore the decision is usually not based on additional information, but
on random values.

Please note that the best class score combination scheme was not tested (the vote best scheme is
the voting combination scheme with ties handling by this scheme). On the basis of the results
of the class red, vote c. red. and score schemes it was decided to skip this test, because all the
combination schemes which were based only on the score values of the results did not produce
good results.
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combination Bagging AdaBoost rsm archi
score 64.92 % 64.26 % 62.1 % 46.06 %
conf max 67.35 % 66.6 % 66.04 % 62.76 %
vote best ave 67.45 % 68.2 % 67.54 % 67.35 %
vote best max 67.54 % 67.82 % 67.64 % 66.98 %
vote best min 67.45 % 68.39 % 67.64 % 67.26 %
vote best med 67.54 % 68.11 % 67.45 % 67.26 %
vote conf ave 67.73 % 67.92 % 67.54 % 67.82 %
vote conf max 67.64 % 67.73 % 67.45 % 67.82 %
vote conf min 67.73 % 68.2 % 67.35 % 67.82 %
vote conf med 67.73 % 68.11 % 67.35 % 67.82 %

Table 6.10: Comparison of the confidence combination schemes to some score combination
schemes. The recognition rate of the base classifier is 66.23 %.

For AdaBoost the weighted voting combination scheme using weights produced by the algorithm
was also tested (compare Subsection 4.2.2), and an improvement of the recognition rate of 0.97
% was obtained. As this is much lower than the increases obtained for all voting schemes except
the vote reject scheme, the weighted voting combination scheme using weights produced by the
algorithm will not be used in following experiments.

6.14 Confidence combination schemes

In this section the confidence combination schemes described in Subsection 5.3.4 are compared
to some score combination schemes. For the experiments in this section the experimental setup
(3a) in Table 6.1 was used. The applied ensemble methods are Bagging, AdaBoost, random sub-
space method and architecture variation (compare Section 4.2). Random subspace method and
architecture variation will be abbreviated as rsm and archi in the following. For the archi en-
semble method 8 classifiers were produced, whereas for all other ensemble methods 10 classifiers
per ensemble were used.
The ensemble methods were combined by the combination schemes score and vote best. In
addition the following two combination schemes were tested:

• conf max: The maximum confidence combination scheme as described in Subsection 5.3.4.

• vote conf : The voting combination scheme with ties handling by the confidence combi-
nation scheme. Similar to the vote best scheme, there exists a version of this scheme for
each of the four operators.

The results of the experiments are given in Table 6.10.
It is obvious that the conf max combination scheme did much better than the score combination
scheme. This shows that the used confidence value is a more reliable measure of the quality
of the recognition than the score value, when only the score and confidence values and not the
occurrences of the classes are considered. The vote conf combination schemes are better than the
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corresponding score schemes for Bagging and architecture variation, but not for AdaBoost and
the random subspace method. This means that the confidence measure does not always provide
more information than the score value for the ties breaking mechanism. Although superior
to the score combination, the performance of the conf max scheme is always lower than the
performances of all vote conf and vote best combination schemes, therefore it is not suitable for
the considered application.
Please note that the minimum, median and average confidence score combination schemes were
not tested. The reason for this is that the poor performance of the conf max combination scheme
indicates that they too would not produce good results.
To calculate the confidence of a result the classifier must output a 2-best list. There are two
reasons why the vote conf combination scheme does not seem to be suitable for the considered
application. Firstly, the classifiers which output a 2-best list are much slower than the classifiers
which output the best class only, as it was observed in Section 6.11. In addition the vote conf
combination schemes are not significantly better than the vote best combination schemes. As
the vote best combination scheme does not seem to be suitable for the considered application it
was not used in the following experiments.

6.15 Evaluation of normalization of adapted score schemes

In this section the normalization procedure introduced in Subsection 5.3.3 is evaluated. The base
classifier as described in Section 2.2 was used and the ensemble methods Bagging, AdaBoost and
random subspace method were applied in the experiments (compare Section 4.2). The classifiers
were combined by two versions of the vote best combination scheme:

1. unnormalized vote best: The original vote best combination scheme as defined in Sec-
tion 6.2.

2. normalized vote best: The vote best combination scheme normalized by the proce-
dure introduced in Subsection 5.3.3, and defined by equation 5.8. Please note that the
normalization procedure only affects the test patterns for which a tie has occurred.

The setup (3a) in Table 6.1 was used for the experiments in this section and a total of 29 classifiers
were produced for each ensemble. After the production of each classifier by the ensemble method,
the ensemble of already created classifiers was combined by the above mentioned schemes, i.e.
for each ensemble method the combination schemes were applied 29 times. To obtain stable
results all ensemble methods were run three times and the results averaged over the three runs.
The results of the experiments are shown in the Figures. A.4-A.15. There are no large differences
in the performance of the different versions of the combination schemes. The maximum version
seems to be slightly superior to the other versions for AdaBoost.
For Bagging and AdaBoost there is no significant difference between the normalized and un-
normalized vote best combination schemes. For random subspace method the unnormalized
schemes clearly outperform the normalized ones when using more than 9 classifiers. Therefore
the normalization procedure did not improve the performance of the combination schemes and
therefore the unnormalized versions of the vote best combination schemes will be used in the
following.
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A possible reason why the normalization did not work is the following. Well performing classifiers
tend to produce results with higher scores than poorly performing classifiers. Therefore the
results of well performing classifiers are privileged. The scores are normalized in such a way
that for all classifiers a result with average score value has a score of 0. Therefore a result of
a good performing classifier with an average score is treated in the same way as the result of a
poor performing classifier with an average score, and we in turn loose the preference of the well
performing classifiers.
The normalization procedure was not tested for the “pure” adapted score combinations, i.e. the
schemes which just consider the score value and not the occurrences of the classes in the output
of the classifiers, because of two reasons: Firstly, as it was shown in the results in this section, the
normalization procedure does not increase the performance of the vote best combination scheme.
In addition those combination schemes produced very poor results (compare Section 6.13).

6.16 Confidence based classifiers reduction scheme

In this section the confidence based classifiers reduction (CBCR) combination scheme introduced
in Section 5.5 is evaluated. The results in this section originate from the same experiments as the
results in Section 6.14. In Figs. A.16, A.17, A.18 and A.19 the results of the CBCR combination
scheme are shown. Only the combination schemes which have been found to perform well in the
last sections are used as underlying combination schemes. In the figures, the x-axis shows the
rejection threshold t. The graphics in the figures only show the relevant parts of all evaluated
threshold values, i.e. the parts where the highest performance was achieved.
From the results the following can be observed:

• For the ga weight and vote ga combination schemes only small improvements were achieved.
The reason for this is that the weights were optimized for the combination of all classifiers
and they are suboptimal for subsets of the whole ensemble.

• The plots of the different versions of the vote best combination scheme are very similar.
At least one global maximum is shared by all four versions.

• The global maximum of the recognition rate depends on the ensemble method.

• The quality of the combination schemes depends on the ensemble method. For Bagging,
the vote perf., perf. weight and best vote max schemes did well. As for AdaBoost the vote
perf. and perf. weight schemes also produced good results, but the best version of the
vote best scheme was the median version. For random subspace method good results were
obtained for the maximum version of best vote, which were comparable to the results of the
four combination schemes using weights. The perf. weight combination scheme produced
the best results for the architecture variation ensemble method, while the results for all
versions of the best vote scheme were quite poor. The perf. weight combination scheme
was among the best schemes for all ensemble methods.

• The best recognition rates were always obtained using rejection thresholds lower than
0.375. Please note that a threshold of 0.375 means that classifiers for which the confidence
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is lower than 0.375 of the average confidence are not used for the combination. There are
two reasons why the optimal thresholds are so low:

– The improvement of the recognition rate in respect of the base classifier is achieved by
correctly classifying test patterns for which the classifiers output different classes. In
such cases the classifiers normally have low confidence values because those patterns
are difficult to classify.

– There is a tradeoff between the quality of the classifiers and the quantity of classifiers
in the ensemble. If the results of too many classifiers are rejected then any combina-
tion scheme will perform poorly, even if the individual classifiers perform well. The
optimal rejection threshold seems to be very low, i.e. the best ensemble performance
is achieved when results with very low confidence values are rejected.

• If the recognition rate of the best combination schemes using all classifiers are compared to
the recognition rate of the CBCR combination scheme, using the best underlying combi-
nation scheme and the best threshold, the following increases of the recognition rate were
observed: 0.84 % for Bagging, 0.19 % for AdaBoost, 0.75 % for random subspace method
and 0.2 % for architecture variation. Therefore the increases in the recognition rate are
rather small.

The confidence based classifiers reduction combination scheme is able to increase the performance
of the underlying combination scheme. Yet the increases are quite small. Furthermore the
optimal threshold t is a priori unknown and has to be determined, e.g. by using a validation
set. A large disadvantage of the combination scheme tested in this section is that for each result
the confidence must be calculated. To calculate the confidence a 2-best list must be computed
and classifiers outputting 2-best lists are much slower than classifiers outputting only the best
class (compare Section 6.11). As the CBCR combination scheme increased the recognition rate
of the underlying combination schemes only slightly, but the time complexity of the recognition
process was much larger for it, this scheme will not be used in following experiments.

6.17 Experiments with special HMM combination scheme

In this section the special HMM classifier combination scheme introduced in Section 5.4 is
compared to other combination schemes. The experimental setup (2) in Table 6.1 is used. The
following experiments were conducted:

• Bagging: The experimental setup (2e) was used and the Bagging ensemble method was
applied to produce 10 classifiers.

• AdaBoost: The experimental setup (2e) was used and the AdaBoost ensemble method
was applied to produce 10 classifiers.

• 3 cluster: The experimental setup (2a) was used. A clustering algorithm was applied and
the words of each cluster, which were not in the test set, were used to train one classifier.
The applied clustering algorithm used the features of the number of components per word
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and the ratio of the heights of the two baselines to create three clusters of words with
similar writing styles. Details of the clustering algorithm are reported in [70].

• writers 3*2: The experimental setup (2a) was used. The writers are grouped in pairs
and to each of the three classifiers a pair was assigned. The classifiers are then trained on
all words of the training set belonging to one of the writers of the pair assigned to it.

• writer 6*1: The experimental setup (2a) was used. Each classifier is trained on all words
of the training set belonging to one writer.

• 2 cluster: The experimental setup (2d) was used where the same clustering algorithm as
in 3 cluster is applied. Two classifiers were each trained on the words of one cluster.

• writer 2*2: The experimental setup (2c) was used. The four writers whose words are in
the training set are grouped in pairs and to each of the two classifiers a pair was assigned.
The classifiers are then trained on all words belonging to one of the writers of the pair
assigned to it.

• writer 5*1: The experimental setup (2b) was used. Each classifier is trained on all words
belonging to one writer.

The experiments 3 cluster and writers 6*1 were repeated three times and the results are averaged
over the three runs. For experiment writers 3*2 the results are averaged over all possibilities
of grouping the writers in pairs. Please note that there is also an implicit averaging given by
the used experimental setup for Bagging, AdaBoost, 3 cluster, writer 2*2 and writer 5*1. The
approaches applied in this section to train the individual classifiers on subsets of the training set,
are very similar to the application of the ensemble method using a partitioning of the training
set, which is described in Section 4.3. Yet, there is one significant difference: in the experiments
in this section the whole data set, i.e. the union of the training set and test set, instead of just
the training set, is partitioned. The produced classifiers all satisfy the two conditions for the
application of the special HMM classifier combination scheme. The word HMMs are composed
of character HMMs and the feature vectors input to the HMMs are the same for all classifiers.
The classifiers are combined by the score, vote best max and special combination schemes. The
schemes score and vote best max were chosen as representations for the other combination
schemes because of two reasons. Firstly, those schemes do not need the testing of the clas-
sifiers on the training set, which is similar to the special combination scheme but unlike the ga
vote, perf. weight and ga weight schemes. In addition those schemes produced the best results
most of the time.
Table 6.11 shows the results of the experiments. The column base contains the recognition rate
of the classifier which is trained on the whole training set. This classifier will be denoted as base
classifier in the following. The entries in column wi indicate whether the experiment was writer
independent. The number in column cn is the number of classifiers combined in the experiment.
For each experiment where the special combination scheme obtained the best result, it was tested
whether the superiority of the special combination scheme over the base classifier and the other
combination schemes is statistically significant. In column sig the corresponding significance
levels are shown.
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experiment wi cn base score vote best max special sig
Bagging no 10 85.27 % 85.45 % 86.25 % 85.07 % -
Adaboost no 10 85.27 % 86.97 % 87.25 % 86.48 % -
3 cluster no 3 85.13 % 89.36 % 86.7 % 90.33 % 11 %
writer 3*2 no 3 85.39 % 87.77 % 86.53 % 88.47 % < 0.1 %
writer 6*1 no 6 85.87 % 88.1 % 81.67 % 90.1 % 1 %
2 cluster yes 2 69.46 % 69.63 % 69.63 % 72.64 % 0.2 %
writer 2*2 yes 2 75.67 % 74.46 % 74.46 % 77.17 % < 0.1 %
writer 5*1 yes 5 78.1 % 73.35 % 68.63 % 79.17 % 13 %

Table 6.11: Recognition rates of the special HMM classifier combination scheme compared to
other schemes

The results for the score and voting best max schemes are identical in the sixth and seventh row.
This is no coincidence: it occurs because there are only two classifiers. If the two classifiers have
the same result, both schemes choose this class, and if there are different results, the one with
the best score is selected in both cases.
For Bagging and Adaboost the classifier combination with the vote best max scheme was the
best one, and the special combination scheme was outperformed by both score and vote best
max schemes. It seems that the special HMM classifier combination scheme is not suited tor
the combination of classifiers trained on arbitrary subsets of the training set. However for all
other experiments, the special combination scheme was better than the other two combination
schemes. Similarly the score combination scheme is only inferior to the vote best max scheme
for Bagging and Adaboost, while for the other experiments the score scheme achieved the same
or better recognition rates than the vote best max scheme.
The most remarkable gain in performance when using the special combination scheme in respect
of other schemes was achieved for the writer independent experiments. For those experiments
both vote best max and score schemes perform worse or only marginally better than the base
classifier, but the special combination scheme leads to a clear performance improvement over
the base classifier.
In summary it may be stated that the special combination scheme is not suited for combination
of classifiers trained on arbitrary sets, yet it obtains good results when combining classifiers
trained on sets consisting of words with a similar writing style. This is especially the case for
writer independent tests. Please note that in the experiments in this section a data set consisting
of words produced by only 6 writers was considered. In Section 6.21 the question of whether the
above mentioned observations are also true for data sets produced by a large number of writers
is studied.
The special combination scheme has the disadvantage that the time complexity of the recogni-
tion process of the combined classifier is higher than the sum of the time complexities of the
recognition process of the individual classifiers. This means that the recognition process when
using the special combination scheme is slower than when using other combination schemes. In
the experiments in this section, and in Section 6.21, it was observed that the recognition using
the special combination scheme had a 1.2 to 2.5 higher time complexity than when using other
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combination schemes.

6.18 Evaluation of classic ensemble methods

In this section the best parameter values of the classic ensemble methods are determined and
the results of the ensemble methods using these best parameter values are compared. The first
parameter of an ensemble method is the number of classifiers. The second parameter is the used
combination scheme. In the previous sections the quality of some combination methods were
evaluated. It was observed that many combination schemes introduced in Chapter 5 are not
suited for the considered application and therefore they will not be applied to the experiments
in this section. The results of the same experiments as in Section 6.15 are evaluated. The three
ensemble methods Bagging, AdaBoost and random subspace method combined by the seven
combination schemes vote reject, vote random, vote best, vote ga, perf. weight and ga weight are
compared. Because the results of the different versions of the vote best combination scheme were
very similar, as noted in Section 6.15, only the maximum version was compared to the other
schemes. The results of the vote perf. combination scheme are not shown, because they were
always the same as the results of the perf. weight combination scheme. The results of the vote
reject scheme are given to illustrate the benefit of the ties breaking mechanism when using the
other voting schemes. The architecture variation ensemble method is addressed separately in
Section 6.19, because this ensemble method has a fixed number of classifiers.
First the three schemes using weights are compared. The results are shown in Figures A.20,
A.21 and A.22. For Bagging and AdaBoost the perf. weight scheme seems to be the best
combination scheme. The ga weight combination scheme often produced very good results,
especially for Bagging, but very poor ones were also obtained. Therefore, the more stable perf.
weight combination scheme should be preferred. For random subspace method the ga weight
combination scheme was clearly superior.
In Figures A.23, A.24 and A.25 the best found combination schemes using weights are compared
to the other combination schemes. From the results the following can be observed:

• For Bagging and AdaBoost the perf. weight scheme seems to be the best combination
scheme.

• The vote best max combination scheme did worse than the vote random scheme for Bagging
and the two schemes had similar performance for AdaBoost. It seems that the score
information is not very useful in order for these ensemble methods to break ties.

• For random subspace method the results of the ga weight combination scheme were almost
always superior to the results of the other schemes, so it should be the preferred combina-
tion scheme for this ensemble method, despite its instability. It seems that here the score
value of the results holds some useful information for the ties breaking mechanism because
the vote best max combination scheme was clearly better than the vote random scheme.

• The number of 21 classifiers seems to be a good choice for Bagging. There are no signif-
icant improvements when adding more classifiers and the best result for the perf. weight
combination scheme was achieved with this number of classifiers.
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ensemble method combination scheme classifier num. performance sig
Bagging perf. weight 21 68.23 % 5 %

AdaBoost perf. weight 14 69.11 % 1 %
random subspace m. ga weight 25 69.35% 0.5 %

Table 6.12: Best parameters of the classic ensemble methods and the performance of the classi-
fiers using these parameters. The performance of the base classifier was 66.23 %.

• The number of 14 classifiers seems to be a good choice for AdaBoost. There is very little
improvement when adding more classifiers and one of the best results for the perf. weight
combination scheme was achieved with this number of classifiers.

• For random subspace method the best performance when combining the results by the ga
weight scheme was achieved with 25 classifiers, so this number of classifiers should be used
in future tests. Please note that the choice of 25 classifiers is not as obvious as the choice
for Bagging and AdaBoost, because it is close to the maximal tested number.

The summary of the best found parameters is given in Table 6.12. Those parameters will
be used in the experiments in Chapter 7. The entries in column sig in Table 6.12 show the
significance level of the statistical test of the superiority of the ensemble methods over the base
classifier. Please note that the performance of the ensemble methods may be lower when testing
on other sets, as the parameter values were optimized on the results of the test set. The random
subspace method was slightly better than AdaBoost, while Bagging was clearly inferior to the
other ensemble methods.

