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Part I

Preface
The goal of this preface is to serve as a small introductory guide to certain
aspects of the theory of representations of quivers, which are implicitly as-
sumed or only noted very briefly in the following two parts of this document.
However, this guide is not intended to be complete or self-contained. In par-
ticular, no proofs of the presented results are included and only references
are given instead.

1 Modules vs. Representations of quivers

At the beginning of any studies in mathematics, one of the first topics to get
in touch with is linear algebra – the theory of vector spaces over a field. Later
on, when moving from linear algebra to modules over a ring, at first sight
one might not expect all too dramatic changes in theory, since the axioms
for a module and those for a vector space look “pretty much the same”. But
in fact things are completely different, and the concept of a module over a
ring turns out to be too general than to bring forth an interesting theory.
However, narrowing the scope to certain subclasses of rings enhances the
richness of properties of the corresponding categories of modules.

One such subclass of rings, where a lot of investigation has been done
and is still going on, are finite dimensional algebras over an algebraically
closed field K. Nowadays, a commonly used concept for studying modules
over finite dimensional K-algebras are quivers and representations of quivers
over K. Originally invented by P. Gabriel in [2], the language of quivers and
their representations is more appealing to intuition than the one of modules
over finite dimensional K-algebras. This is particularly true when it comes
to explicit computations.

A quiver Q is an oriented graph, i.e. a set Q0 of vertices possibly linked
by a set Q1 of arrows. Figure 1 shows some examples. Unless anything else
is specified explicitly, a quiver Q is always considered to be finite, i.e. the
sets Q0 and Q1 are both finite.

We denote the tail and the head of an arrow α : i → j by tα = i and
hα = j, respectively. A path σ : r  s of length l in Q is a sequence of
consecutive arrows αl · · ·α1 such that tα1 = r, hαl = s, and hαi = tαi+1, for
i = 1, . . . , l − 1. For each vertex i ∈ Q0 there is a path εi : i i of length 0.
Moreover, each arrow of Q is a path of length 1.
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Part I 1 Modules vs. Representations of quivers
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Figure 1: Some examples of quivers

A representation X of a quiver Q over a field K consists of a family

{X(i) ; i ∈ Q0}

of finite dimensional K-vector spaces together with a family

{X(α) : X(i) → X(j) ; α : i→ j in Q1}

of K-linear maps. Figure 2 gives an example.

•

Q : • // •
55kkkkkk

))SSSSSS
•

K
X = K

( 1
1 )
// K2

( 1 0 ) 55jjjjjj

( 0 1 )
))TTTTTT

K

Figure 2: A representation X of a quiver Q

A morphism f : X → Y of representations of Q is a family

{f(i) : X(i) → Y (i) ; i ∈ Q0}

of K-linear maps such that the diagram

X(i)
f(i) //

X(α)
��

Y (i)

Y (α)
��

X(j)
f(j) // Y (j)

commutes for each arrow α : i → j in Q1. We denote by HomQ(X, Y ) the
set of all morphisms from the representation X to Y . This set is seen to
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Part I 1 Modules vs. Representations of quivers

be a finite dimensional K-vector space. Moreover, the composition of two
morphisms f : X → Y and g : Y → Z given by

(g ◦ f)(i) = g(i) ◦ f(i),

for all i ∈ Q0, is a morphism from X to Z. Since in addition the composition
of morphisms is K-bilinear, rep(Q) carries the structure of a K-category.

Given a path σ = αl · · ·α1 in Q and a representation X of Q, we define
the K-linear map X(σ) = X(αl) · · ·X(α1). Moreover, we denote by Kσ the
one dimensional K-vector space having as basis the path σ. With this, a
quiver Q gives rise to a K-algebra

KQ =
⊕

σ : r s,
path in Q

Kσ.

The multiplication of elements of KQ is defined by setting

(σ : r  s) · (τ : u v) =

{
σ · τ : u s if v = r,

0 if v 6= r,

for all paths σ and τ in Q. Similarly, an arbitrary representation X of Q
gives rise to a left KQ-module

MX =
⊕
i∈Q0

X(i).