6.19 Evaluation of the architecture variation

In Section 6.18 the ensemble methods Bagging, AdaBoost and random subspace method were
evaluated. In this section we examine the results of the architecture variation ensemble method.
The results of the same experiments as in Section 6.14 were used. Please note that the architec-
ture variation ensemble method as described in Section 4.2.4 has a fixed number of 8 classifiers,
so the number of classifiers is not a free parameter. The results of the different combination
schemes are given in Figure 6.13. The combination scheme which obtained the best results is
the weight ga and all schemes using weights did far better than the other schemes. A reason
for this is the large difference in the performances of the individual classifiers. (The individual
classifier performances are 66.23 %, 41.46 %, 57.88 %, 49.36 %, 66.23 %, 44.56 %, 46.53 % and
47.69 %). The superiority of the best recognition rate, 68.67 %, over the performance of the
base classifier is statistically significant using a significance level of 12%.
Despite the good results obtained for the architecture variation, this ensemble method will not
be used in the experiments in Chapter 7 because for following reasons:

• The performance of the method is inferior to two of the other three classic ensemble
methods (compare Table 6.12).
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vote reject vote random best vote ave best vote max best vote min
64.82 % 67.45 % 67.35 % 66.98 % 67.26 %

best vote med vote ga vote perf. weight perf. weight ga
67.26 % 68.57 % 68.57 % 68.39 % 68.67 %

Table 6.13: Results of the architecture variation ensemble method

• The number of classifiers is fixed, i.e. it is not possible to produce larger ensembles or to
optimize the number of classifiers.

• The Bakis, semi-jumpin and semi-jumpout topologies (compare Subsection 4.2.4) are
clearly very inferior to the linear topology. This resulted in the production of very poor
performing individual classifiers. It is more promising to combine classifiers with differ-
ent architectures which all perform quite well. The results of such combinations will be
presented in the subsections 6.24 and 6.25.

The experiments with the architecture variation ensemble method were however not futile, be-
cause we have learnt the following facts from the results:

• The combination schemes using weights, i.e. the vote ga, vote perf., weigh perf. and weight
ga schemes, are good for combining classifiers with very different individual performances.
This is especially the case for the vote ga combination scheme.

• The combination of classifiers with different architectures may increase the performance
of the best individual classifier even when there are very poor performing classifiers in the
ensemble. By using the ensemble of classifiers described in Subsection 4.2.4 the recognition
rate of the best individual classifier, which is the base classifier, could be increased from
66.23 % to 68.76 %, although the average performance of the individual classifiers was
52.49 %.

6.20 Varying training set and vocabulary sizes

In this section the dependence of the classic ensemble methods Bagging, AdaBoost and random
subspace method on the training set and vocabulary size is studied.

6.20.1 Dependence of classic ensemble methods on vocabulary size

In this subsection the dependence of the performance of three classic ensemble methods on the
vocabulary size is evaluated. The tested ensemble methods are Bagging, AdaBoost and the
random subspace method and the experimental setup (4) in Table 6.1 was used. Four different
vocabularies were tested which contained 651, 998, 1,518 and 2,296 words. The first vocabulary
is the original vocabulary of experimental setup (4) and the fourth vocabulary is the vocabulary
of experimental setup (3). The second and third vocabularies were produced by adding randomly
words from the fourth vocabulary to the first. To obtain stable results the ensemble methods
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were run three times for all vocabularies and the results were averaged over the three runs. 10
classifiers were always produced by each ensemble method.
The results of the experiments are shown in Figures A.26, A.27 and A.28. The results of the
combination of the ensembles by the vote best, perf. weight and ga weight combination schemes
are given. As the results of the different versions of the vote best scheme were very similar, only
those of the maximum version are shown. The vote perf. combination scheme again produced
the same results as the perf. weight scheme, therefore the results of this scheme are not included
in the figures. The vote ga combination scheme obtained recognition rates between those of the
perf. weight and ga weight schemes. To simplify the figures the results of the vote ga combination
scheme were also not included.
From the results the following can be observed:

• For Bagging and AdaBoost the performance of the three combination schemes is very
similar. For AdaBoost the differences in the combination schemes decreases with the
vocabulary size.

• For Bagging and AdaBoost the improvement of the ensemble methods in respect of the
base classifier increases with the size of the vocabulary. This increase is much larger for
AdaBoost, i.e. the superiority of AdaBoost over Bagging increases with the vocabulary
size.

• For random subspace method the behavior of the performance improvement over the base
classifier when increasing the vocabulary size depends on the combination scheme. The
improvement slightly decreases for the vote best max combination scheme, but remains
roughly constant for the perf. weight scheme. For the ga weight combination scheme the
improvement increases, similar slightly which is similar to Bagging.

• For random subspace method the ga weight combination scheme was superior to the other
combination schemes.

In summary it can be stated that with increasing vocabulary size the improvement over the base
classifier increases. For Bagging and AdaBoost the results of all combination schemes show this
behavior, whereas for random subspace method only the ga weight scheme does. The increase
in improvement is largest for AdaBoost, indicating that this ensemble method is the most able
to deal with large vocabularies.

6.20.2 Dependence of classic ensemble methods on training set size

In this subsection the dependence of the performance of three classic ensemble methods on
the training set size is evaluated. The tested ensemble methods are Bagging, AdaBoost and
the random subspace method and the experimental setup (3a) in Table 6.1 was used. For the
training of the classifiers of the ensembles, new training sets are randomly sampled from the
original training set. The sizes of the new sets were 300, 1,000 and 3,000. In addition to those
sampled sets the original training set was also used in one experiment. To obtain stable results
the ensemble methods were run three times for all training set sizes and the results are averaged
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over the three runs. Please note that for each run the training set was re-sampled. 10 classifiers
were always produced by each ensemble method.
The results of the experiments are shown in Figures A.29, A.30 and A.31. For the same reasons
as mentioned in the last subsection only the results of the combination of the ensembles by the
vote best max, perf. weight and ga weight schemes are shown.
From the results the following was observed:

• For the smallest training set Bagging and AdaBoost obtained worse results than the base
classifier. When increasing the training set size both algorithms generally improve relative
to the base classifier.

• The improvement of the performance of random subspace method in respect of the base
classifier slightly decreases when larger training sets are used.

• Bagging is better than AdaBoost for the smallest training set size, but the performance
of AdaBoost increases faster than that of Bagging when the training set is enlarged. This
means that AdaBoost takes more advantage of larger training sets than Bagging.

• Random subspace method is very good for small training sets, unlike Bagging and Ad-
aBoost. An obvious reason for this is that the individual classifiers are trained on the
whole training set, whereas Bagging and AdaBoost train the classifiers on sets sampled
from the already small training set.

• The perf. weight and ga weight combination schemes are inferior to the vote best max
scheme for Bagging and AdaBoost when small training sets are used. A reason for this is
that those methods estimate the performance of the classifiers on the training set. When
using small training sets, the estimated performances may be very different from the real
performances because of overfitting effects. It is noteworthy that yet for random subspace
method those combination schemes perform well even when using small training sets.

• For all but the largest training set size the ga weight combination scheme was the best
scheme to combine classifiers produced by random subspace method.

In summary it can be stated that when increasing the training set size the improvements of
the ensemble methods in respect of the base classifiers slightly decrease for random subspace
method and increase for Bagging and AdaBoost. The increase for AdaBoost is larger than the
increase for Bagging.

6.21 Ensemble method using partitioning of training set

In this section the results of the ensemble method using partitioning of the training set as
described in Section 4.3 are studied. The focus of this study is the comparison of the special
HMM classifier combination scheme introduced in Section 5.4 to other combination schemes.
The setup (3a) in Table 6.1 was used for the experiments. All five different feature sets were
used for the clustering of the words and the number of clusters was varied from 2 to 5. As each
classifier is trained on a separate cluster, the number of clusters is the same as the number of
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feature sets used for the clustering
cn combination random {CPW} {WPC} {WC} {CPW,WC} {WPC,WC}
2 score 66.26 % 68.76 % 68.48 % 66.67 % 66.7 % 66.32 %
2 special 66.67 % 69.70 % 69.32 % 67.64 % 67.64 % 67.35 %
3 score 65.23 % 68.67 % 69.7 % 67.26 % 66.89 % 68.67 %
3 special 64.54 % 69.14 % 69.32 % 67.64 % 67.26 % 69.04 %
3 vote best 67.07 % 67.82 % 68.67 % 68.11 % 66.6 % 68.76 %
4 score 65.79 % 69.51 % 69.32 % 66.14 % 66.98 % 68.86 %
4 special 65.82 % 68.01 % 69.23 % 66.04 % 66.89 % 68.86 %
4 vote best ave 67.17 % 68.57 % 67.26 % 67.82 % 67.54 % 69.51 %
4 vote best max 67.04 % 68.39 % 67.26 % 67.64 % 67.45 % 69.42 %
4 vote best min 67.07 % 68.48 % 66.42 % 67.73 % 67.82 % 69.7 %
4 vote best med 67.07 % 68.48 % 66.42 % 67.73 % 67.82 % 69.7 %
5 score 64.13 % 68.01 % 69.61 % 66.89 % 66.04 % 69.51 %
5 special 63.57 % 67.26 % 69.32 % 66.42 % 66.14 % 70.83 %
5 vote best ave 67.51 % 67.63 % 68.57 % 69.14 % 67.82 % 70.08 %
5 vote best max 67.48 % 67.45 % 68.48 % 68.86 % 67.45 % 69.79 %
5 vote best min 67.51 % 67.73 % 68.01 % 68.76 % 67.82 % 69.98 %
5 vote best med 67.51 % 67.73 % 68.01 % 68.76 % 67.82 % 69.98 %

Table 6.14: Results of the ensembles whose classifiers are trained on the clusters produced by
the k-means algorithm with the indicated features. The performance of the base classifier is
66.23 %.

classifiers. Please note that the produced classifiers all satisfy the conditions for the application
of the special combination scheme: The word HMMs are composed of character HMMs and the
features input to the HMMs are the same for all classifiers.

The classifiers produced by the ensemble method are combined by the score, vote best and special
combination schemes. Only those schemes were tested, as the best results were obtained with
them and they do not need the time consuming testing of the classifiers on the training set. In
Table 6.14 the results of the experiments are shown. For two classifiers the score combination
scheme is the same as all versions of the vote best combination scheme, therefore only the results
of the first scheme is given. Similarly all versions of the vote best combination scheme are the
same when three classifiers are combined, therefore only one result for the vote best scheme is
given in that case. The entries in the column cn are the number of classifiers. For comparison
purposes the ensemble method using partitioning of the training set was also applied on randomly
sampled clusters and the results of these experiments are shown in column random. The random
clusters used were all the same size and the experiments were repeated three times to get more
stable results.

The best results in Table 6.14 are marked in the following way: Recognition rates between 69 %
and 69.5 % are underlined, recognition rates between 69.5 % and 70 % are written in bold type
and recognition rates over 70 % are both written in bold type and underlined.
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From the Table 6.14 the following may be observed:

• Even for random clusters the performance of the base classifier could be increased when
using the vote best combination scheme. The performance decreased most of the time
when the ensemble was combined by other schemes.

• 80 out of 85 results obtained when using clustering were better than the corresponding
results using random clusters, which shows that the training of classifiers on clusters of
words with similar writing styles is promising.

• The performance of the special combination scheme relative to score scheme varies with
the number of of clusters. For two classifiers the special scheme always achieved better
results, for three classifiers the special scheme was better in 4 of 5 cases. For 4 and 5
classifiers the score scheme outperforms the special scheme in most cases. It is noteworthy
that yet the overall best result is achieved using 5 classifiers and the special combination
scheme.

• From the 24 results with recognition rate over 69 % 8 were achieved using the special com-
bination scheme. As only 20 out of 85 results4 were produced by the special combination
scheme, the expected value would have been 5.65. This indicates that the special combina-
tion scheme is on average better than the other schemes. Please note that the superiority
of the special combination scheme is not so clear as in the experiments in Section 6.17. It
seems that the special combination scheme performs better if the clusters contain words
of only a few writers.

• The clustering with the feature sets {CPW,WC} and {WC} seems to be inferior to the
clustering with the other feature sets: for the first feature set no result with a higher
performance than 69 % was achieved and for the second only one was produced. All other
feature sets achieved at least three such results.

The two feature sets {CPW,WC} and {WC} will not be used in the following experiments.
For small numbers of classifiers the special combination scheme should be used and for higher
number of classifiers the score combination scheme seems to be more suitable. As there is no
real significant difference between the performances of the different combination schemes, all of
them will be used in the experiments in Chapter 7.

6.22 New boosting algorithms

In this section the new boosting algorithms introduced in Section 4.4 are evaluated. The setup
(3a) in Table 6.1 was used for the experiments. The applied ensemble methods are the sim-
ple probabilistic boosting (SPB), the effort based boosting (EBB) and the simple probabilistic
boosting with effort (SPBE). For SPB and SPBE all four error functions e1, e2, e3 and e4 were
tested. For EBB two values for parameter α for which good results were achieved in preliminary
tests were used. To compare the new methods to classic ensemble methods, also Bagging and

4The results obtained when using random clusters are not considered.
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algorithm error/α vote best max perf. weight ga weight
Bagging - 67.51 % 67.73 % 67.89 %
AdaBoost - 68.17 % 68.67 % 68.35 %
SPB e1 68.45 % 68.7 % 68.67 %
SPB e2 68.29 % 68.23 % 68.64 %
SPB e3 68.04 % 68.45 % 68.2 %
SPB e4 68.17 % 68.17 % 68.26 %
EBB 1 69.11 % 69.11 % 69.29 %
EBB 1.5 69.42 % 69.45 % 69.82 %
SPBE e1 69.2 % 69.01 % 69.04 %
SPBE e2 67.85 % 67.7 % 68.32 %
SPBE e3 68.95 % 68.76 % 68.42 %
SPBE e4 69.04 % 69.36 % 69.04 %

Table 6.15: Results of the experiments with the new boosting algorithms. The recognition rate
of the base classifier is 66.23 %.

AdaBoost were tested. Each ensemble method was applied three times and the results were
averaged over the three runs. The number of classifiers produced by the ensemble methods was
set to 10.
To simplify the comparison of the methods only the results of the combination of the classifiers
by the vote best max, perf. weight and ga weight combination schemes are given. The other
versions of the vote best scheme produced similar results to the vote best max scheme and the
performance of the vote ga scheme was in between the performances of the perf. weight and
ga weight combinations schemes. In Table 6.15 the results of the experiments are shown. The
entries in column error/α denote the function used for the error calculation, or the value of the
parameter α.
No combination scheme produced significantly better results than the other schemes. For almost
all boosting algorithms and all combination schemes better results than Bagging were achieved.
Only the performance of SPBE with error function e2 when combined by the perf. weight scheme
was marginally below that of Bagging. This shows that the boosting algorithms really produce
superior results to Bagging. In the following the new boosting algorithms are only compared to
AdaBoost. The SPB algorithm produced comparable or inferior results for error functions e2,
e3 and e4 than AdaBoost. Only with error function e1 is SPB slightly better. EBB produced
very good results, especially for α = 1.5. It is obvious that SPB is not significantly better than
AdaBoost, so we focus on the EBB and SPBE in the following. The two error functions e1 and
e4 seem to be suited for use with the SPBE algorithm and lead to very good results. With
error function e3 better results than AdaBoost were also achieved, however when using e2 SPBE
cannot compete with AdaBoost.
To compare the EBB and SPBE ensemble methods more systematically with AdaBoost the sign
test (see Section 6.3.3) was used. Results of an ensemble method are regarded as better than
the results of another ensemble method if the recognition rate of the first ensemble method is
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better than the recognition rate of the second for all three tested combination schemes. EBB and
SPBE produced results that were in five cases better, and in one case worse, than the results of
AdaBoost. The finding that the EBB and SPBE ensemble methods are better than AdaBoost is
significant using a significance level of 11%. If we compare the results of the three combination
schemes separately we observe that in 15 out of 18 results EBB and SPBE are better than
AdaBoost. This finding is significant using a significance level of 0.5%. However the prerequisite
of the sign test, the independence of the corresponding pairs of events, is not satisfied for this
test version as the results of the same ensemble combined by different combination schemes are
strongly correlated.
Only EBB (with α = 1.5) and SPBE (without error function e2) will be used in the experiments
in Chapter 7 as the results of SPB indicate that this ensemble method is not promising for the
considered application. The number of classifiers of the ensemble methods will be set to 14 for
the experiments in Chapter 7, because this number was found to be optimal for AdaBoost in
Section 6.18. So the same number of classifiers is used for all boosting methods.

6.23 Feature selection ensemble methods

In this section experiments of the ensemble methods using feature selection algorithms intro-
duced in Section 4.5 are presented. In Subsection 6.23.1 results of the ensemble methods using
underlying feature search algorithms are studied. In Subsection 6.23.2 ensemble methods which
use the results of all feature sets are tested. Finally ensemble methods which simulate the results
for the patterns of the validation set are studied in Subsection 6.23.3.

6.23.1 Feature selection ensemble methods using feature search

In this Subsection the methods described in Subsections 4.5.1 and 4.5.2 are evaluated. The
setup (3b) in Table 6.1 was used for the experiments. The following algorithms were applied:

• b. single: The backward feature search introduced in Subsection 3.3.1 for the selection
of one feature subset

• f. single: The forward feature search introduced in Subsection 3.3.1 for the selection of
one feature subset

• b. ensemble: The ensemble method introduced in Subsection 4.5.1 with the backward
feature search as underlying feature selection algorithm

• b. ensemble: The ensemble method introduced in Subsection 4.5.1 with the forward
feature search as underlying feature selection algorithm

• b./f. ensemble: The ensemble method introduced in Subsection 4.5.2 where the back-
ward and forward feature search are alternatively applied starting with the backward
version

• rsm: The random subspace method as described in Subsection 4.2.3
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algorithm f ave max min med valid sets
b. single - classifier performance: 67.73 % 73.08 % 25
f. single - classifier performance: 68.76 % 71.48 % 45

b. ensemble f1 69.04 % 68.76 % 69.14 % 69.14 % 74.39 % 115
f. ensemble f1 69.89 % 70.17 % 69.31 % 69.42 % 71.95 % 111

b./f. ensemble f1 69.89 % 69.89 % 69.79 % 69.79 % 74.3 % 142
b. ensemble f2 69.89 % 69.98 % 70.08 % 70.17 % 74.3 % 128
f. ensemble f2 70.64 % 70.17 % 70.73 % 70.73 % 74.2 % 165

b./f. ensemble f2 71.76 % 71.58 % 71.76 % 72.04 % 75.33 % 185
b. ensemble f3 68.86 % 68.76 % 68.95 % 68.95 % 74.86 % 127
f. ensemble f3 70.83 % 70.83 % 71.2 % 70.83 % 74.39 % 171

b./f. ensemble f3 70.92 % 70.92 % 71.1 % 71.2 % 75.61 % 173
b. ensemble f4 69.41 % 69.51 % 68.86 % 69.23 % 74.86 % 130
f. ensemble f4 71.48 % 71.39 % 71.58 % 71.86 % 74.58 % 144

b./f. ensemble f4 70.36 % 70.36 % 70.36 % 70.36 % 74.58 % 175
rsm - ga weight: 68.76 % - 0
original classifier: 66.23 % on test set, 70.45 % on validation set

Table 6.16: Results of the feature search ensemble methods

The methods b. single, f. single and rsm are examples of classic feature selection algorithms
and ensemble method. 10 classifiers were always produced for each ensemble. The ensemble
methods f. ensemble, b. ensemble and b./f. ensemble will be denoted as feature search ensemble
methods in the following.

The classifiers were combined by the four versions of vote best combination scheme. The com-
bination schemes using weights, i.e. the vote ga, perf. weight and ga weight schemes, were
outperformed by the vote best scheme and their results are therefore not shown. A reason
why those schemes did not produce good results is that the ensemble methods introduced in
Subsections 4.5.1 and 4.5.2 optimize the performance of the voting combination scheme.

The results of the experiments are shown in Table 6.16. The recognition rate of the base classifier
which uses the full set of features was 66.23 % on the test set and 70.45 % on the validation
set. The entries in column f indicate the objective function used for the feature search ensemble
methods. The values in column ave, max, min and med denote the recognition rates of the
ensembles combined by the vote best ave, vote best max, vote best min and vote best med schemes,
respectively. For the b. single and f. single methods the performance of the produced classifier
is given in these columns, as for the random subspace method they contain the name of the best
combination and the performance achieved using this scheme. The entries in column valid are
the recognition rates on the validation set of the single classifiers or the ensembles combined by
the vote reject scheme. Please note that this is the value which is optimized by the methods.
Finally sets denotes the number of feature sets for which the recognition results of all elements
of the validation set were calculated. For the random subspace method the performance on the
validation set is not given because this method does not use a validation set.
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All tested methods increased the performance of the base classifier. The results of the feature
search ensemble methods are always better than or equal to those of the other methods. The
median version of the vote best combination scheme is clearly the best version, as in 9 out of 12
experiments the best result was achieved with it and in 5 out of the 12 experiments this best
result was not obtained by any other combination scheme. If we compare the median version
of vote best scheme to the other three versions, in 22 cases it was better and in 5 cases worse
than the other versions. With the sign test we find that the discovery that the median version
is better than the other versions is significant with a significance level of 0.1 %. Therefore the
classifiers produced by the feature search ensemble methods will be combined by the vote best
median combination scheme in the experiments in Chapter 7.
The f. ensemble method has clearly shown a better performance then its backward counterpart
b. ensemble. A further improvement is achieved for the f2 and f4 objective functions when using
b./f. ensemble method where the two search feature search methods are combined5. The best
overall recognition rate of 72.04 % was also achieved by the b./f. ensemble method. It may be
expected that the use of several feature selection algorithms as is done in the b./f. ensemble
method will achieve even better results when using algorithms with similar performances. Here,
as mentioned before, the methods based on the forward feature search produced much better
results than the methods based on the backward feature search. A drawback of the b./f. ensemble
method is that a very large part of the feature space is explored which leads to a high time
complexity.
The objective function f1 produced inferior results. Of the 12 results of this objective function
9 were worse than the corresponding results of all other objective functions. The reason for
this poor performance is that with objective function f1 very similar classifiers are generated
(compare Section 4.5.1). The objective function f2 seems to be slightly better than functions f3

and f4 as for both the b. ensemble and b./f. ensemble methods the best results were achieved
with it. However there is no significant difference between the results of the three objective
functions f2, f3 and f4. For the overall best result an increase in the recognition rate of the
base classifier of 5.81 % was achieved, which is much higher than for other ensemble methods
(compare for example Tables 6.12 and 6.14). The superiority of this best result over the base
classifier is statistically significant using a significance level of 0.2 %.
An important observation is that the performance on the validation set is not strongly correlated
to the performance on the test set. For example it seems that the methods using the forward
feature search are always underestimated. The reason for this lack of correlation may be that
the validation set is too small. In the experiments in Chapter 7 a partial cross-validation scheme
will be applied which may solve this problem.
In the experiments in Chapter 7 all three ensemble methods b. ensemble, f. ensemble and b./f. en-
semble will be applied using the objective functions f2, f3 and f4. The classifiers will be com-
bined by the vote best med combination scheme. The reason why the b. ensemble method is also
retested, despite its inferior performance, is that the superiority of the forward feature search
over the backward feature search may be an artifact of the small validation set.

5For the vote best median combination scheme the f. ensemble method is slightly better than b./f. ensemble,
but for the other three combination schemes the statement is true.
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algorithm f ave max min med valid time
std. exhaustive f1 70.08 % 70.08 % 70.08 % 70.08 % 74.39 % < 0.2
replace exhaustive f1 69.42 % 69.51 % 68.95 % 68.95 % 75.52 % 1.3
std. exhaustive f2 68.95 % 69.51 % 68.67 % 68.67 % 75.05 % < 0.2
replace exhaustive f2 69.7 % 69.7 % 69.7 % 69.7 % 75.52 % 1.5
std. exhaustive f3 70.54% 70.83 % 69.88 % 70.08 % 75.52 % < 0.2
replace exhaustive f3 69.23 % 69.41 % 69.04 % 69.23 % 75.61 % 1.3
std. exhaustive f4 69.42 % 69.04 % 69.14 % 69.23 % 75.52 % 0.4
replace exhaustive f4 70.08 % 70.08 % 69.98 % 70.08 % 75.89 % 4

original classifier: 66.23 % on test set, 70.45 % on validation set

Table 6.17: Results of the ensemble methods using exhaustive feature search

6.23.2 Feature selection ensemble methods using exhaustive search

In this subsection the ensemble methods introduced in Subsection 4.5.3 are evaluated. The setup
(3b) in Table 6.1 was used for the experiments. There are two versions of the ensemble method
using exhaustive feature search: the standard approach and the approach with replacement of
feature sets. The first will be denotes as std. exhaustive and the other as replace exhaustive in
the following. Each ensemble method was used to create 10 classifiers.
The classifiers were combined with the four versions of the vote best combination scheme. The
combination schemes using weights, i.e. the vote ga, perf. weight and ga weight schemes, were
outperformed by the vote best scheme and their results are therefore not shown. The reason for
their inferior performance was already stated in Subsection 6.23.1.
The results of the ensemble methods are shown in Table 6.17. The meaning of the entries in
the table is the same as in Table 6.16. In an additional column time the time complexity of the
algorithms are given. This time complexity was measured in multiples of the time needed for the
validation of one feature set (more information on the topic of time complexities is presented in
Section 6.11). Please note that for any of the algorithm all 511 feature sets must be validated,
i.e. the preliminary step which calculates the data needed by the algorithms already has the
time complexity of 5116.
All tested methods increased the performance of the base classifier. The maximum version of
the vote best scheme seems to be the best version. If we compare it to the other three versions,
in 13 cases it was better and in 3 cases worse than the other versions. With the sign test we find
that the discovery that the maximum version is better than the other versions is significant with
a significance level of 4 %. The classifiers produced by the two ensemble methods considered in
this subsection will be combined by the vote best max combination scheme in the experiments
in Chapter 7.
The performances of the created ensembles on the validation set increase with the complexity of
the objective function. Also the replace exhaustive method achieved better or equal performance
on the validation set than the standard version. Unfortunately the recognition rates on the
validation set correlates poorly to the recognition rates on the test set, similar to the results of

6Of course this data must only be calculated once for all algorithms.
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the last subsection. The replace exhaustive ensemble method produced on average slightly worse
results than the standard version and there is no significant difference between the results of the
different objective functions. So it may be concluded that the replace exhaustive method and
the more complex objective functions are able to find better solutions on the validation set, but
do not obtain higher recognition rates on the test set because they overfit on the validation set.
If we compare the results in Table 6.16 to the results in Table 6.17 we see that feature search
ensemble methods had in general lower recognition rates on the validation set, but on average
much higher recognition rates on the test set than the methods evaluated in this subsection.
This is quite surprising as in the std. exhaustive and replace exhaustive ensemble methods the
results of all 511 feature sets are considered. The poor performance of the methods evaluated
in this subsection may once again be due to overfitting.
In the experiments in Chapter 7 a partial cross-validation scheme will be applied which may
reduce the overfitting effect and increase the performance of the std. exhaustive and replace
exhaustive ensemble methods on the test set. As no objective function and no version has shown
to be significantly superior to the others, both std. exhaustive and replace exhaustive ensemble
methods will be retested with all objective functions in the experiments in Chapter 7.

6.23.3 Feature selection ensemble methods using simulations

In this subsection heuristic versions of the ensemble methods tested in the previous two subsec-
tions are evaluated. The used heuristic is described in Subsection 4.5.4. It works by simulating
the results of the patterns of the validation set. The experimental setup (3b) in Table 6.1 was
again used and the ensemble methods are abbreviated by the same terms as in the two last
subsections. For the feature search ensemble methods the objective function f1 was not tested,
as inferior results were achieved with this function in the experiments of Subsection 6.23.1. In
addition the results of the f. ensemble method are not shown as they were clearly inferior to
the results of the other two methods. The reason for the poor performance of the f. ensemble
method is that the simulated results lead to an overestimation of small feature sets (compare
Subsection 4.5.4) and such small feature sets are encountered at the beginning of the forward
feature search. For the std. exhaustive and replace exhaustive methods the objective function
f4 was not used, because it lead to high time complexities of the methods and no significant
difference between the results of the different objective functions was found in the experiments
of Subsection 6.23.2. 10 classifiers were always produced by each ensemble method.
Only the results of the combination of the classifiers by the vote best max and vote best median
schemes are shown. The vote best ave and vote best min combination schemes usually produced
similar or inferior results to the two versions mentioned above and are therefore not included in
the results. The combination schemes using weights, i.e. the vote ga, perf. weight and ga weight
schemes, were outperformed by the vote best combination scheme in the experiments in the last
two subsections and were therefore not applied.
The results of the feature search ensemble methods are shown in Table 6.17. The entries in
column f indicate the objective function used for the ensemble methods. The values in the
rows starting with max and med denote the recognition rates of the ensembles combined by the
vote best ave and vote best med schemes. The number N is a parameter of the method which
simulates the results of the validation set (compare Subsection 3.3.3).
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b. ensemble b./f. ensemble
combi. f N=1 N=2 N=3 N=4 N=5 N=1 N=2 N=3 N=4 N=5
max f2 62.66 65.2 69.79 70.45 71.2 68.29 68.01 68.86 70.07 69.14
med f2 62.2 64.82 69.51 70.45 71.39 68.2 67.26 68.57 69.89 69.32
max f3 69.04 69.89 70.83 69.32 69.7 70.64 69.51 68.76 70.54 69.51
med f4 69.23 69.89 70.45 69.23 69.43 69.7 69.7 68.86 70.45 70.08
max f4 69.04 69.7 69.89 71.2 70.08 70.64 68.67 68.95 70.36 68.2
med f4 69.23 69.51 69.61 71.29 70.26 68.67 68.67 69.04 70.17 68.86

original classifier: 66.23 % on test set, 70.45 % on validation set

Table 6.18: Results of the heuristic version of the feature search ensemble methods (in percent-
ages)

std. exhaustive replace exhaustive
combi. f N=1 N=2 N=3 N=4 N=5 N=1 N=2 N=3 N=4 N=5
max f1 68.85 70.64 70.92 69.79 70.26 68.01 69.61 69.7 69.88 70.45
med f1 69.14 70.45 70.92 69.98 70.73 68.29 69.98 69.89 69.79 70.08
max f2 67.82 69.32 69.89 70.26 70.17 68.76 67.64 68.39 67.64 68.76
med f2 67.64 69.42 69.98 69.89 70.64 68.29 68.01 68.58 68.2 69.42
max f3 68.01 71.58 71.39 69.32 69.79 69.32 69.51 68.86 70.26 71.39
med f3 67.26 71.48 71.58 69.42 70.54 68.86 69.7 69.04 70.73 71.39

original classifier: 66.23 % on test set, 70.45 % on validation set

Table 6.19: Results of the heuristic version of the ensemble methods using exhaustive feature
search using simulated results (in percentages)

The time complexity of the b. ensemble and b./f. ensemble methods is the same as the complexity
of the simulation best method which was tested in Section 6.6 and whose results are shown in
Table 6.3. It is measured in multiples of the time needed to test the classifier on the validation
set and is 1.6 for N = 1 and 1.65 + 0.05 ·N for all other values of N .
For N = 4 and N = 5 and objective functions f2 and f4 good results were achieved when using
the b. ensemble method. For N = 4 the b/f. ensemble method produced good results when
used with any objective function. In the experiments in Chapter 7 the ensemble methods will
only be retested using these parameters. The obtained recognition rates for these parameters
range from 70.08% to 71.29% and from 69.89% to 70.58% for the b. ensemble method and the
b./f. ensemble method, respectively. The results obtained are not much worse than when using
the real results (compare Table 6.16), and the time complexity is much lower. The results of
the b. ensemble method were in general better than those of the b./f. ensemble method. It is
noteworthy that the b./f. ensemble method was also quite good for N = 1. This good result is
likely to be an outliers, as the performance of all methods using the heuristic applied here was
always low for N = 1.
The results of the ensemble methods using exhaustive feature search are shown in Table 6.19
where the same notation as in Table 6.18 was used.
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The time complexity of these methods is the sum of the time complexity for the simulation of
the results and the time used for the exhaustive feature search, which is quantified in Table 6.17.
The time complexity for the simulation of the results is the same as the time complexity of the
heuristic versions of the b. ensemble and b./f. ensemble methods.
The results of the std. exhaustive ensemble method are in general better than the results of the
replace exhaustive ensemble method, although a much simpler algorithm is used. The reason
for this is that the second algorithm tends to overfit. This overfitting effect is stronger for low
values of N , because in this case the ensemble is optimized on the basis of a very inaccurate
estimation of the recognition results. In the experiments in Chapter 7 a partial cross-validation
scheme will be applied which may reduce the overfitting effect.
For both std. exhaustive and replace exhaustive method the objective function f2 leads to results
with low recognition rates and therefore the two methods will only be used with the other two
objective functions in the following. For the std. exhaustive method good results were achieved
with N = 2, 3 and 5 and the replace exhaustive method was best with N = 5. In the experiments
in Chapter 7 the ensemble methods will only be retested using these parameter values. The
recognition rates obtained for these parameters range from 69.79% to 71.58% and from 70.08%
to 71.39% for std. exhaustive and replace exhaustive, respectively. The obtained results are even
better than when using the real results of the validation set (compare Table 6.17) and the time
complexity is in addition much lower.
The heuristic versions of both tested kinds of ensemble methods produced comparable results to
the methods which are based on real results of the validation set, whereas their time complexity
is much lower. So the heuristic which simulates the results of the validation set is promising.

6.24 Ensemble methods using several base classifiers

In this Section the extension of classic ensemble methods to methods using several base classifiers
introduced in Section 4.6.1 is evaluated. The classic ensemble methods which were extended
are Bagging, AdaBoost and random subspace method which will be abbreviated as rsm. In
Subsection 6.24.1 an optimized and an unoptimized classifier are used as base classifiers. In
Subsection 6.24.2 two optimized base classifiers are used. Conclusions of the experiments in the
first two subsections are drawn in the last subsection.

6.24.1 Optimized and unoptimized base classifiers

In this subsection the ensemble methods extended by the method introduced in Subsection 4.6.1
are used with the following two base classifiers:

• C1: The base classifier as described in Section 2.2.

• C2: A version of the classifier described in Section 2.2 where the state numbers were
optimized by the Bakis method introduced in Section 3.1. As the optimal parameter f
of a preliminary experiment is used, the parameter value was not optimal for the test set
used in the experiments, and the performance of C2 is slightly lower than the performance
of the best classifier found in the experiments of Subsection 6.8.
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algorithm C vote best max perf. weight ga. weight
Bagging C1 67.35 % 67.64 % 67.92 %
Bagging C2 70.64 % 70.45 % 70.63 %

AdaBoost C1 68.29 % 68.86 % 68.29 %
AdaBoost C2 70.64 % 70.17 % 70.45 %

rsm C1 67.54 % 68.11 % 68.67 %
rsm C2 70.17 % 70.54 % 70.92 %

Bagging C1, C2 71.86 % 71.95 % 71.76 %
AdaBoost C1, C2 70.92 % 71.67 % 71.39 %

rsm C1, C2 71.29 % 71.67 % 71.67 %

Table 6.20: Results of the experimental setup (3a). The recognition rate of the base classifiers
C1 and C2 is 66.23 % and 70.17 %, respectively.

algorithm C vote best max perf. weight ga. weight
Bagging C1 69.82 % 69.95 % 69.82 %
Bagging C2 71.51 % 71.42 % 71.64 %

AdaBoost C1 70.95 % 70.7 % 70.89 %
AdaBoost C2 72.14 % 72.36 % 72.14 %

rsm C1 70.61 % 71.33 % 71.54 %
rsm C2 72.33 % 72.83 % 73.08 %

Bagging C1, C2 72.23 % 72.58 % 72.2 %
AdaBoost C1, C2 73.08 % 73.20 % 72.95 %

rsm C1, C2 72.92 % 73.17 % 73.01 %

Table 6.21: Results of the experimental setup (3c). The recognition rate of the base classifiers
C1 and C2 is 69.17 % and 71.2 %, respectively.