The exterior product for MX is defined by setting

(σ : r  s) · x =

{
X(σ) · x if x ∈ X(r),

0 if x ∈ X(i), i 6= r,

for all paths σ in Q and for all vectors x ∈ X(i), i ∈ Q0. With these
constructions we get an equivalence between the category rep(Q) of all rep-
resentations of Q and the category mod KQ of all left modules over KQ.
Note that KQ is a finite dimensional K-algebra if and only if the quiver Q is
finite and contains no oriented cycles, i.e. contains no non-trivial paths with
identical starting and ending point.

There is a generalization to the above constructions which we only want
to sketch very briefly: Let I be an ideal of KQ defined by a system

R =

{
ri =

li∑
j=1

aijσij ; i = 1, . . . , k, aij ∈ K, σij a path in Q

}
,
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Part I 2 Some facts on representations

of K-linear combinations of paths in Q, where R satisfies some additional
conditions which are required for the technical details of the construction
and which are omitted here. A representation X of Q is said to be bound by
I if the linear map

X(ri) =

li∑
j=1

aijX(σij)

vanishes for all ri ∈ R. We call the pair (Q, I) a bounded quiver and denote
by rep(Q, I) the full subcategory of rep(Q) formed by all representations
of Q bound by I. There is a categorial equivalence between rep(Q, I) and
mod KQ/I. And with this generalized construction, every module category
mod Λ, where Λ is a finite dimensional K-algebra, is equivalent to the cate-
gory rep(Q, I) for an appropriate bounded quiver (Q, I). The keyword here
is Morita-equivalence. For a complete although rather condensed description
of the above concepts, see [1, §4].

2 Some facts on representations

The reason for not going further into details on bounded quivers in the pre-
vious section is that we will further narrow our scope and from now on only
focus on finite quivers without relations and without oriented cycles. In
the language of modules this corresponds to restricting to finite dimensional
hereditary K-algebras and their module categories. We will come back to the
definition of a hereditary algebra later in this section. For the entire section
we fix a quiver Q with properties as above once for all. Any representations
mentioned are with reference to Q if nothing else is specified.

2.1 Subrepresentations and quotients

Let Y be a representation, and suppose that

{X(i) ⊆ Y (i) ; i ∈ Q0}

is a family of subspaces such that

Y (α)(X(i)) ⊆ X(j),

for all arrows α : i→ j in Q1. Setting X(α) = Y (α)|X(i) for each arrow, we
obtain a representation X which we call a subrepresentation of Y . Moreover,
given a subrepresentation X of Y , the quotient representation Y/X is defined
by setting

(Y/X)(i) = Y (i)/X(i),
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Part I 2 Some facts on representations

for each vertex i ∈ Q0, and by taking the map

(Y/X)(α) : Y (i)/X(i) −→ Y (j)/X(j),

induced by Y (α), for every arrow α : i→ j in Q1.

Example 2.1.

(i) For any representation X, the zero representation as well as X itself are
subrepresentations of X. We call them the trivial subrepresentations
of X.

(ii) Suppose f : X → Y is a morphism of representations. Then ker f and
im f are subrepresentations of X and of Y , respectively. Moreover, f
induces an isomorphism f : X/ ker f → im f .

(iii) Suppose Q, X and Y are as follows:

Q : • // • X = 0
0 // K Y = K 1 // K

Then clearly, X is a subrepresentation of Y , and the quotient Y/X is
given by

Y/X = K 0 // 0 .

Note that Y/X is not a subrepresentation of Y . In contrast to the sit-
uation for vector spaces, a quotient representation need not necessarily
be a subrepresentation, and conversely a subrepresentation need not
necessarily be a quotient.

Whenever X is a subrepresentation of Y then the inclusion X ↪→ Y and the
projection Y � Y/X are both morphisms of representations.