The classifiers were combined by the vote best max, perf. weight and ga weight combination
schemes. The results of the vote ga scheme are not included as they were once more the same as
the ones of the ga weight scheme. The results of the other versions of the vote best combination
scheme are not given as they are very similar to the results of the maximum version.
The two setups (3a) and (3c) in Table 6.1 were used for the experiments. The recognition rate
of C1 is 66.23 % for the first and 69.17 % for the second experimental setup as C2 obtained
recognition rates of 70.17 % and 71.2 %, respectively. The recognition rates of both base
classifiers are higher for the second experimental setup than for the first, because in setup (3c)
the writers of the words in the test set are the same as the writers of the words in the training
set. In each experiment 10 classifiers were produced per ensemble.
The results of the experiments are shown in Tables 6.20 and 6.21. The entries in column C
denote the base classifiers used for the experiment. If there is only one classifier then the normal
classic ensemble method was used. If the entry contains both classifiers then the algorithm
introduced in Section 4.6.1 was applied on the ensemble method indicated in column algorithm.
In this case 5 classifiers were generated from each base classifier.
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From rows 1-6 in Tables 6.20 and 6.21 it can be concluded that the classic versions of Bagging,
AdaBoost and random subspace ensemble method lead to an improved performance for all com-
bination schemes when compared to the corresponding base classifiers. The ensemble methods
using the base classifier C2 were always better than the corresponding methods using base clas-
sifier C1. This is not very surprising as C2 is an optimized version of C1. The ensemble methods
using both base classifiers were in all but one case better than the corresponding methods using
base classifier C2. To check the superiority of the ensemble methods using both base classifiers
we apply the sign test. The result of the random subspace method of experimental setup (3c) is
not considered here as the ensemble method using both base classifiers is better for the vote best
max and perf. weight combination schemes, but not for the ga weight scheme. The finding that
the ensemble methods using both base classifiers are better than the ensemble methods which
have C2 as base classifier is significant using a significance level of 4%.
Please note that the base classifier C1 has a much lower performance than the base classifier
C2. However the replacement of 5 classifiers produced from base classifier C2 by 5 classifiers
produced from base classifier C1 increase the performance. Therefore the diversity of the 5
classifiers from base classifier C1 had a larger impact on the performance than their inferior
individual performances.
The ga weight and perf. weight combination schemes seem to be better suited for the combination
of classifiers produced by random subspace method than the vote best max scheme. Apart from
this observation there are no significant differences between the combinations schemes.

6.24.2 Two optimized base classifiers

The setup (3a) in Table 6.1 was used for the experiments. The ensemble methods extended by
the method introduced in Subsection 4.6.1 are used with the following two base classifiers:

• C3: A version of the classifier described in Section 2.2 where the state numbers were
optimized by the Bakis method introduced in Section 3.1. The recognition rate of C3 on
the test set is 70.92 %.

• C4: A version of the classifier described in Section 2.2 where the state numbers were
optimized by the Quantile method introduced in Section 3.1. The recognition rate of C4

on the test set is 70.71 %.

Unlike classifier C2 in the last section, the optimal parameter values of the Bakis and Quantile
methods were optimized directly on the test set of experimental setup (3a). Both base classifiers
have optimized state numbers and they differ only in the applied state number optimization
method. To illustrate the difference of the base classifiers C3 and C4 the used state numbers are
given in Table A.1.
The classifiers were combined by the vote best min, perf. weight and ga weight combination
schemes. The results of the vote ga scheme are not included as they were once more the same
as the ones of the ga weight scheme. Only the results of the minimum version of the vote best
combination scheme are given, because it often achieved the best results of all versions and
the results of the different versions were very similar. In each experiment 10 classifiers were
produced per ensemble.
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algorithm C vote best min perf. weight ga. weight
Bagging C3 71.11 % 71.2 % 70.82 %
Bagging C4 70.83 % 71.01 % 70.92 %

AdaBoost C3 72.23 % 72.33 % 72.23 %
AdaBoost C4 71.39 % 71.76 % 71.67 %

random subspace C3 71.29 % 71.01 % 71.29 %
random subspace C4 70.26 % 70.45 % 70.08 %

Bagging C3, C4 71.29 % 71.67 % 71.67 %
AdaBoost C3, C4 72.8 % 72.51 % 72.7 %

random subspace C3, C4 71.86 % 71.95 % 71.39 %

Table 6.22: Results of the ensemble methods using two optimized base classifiers. The recogni-
tion rate of the base classifiers C3 and C4 is 70.92 % and 70.71 %, respectively.

The results of the experiments are shown in Table 6.22. The same notation as in Tables 6.20
and 6.21 is used.
The results of the classic ensemble methods are better when using base classifiers C3 than C4.
The average difference in the performance of the ensemble methods for C3 and C4, about 0.5
%, is larger than the performance difference of the two base classifiers which is 0.21 %. Base
classifier C3 seems to have a larger potential of improvement by the ensemble methods than C4.
The performance of Bagging and random subspace method when using only one base classifier
is not very good; in some cases it was worse than the performance of the corresponding base
classifier. The poor performance may be due to the fact that the base classifiers were strongly
optimized on the test set. AdaBoost did quite well when using only one base classifier and
produced the best results when both base classifiers were used.
All ensemble methods using both base classifiers outperform the corresponding algorithms using
only one of the base classifiers for any combination rule. When applying the sign test the finding
that the ensemble methods using both base classifiers are better than the methods using only
one base classifier is significant using a significance level of 2%. (Please note that here the
comparison is done with the results of both base classifiers, unlike in the experiments of the last
subsection. The reason for doing this is that here both base classifiers were optimized). This
shows that the ensemble methods using both base classifiers take advantage of the diversity of
the base classifiers.
The perf. weight combination scheme was slightly better than the other combination schemes,
but the performance difference between the results of the combination schemes is rather small.
The finding of the last section that the ga weight and perf. weight combination schemes are
better for random subspace method than the vote best scheme could not be confirmed.

6.24.3 Conclusions of the two series of experiments

In almost all cases the ensemble methods using two different base classifiers were better than
the ensemble methods using only one base classifier, even when the performance of one base
classifier is much lower than the performance of the other. For a better comparison of all results
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algorithm C vote best max/min perf. weight ga. weight
Bagging C1, C2 1.22 / 0.72 % 1.5 / 1.16 % 1.16 / 0.56 %

AdaBoost C1, C2 0.28 / 0.94 % 1.5 / 0.84 % 0.94 / 0.81 %
random subspace C1, C2 1.12 / 0.59 % 1.12 / 0.34 % 0.75 / -0.07 %

Bagging C3, C4 0.18 % 0.47 % 0.75 %
AdaBoost C3, C4 0.57 % 0.18 % 0.47 %

random subspace C3, C4 0.57 % 0.94 % 0.1 %

Table 6.23: Performance increases of the ensemble methods using two base classifiers in respect
of the best result of the two corresponding ensemble methods which use only one base classifier

of the ensemble methods using two base classifiers presented in this section see Table 6.23. In
this table the performance increases of the methods in respect of the the best result of the two
corresponding ensemble methods which use only one base classifier are given. The performance
increases are in general larger for the base classifiers C1 and C2 than for the base classifiers C3

and C4. This is quite surprising as C3 and C4 are two optimized classifiers and C2 has a much
lower performance than C1. The explanation for this observation is that the classifiers C3 and C4

are not very diverse. Therefore the diversity of the base classifiers is very important for a good
performance of the ensemble methods extended by the algorithm introduced in Subsection 4.6.1.
It may be concluded that an ensemble method using two base classifiers which are diverse and
which have different performances can produce better results than an ensemble method using
two similar base classifiers which have the same performance as the best base classifier of the
first ensemble method. It is noteworthy that the best performance of the experimental setup
(3a) of 72.8 % was however achieved using the base classifiers C3 and C4. (The best result
for base classifiers C1 and C2 was 71.95 %). In the experiments in Chapter 7 two very diverse
base classifiers, namely optimized versions of the classifiers described in Sections 2.2 and 2.3,
will be used. The number of classifiers for the extended classic ensemble methods will be set
to the same numbers as used for the corresponding ensemble methods using one base classifier
(compare Subsection 6.18) to allow an unbiased comparison.

6.25 Multi simple probabilistic boosting

In this section the ensemble method multi simple probabilistic boosting (MSPB) introduced in
Subsection 4.6.3 is tested with the experimental setup (3a) in Table 6.1. The four base classifiers
C1, C2, C3 and C4 described in the last section were used. The error function e1 was not tested
as it lead to inferior results is preliminary experiments.
The classifiers were combined by the vote best ave, vote best max, perf. weight and ga weight
combination schemes. The results of the vote ga scheme are not included as they were again
the same as the results of the ga weight scheme. The average and the maximum versions of the
vote best combination scheme were usually better than the other versions of this scheme and the
performance of the different versions was very similar, therefore only the results of these two
versions are given.
The results of the experiments are shown in Tables 6.24 and 6.25. In the first table the results
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algorithm vote best ave vote best max perf. weight ga. weight
Bagging 71.67 % 71.86 % 71.95 % 71.76 %

AdaBoost 70.64 % 70.92 % 71.67 % 71.39 %
MSPB e2 71.95 % 71.58 % 71.58 % 72.33 %
MSPB e3 71.48 % 71.29 % 71.29 % 71.01 %
MSPB e4 72.05 % 72.42 % 72.23 % 72.42 %

Table 6.24: Results of the ensemble methods using base classifiers C1 and C2. The recognition
rate of the base classifiers C1 and C2 is 66.23 % and 70.17 %, respectively.

algorithm vote best ave vote best max perf. weight ga. weight
Bagging 71.29 % 71.2 % 71.67 % 71.67 %

AdaBoost 72.89 % 72.61 % 72.51 % 72.7 %
MSPB e2 73.55 % 73.36 % 73.08 % 73.17 %
MSPB e3 72.33 % 72.61 % 72.23 % 72.42 %
MSPB e4 72.98 % 72.89 % 72.7 % 72.7 %

Table 6.25: Results of the ensemble methods using base classifiers C3 and C4. The recognition
rate of the base classifiers C3 and C4 is 70.92 % and 70.71 %, respectively.

when using the base classifiers C1 and C2 are given, whereas in the second table the results of the
experiments are shown where the base classifiers C3 and C4 are used. For comparison purposes
the results of two classic ensemble methods extended by the algorithm introduced in Section 4.6.1
are also given. The results of these ensemble methods originate from the experiments in the
last section. Please note that the main comparison should be done with the extended AdaBoost
method, as AdaBoost is the classic boosting algorithm. In each experiment 10 classifiers were
produced; 5 for each base classifier.
When using the base classifiers C1 and C2 the results of MSPB were almost as good as those of
Bagging for error function e2 and better results than Bagging were achieved for error function
e4. For all error functions MSPB did better than or produced comparable results to AdaBoost.
When using the base classifiers C3 and C4 the results of MSPB are better than AdaBoost for
error functions e2 and e4, but worse for e3.
If we compare the results of MSPB of all combination schemes and error functions to the
corresponding results of AdaBoost we observed that MSPB is better in 16 cases and worse
in 6 cases. Using the sign test we conclude that the finding that MSPB is better than AdaBoost
is significant using a significance level of 3%. Please note that the prerequisite of the sign test,
the independence of the different pairs of corresponding results, is not satisfied for this test
version as the results of the different combination schemes are strongly correlated, therefore the
above mentioned finding is not that reliable. However it is indication that MSPB is a promising
ensemble method and that it may outperform AdaBoost.
The recognition rates of MSPB using the error function e3 were always lower than the corre-
sponding rates of the other two error functions for all combination schemes. This indicates that
the error function e3 is not promising and therefore it will not be used in the experiments in
Chapter 7. The number of classifiers produced by MSPB will be set to the same number as used
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for the AdaBoost algorithm to allow an unbiased comparison of all boosting algorithms.

6.26 Classifier number for ensemble methods

In previous sections the classifier numbers used in the experiments in Chapter 7 were determined
for all tested ensemble methods except the feature selection ensemble methods introduced in
Section 4.5. In this section methods to determine the optimal number of classifiers for these
ensemble methods are studied. In Subsection 6.26.1 the ensemble methods using feature search
algorithms are considered, while in Subsection 6.26.2 the ensemble methods using exhaustive
search are addressed. The heuristic ensemble methods introduced in Subsection 4.5.4 will not be
considered. For them the optimal methods found for the corresponding non-heuristic ensemble
methods will be used in the experiments in Chapter 7. For all experiments in this section the
setup (3b) in Table 6.1 was used.

6.26.1 Feature selection ensemble methods using feature search

In this subsection methods to determine the optimal number of classifiers for the feature selection
ensemble methods using feature search introduced in Subsections 4.5.1 and 4.5.2 are evaluated.
All methods tested in Subsection 6.23.1 were examined using the objective functions f2, f3 and
f4. The same notation as in that subsection will be used. Objective function f1 was not tested
as inferior results were produced using this function (compare Subsection 6.23.1). The ensemble
methods were applied to produce ensembles of size 29 and after the addition of each classifier
the ensemble was tested. For objective functions f3 and f4 the number of classifiers in the final
ensemble must be given. This number was always set to the maximal number of classifiers.
Three key values of the ensembles were measured:

• vote reject val: The performance of the ensemble on the validation set using the vote
reject combination scheme. This value can be measured during the design phase of the
classifier ensemble. In addition this is the value which is optimized by the ensemble
methods.

• vote reject test: The performance of the ensemble on the test set using the vote reject
combination scheme. This value serves as a comparison to the value of vote reject val .

• vote random: The average performance of the ensemble on the test set using the vote
random combination scheme. This value is averaged over 10 applications of the scheme.
All the methods which are tested in this section try to optimize this value. There are two
reasons why this and not another combination scheme is used. Firstly, the results of this
scheme, when averaged over 10 combinations, are far more stable then other schemes. In
addition the performance of the vote random combination scheme correlates strongly with
the performance of all versions of the vote best combination scheme. Please note that the
vote best scheme produced the best results for the considered ensemble methods.

In Figures A.32 to A.40 the results of the experiments are given. Based on these results two
kinds of methods to set the number of classifiers were designed:
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method fix 9 fix 10 fix 11 fix 12 fix 13 dyn 5 dyn 10
inv. ranksum 35 32 38 42 35 42 46
vote random 70.38 % 70.32 % 70.4 % 70.41 % 70.35 % 70.51 % 70.53 %
class. num 9 10 11 12 13 11 14.2
rank 5/5 7/7 4/4 2/3 5/6 2/2 1/1

Table 6.26: Validation of the methods which set the number of classifiers for the feature search
ensemble methods.

• Fixed number of classifiers (fix n): The ensemble always contains the same fixed number
of n classifiers. This method was used in the experiments in Section 6.23.1 with n = 10.

• Dynamic number of classifiers (dyn n): The number of classifiers is determined using
the value of vote reject val. The value of vote reject val for the classifier number i will
be denoted as f(i) in the following. For each number of classifiers i the value of f(i) is
compared to the values obtained for classifier numbers in its “neighborhood”. The smallest
number x > n is chosen as the final number of classifiers for which one of the following
conditions holds:

– x is even, f(x + 1) ≤ f(x) and f(x− 1) ≤ f(x)

– x is odd, f(x + 2) ≤ f(x), f(x− 2) ≤ f1(x) and f(x + 1) ≤ f(x)7

The reason why the parity is considered is that odd numbers of classifiers lead to a lower
number of ties than even numbers and therefore the value of f tends to be higher for them.
For this method a maximal number of classifiers should also be given.

For the results of Figures A.32 to A.40 the methods fix n with 9 ≤ n ≤ 13, dyn 5 and dyn 10
seem to be promising. The maximal classifier number for the dyn method was set to 29. To
validate the quality of the methods their results were ranked for each ensemble method and each
objective function. The number m− i+ 1 is assigned to the rank i where m is the total number
of methods which are validated8. For each method the sum of those numbers is calculated. This
sum will be denoted as the inverted rank sum. The higher the inverted rank sum, the lower
the ranks of the results of the method and the better the method performed. The inverted
rank sums of all seven considered methods are shown in Table 6.27. The row vote random in
this table contains the performance of the ensemble combined by vote random on the test set,
averaged over all ensemble methods and objective functions. The entries in row class. num.
show the average number of classifiers used. Finally the row rank show the overall ranking of the
methods where the first value considers the inverted ranksum and the second value the average
performance.
The method dyn 10 was best for both the inverted rank sum and the average performance.
This method will therefore be used in the experiments in Chapter 7. The maximal number

7If these four conditions hold true then also f(x − 1) ≤ f(x) is true, because if f(x) < f(x − 1) then x − 1
would already have been chosen as final number.

8This is similar to the assignment of numbers to the ranks used in Borda count (compare Subsection 5.2.3).
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of classifiers will be set to 23 to avoid ensembles which are too large. (The largest number of
classifiers obtained by method dyn 10 was 23).

6.26.2 Feature selection ensemble methods using exhaustive search

In this subsection methods to determine the optimal number of classifiers for the ensemble
methods using exhaustive feature search introduced in Subsections 4.5.3 are evaluated.
All but one of the methods tested in Subsection 6.23.2 were examined and the same notation as
in this previous subsection will be used. The replace exhaustive method using objective function
f4 was not tested because the time complexity of this method was very high. The methods were
applied to produce ensembles of size 29 in the case of std. exhaustive and of size 14 in the case
of replace exhaustive. The maximal number of tested classifiers for replace exhaustive was set
to such a low value because this method has a high time complexity, which increases more than
quadratically with the number of classifiers. After the addition of each classifier the ensemble
was tested and the same key values of the ensembles as in the last subsection were measured.
In Figures A.41 to A.47 the results of the experiments are given. One first important observation
from the results is that the recognition rate on the validation set usually increases, especially
for the replace exhaustive method. The reason for this is the overfitting of the methods on the
validation set. Based on the results three kinds of methods to set the number of classifiers were
designed:

• Fixed number of classifiers (fix n): The same method as in the last section.

• Dynamic number of classifiers (dyn’ n): Similar to the method dyn in the last section, yet
the condition for x to be the final number of classifiers is different: The smallest number
x > n is chosen as the final number of classifiers for which the following condition holds:

– f(n + 1) ≤ f(n) and f(n− 1) ≤ f(n)

In contrast to the dyn method of the last section the parity of n is not taken into account.
The reason for this is that because of the tendency of the two methods std. exhaustive
and replace exhaustive to overfit, f is almost always increasing on the validation set and
the dyn method of the last subsection would in many cases return the maximum number
of classifiers. Similar to the method dyn, for dyn’ a maximal number of classifiers should
also be given. For the experiments in this subsection the maximal number was the same
as the maximal tested classifier number.

• Even number with high increase (even n): It was observed that a strong increase in the
performance for an even number of classifiers on the validation set often corresponds to
an optimum of the performance on the test set. Based on this observation the smallest
number x > n is chosen as the final number of classifiers for which the following condition
holds:

– x is even, (f(x)− f(x− 1)) ≥ 2 · (f(x + 1)− f(x)) and (f(x)− f(x− 1)) > 0.
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method fix 10 fix 11 fix 12 fix 13 fix 14 fix 15 fix 16 fix 17
inv. ranksum 18 23 33 28 34 29 27 41
vote random 69.42 69.64 69.74 69.72 69.77 69.9 70.06 70.34
class. num 10 11 12 13 14 15 16 17
rank 14/14 12/12 6/10 10/11 5/8 9/7 11/6 1/1

method fix 18 fix 19 fix 20 dyn > 9 dyn > 14 even
inv. ranksum 32 40 39 23 39 33
vote random 70.23 70.32 70.17 69.61 70.31 69.76
class. num 18 19 20 13.25 17.25 12.5
rank 8/4 2/2 3/5 12/13 3/3 6/9

Table 6.27: Validation of the methods which set the number of classifiers for std. exhaustive.
The values in the row vote random are given in percentages.

The number x is used as the final number of classifiers if the increase for x is more or equal
than the double of the increase for x + 1. The condition (f(x)− f(x− 1)) > 0 guarantees
that there is an increase for x, and not a decrease.

It is reasonable to assume that for the two ensemble methods std. exhaustive and replace
exhaustive different methods will be good at determining the optimal number of classifiers, so
both methods were addressed separately.
For std. exhaustive the methods fix n with 10 ≤ n ≤ 20, dyn’ 9, dyn’ 14 and even 9 seem to be
promising. Those methods are compared in Table 6.27 where the same notation as in Table 6.26
is used.
The method fix 17 was the best. The dyn’ 14 method achieved the third rank for both the
inverted rank sum and the average performance. Furthermore the difference of the dyn’ 14
method to the best method was only 2 and 0.03 %, respectively.
In the experiments in Chapter 7 the dyn’ 14 method will be used. The reason why this method
is used instead of fix 17 is the following: In the dyn’ method the information of the test on
the validation set is used. In the experiments in this section the validation set is rather small
and the values measured on it are therefore quite unreliable. In the experiments in Chapter 7
a partial cross-validation scheme will be applied which should lead to more robust and reliable
results on the validation set. The maximal number of classifiers for dyn’ 14 will be set to 29 to
avoid ensembles which are too large.
For std. exhaustive the methods fix n with 5 ≤ n ≤ 14, dyn’ 4 and dyn’ 5 seem to be promising.
Those methods are compared in Table 6.28, where the same notation as in Table 6.26 is used.
The method dyn’ 5 was best for both the inverted rank sum and the average performance.
This method will therefore be used in the experiments in Chapter 7. The maximal number of
classifiers will be set to 14 to avoid ensembles which are too large.
It should be noted that the number of tested methods, four for std. exhaustive and three for
replace exhaustive, is rather small and therefore the superiority of the discovered methods which
set the number of classifiers is uncertain.
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method fix 5 fix 6 fix 7 fix 8 fix 9 fix 10 fix 11
inv. ranksum 21 24 23 22 22 20 18
vote random 68.6 68.74 68.73 68.74 68.71 68.52 68.42
class. num 5 6 7 8 9 10 11
rank 6/6 2/2 3/4 4/3 4/5 8/8 9/10

method fix 12 fix 13 fix 14 dyn > 4 dyn > 5
inv. ranksum 13 14 15 21 30
vote random 68.39 68.46 68.32 68.6 68.91
class. num. 12 13 14 5 10
rank 12/11 11/9 10/12 6/6 1/1

Table 6.28: Validation of the methods which set the number of classifiers for replace exhaustive.
The values in the row vote random are given in percentages.
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Chapter 7

Experiments using optimized
classifiers

In this chapter the results of the experiments using setup (6) in Table 6.1 are presented. In
Sections 7.1 and 7.2 the optimization of the two base classifiers are described. In Section 7.3
experiments with the feature selection algorithms are presented. The next section contains
results of the classic ensemble methods. In Section 7.5 the results of the ensemble methods
using partitioning of the training set are given. The new boosting algorithms and the feature
selection ensemble methods are evaluated in Section 7.6 and 7.7, respectively. In the following
section the results of some ensemble methods using several base classifiers are presented. Finally,
the best results of this and the last chapter are summarized in Section 7.9.

7.1 Optimization of geometric classifier

In this section the optimization of the geometric features based classifier introduced in Section 2.2
is presented. This classifier will be denoted as geometric classifier in the following. In the first
subsection the optimization of the number of states is shown, whereas in the second subsection
the optimization of the training method is addressed.

7.1.1 State number optimization

In this subsection the results of the application of the methods described in Section 3.1 are
shown. The experimental setup (6c) in Table 6.1 was used, where a full 10-fold cross validation
is applied and for which very stable results may be expected. In Figure 7.1 the recognition rates
measured by the validation procedure are displayed, where only values near to the optimum are
shown. The recognition rate of the base system, which is the system using a fixed number of 14
states per HMM, was 64.87 %.
The quantile method achieved a recognition rate of 68.82% with parameter q = 0.023, while the
recognition rate of the classifier, which was produced by the Bakis method with the best value
of 0.36 for parameter f , was 68.62%. The recognition rate of the optimized system on the test
set was 71.6 % for the quantile method and 70.89 % for the Bakis method. The base system

117



118 CHAPTER 7. EXPERIMENTS USING OPTIMIZED CLASSIFIERS

68.1

68.2

68.3

68.4

68.5

68.6

68.7

68.8

68.9

0.02 0.022 0.024 0.026 0.028 0.03 0.032

re
co

gn
iti

on
 r

at
e 

(i
n 

%
)

parameter q

66.8

67

67.2

67.4

67.6

67.8

68

68.2

68.4

68.6

68.8

0.32 0.34 0.36 0.38 0.4 0.42

re
co

gn
iti

on
 r

at
e 

(i
n 

%
)

parameter f

Figure 7.1: Recognition rates (in percentages) of the classifiers optimized by the quantile (left)
and the Bakis (right) method with different values for parameters q and f . The recognition rate
of the original classifier was 64.87 %.

had a performance of 67.8 % on the test set. The performance increase from the base classifier
to the optimized system was similar for the validation procedure (3.95 / 3.75 %) and the test
on the test set (3.8 / 3.09 %). This shows that unlike the experiments in Section 6.8 there is no
significant overfitting effect.
As the two methods did not produce significantly different results, the optimization of the
training method is done for both in the next subsection.

7.1.2 Optimization of the training method

In this section the optimization of the training method using the third strategy described in
Section 3.2 is presented. The experimental setup (6b) in Table 6.1 was used. The two classi-
fiers whose state numbers are optimized by the quantile and Bakis method were used as base
classifiers. The first system will be denoted as quantile system, the second as Bakis system.
In Table 7.1 the recognition rates of the two systems with increasing number of Gaussians, and
the number of training iterations between the increases in the number of Gaussians, are shown.
The recognition rates of the systems are also depicted in Figure 7.2.
The quantile system is better than the Bakis system when using more than 6 Gaussians. In
addition the behavior of the quantile system is sounder than that of the Bakis system, e.g. the
increase in the recognition rate decreases monotonic for the quantile system, but not for the
Bakis system. For these two reasons the system optimized by the quantile method will be used
in the following for the geometric base classifier.
In the next experiments the system will be trained according to the found optimal training
strategy, but only up to and including the 8th Gaussian. The reasons for not using the optimal
system with 12 Gaussians are given as follows. Firstly, the performance of this 8-Gaussian
system is only 0.5 % worse than that of the 12-Gaussian system. In addition it has a much
lower training and recognition complexity, because only 111 instead of 177 training iterations
must be done, and the likelihood of only 8 instead of 12 Gaussians must be calculated. The
most important reason for using the 8-Gaussian system is that the validation data was written
by the same writers as the training data, which could lead to overfitting. (The test data was
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number of Gaussians
system 1 2 3 4 5 6 7 8 9 10 11 12 13
quantile 4 21 18 17 18 21 6 6 16 15 18 17 5
Bakis 4 24 22 12 6 15 5 8 10 6 6 - -

number of Gaussians
system 1 2 3 4 5 6 7
quantile 68.9 % 72.93 % 75.13 % 77.37 % 78.47 % 79.23 % 79.77 %
Bakis 68.53 % 74.27 % 76.97 % 78.27 % 79.23 % 79.33 79.5 %

number of Gaussians
system 8 9 10 11 12 13 14
quantile 80.13 % 80.3 % 80.43 % 80.57 % 80.63 % 80.63 % -
Bakis 79.7 % 80.27 % 80.3 % 79.8 % - - -

Table 7.1: Recognition rates (below) and the corresponding optimal training iterations (above)
for different number of Gaussians of the systems optimized by the quantile and Bakis method

produced by different writers to the training data). Such overfitting normally happens when
there are a lot of free parameters, i.e. in the actual case a high number of Gaussians. Therefore
it is reasonable to choose a rather low number of Gaussians.
The performance of the final system on the test set is 80.36 %. The training of the system
was done in two ways: In the first approach one computer and in the second several computers
were used. In the second approach the training set is split into several parts, and the results of
these parts are fused together at the end of each training iteration. Due to the different training
processes, slightly different systems were produced. The results stated in this subsection were
produced by the second training approach. The system created by the first training approach
has a recognition rate of 80.03% for the validation procedure and 80.48% on the test set. In
the following it will not be stated which training approach was used, as this will already be
indicated by the performance of the base classifier.

7.2 Optimization of sub-sampling classifier

In this section the optimization of the sub-sampling features based classifier introduced in Sec-
tion 2.3 is presented. This classifier will be denoted as sub-sampling classifier in the following.
In [93] the features of the sup-sampling classifier were transformed by the PCA (compare Sec-
tion 3.4) and so also in the experiments of this thesis the PCA was used. There are three
meta-parameters of the classifier which should be optimized: The state numbers, the training
method, and the size of the transformed feature vector. From the experiments in Section 6.9 we
conclude that the optimization of the state numbers is not strongly dependent on the training
method. Furthermore we assume that the optimization of the state numbers is also not strongly
dependent on the size of the transformed feature vector. So the optimization of the state num-
bers was done first and its results are presented in Subsection 7.2.1. Unfortunately, it is not
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Figure 7.2: Recognition rates of the systems optimized by the quantile and Bakis method and
trained by the optimal training method for different number of Gaussians

reasonable to expect that the best feature vector size is not strongly dependent on the number
of Gaussians. Yet the number of Gaussians is determined by the training method, i.e. the
feature vector size may be strongly dependent on the training method. The following approach
to optimize both training method and feature vector size was used:

1. The approach starts with the classifier C with optimized state numbers (compare Subsec-
tion 7.2.1), single Gaussian distributions and the full PCA transformed feature vector.

2. For varying sizes of the feature vector the system C is trained in the following manner:
After each increase of the number of Gaussians a fixed number of c training iterations are
done, where c is the optimal number of training iterations for the base system. The best
found systems of all feature vector sizes are compared and the feature vector size which
produced the best system is used in the following. This part of the approach is shown in
Subsection 7.2.2.

3. The third strategy to find the optimal training method introduced in Section 3.2 was
applied with the system C using best feature vector size found in the previous step. This
part of the approach is shown in Subsection 7.2.3.

The idea of the above described approach was to produce a well, but suboptimal, trained systems
first, to select the best feature vector size and then finally to find the optimal training method.

7.2.1 State number optimization

In this subsection the results of the application of the methods described in Section 3.1. The
experimental setup (6c) in Table 6.1 was used where a full 10-fold cross validation is applied
and for which very stable results may be expected. The base classifier with single Gaussian
distributions was trained with 13 training iterations. (The number of 13 training iterations was
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Figure 7.3: Recognition rates of the classifiers optimized by the quantile (left) and the Bakis
(right) method with different values for parameters q and f on the validation set. The recognition
rate of the original classifier was 51.57 %.

found to be optimal for this base classifier). A PCA transformation was applied to the feature
vectors where the size of the feature vectors was not reduced.
In Figure 7.3 the recognition rates measured by the validation procedure are displayed where
only values near to the optimum are shown. The recognition rate of the base classifier which
used a fixed number of 14 states per HMM was 51.57 %.
The quantile method achieved a recognition rate of 55.72% with parameter q = 0.021, while
the recognition rate of the classifier produced by the Bakis method with the best value of 0.44
for parameter f was 55.7%. As the quantile method again produced better results, the system
optimized by the Bakis method will not be considered in the following. The recognition rate of
the system optimized by the quantile method on the test set was 53.55 %, while the base system
achieved only a recognition rate of 49.97 %. The performance increase from the base classifier
to the optimized system was similar for the validation procedure (4.15 %) and test on the test
set (3.58 %). This means that there is no significant overfitting effect.

7.2.2 Optimization of the feature vector size

In this subsection the determination of the optimal feature vector size is shown. The experi-
mental setup (6b) in Table 6.1 was used. For different feature vector sizes systems with different
number of Gaussians per distribution were trained. The training method was already described
in the first part of the section. All number of Gaussians up to 6 were tested and the number of
Gaussians was then increased until a maximum of the performance was found. The results of
the experiments are shown in Figure 7.4.
The best system which achieved a recognition rate of 72.2 % used transformed feature vector of
size 14, so this size will be used in the following experiments.

7.2.3 Optimization of the training method

In this section the optimization of training method using the third strategy described in Sec-
tion 3.2 is presented. The experimental setup (6b) in Table 6.1 was used. The classifier to which
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Figure 7.4: Recognition rates of the systems using different feature vector sizes

number of Gaussians
1 2 3 4 5 6 7 8 9 10 11 12
21 18 20 23 9 15 14 14 19 19 6 19

number of Gaussians
1 2 3 4 5 6 7 8 9 10 11 12
56.3 60.3 65.17 66.97 69.33 70.17 71.07 71.97 72.6 72.9 73.3 73.03

Table 7.2: Recognition rates (below) in percentages and the corresponding optimal training
iterations (above) for different number of Gaussians of the optimized system

the strategy is applied has state numbers optimized by the quantile method and works with
PCA transformed feature vectors of size 14 (compare Subsection 7.2.1 and 7.2.2).
In Table 7.2 the recognition rates of the classifier with increasing number of Gaussians and the
number of training iterations between the increases of the number of Gaussians are shown. The
recognition rates of the system are also depicted in Figure 7.5.
In future experiments the system will be trained according to the resultant optimal training
strategy, but only up to and including the 9th Gaussian. The reasons for not using the system
with all 11 Gaussians was already stated in Subsection 7.1.2. The number of 9 Gaussians was
chosen so that there is a similar performance difference between the optimal system and the
system used in the experiments for both the geometric and the sub-sampling classifier.
The performance on the test set of the system using 9 Gaussians depends on the the training
approach used (compare last paragraph of Subsection 7.1.2). When using only one computer,
a recognition rate of 71.57 % was obtained. In the case of the use of several computers, a
recognition rate of 70.22 % was achieved1. In the following it will not be stated which training

1The large performance difference is not mainly due to the different training approaches. Some small scale
experiments indicated that the performance difference may have been caused by a different order of the training
files. See Subsection 8.2.14 for more information.
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Figure 7.5: Recognition rates of the optimized system for different number of Gaussians

method parameter valid test time
validation backward search 80.03 (79.27) % 80.48 (78.74) % 9 (17)
validation forward search 77.57 % 78 % 31
validation exhaustive 80.03 (79.27) % 80.48 (78.74) % 511
parameters fisher 80.03 (78.57) % 80.48 (78.55) % 9
parameters local 80.03 (78.17) % 80.48 (76.65) % 9
parameters root local 80.03 (78.4) % 80.48 (79.29) % 9
simulation best, N = 4 78 % 76.07 % 1.85
simulation best, N = 5 78 % 76.07 % 1.9
simulation validation, N = 4 80.03 (79.27) % 80.48 (78.74) % 10.85
simulation validation, N = 5 80.03 (79.27) % 80.48 (78.74) % 10.9
original all 9 features 80.03 % 80.48 % -

Table 7.3: Results of the feature selection methods

approach was used, as this will already be indicated by the performance of the base classifier.

7.3 Feature selection for one classifier

In this section the methods which were tested in Section 6.6 are applied using the experimental
setup (6a) in Table 6.1. Feature selection algorithms are not suitable for the sub-sampling base
classifier, as this classifier uses PCA transformed features. So only the geometric base classifier
was tested. The results are shown in Table 7.3 where the same notation as in Table 6.3 is used.
The classifier using all 9 features achieved a recognition rate of 80.03 % on the validation set
and 80.48 % on the test set. Most algorithms output the full set of features. The results of these
algorithms in the case where the output of the full set is prohibited is given in brackets.
Unlike the experiments presented in Section 6.6 the best feature set for the validation set is the
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size p. fisher p. local p. local r. simulation N = 4/5 average best
1 16.07 % 16.07 % 16.07 % 40.53 % 25.93 % 40.53 %
2 50.5 % 28.03 % 45.87 % 65.9 % 45.34 % 67.07 %
3 48.7 % 48.7 % 62.3 % 77.57 % 55.73 % 77.57 %
4 58.7 % 66.2 % 73.67 % 76.2 / 76.57 % 60.2 % 76.57 %
5 72.6 % 72.23 % 75.43 % 65.77 % 66.85 % 76.6 %
6 76.9 % 73 % 76.43 % 74.83 % 72.17 % 78.3 %
7 78.2 % 75.43 % 77.23 % 78 % 76.07 % 78.7 %
8 78.57 % 78.17 % 78.4 % 79.27 % 78.03 % 79.27 %
9 80.48 %

Table 7.4: Performance of the classifiers using the best found feature sets measured on the
validation set

full set of features2. There are two reasons why the full feature set is best for the base classifier
considered in this section:

1. By using several Gaussians per distribution, the system can more effectively model the
“real” distribution of the features. When using single Gaussian distributions often the
difference of the modeled distribution to the “real” distribution was so large that the
inclusion of a feature lowered the performance.

2. The training method was optimized for the system using the full feature set. It can be
expected that the optimal training method is different for systems using other feature
sets. The proper approach would be to optimize the training method for each feature set
separately, yet the time complexity of this approach is very high.