2.2 Direct sums and indecomposable representations

For representations X and Y we define the direct sum X ⊕ Y , by setting

(X ⊕ Y )(i) = X(i)⊕ Y (i),

for each vertex i ∈ Q0, and by setting

(X ⊕ Y )(α) =

(
X(α) 0

0 Y (α)

)
,

for every arrow α : i → j in Q0. With this, a representation Z is called
indecomposable if Z 6= 0 and if Z is not isomorphic to the direct sum of
two non-trivial subrepresentations X and Y of Z. Otherwise Z is called
decomposable.
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Part I 2 Some facts on representations

Example 2.2. Suppose Q, X, Y and Z are as follows:

Q : • // • X = 0
0 // K Y = K 1 // K Z = K2

( 1 1 ) // K

Then X is indecomposable, since it is one dimensional over K. As we have
seen in part (iii) of example 2.1, the quotient representation

Y/X = K 0 // 0

is not a subrepresentation of Y . Hence X is the only non-trivial subrepresen-
tation of Y up to isomorphism, and so Y must be indecomposable. Finally,
Z is decomposable:

Z ' ( K 1 // K )⊕ ( K 0 // 0 ).

With the notion of decomposition of a representation, we are in the po-
sition to state a first important result:

Theorem 2.3 (Krull, Schmidt). Let Z 6= 0 be a representation.

(i) There is a decomposition of Z as a direct sum of indecomposable rep-
resentations Z = Z1 ⊕ · · · ⊕ Zk.

(ii) If Z = Z ′
1⊕· · ·⊕Z ′

l is another decomposition of Z into indecomposable
representations then k = l, and up to renumbering Zi ' Z ′

i, for all i.

The above theorem holds in a more general context than that of representa-
tions of quivers. For a proof see for instance [3, §3.4].

2.3 Quivers of finite/infinite representation type

With the notion of decomposition of representations, it appears natural to
ask about the number of indecomposable representations of a given quiver.
We say Q is of finite or infinite representation type, depending on whether
there are finitely or infinitely many indecomposable representations up to
isomorphism, respectively. Note that the disjoint union of two quivers K
and L is of finite representation type if and only if both K and L have this
property. So concerning the question of whether Q is of finite or infinite
representation type, we may assume Q to be a connected quiver, i.e. in any
decomposition of Q as a disjoint union of two full subquivers, one of these
subquivers must be empty. Now there is a famous classification:
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Part I 2 Some facts on representations

Theorem 2.4 (Gabriel). A connected quiver Q is of finite representation type
if and only if the underlying non-oriented graph |Q| is one of the following
Dynkin diagrams:

An : 1 2 . . . n− 1 n (n ≥ 1)

n− 1

Dn : 1 2 . . . n− 2
hhhhh

WWWWWW (n ≥ 4)
n

4

E6 : 1 2 3 5 6

4

E7 : 1 2 3 5 6 7

4

E8 : 1 2 3 5 6 7 8

The proof of this theorem relies to large parts on the theory of root systems
and can be found in [2]. Based on the theorem we will frequently call a quiver
of finite representation type a Dynkin quiver, meaning that the underlying
non-oriented graph of the quiver is a disjoint union of Dynkin diagrams An,
Dn, E6, E7 and E8.

2.4 Some special kinds of representations

Here we want to describe some representations featuring special properties.
To begin with, a representation is called simple if its only subrepresetations
are the trivial ones. For a fixed vertex i ∈ Q0, we denote by Si the represen-
tation defined by setting

Si(j) =

{
K if j = i,

0 if j 6= i,

for every vertex j ∈ Q0, and Si(α) = 0 for each arrow α ∈ Q1. Since all Si
are one dimensional, they must be simple representations. Conversely, if S
is simple then it is isomorphic to some Si. Indeed, suppose not. Then up
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Part I 2 Some facts on representations

to replacing Q with a full subquiver if necessary, we may assume that S is
sincere, i.e. S(i) 6= 0 for all i ∈ Q0. As there exists a sink k ∈ Q0, i.e. a
vertex which may be the head of some arrows but the tail of none, clearly Sk
is a non-trivial subrepresentation of S. Now this gives a contradiction.

Next we turn to projective representations. A representation is called
projective if any morphism g : P → Y factors through any other morphism
f : X → Y , whenever f is surjective. Expressed in terms of diagrams this
means the following:

X
∀f // // Y

P

∀g

OO

∃h

ffN N N N N N N

(1)

For any surjective morphism f : X → Y and any morphism g : P → Y there
exists a morphism h : P → X such that the diagram shown in (1) commutes.

We intend to construct all projective indecomposable representations up
to isomorphism. For a fixed vertex i ∈ Q0, we define a representation Pi, by
setting

Pi(j) =
⊕
σ : i j,
i, j fixed

Kσ,

for every j ∈ Q0, and by defining

Pi(α)(σ) = α · σ,

for any path σ : i j in Q starting at i, and for any arrow α : j → k in Q1.