The fact that the best feature set is the full set limits the performance increases obtainable by the
ensemble methods which produce classifiers using different feature sets (compare Section 7.7).
All methods except the forward search and the simulation best algorithms output the best feature
set, i.e. the full set. The forward search got stuck in a local minimum and the simulation
best algorithm again overestimated the small feature sets. Because of this overestimation the
simulation best algorithm should not be used when it is expected that the best feature set could
be large.
The results in Table 7.3 contain only little information of the quality of the performance esti-
mation by the parameters and the simulation methods. In Table 7.4 the performance on the
validation set of the systems using the best found feature sets for each feature set size is shown.
In this table “parameters” is abbreviated to “p.”. The average performance of the classifiers
using the feature sets of the given size is shown in column average. The entry in column best con-
tains the performance of the best feature set of the given size. The simulation method produced,
in all but one case, the same result for N = 4 and N = 5.
The p. local method is clearly inferior, as the p. local r. method outperformed it for every
feature vector size. The p. local r. method produced the best result of the parameters methods

2This is also true for the test set.
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ensemble base combination cn performance sig
Bagging geometric perf. weight 21 80.91 % 10 %

AdaBoost geometric perf. weight 14 81.89 % 0.1 %
rsm geometric ga weight 25 80.61 % 30 %

Bagging sub-sampling perf. weight 21 73.04 % 0.2 %
AdaBoost sub-sampling perf. weight 14 73.9 % < 0.01 %

Table 7.5: Results of the classic ensemble methods. The performance of the geometric base
classifiers is 80.36 %, while the sub-sampling base classifier had a performance of 71.57 %.

when considering all feature vector sizes. In 7 out of 8 cases the result of the p. local r. method
was better than the average. The superiority of the p. local r. method over the average is
therefore significant using a significance level of 4 %. For large feature vector sizes the p. fisher
method is slightly better than the p. local. r. method. In general the parameters methods are
good for large feature vector sizes. When taking only sizes larger than 4 into account always
better results than the average were obtained for all three parameters methods.
The simulation method obtained in all but one case recognition rates better than the average.
Additionally, recognition rates close to that of the best feature set were achieved in 6 out of 8
cases. The simulation method is much better than the parameters methods for small feature
vector sizes, but is comparable to them for large sizes.
In summary the simulation method is suitable for any feature vector size, while the p. fisher
method may produce better results for large sizes.

7.4 Classic ensemble methods

In this Section the classic ensemble methods introduced in Section 4.2 are evaluated using
experimental setup (6a) in Table 6.1. The ensemble methods are only used with the combination
schemes and number of classifiers found to be optimal in the last chapter.
Table 7.5 summarizes the results of the classic ensemble methods. The names of the ensemble
methods used in the experiments are shown in column ensemble where the random subspace
method is abbreviated to rsm. The entries in column base denote the used base classifiers. The
performance of the geometric and the sub-sampling base classifiers are 80.36 % and 71.57 %,
respectively. The used combination schemes are shown in column combination and the number of
classifiers are indicated in column cn. An advanced comparison test (compare Subsection 6.3.2)
was executed and the superiority of of the results of the ensemble method over the results of
the base classifier was evaluated. The significance level of the superiority is given in column sig.
Please note that the random subspace method was only executed for the geometric classifier,
because the sub-sampling base classifier uses PCA transformed features and PCA and feature
selection do not work well together.
All ensemble methods increased the performance of the corresponding base classifier. There
is only a slight increase of the performance for random subspace method (and the increase is
not statistically significant). The reason why random subspace method did not produce very
good results is that the best feature set is the full set of features and that classifiers using other
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feature sets
cn combination {CPW} {WPC} {WPC,WC}
2 score 82.23 % 81.7 % 81.73 %
2 special 82.8 % 82.4 % 82 %
3 score 82.23 % 82.6 % 82.63 %
3 special 83 % 82.56 % 83.17 %
3 vote best 81.16 % 82.03 % 81.83 %
4 score 82.03 % 82.63 % 82.1 %
4 special 82.93 % 82.87 % 82.87 %
4 vote best ave 81.45 % 81.73 % 79.97 %
4 vote best max 80.53 % 81.63 % 80.06 %
4 vote best min 80.5 % 81.63 % 79.67 %
4 vote best med 80.5 % 81.77 % 79.67 %
5 score 81.73 % 81.8 % 82.33 %
5 special 82.53 % 82.43 % 82.67 %
5 vote best ave 79.73 % 80.5 % 80.57 %
5 vote best max 79.67 % 80.6 % 80.6 %
5 vote best min 79.67 % 80.47 % 80.47 %
5 vote best med 79.67 % 80.47 % 80.47%

Table 7.6: Results of the ensembles whose classifiers are trained on the clusters produced by
k-means clustering with the indicated features. The performance of the base classifier is 80.03
%.

feature sets have much lower recognition rates (compare Section 7.3). The performance increase
obtained by Bagging is considerable (and statistical significant using a significance level of 10
% and 0.2 %, respectively). The highest recognition rates were achieved by AdaBoost. The
performance of the base classifier was increased by 1.53 % and 2.33 %, respectively.
From the results it may be concluded that AdaBoost is the most promising ensemble method
as the best performances were obtained and the smallest ensembles were used.

7.5 Ensemble method using partitioning of training set

In this section results of the ensemble method using partitioning of the training set described in
Section 4.3 are studied. Only the geometric classifier was used for the experiments. First, the
ensemble method was applied using experimental setup (6b) in Table 6.1 to select some good
parameters. The results are in displayed in Table 7.6. The notation is the same as in Table 6.14
shown in Section 6.21. The best results of each feature set is marked in bold.
The results of the special combination scheme are clearly superior. In 11 out of 12 cases the best
recognition rate was obtained using this scheme. Both the special and the score combination
schemes were consistently superior than the vote best scheme. In the following only the com-
bination with the special scheme will be considered. Using this scheme the performance of the
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classifier number
combination 2 3 4 5
score 79.53 % 79.66 % 79.92 % 79.45 %
special 79.38 % 79.81 % 80.15 % 80.11 %
vote best ave 79.53 % 79.82 % 80.25 % 79.2 %
vote best max 79.53 % 79.82 % 80.3 % 79.19 %
vote best min 79.53 % 79.82 % 80.12 % 79.16 %
vote best med 79.53 % 79.82 % 80.12 % 79.16 %

Table 7.7: Results of the ensembles whose classifiers are trained on the random clusters of equal
size. The performance of the base classifier is 80.48 %.

feature set cn performance sig
{CPW} 3 80.67 % 37 %
{CPW} 4 80.76 % 32 %
{WPC} 3 80.48 % 50 %
{WPC} 4 80.73 % 34 %

{WPC,WC} 3 81.07 % 14 %
{WPC,WC} 4 80.64 % 30%

Table 7.8: Results of the ensembles whose classifiers are trained on the clusters produced by
k-means clustering with the indicated features. The performance of the base classifier is 80.48
%.

base classifier was increased by 1.97 % to 3.13 %. It seems that all feature sets and classifier
numbers are quite suited for the ensemble method using partitioning of the training set. The
results for the classifier numbers 3 and 4 were best and so only these numbers are used to test
the ensemble method with experimental setup (6a) in Table 6.1.
For comparison purposes the performance when using random clustering was also tested. The
random clusters had all the same size. For each classifier number the ensemble method was
repeated three times and the results are averaged over the three runs. The results are shown
in Table 7.7 where the notation is the same as in Table 7.6. The results of the ensembles using
any combination scheme were always worse than those of the base classifier.
Table 7.8 shows the results of the ensemble method with experimental setup (6a). The ensembles
were always combined by the special scheme. The columns feature and cn denote the used feature
set and the number of classifiers, respectively. An advanced comparison test was executed for
each result and the superiority of the result over the the performance of the base classifier was
evaluated. The significance level of the superiority is given in column sig.
The performance of the ensemble method was always better or the same as the performance
of the base classifier. If using the sign test to compare the results of the ensemble method
to the results of the base classifier, we conclude that the ensemble method is superior using
a significance level of 4 %. The obtained increases in the recognition rate are very low when
compared to the results in Table 7.6. Please note that for the best configuration in Table 7.6,
cluster number 3 and feature set {WPC,WC}, also the best result in Table 7.8 was achieved. If
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algorithm error/α vote best max perf. weight ga weight
Bagging - 81.1 % 80.91 % 81.13 %
AdaBoost - 82.02 % 81.89 % 81.92 %
EBB 1.5 79.2 % 79.01 % 78.89 %
SPBE e1 78.77 % 78.74 % 79.38 %
SPBE e3 82.69 % 82.41 % 82.51 %
SPBE e4 82.54 % 82.6 % 81.8 %

Table 7.9: Results of the experiments with the new boosting algorithms. The recognition rate
of the base classifier is 80.36 %.

the validation procedure would have been only used to find the single best configuration, and
only this configuration would have been tested, a performance increase of 0.59 % in respect of
the base classifier would have been achieved.
Please note that the classifiers which are trained on the clusters are using suboptimal parameter
values, because those parameters were optimized for the whole training set. Such parameters
are for example the number of states and the training method. Similarly, the classifiers using
a subset of the feature set were trained with unoptimized parameters in the experiments in
Subsection 7.3. The considered ensemble method is expected to produce better results when
using classifiers with optimized parameter values.
It seems that the considered ensemble method is very good for writer dependent setups, but
only achieves small performance increases for writer independent setups.

7.6 New boosting algorithms

In this section the new boosting algorithms introduced in Section 4.4 are evaluated. The setup
(6a) in Table 6.1 was tested and only the geometric classifier was used for the experiments. The
number of classifiers produced by the ensemble methods was set to 14. The results are shown in
Table 7.9 where the same notation as in Table 7.9 in Section 6.22 is used. To compare the new
methods to classic ensemble methods, also results of Bagging and AdaBoost are shown. Here
also other combination schemes than the best found schemes of the experiments of Chapter 6
were used to allow a better comparison of the ensemble methods. The results of the combination
of the classifiers by the vote best max, perf. weight and ga weight combination schemes are given.
Please note that the perf. weight combination scheme found to be the best combination scheme
for Bagging and AdaBoost in the experiments of Chapter 6 is slightly inferior to the two other
schemes.
The recognition rate of EBB and SPBE with error function e1 are very low. The reason for
the low performance is that the classifiers produced by these ensemble methods were trained on
training sets which consisted of copies of only very few original training patterns. Thus very
specialized classifiers were trained. Such classifiers are best combined by the score combination
scheme. In fact the score combination scheme obtained recognition rates of 80.94 % and 80.7 %
for EBB and SPBE with error function e1, respectively. Both recognition rates are much better
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than the recognition rates of the other schemes and also better than the performance of the base
classifier. A way to solve the problem of training the classifiers on copies of too few original
training elements is described in Subsection 8.2.8.
The results of SPBE with error functions e2 and e3 are quite good. For all combination schemes
the recognition rates were much better than those of Bagging and in 5 out of 6 cases better
results than AdaBoost were obtained. The superiority of SPBE with error function e4 over
AdaBoost was evaluated for both vote best max and perf. weight combination schemes. The
significance level of the superiority was 9 % and 4 %, respectively. Due to time constraints
the results of SPBE with error function e3 were not compared to the results of AdaBoost. In
addition the sub-sampling base classifier was not used for testing the new boosting methods.
The SPBE algorithm outperformed AdaBoost for some combination schemes and error functions.
On the other hand, for other parameter values, the SPBE algorithm did not produce satisfying
results. Therefore it may be suitable to find the best parameter values of SPBE on a validation
set, before applying the ensemble method.

7.7 Feature selection ensemble methods

In this section experiments of the feature selection ensemble methods introduced in Section 4.5
are presented. Always the experimental setup (6b) in Table 6.1 was used. The experiments
were done only with the geometric base classifier as feature selection does not work well with
the sub-sampling base classifier.
In Subsection 7.7.1 results of the ensemble methods using underlying feature search algorithms
are studied. In Subsection 7.7.2 ensemble methods which use the results of all feature sets are
tested. Finally ensemble methods which simulate the results of the patterns of the validation
set are studied in Subsection 7.7.3. The notation used in this Section and abbreviations are the
same as in Section 6.23.

7.7.1 Feature selection ensemble methods using feature search

In this Subsection the methods described in Subsections 4.5.1 and 4.5.2 are evaluated. The
number of classifiers is dynamically selected using the method dyn 10 introduced in Subsec-
tion 6.26.1. The results of the experiments are shown in Table 7.10. The recognition rate of
the base classifier which uses the full set of features was 80.48 % on the test set and 80.03 %
on the validation set. The produced ensembles were combined by the vote best median scheme.
The entries in column f indicate the objective functions used for the feature search ensemble
methods. The recognition rates on the validation set of the ensembles combined by the vote re-
ject scheme are given in column valid. The column test shows the performance of the ensembles
on the test set. The results on the test set of the ensemble methods set were compared to the
results of the base classifier. The significance levels of the superiority of the ensemble methods
are given in column sig. Finally sets denotes the number of feature sets which were validated.
For comparison purposes also the results of the random subspace method are given. Please note
that the recognition rate given here differs from the one in Table 7.5 as another combination
scheme is used.
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algorithm f cn valid test sig sets
b. ensemble f2 15 82.97 % 82.32 % < 0.01 % 128
f. ensemble f2 17 81.4 % 81.8 % 1 % 212
b./f. ensemble f2 13 83 % 82.69 % < 0.01 % 224
b. ensemble f3 21 83.1 % 82.69 % < 0.01 % 173
f. ensemble f3 21 82.13 % 82.42 % 0.02 % 220
b./f. ensemble f3 14 83.1 % 82.51 % < 0.01 % 163
b. ensemble f4 19 83 % 82.35 % < 0.01 % 162
f. ensemble f4 14 81.83 % 82.51 % < 0.01 % 199
b./f. ensemble f4 16 83.27 % 82.51 % < 0.01 % 191
rsm - 25 - 80.76 % 20 % 0

Table 7.10: Results of the feature search ensemble methods. The recognition rate of the base
classifier was 80.48 % on the test set and 80.03 % on the validation set.

All ensemble methods produced very good results. The recognition rates of the methods were
1.04 % up to 1.93 % higher than that of the random subspace. In addition the methods are
stable as the recognition rates are in a small range of 0.89 %. The correlation of the performance
on the validation set and the performance on the test set is 0.672. This is much higher than the
correlation of 0.388 measured for the experiments of Subsection 6.23.1. The higher correlation
observed in the experiments in this subsection is due to the improved validation procedure.
However, the results of the forward search are still slightly underestimated.
There is no significant difference between the results of the different objective functions, yet
the results of the objective function f2 seem to be slightly worse than those of the other two
functions. The b./f. ensemble method was slightly better than the other methods in respect
of both ensemble size and ensemble performance. For f2 and f3 the b./f. ensemble method
produced the smallest and for f4 the second smallest ensemble. Likewise, the performance of
the b./f. ensemble method was best for f2 and f4 (together with the f. ensemble method) and
second best for f3. So the results indicate that using two search algorithms leads in general to
better results than using only one search algorithm.

7.7.2 Feature selection ensemble methods using exhaustive search

In this subsection the ensemble methods introduced in Subsection 4.5.3 are evaluated. The
number of classifiers are dynamically selected using the methods dyn’ 14 and dyn’ 5 introduced
in Subsection 6.26.2. The recognition rate of the base classifier which uses the full set of features
was 80.48 % on the test set and 80.03 % on the validation set. The produced ensembles were
combined by the vote best max scheme.
The results of the ensemble methods are shown in Table 7.11. The meaning of the entries in
the table is the same as in Table 7.10. In an additional column time the time complexity of the
algorithms are given. This time complexity was measured in multiples of the time needed for the
validation of a feature set. Please note that for any of the algorithm all 511 feature sets must
be validated first. For comparison purposes also the results of the random subspace method
are given. Please note that the recognition rate given here differs from the one in Table 7.5 as
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algorithm f cn valid test sig time
std. exhaustive f1 16 83.2 % 82.84 % < 0.01 % < 0.2
replace exhaustive f1 7 82.26 % 82.05 % < 0.01 % 1.3
std. exhaustive f2 17 83.67 % 82.94 % < 0.01 % < 0.2
replace exhaustive f2 7 82.67 % 82.41 % < 0.01 % 1.5
std. exhaustive f3 16 83.1 % 82.48 % < 0.01 % < 0.2
replace exhaustive f3 9 83 % 82.05 % 0.02 % 1.3
std. exhaustive f4 16 83.5 % 82.69 % < 0.01 % 0.4
replace exhaustive f4 9 83.1 % 82.44 % < 0.01 % 4
rsm - 25 - 80.73 % 22 % -

Table 7.11: Results of the ensemble methods using exhaustive feature search. The recognition
rate of the base classifier was 80.48 % on the test set and 80.03 % on the validation set.

another combination scheme is used.

All ensemble methods produced very good results. The recognition rate of the methods were 1.32
% up to 2.21 % higher than that of the random subspace. In addition the methods are stable as
the recognition rates are in a small range of 0.89 %. The correlation of the performance on the
validation set and the performance on the test set is 0.798. This value is very high, especially as
the correlation measured for the experiments of Subsection 6.23.2 was -0.082. This again shows
that the improved validation procedure led to a higher correlation of the performances on the
validation and the test set.

There is no significant difference between the results of the different objective functions, yet the
objective function f2 produced slightly better results than the other three functions. The std.
exhaustive method produced large ensembles with very good recognition rates, while the replace
exhaustive method produced much smaller ensembles which had lower recognition rates.

The feature selection ensemble methods using feature search produced on average ensembles of
size 16.6 with an average recognition rate of 82.42 % (compare last subsection). The average
performance of the replace exhaustive method of 82.24 % is slightly lower than this recognition
rate, but its average ensemble size of 8 is less than a half of the average ensemble size of the
methods tested in the last section. On the other hand the std. exhaustive method obtained
an average recognition rate of 82.73% by using a similar number of classifiers than the feature
selection ensemble methods using feature search. Please note that both the replace exhaustive
and the std. exhaustive methods require the results of the validation set of all possible feature
sets.

From the results of this and the last subsection the following strategy can be deduced: If the
design time should not be too high, the feature selection ensemble methods using feature search
should be used. If the design time is not important and the time complexity of the recognition
should be small, then the replace exhaustive method should be applied. If both design time and
time complexity of the recognition are not critical, then the std. exhaustive method should be
applied.