Example 2.5. Suppose the quiver Q is given by

Q : 1 α // 2 3
βoo .

Then the representations Pi are as follows:

P1 = Kε1
α // Kα 0

0oo ' K 1 // K 0
0oo

P2 = 0
0 // Kε2 0

0oo ' 0
0 // K 0

0oo

P3 = 0
0 // Kβ Kε3

βoo ' 0
0 // K K1oo

In order to show that the representations Pi are projective, we need the
following result:
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Part I 2 Some facts on representations

Lemma 2.6 (Yoneda). For any vertex i ∈ Q0 and any representation X,
the map

Φ: HomQ(Pi, X) −→ X(i),

sending f ∈ HomQ(Pi, X) to f(i)(εi) is an isomorphism of K-vector spaces.

The above lemma holds in the general context of category theory. For a
proof see for instance [7]. The translation of our situation to the language
of categories is as follows: The quiver Q may be seen as a K-category with
objects the vertices of Q, and with morphism spaces

Mor(i, j) =
⊕
σ : i j,
i, j fixed

Kσ,

for all i, j ∈ Q0. Then a representation X is a functor

X : Q −→ vectK

from Q to the category vectK of finite dimensional K-vector spaces, sending
a vertex i ∈ Q0 to X(i) and an arrow α : i → j in Q1 to the K-linear map
X(α) : X(i) → X(j). Particularly, the representation Pi turns out to be the
functor Mor(i, ?), for each i ∈ Q0.

Now we show that the Pi are projective. By assumption, f : X → Y in
diagram (1) is surjective. So we conclude that g : Pi → Y satisfies

g(i)(εi) ∈ Y (i) ⊆ f(i)(X(i)).

Hence by applying the Yoneda lemma, a morphism h : Pi → X completing
the commutative diagram (1) for P = Pi may be constructed.

From the definition of Pi, it is easy to see that Pi(i) ' K for all i ∈ Q0.
This implies that the ring of endomorphisms of Pi

EndQ(Pi) = HomQ(Pi, Pi) ' K,

and this in turn means that Pi is indecomposable. Up to isomorphism the
Pi are the only projective indecomposable representations. In order to verify
this, we need the following construction of a new representation from a given
representation X and a finite dimensional K-vector space V . We define this
new representation X ⊗ V by setting

(X ⊗ V )(i) = X(i)⊗K V,

for each vertex i ∈ Q0 and

(X ⊗ V )(α) = X(α)⊗K idV : X(i)⊗K V −→ X(j)⊗K V,

11



Part I 2 Some facts on representations

for every arrow α : i → j in Q1. For a fixed representation Z and a fixed
vertex i ∈ Q0 we define a morphism

pZ,i : Pi ⊗ Z(i) −→ Z,

by setting
pZ,i((σ : i j)⊗ z) = Z(σ)(z) ∈ Z(j),

for any path σ starting in i, and any z ∈ Z(i). Using this, we set

pZ = (. . . , (pZ,i), . . .) :
⊕
i∈Q0

Pi ⊗ Z(i) −→ Z.

Note that by construction the morphism pZ is surjective.
Now suppose P is a projective indecomposable representation. As

pP :
⊕
i∈Q0

Pi ⊗ P (i) −→ P

is surjective and P is projective, the identity morphism idP factors through
pP . Thus P must be an indecomposable direct summand of

⊕
Pi⊗P (i) and

hence must be isomorphic to some Pi, by theorem 2.3.
The above constructions also give way to defining a canonical projective

resolution for an arbitrary representation Z. Given such a Z, there is a short
exact sequence

0 −→
⊕
α∈Q1

Phα ⊗ Z(tα) −→
⊕
i∈Q0

Pi ⊗ Z(i) −→ Z −→ 0. (2)

For details, particularly concerning the maps occurring in (2), see [1, §5.1].
The existence of a projective resolution of length at most 1 for arbitrary rep-
resentations Z ∈ rep(Q) as shown in (2) is equivalent to any of the following
properties:

(i) Any subrepresentation of a projective representation of Q is projective.