132 CHAPTER 7. EXPERIMENTS USING OPTIMIZED CLASSIFIERS

method cn f N vote best max vote best med
b. ensemble 12 f2 4 81.53 (2) % 81.53 (2) %
b. ensemble 23 f2 5 83 (<0.01) % 83.03 (<0.01) %
b. ensemble 11 f4 4 80.98 (16) % 80.98 (16) %
b. ensemble 13 f4 5 81.8 (0.5) % 81.83 (0.2) %
b./f. ensemble 16 f2 4 82.2 (0.05) % 82.2 (0.05) %
b./f. ensemble 13 f3 4 81.22 (7) % 81.22 (7) %
b./f. ensemble 15 f4 4 81.83 (0.5) % 81.7 (0.5) %
rsm 25 - - 80.73 (22) % 80.76 (20) %

Table 7.12: Results of the heuristic version of the feature search ensemble methods. The recog-
nition rate of the base classifier was 80.48 %.

method cn f N vote best max vote best med
std. exhaustive 15 f1 2 81.07 (13) % 81 (15) %
std. exhaustive 15 f1 3 81.4 (3) % 81.4 (3) %
std. exhaustive 15 f1 5 82.2 (0.02) % 82.2 (0.02) %
std. exhaustive 15 f3 2 81.56 (2) % 81.4 (3) %
std. exhaustive 15 f3 3 82.08 (0.1) % 82.11 (0.1) %
std. exhaustive 15 f3 5 81.89 (0.5) % 81.89 (0.5) %
replace exhaustive 7 f1 5 81.37 (4) % 81.31 (5) %
replace exhaustive 7 f3 5 80.79 (29) % 80.58 (44) %
rsm 25 - - 80.73 (22) % 80.76 (20) %

Table 7.13: Results of the heuristic version of the ensemble methods using exhaustive feature
search. The recognition rate of the base classifier was 80.48 %.

7.7.3 Feature selection ensemble methods using simulations

In this subsection the heuristic versions of the ensemble methods tested in the previous two
subsections are evaluated. The used heuristic is described in Subsection 4.5.4. The ensemble
methods are abbreviated by the same terms than in the two last subsections. The number
of classifiers was determined by the same methods than in the non heuristic methods. The
ensembles were combined by the vote best max and vote best median combination schemes,
because those schemes were found to be best in previous experiments (compare Section 6.23.3).
The results of the feature search ensemble methods are shown in Table 7.12 and the results of
the feature selection ensemble methods using exhaustive search are given in Table 7.13. The
names of the tested methods are shown in column method. The number of classifiers in the
ensemble is given in cn. The entry in column f indicates the objective function used for the
ensemble method. The number N is a parameter of the method that simulates the results of
the validation set (compare Subsection 3.3.3). The two last columns show the performance of
the ensembles using the indicated schemes on the test set. The results of the ensemble methods
on the test set were compared to the results of the base classifier. The significance levels of the
superiority of the ensemble methods over the base classifier are given in brackets.
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The time complexities of the methods are the same as in the experiments in Section 6.23.
Both combination schemes performed very similarly. The replace exhaustive method had quite
a low performance. The reason for this is that this method strongly overfits on the simulated
results. As the replace exhaustive method also has a higher time complexity than the std.
exhaustive method, it is not suitable for the considered application and only the results of the
std. exhaustive method will be addressed in the following. The value 2 for parameter N seems
not to be suitable for the std. exhaustive method. The b./f. ensemble method produced results
of similar quality than the b. ensemble method, although two search algorithms are used. The
reason for this is that the forward search is inferior to the backward search because the used
heuristic overestimates small feature sets (compare Section 6.23.3).
There is no significant difference of the results of the feature search ensemble methods and the
results of the std. exhaustive method. It seems that the benefit of the std. exhaustive method
of considering all feature sets was set back by a stronger overfitting effect.
All methods (but the replace exhaustive) produced superior results than the random subspace
method. This shows that the approximated results contain useful information for selecting
feature sets. The results of the methods tested in this subsection seem to be instable. Very
high recognition rates were obtained, including the overall best rate of all feature selection
algorithms of 83.03 %, but also quite low ones. The heuristic versions of the feature selection
ensemble methods did worse than the ensemble methods using the real results, of course. On
average the performance was about 0.6 % lower for the feature selection algorithms and 1 %
lower for the std. exhaustive method.
The heuristic version of the feature search ensemble methods have the following shortcoming
in respect of the non-heuristic versions: Firstly, the results are very instable. Secondly, the
performance is lower. On the other hand the heuristic versions have a far lower time complexity.
The time complexity of the std. exhaustive and the feature search ensemble methods tested in
this subsection was always lower than two times the complexity of validating a feature set. The
lowest time complexity of a non-heuristic method was 64 times higher.

7.8 Ensemble methods using several base classifiers

In this section ensemble methods using several base classifiers are evaluated. The experiments
are done with the setup (6a) in Table 6.1. The following two base classifiers were used:

• Cg: The geometric classifier (compare Section 7.1). The performance of this classifier is
80.36 % on the test set.

• Cs: The sub-sampling classifier (compare Section 7.2). The performance of this classifier
is 70.22 % on the test set. For the ensemble methods only using this base classifier a
different training approach was used for which the base classifier has a recognition rate of
71.57 %.

The classifiers of the ensembles were combined by the vote best max, perf. weight and ga weight
schemes. Only the results of the maximum version of the vote best combination scheme is given
because all versions had similar performances.
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method C cn vote best max perf. weight ga. weight
Bagging Cg 21 81.1 % 80.91 % 81.13 %
Bagging Cs 21 73.07 % 73.04 % 72.95 %

AdaBoost Cg 14 82.02 % 81.89 % 81.92 %
AdaBoost Cs 14 74.3 % 73.9 % 73.77 %
Bagging Cg,Cs 20 83 % 83.64 % 83.21 %

AdaBoost Cg,Cs 14 83.76 % 83.79 % 84.07 %
MSPB, e2 Cg,Cs 14 83.79 % 84.16 % 84.16 %
MSPB, e4 Cg,Cs 14 83.18 % 83.64 % 83.36 %

Table 7.14: Results of the ensemble methods using several base classifiers. The recognition rate
of the base classifiers Cg and Cs is 80.36 % and 70.22 (71.57) %, respectively.

The results of the experiments are shown in Table 7.14. The tested ensemble methods are given
in column method where MSPB is the abbreviations for multi simple probabilistic boosting which
was introduced in Subsection 4.6.3. For this ensemble method also the used error function e is
given. The entries in column C denote the base classifiers used for the experiments. If there is
only one classifier then the classic ensemble method was applied. The results of these ensemble
methods are included for comparison purposes. If the entry contains both base classifiers and
the method is not MSPB then the algorithm introduced in Section 4.6.1 was applied to extend
the classic ensemble method. The entries in column cn are the number of classifiers produced by
the ensemble methods. If there are two base classifiers then cn

2 classifiers were generated from
each base classifier. Please note that for Bagging Cg,Cs only 20 instead of 21 classifiers were
used so that there are the same number of classifiers generated from each base classifier.
All ensemble methods improved the performance of the corresponding base classifier for all
combination schemes. The ensemble methods using both base classifiers have better recognition
rates than the ensemble methods which only use one base classifier. This is quite surprising as
the base classifier Cs has an over 10 % lower performance than the base classifier Cg. It seems
that the increase of diversity when using classifiers from base classifier Cs had a larger impact
on the ensemble performance than the inferior individual performances of those classifiers. The
same phenomenon was already observed in the experiments of Subsection 6.24.1.
When considering only the ensemble methods using both base classifiers the ordering of the
methods according to their performance is as follows: Bagging, MSPB e4, AdaBoost and MSPB
e2. This is true for all three combination schemes.
To analyze the results of the ensemble methods more thoroughly, the best results of the ensemble
methods are compared to each other. For each pair of ensemble methods the significance of the
superiority of the better ensemble method was calculated.
The results of this calculation are shown in Table 7.15. The entries in the table are the signif-
icance levels of the superiority. Only the results of the best ensemble method using one base
classifier, AdaBoost using the geometric base classifier, was used for the comparison.
From the results of Table 7.15 it may be concluded that there is no significant difference between
the performance of Bagging and MSPB e4. Also there is no significant difference between the
performance of AdaBoost and MSPB e2. It seems that the MSPB algorithm did not produce
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AdaBoost Cg, Cs Bagging Cg, CS MSPB, e4 AdaBoost Cg

MSPB, e2 42 % 10 % 9 % < 0.01 %
AdaBoost Cg, Cs - 14 % 17 % < 0.01 %
Bagging Cg, CS - - 0 % 0.05 %

MSPB, e4 - - - 0.1 %

Table 7.15: Significance level of the superiority of the ensemble method referred to in the first
column over the ensemble method referred to in the first row

superior results to AdaBoost as it was the case in the experiments in Section 6.25. A possible
reason for this was already stated in Section 7.6: The classifiers produced by these ensemble
methods were trained on training sets which consisted of copies of only very few original training
patterns. This was especially the case for MSPB e4. A way to solve the problem of training the
classifiers on copies of too few original training elements is described in Subsection 8.2.8.

7.9 Summary of the best results

In this section the best results obtained in the experiments in this and the last chapter are
summarized. The best results of the following five categories of ensemble methods are given:

1. Classic ensemble methods (compare Section 4.2).

2. Ensemble methods using partitioning of training set (compare Section 4.3).

3. New boosting algorithms (compare Section 4.4).

4. Feature selection ensemble methods (compare Section 4.5).

5. Ensemble methods using several base classifiers (compare Section 4.6).

The best results of experimental setups (3a) and (6a) are shown in Tables 7.16 and 7.17, re-
spectively. The first column of these tables shows the categories of the best ensemble methods.
The names of these ensemble methods are given in the second column. For category two not the
name of the ensemble method, but the used parameter values for the clustering are given. The
used number of classifiers and combination schemes are shown in the third and fourth columns.
Finally, the column rec. rate shows the performance of the created ensemble on the test set.
For experimental setup (3a) the largest increase in the recognition rate of 5.81 % was obtained
by the b./f. feature search ensemble method. This corresponds to an error reduction of 17.21 %.
For experimental setup (3a) the largest increase in the recognition rate of 3.8 % was obtained
by MSPB. This increase in recognition rate corresponds to an error reduction of 19.35 %.
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cat. ensemble method cn combination scheme rec. rate.
1 random subspace method 25 ga weight 69.35 %
2 features={WPC,WC} 5 special 70.83 %
3 EBB, α = 1.5 10 ga weight 69.82 %
4 b./f. feature search, f2 10 vote best med 72.04 %
5 MSPB, e2 10 vote best max 73.55 %

Table 7.16: Information on the best tested ensemble methods for experimental setup (3a). The
performance of the base classifier is 66.23 % for the first four categories. In the case of the
ensemble method of the fifth category the two base classifiers had the performances of 70.92 %
and 70.71 %, respectively.

cat. ensemble method cn combination scheme rec. rate.
1 AdaBoost 14 vote best max 82.02 %
2 features={WPC,WC} 3 special 81.07 %
3 SPBE, e3 14 vote best max 82.69 %
4 heuristic b. feature search, f2, N = 5 23 vote best med 83.03 %
5 MSPB, e2 14 perf. weight 84.16 %

Table 7.17: Information on the best tested ensemble methods for experimental setup (6a). The
performance of the base classifier is 80.48 % for the first four categories. In the case of the
ensemble method of the fifth category the two base classifiers had the performances of 80.36 %
and 70.22 %, respectively. Please note that for the method of category 2 an improvement from
80.03 % to 83.17 % was achieved on the validation set.



Chapter 8

Conclusions and future work

In this chapter conclusions of the experiments are drawn and future work is suggested.

8.1 Conclusions

The main goal of the thesis was the evaluation of classic and new multiple classifier systems
(MCS) methods in the domain of handwriting recognition. The focus of the thesis was on en-
semble methods, yet also different combination schemes were considered. As the performance of
every MCS method depends on the performance of the base classifiers, a considerable amount
of time has been spent on the optimization of the base classifiers. In the context of this thesis a
number of new ensemble methods and combination schemes were introduced. In initial experi-
ments with suboptimal base classifiers some well performing ensemble methods and combination
schemes were selected and methods for the optimization of the base classifiers were evaluated.
In addition the best values of the free parameters of the ensemble methods were estimated.
Then the ensemble methods using the best found combination schemes and parameter values
and optimized base classifiers were tested.
The best optimized base classifier obtained a recognition rate of 80.48 % in a handwritten word
recognition task with a vocabulary of size 3,997, i.e. a 3,997 class-problem was considered. All
classic ensemble methods were able to increase this performance. The best recognition rate
of 82.02 % was obtained by AdaBoost. Further increases were achieved by using the ensemble
methods introduced in this paper. The best performance obtained by the feature search ensemble
method was 83.03 % and an ensemble method using several base classifiers even obtained a
recognition rate of 84.16 %. The performance increases are not very large, but it should be
taken into account that handwriting recognition is one of the most difficult tasks in the domain
of pattern recognition.
In summary, it can be stated that the performance of the handwritten word recognizers can
be increased by using MCS methods. This is especially the case for some of the methods
introduced in this thesis. Most of the introduced MCS methods are not restricted to the domain
of handwriting recognition and may also be useful for other pattern recognition problems.
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8.2 Future works

In the following some new methods are outlined which may be tested in future studies. In
addition, some new experiments using the methods proposed in this thesis are suggested.

8.2.1 Optimization of the parameters with tasks similar to the testing

In Chapter 6 the optimal values of the free parameters of the ensemble methods and the best com-
bination schemes were established. Those optimal parameter values and combination schemes
were then used in the experiments of Chapter 7 where another recognition task was considered
and an optimized base classifier was used. An alternative approach would be to establish those
optimal parameter values and combination schemes using the same recognition task and base
classifier. This is because more exact values can be expected with this approach. The above
mentioned approach was not used in the thesis because of its high time requirement.

8.2.2 Feature ensemble methods with special HMM classifier combination

In Section 5.4 the special HMM classifier combination scheme was introduced. One of the
conditions of its application was that the feature vectors input to the HMMs are the same for all
classifiers. For the classifiers produced by the feature selection ensemble methods introduced in
Section 4.5 and for related methods this not the case as every classifier uses a different subset of
the whole feature set. Using the method outlined in this subsection the special HMM classifier
combination scheme can also be applied to classifiers using different subsets of the whole feature
set. The three steps of the methods are:

1. The ensemble method is applied and the classifiers are trained.

2. The HMMs of all classifiers are modified. For all features not present in the subset of the
whole feature set used by the classifier a “dummy” distribution is inserted. This “dummy”
distribution is a single Gaussian where the mean is set to the global mean of the feature
and the variance is set to a very large number. Because the variance is very large, different
values for that feature result in almost the same likelihood, i.e. the value of the feature is
irrelevant. So all features not present in the subset of the whole feature set used by the
classifier are irrelevant and the output class of the classifier remains the same. Note that
although the output class remains the same there will be a constant offset of the score
values of the modified classifier to the score values of the original classifier.

3. Because all HMMs are now modified to allow the input of the whole feature vector, the
HMM classifier combination scheme as introduced in Section 5.4 may be applied.

8.2.3 Feature ensemble methods using several base classifiers

In Subsection 4.5.2 the description is given how the ensemble method using one underlying
feature selection algorithm can be improved by applying several feature selection algorithms.
The results of some experiments of Chapter 6 and Chapter 7 have shown that the use of several
feature selection algorithms may increase the performance. The results of the experiments in
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Input: A set of feature selection algorithms S = {S1(f, L), . . . , Sm(f, L)}, where f is the ob-
jective function and L a list of subsets, which are prohibited as result; BCS = {BC1, . . . ,BCm}
a set of base classifiers; n is the desired number of classifiers.
Output: Classifiers C1, . . . , Cn.

for(i:=1;i≤n;i++)
select feature selection algorithm CS from set S;
select base classifier BC from set BCS;
fs is the set of all already used feature sets for base classifier BC;
fsi = CS(f, fs) where BC is used as base classifier;
Ci is the classifier which has CB as base classifier and uses t feature set fsi;

return C1, . . . , Cn;

Table 8.1: Ensemble method using several feature selection algorithms and base classifiers

Sections 6.24 and 7.8 lead to the conclusion that the use of several base classifiers may also
increase the performance. It is straightforward to combine both approaches. The algorithm of
such a combination is shown in Table 8.1 where the same notation as in Table 4.8 was used.
The base classifiers and feature selection algorithms can be randomly selected or according to a
special order.
Similarly to the above described approach, also the ensemble methods using exhaustive feature
search introduced in Subsection 4.5.3 may be extended for the use of several base classifiers. In
each step of these ensemble methods all possible feature sets are considered. In the extended
version all possible pairs of base classifiers and feature sets are considered. If for example there
are two base classifiers each with 511 possible feature sets then a total of 2·511=1022 pairs are
considered per step.

8.2.4 More stable ga weight combination scheme

The weighted voting scheme with optimized weights introduced in Subsection 5.2.2 and abbre-
viated as ga weight scheme produced good but quite unstable results in the experiments. A
way to partially solve the problem of instability is the following: Instead of applying the genetic
algorithm once to get a set of weights for the classifiers, the genetic algorithm is applied several
times to produce a set of weight sets. In the recognition process the weighted voting combination
scheme is then applied with each of these weight sets producing several results. The final result
is then determined by voting over the results of all weight sets.
The premise of the above described approach is that genetic algorithm produces weight sets of
different qualities. By voting over the output produced by several such weights sets, a more
stable result is expected. It may even be that the average recognition rate of the combination
scheme increases. (The performance of an ensemble of classifiers combined by voting is often
better than the average performance of the individual classifiers). As the calculation of the
sum of weights for the classes is much faster than the recognition process of the classifiers, the
additional time complexity of the above described approach is negligible.



140 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2.5 Adaption of the Viterbi and Baum-Welch algorithms

The classifiers described in Chapter 2 use the Baum-Welch algorithm [76] for the training of the
HMMs and the Viterbi algorithm [76] for the recognition. Both algorithms treat the transition
probabilities between the states and the likelihood values of the output distributions of the states
in the same way, although probabilities and likelihoods are not the same type of values (e.g. the
sum of all probabilities is always 1 which is not the case for likelihoods). In text line recognition
where the probabilities of the language model are used in conjunction with the likelihood values
produced by he recognition of the word models a so called grammar scale factor is used [64, 93].
The probability of the language model to the power of this grammar scale factor is used for
the calculation of the final score value1. Similarly to the grammar scale factor, a transition
probability scale factor may be used, i.e. the original transition probability to the power of
this factor may be used for the calculation of the score value. The optimal value for this factor
must be empirically determined. Fortunately this value is likely to be independent of the other
parameters of the HMMs, like the number of states, and may therefore be separately optimized.