(ii) The extension groups ExtnQ(X,Y ) of order n ≥ 2 vanish for arbitrary
representations X and Y of Q.

An algebra yielding a module category which has one and hence all of the
above properties is called hereditary. As already mentioned earlier in this
section, finite dimensional hereditary K-algebras over an algebraically closed
field K correspond exactly to quiver algebras for finite quivers without rela-
tions and without oriented cycles.
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Part I 2 Some facts on representations

Before turning to so called injective representations we want to establish
a duality construction for representations, based on the duality construction
for vector spaces. The reason for this will become clear later on. Denote by

D : vectK −→ vectK

the functor assigning to a K-vector space its dual. From linear algebra it is
well known that D is a contravariant equivalence of categories and that D2

is isomorphic to the identity functor. Also note that D translates surjective
K-linear maps to injective ones and vice versa. This induces a contravariant
equivalence called duality of representations and again denoted by

D : rep(Q) −→ rep(Qop),

where Qop is the quiver arising from Q by keeping the set of vertices of
Q but replacing each arrow α : i → j with its reversed α∗ : j → i. Using
the same symbol D for both the duality of vector spaces and the duality of
representations will cause no confusion, as it will always be clear from the
context which functor is meant. For any representation X ∈ rep(Q) its dual
DX ∈ rep(Qop) is defined by setting

(DX)(i) = D(X(i)),

for each vertex i ∈ Q0, and

(DX)(α∗) = D(X(α)),

for every arrow α ∈ Q1. Similarly, the dual Df ∈ HomQop(DY,DX) of an
arbitrary morphism f ∈ HomQ(X, Y ) is given by defining

(Df)(i) = D(f(i)),

for each i ∈ Q0. Note that as for vector spaces the dual of a surjective
morphism of representations is injective and vice versa, and again the square
of the duality functor for representations is isomorphic to the identity.

A representation I is called injective if any morphism g : X → I factors
through any other morphism f : X → Y , whenever f is injective. In terms
of diagrams this reads as follows:

X

∀g
��

� � ∀f // Y

∃h
xxp p p p p p p

I

(3)
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Part I 2 Some facts on representations

For any injective morphism f : X → Y and any morphism g : X → I there
exists a morphism h : Y → I making the diagram in (3) commutative.

Using the duality construction above, it turns out that a representation
I ∈ rep(Q) is injective if and only if its dual DI ∈ rep(Qop) is projective.
In particular, the only injective indecomposable representations of Q are
Ii = DP op

i , where P op
i is the projective indecomposable representation of Qop

associated with the vertex i ∈ Q0.

Example 2.7. Suppose the quiver Q and its opposite Qop are given by

Q : 1 α // 2 3
βoo Qop : 1 2

α∗oo β∗ // 3

Then the representations P op
i are as follows:

P op
1 = Kε∗1 0

0oo 0 // 0 ' K 0
0oo 0 // 0

P op
2 = Kα∗ Kε∗2

α∗oo β∗ // Kβ∗ ' K K1oo 1 // K

P op
3 = 0 0

0oo 0 // Kε∗3 ' 0 0
0oo 0 // K

Hence the injective indecomposable representations of Q are:

I1 ' K 0 // 0 0
0oo

I2 ' K 1 // K K1oo

I3 ' 0
0 // 0 K0oo

2.5 The Auslander-Reiten quiver

Finally, we want to introduce the Auslander-Reiten quiver ΓQ associated
with the quiver Q. This is a very powerful tool in representation theory,
and many of the arguments and methods used in the two main parts of this
document are in one or the other way related to ΓQ.

As a preparation we first collect some more definitions and facts. Given
morphisms f ∈ HomQ(X, Y ) and g ∈ HomQ(Y, Z), suppose there exist mor-
phisms f ′ ∈ HomQ(Y,X) and g′ ∈ HomQ(Z, Y ) such that f ′ ◦ f = idX
and g ◦ g′ = idZ . Then f is called a section and g is called a retraction.
For non-isomorphic indecomposable representations X and Z, a morphism
h ∈ HomQ(X,Z) is called irreducible if for any factorization h = f ◦ g either
f is a section or g is a retraction.

14



Part I 2 Some facts on representations

Note that the quiver algebra KQ is the direct sum

KQ =
⊕
i∈Q0

Pi.