8.2.6 Other training strategies

In [78, 79] methods to select the optimal number of states and allographs2 for each character
HMM are presented. It may be promising to apply these methods to the classifiers described in
Chapter 2. The design process of the classifier would then be the following:

1. Training of the base classifier using single Gaussian distributions

2. Optimization of the number of allographs and states

3. Selection of the optimal training method (compare Section 3.2)

The step (2) and (3) can be repeated several times to improve the system.

An alternative design process is the following:

1. Setting the state numbers of the HMMs to a low value

2. Training of the classifier using single Gaussian distributions

3. Facultative: Optimization of the training method

4. Testing of the classifier on the training set in “forced alignment” mode to get the character
boundaries [103]

5. Extract character images

1When using log likelihoods the log probability of the language model is multiplied by the grammar scale
factor.

2In the cited papers the term writing variants is used for allographs.
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6. For each character separately the optimal number of states, allographs and the best train-
ing method of its HMM are determined. For the first two parameters the methods of
[78, 79] may be applied or simply a range of different values can be tested. The quality of
the model can be measured in three ways:

(a) Sum of the log likelihood values of the patterns of this character. This measure could
lead to severe overfitting, as the HMMs and the patterns of the other characters are
not considered. Note that exactly this value is optimized in the Baum-Welch training
algorithm.

(b) Character recognition rate. The likelihood values of all character HMMs for the
validation patterns of the actual character are calculated. The number of times the
likelihood of the HMM corresponding to the actual character was higher than the
likelihoods of all other HMMs is counted. Note that the other HMMs are not yet
optimized, so the comparison is not fair. To solve this problem the step (6) may be
repeated several times.

(c) The discriminative training [72] may be used instead of the maximum likelihood
training of the Baum-Welch algorithm. In discriminative training the HMM is op-
timized to distinguish the patterns of the actual character from the patterns of all
other characters.

8.2.7 Extension of new boosting methods for several base classifiers

In Subsection 4.6.1 an approach to extend the ensemble methods using one base classifier to
ensemble methods using several base classifiers is described. The same approach is, of course,
also applicable with the new boosting ensemble methods introduced in Section 4.4. As those
ensemble methods produced often better results than the AdaBoost algorithm in the experiments
of Chapter 6, it may be expected that the extended versions of the methods also outperform the
extended version of AdaBoost.

8.2.8 Modified version of the new boosting algorithms

The new boosting algorithms introduced in Section 4.4 and their multi-base-classifiers exten-
sions introduced in Section 4.6.2 all have the following implicit assumption: The pattern whose
inclusion in the training set has the most positive impact on the probability of a pattern x to
be classified correctly is the pattern x itself. This leads to the strategy that patterns which will
certainly be classified correctly by the ensemble are not included in the training set, as it is more
profitable to use instances of misclassified patterns instead. A reason why the above mentioned
assumption may be flawed is as follows. The Baum-Welch algorithm optimizes the product of
the likelihoods of the training patterns for the HMMs of the correct classes. Yet we want to
maximize the differences of the likelihoods for the correct models and the likelihoods for the
other models. So it may be that even when the likelihoods of the HMMs of the correct classes
are high, other HMMs have higher likelihoods. It was observed that this happens often when
the training set consists of instances of only few patterns. As the assumption may be flawed it
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could be profitable to include also instances of patterns which will be certainly classified cor-
rectly by the ensemble in the training set. Another reason why the inclusion of instances of such
patterns in the training set may be a good idea is to avoid overfitting. The overfitting effect
is especially strong when training on instances of only few samples and when using Gaussian
mixture distributions with many Gaussians.
The results of the new boosting ensemble methods and their multi-base-classifiers extensions were
quite promising in Chapter 6, but some results in Chapter 7 were very poor. The reasons why
the ensemble methods deteriorated when using the optimized base classifier are the following:

1. Gaussian mixture instead of single Gaussian distributions were used leading to a stronger
overfitting.

2. The recognition rate of the optimized base classifier was high, so only few training patterns
were misclassified. This led to training sets which contained instances of only few patterns
as the correctly classified patterns were not included.

One solution to the above described problem is to include patterns in the training set which
are correctly classified by the ensemble. The proposed modification of the ensemble methods
is as follows: A parameter β is introduced. The selection probabilities p(x) calculated by the
ensemble methods is only used to sample a fraction of 1 − β of the training set3. The rest of
the training set is sampled from patterns correctly classified by the actual ensemble. Note that
the ensemble methods introduced in this thesis are included as a special case with β = 0. The
optimal value for β is application dependent and can be empirically evaluated. Alternatively
the obtained recognition rates of the classifier when training on parts of the training set with
different sizes may be used as guideline for choosing β.
The optimal value of β for the experimental setups used in Chapter 6 seems to be low, as good
results for β = 0 were achieved. For the experimental setups used in Chapter 7 a higher value
of β could lead to good results. Half and half bagging uses an approach similar to the one
introduced in this subsection where β = 1

2 (compare Subsection 4.2.5).
In Subsection 4.6.2 it was noted that different boosting methods were used for the design of the
advanced boosting algorithms, but only the one based on simple probabilistic boosting produced
promising results. It may be that the problem of the other algorithms was the same as the one
described above and that with different values for β than 0 they produce good results.

8.2.9 Feature selection ensemble methods with other objective functions

The ensemble methods described in Section 4.5 use four objective functions. The objective
functions are based on the performance of the actual ensemble combined by the vote reject
scheme (compare Subsection 5.2.1). The values of the objective functions are equal to this
performance plus an additional term in which the possibility that a wrong ensemble result
becomes correct when adding more classifiers is taken into account. The vote reject scheme was
chosen, because it is simple, robust, and there is a strong correlation of its results with the
results of other voting schemes. It may yet be promising to base the object functions on the
combination scheme which will be finally used to combine the classifiers during recognition. (In

3In effort based boosting a new value of parameter α should be used where αnew = αold · 1
1−β
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the experiments of this thesis the combination of the classifiers produced by the feature selection
ensemble methods was always done by a version of the vote best combination scheme). So in
the above described approach the combination scheme used during the design process and the
combination scheme used for the recognition are the same.

8.2.10 Combination of ensemble methods using partitioning

In Section 4.3 the ensemble methods using partitioning of the training set, also called the parti-
tions based ensemble methods, were introduced. Those ensemble methods divide the training set
into different partitions and train the individual classifiers on one or several of these partitions.
For the partitioning a clustering algorithm was used to produce clusters of words with similar
writing style. In the experiments of this thesis five feature sets were used for the clustering algo-
rithm and the cluster numbers was varied from 2 to 5. Each different combination of feature set
and cluster number produced a different ensemble of classifiers. The idea of the new ensemble
method is simple: Some ensembles produced by different feature sets and cluster numbers are
fused to a single ensemble. This new ensemble contains a large number of diverse classifiers and
may therefore be of a high quality.

8.2.11 Sequential application of ensemble methods

In Chapter 4 several ensemble methods were presented. In this subsection the approach of the
sequential application of ensemble methods is discussed. The approach starts by applying the
“first-order” ensemble method to the base classifier. Then to each of the produced classifiers
the “second-order” ensemble method is applied producing an ensemble for each of the classifiers
generated by the “first-order” ensemble method. The classifiers of all ensembles produced by
the “second-order” ensemble method constitute the final ensemble.
In the following the compatibility of the different ensemble methods for the sequential application
is studied. First the ensemble methods are categorized into three types:

• sampling: All ensemble methods which train the classifiers on training sets sampled from
the original training set are of this type. Such ensemble methods are Bagging, AdaBoost
and the new boosting algorithms (see Subsections 4.2.1 and 4.2.2 and Section 4.4). As the
partitioning of the training set may also be regarded as a special sampling, the ensemble
method using partitioning of the training set (see Section 4.3) also belongs to this type.

• feature: The feature ensemble methods include all feature selection ensemble methods
and the random subspace method (see Section 4.5 and Subsection 4.2.3).

• architecture: The methods of this type include every ensemble method producing clas-
sifiers for which the value of a parameter is varied. The ensemble method introduced in
Subsection 4.2.4 is of this type.

The compatibility of the different types of ensemble methods is shown in Table 8.2. The number
in the brackets refer to the explanation given below.
The explanations for the entries given in Table 8.2 are the following:
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second order
first order sampling feature architecture
sampling no (1) no (2) no (2)
feature yes no (1) no (3)
architecture yes yes (yes) (1)

Table 8.2: Compatibility of the different types of ensemble methods for the sequential application

1. In general two ensemble methods of the same type should not be used sequentially because
by doing so the diversity of the classifiers is produced twice in the same way and the
diversity of the classifiers in the final ensemble will be low. An exception to this rule is the
sequential application of two architecture ensemble methods, because two very different
parameters may be varied. E.g. the state number of the HMMs and the HMM topology
could be varied when using HMM classifiers.

2. The sampling ensemble methods should always be used as second-order methods. The
reason for this is that they reduce the size of the training data of the individual classifiers4.
If they are used as first-order methods only a part of the original data is available to the
second-order ensemble methods.

3. When using architecture and feature ensemble methods together, the architecture method
should be used first. The reason for this is that for the application of the feature ensemble
methods all parameters of the classifier must already be set.

In Subsection 4.6.1 an approach was proposed in which an ensemble method is applied to each
classifier of a set of base classifiers. The resulting ensembles are then fused to one ensemble.
This approach may be regarded as the sequential application of the “ensemble method” which
created the base classifiers and another ensemble method. Of course the creation of the base
classifiers is not really an ensemble method as the base classifiers were designed by hand. Yet
in respect of the compatibility for the the sequential application the approach introduced in
Subsection 4.6.1 has the same behavior as the architecture ensemble methods.
In theory, more than two ensemble methods may sequentially be applied, yet the size of the final
ensemble increases exponentially with the number of ensemble methods.

8.2.12 Adaption of the confidence based classifiers reduction scheme

In Section 5.5 the confidence based classifiers reduction (CBCR) combination scheme was intro-
duced. When using the CBCR scheme classifiers for which the confidence of the result is lower
than a threshold are not used by the underlying combination scheme. A possible adaption to
this scheme is to use a local threshold instead of a global one. A local threshold depends only
on the confidence values of the classifiers for the considered test pattern. Such a local threshold
for example is a fraction of the best confidence value obtained for the actual test pattern. In
the original version of the CBCR scheme the classifiers which obtained low confidence values

4Here the number of different training elements is meant, i.e. not counting multiple copies of the training
elements.
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are not used for the combination. In the adapted version classifiers which obtained low confi-
dence values compared to the confidence values of the other classifiers are not used. Of course
it is also possible to use both a local and a global threshold. An example of the use of both
thresholds is the following: Only classifiers which have a confidence higher than t1 and higher
than t2 multiplied by the highest confidence obtained for the actual test pattern are used by the
underlying combination scheme.

8.2.13 Weights and normalization parameters calculation on validation set

The weights for the weighted voting schemes introduced in Subsection 5.2.2 and the parameters
of the normalization procedure introduced in Subsection 5.3.3 were determined using the training
set. Instead of the training set also a validation set could be used to calculate these values. The
advantage of using a validation set is that the values are no longer biased as when using the
training set. An example of such a biased value is the performance of a 1-nearest neighbor
classifier estimated on the training set. A 1-nearest-neighbor classifier always has a recognition
rate of 100 % on the training set which is a poor estimation of the performance of the classifier
on the test set.

8.2.14 Different order of training files

It was observed that different orders of the training files lead to different HMM classifiers. When
using single Gaussian distributions, the differences were only small, but there were considerable
differences when using Gaussian mixtures. The large performance difference of the two sub-
sampling base classifiers is mainly due to the different training file orders (compare last paragraph
of Subsection 7.2.2). The fact that different training file orders lead to different HMM classifiers
may be exploited to create an ensemble: for each trained classifier another training file order
may be used. The diversity of such classifiers is not expected to be very large, yet the individual
performance of the classifiers is high, because, unlike in Bagging, the whole training set is used
for training.

8.2.15 Other future work

In this subsection some other future works are listed:

• Many experiments of Chapter 7 were carried out only once. To obtain more stable results
the experiments could be repeated several times.

• The IAM database which was shortly described in Section 2.4 contains far more words
than used in this thesis. So experiments with larger sets of words may be carried out.

• This thesis only considers word recognition. In future work the topic of multiple classifier
systems in line and sentence recognition may be addressed.
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Appendix A

Appendix

A.1 Figures and Tables

In this section some figures and tables of the experiments are displayed. These figures and tables
are shown in the appendix because their inclusion in the sections in which they are referred to
would have severely hampered the readability.
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Figure A.1: Time complexity of N -best recognition in seconds
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Figure A.2: Memory complexity of N -best recognition
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Figure A.3: Recognition rate of the classifiers outputting N -best lists
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Figure A.4: Comparison of the normalized and unnormalized vote best average combination
schemes for Bagging
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Figure A.5: Comparison of the normalized and unnormalized vote best maximum combination
schemes for Bagging
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Figure A.6: Comparison of the normalized and unnormalized vote best minimum combination
schemes for Bagging
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Figure A.7: Comparison of the normalized and unnormalized vote best median combination
schemes for Bagging
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Figure A.8: Comparison of the normalized and unnormalized vote best average combination
schemes for AdaBoost
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Figure A.9: Comparison of the normalized and unnormalized vote best maximum combination
schemes for AdaBoost
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Figure A.10: Comparison of the normalized and unnormalized vote best minimum combination
schemes for AdaBoost
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Figure A.11: Comparison of the normalized and unnormalized vote best median combination
schemes for AdaBoost
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Figure A.12: Comparison of the normalized and unnormalized vote best average combination
schemes for the random subspace method
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Figure A.13: Comparison of the normalized and unnormalized vote best maximum combination
schemes for the random subspace method
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Figure A.14: Comparison of the normalized and unnormalized vote best minimum combination
schemes for the random subspace method
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Figure A.15: Comparison of the normalized and unnormalized vote best median combination
schemes for the random subspace method
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Figure A.16: Performance of the confidence based classifiers reduction combination scheme using
different underlying combination schemes for Bagging



A.1. FIGURES AND TABLES 165

0.674

0.676

0.678

0.68

0.682

0.684

0.686

0.688

0.69

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

re
co

gn
iti

on
 r

at
e

rejection threshold

 vote best average
 vote best maximum
 vote best minumum

 vote best median

0.67

0.672

0.674

0.676

0.678

0.68

0.682

0.684

0.686

0.688

0.69

0 0.1 0.2 0.3 0.4 0.5

re
co

gn
iti

on
 r

at
e

rejection threshold

 vote ga
 vote perf.

 perf. weight 
 ga weight

Figure A.17: Performance of the confidence based classifiers reduction combination scheme using
different underlying combination schemes for AdaBoost
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Figure A.18: Performance of the confidence based classifiers reduction combination scheme using
different underlying combination schemes for the random subspace method
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Figure A.19: Performance of the confidence based classifiers reduction combination scheme using
different underlying combination schemes for architecture variation
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Figure A.20: Results of the three combination schemes using weights for Bagging
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Figure A.21: Results of the three combination schemes using weights for AdaBoost
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Figure A.22: Results of the three combination schemes using weights for the random subspace
method

0.65

0.655

0.66

0.665

0.67

0.675

0.68

5 10 15 20 25

re
co

gn
iti

on
 r

at
e

number of classifiers

vote reject
vote random

vote best max
perf. weight

Figure A.23: Results of different combination schemes for Bagging
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Figure A.24: Results of different combination schemes for AdaBoost
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Figure A.25: Results of different combination schemes for the random subspace method
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Figure A.26: Performance of Bagging for different vocabulary sizes

method characters

“ ’ : . , ( ) # ; * - 0 1 2 3 4 5 6 7
Quantile 13 12 10 5 6 17 23 46 18 71 21 26 13 28 25 30 25 22 32
Bakis 9 12 6 4 6 10 10 53 8 26 20 18 15 19 19 16 19 16 28

8 9 a b c d e f g h i j k l m n o p q
Quantile 17 25 19 21 19 21 15 13 19 29 11 18 20 10 26 19 16 19 16
Bakis 14 16 18 17 14 19 16 13 16 17 10 15 16 9 25 18 15 16 17

r s t u v w x y z A B C D E F G H I J
Quantile 11 14 14 18 20 28 23 20 32 24 27 22 22 26 13 21 22 11 24
Bakis 12 13 13 18 16 23 16 18 20 18 24 17 23 19 24 20 18 10 17

K L M N O P Q R S T U V W X Y Z
Quantile 27 19 28 29 29 22 60 21 19 28 27 26 27 63 20 22
Bakis 18 15 23 22 21 22 22 21 18 22 19 16 26 24 17 19

Table A.1: State numbers of the character models obtained by the Quantile and Bakis methods
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Figure A.27: Performance of AdaBoost for different vocabulary sizes
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Figure A.28: Performance of the random subspace method for different vocabulary sizes
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Figure A.29: Performance of Bagging for different training set sizes
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Figure A.30: Performance of AdaBoost for different training set sizes
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Figure A.31: Performance of the random subspace method for different training set sizes
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Figure A.32: Results of the b. ensemble method using objective function f2
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Figure A.33: Results of the f. ensemble method using objective function f2



176 APPENDIX A. APPENDIX

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

5 10 15 20 25

re
co

gn
iti

on
 r

at
e

classifiers

vote reject val
vote reject test

vote random

Figure A.34: Results of the b./f. ensemble method using objective function f2
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Figure A.35: Results of the b. ensemble method using objective function f3
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Figure A.36: Results of the f. ensemble method using objective function f3
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Figure A.37: Results of the b./f. ensemble method using objective function f3
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Figure A.38: Results of the b. ensemble method using objective function f4
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Figure A.39: Results of the f. ensemble method using objective function f4
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Figure A.40: Results of the b./f. ensemble method using objective function f4
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Figure A.41: Results of std. exhaustive using objective function f1
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Figure A.42: Results of std. exhaustive using objective function f2

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

5 10 15 20 25

re
co

gn
iti

on
 r

at
e

classifiers

vote reject val
vote reject test

vote random

Figure A.43: Results of std. exhaustive using objective function f3
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Figure A.44: Results of std. exhaustive using objective function f4
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Figure A.45: Results of replace exhaustive using objective function f1
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Figure A.46: Results of replace exhaustive using objective function f2

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

2 4 6 8 10 12 14

re
co

gn
iti

on
 r

at
e

classifiers

vote reject val
vote reject test

vote random

Figure A.47: Results of replace exhaustive using objective function f3
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