This implies that HomQ( ? ,KQ) is a functor from rep(Q) to rep(Qop) which
carries the projective indecomposable representation Pi of Q to P op

i . By
composition with the duality functor D, we get the functor

F = DHomQ( ? ,KQ) : rep(Q) −→ rep(Q).

For a non-projective indecomposable representation X, we apply F to the
canonical projective resolution of X. This gives a new short exact sequence

0 −→ τX −→
⊕
α∈Q1

Ihα ⊗X(tα) −→
⊕
i∈Q0

Ii ⊗X(i) −→ 0. (4)

For the maps occurring in (4), see [1, §5.2]. The representation τX is called
the Auslander-Reiten translate of X, and the map τ thus defined is called
the Auslander-Reiten translation. Note that τ is a bijection from the iso-
morphism classes of non-projective indecomposable representations to those
of non-injective indecomposable representations. Its inverse τ−1 is defined
similarly, for non-injective indecomposable representations.

For a non-projective indecomposable representation X, a non-split exact
sequence

0 // N // E
f // X // 0

is called an Auslander-Reiten sequence (or an almost split sequence) if N is
indecomposable and if every morphism g : Y → X which is not a retraction
factors through f . Now there is an important result ensuring the existence
of Auslander-Reiten sequences. A proof of it can be found in [1, §1].

Theorem 2.8. For any non-projective indecomposable representation X
there exists a unique Auslander-Reiten sequence

0 // N // E // X // 0

up to isomorphism. Moreover, N is isomorphic to τX. Similarly, for
any non-injective indecomposable representation Y there exists a unique
Auslander-Reiten sequence

0 // Y // E ′ //M // 0

up to isomorphism, and M is isomorphic to τ−1Y .
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Part I 2 Some facts on representations

Now we are in the position to describe the Auslander-Reiten quiver ΓQ.
As the name suggests, ΓQ is a quiver in the sense of our definition. There
is exactly one vertex in ΓQ for each isomorphism class of indecomposable
representations of Q, and we label each vertex with a representative of the
corresponding isomorphism class. If X and Y are vertices of ΓQ then there
is an arrow from X to Y if and only if HomQ(X,Y ) contains an irreducible
morphism. According to theorem 2.4 this description implies that ΓQ is a
finite quiver if and only if Q is a Dynkin quiver.

Unless specified otherwise, from now on we will always assume that Q
is a connected Dynkin quiver. The Auslander-Reiten quiver is related to
Auslander-Reiten sequences in the following way: Suppose X is a vertex in
ΓQ and f1, . . . , fk are all the arrows starting in X. Assuming that the arrow
fi ends in Yi for i = 1, . . . , k, there is an arrow gi : Yi → τ−1X in ΓQ for each
Yi, and the sequence

Y1
g1

&&LLLLLLL
⊕

0 // X

f1
;;vvvvvv

fk ##H
HHHHH τ−1X // 0
⊕
Yk

gk

88rrrrrrr

is an Auslander-Reiten sequence. Omitting the zeros to the left and to the
right, this sequence describes an elementary unit of ΓQ called a mesh. The
construction of ΓQ can now be accomplished in the following way: Start by
establishing every possible irreducible inclusion relation among the projective
indecomposable representations Pi. Then every constellation

Pi1
Pi

( �
55kkkkkk

v�
))SSSSSS

Pik

such that no further irreducible inclusion for Pi is possible, is the left half of
a mesh in ΓQ. Since Auslander-Reiten sequences are exact, it is possible to
compute the dimension vector of τ−1Pi. Note that for Dynkin quivers the iso-
morphism class of an indecomposable representation is uniquely determined
by its dimension vector. Hence, as τ−1Pi is required to be indecomposable,
it can be constructed up to isomorphism from the dimension information.
Thus every left half of a mesh can be completed. The process of completing
meshes induces new left halves of meshes which can again be completed, etc.
This “knitting” algorithm comes to an end as soon as the left hand vertices
of all left halves of meshes turn out to be injective indecomposable represen-
tations. For a more formal foundation of the above description, consult [1,
§6].
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Part I 2 Some facts on representations

Example 2.9. Suppose Q and Qop are given as follows:

Q : 1 α // 2
β // 3 4

γoo Qop : 1 2
α∗oo 3

β∗oo γ∗ // 4

We list the projective and injective indecomposable representations:

P1 = K 1 // K 1 // K 0
0oo I1 = K 0 // 0

0 // 0 0
0oo

P2 = 0
0 // K 1 // K 0

0oo I2 = K 1 // K 0 // 0 0
0oo

P3 = 0
0 // 0

0 // K 0
0oo I3 = K 1 // K 1 // K K1oo

P4 = 0
0 // 0

0 // K K1oo I4 = 0
0 // 0

0 // 0 K0oo

Establishing the irreducible inclusions among the Pi yields the situation

P1

P2

??�����

P3

??�����

��?
??

??

P4

(a) Irreducible inclusions

P1

P2

??�����

��?
??

??

P3

??�����

��?
??

??
____ τ−1P3

P4

??�����

(b) First mesh completed

Figure 3: First steps for the construction of ΓQ

pictured in figure 3(a). Now P2, P3 and P4 form the left half of a mesh,
which is completed in figure 3(b), by adding the representation

τ−1P3 = P2 ⊕ P4/P3 ' 0
0 // K 1 // K K1oo

and the corresponding arrows. With the completion of the first mesh (marked
by a dashed line in figure 3(b)), there arise two new left halves of meshes, the
first one formed by P4 and τ−1P3, and the second one by P1, P2 and τ−1P3.
The finally resulting Auslander-Reiten quiver ΓQ is shown in figure 4. Note
that the maps within the representations have been omitted here, since the
non-trivial ones can always be chosen to be 1.
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Figure 4: The completed Auslander-Reiten quiver ΓQ

3 Geometric and combinatorial methods

In this section we want to describe some geometric aspects of representa-
tion theory and also introduce some combinatorial methods based on the
Auslander-Reiten quiver ΓQ, which are used in the following two parts of
this document. As before, if nothing else is specified then Q is a connected
Dynkin quiver, i.e. Q is of finite representation type. However, note that
most of the results presented here hold for a much bigger class than that of
Dynkin quivers.

3.1 Affine spaces of representations

We will assume throughout that Q has n vertices, i.e. Q0 = {1, . . . , n}. We
call an n-tuple

d = (d1, . . . , dn) (all di ∈ N0)

a dimension vector, and we say that a representation Z is of dimension d if
dimK Z(i) = di for i = 1, . . . , n. Conversely, for a representation Z we denote
its dimension vector by dimZ. We define

rep(Q,d) = {Z ∈ rep(Q) ; dimZ = d}

to be the set of all representations of Q of dimension d. For each vertex
i ∈ Q0, we fix a basis for the vector spaces Z(i) occurring in representations
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Part I 3 Geometric and combinatorial methods

Z ∈ rep(Q,d). Then rep(Q,d) may be identified with

rep(Q,d) =
∏
α∈Q1

Mat(dhα × dtα,K),

and this way it becomes obvious that rep(Q,d) is a K-vector space of dimen-
sion

N = dimK rep(Q,d) =
∑
α∈Q1

dtα · dhα.

Let K[rep(Q,d)] be the algebra of regular (or polynomial) functions on
rep(Q,d). Denoting by

{Xα,i,j ; α ∈ Q1, i ≤ dhα, j ≤ dtα}

the dual basis of the standard basis

{Eα,i,j ; α ∈ Q1, i ≤ dhα, j ≤ dtα}

of rep(Q,d), we get the following description for K[rep(Q,d)]:

K[rep(Q,d)] = K[Xα,i,j]α∈Q1, i≤dhα, j≤dtα .

Hence K[rep(Q,d)] is isomorphic to the ring of polynomials in N indetermi-
nates over K.

Example 3.1. Let Q be the quiver

Q : 1
α // 2

β // 3

and d = (2, 2, 1) a dimension vector. Then the generic representation of
rep(Q,d) becomes

X = K2

�
Xα,1,1 Xα,1,2

Xα,2,1 Xα,2,2

�
// K2

(Xβ,1,1 Xβ,1,2 ) // K .

Hence K[rep(Q,d)] ' K[X1, . . . , X6], with indeterminates Xi.

The ring of regular functions gives rise to defining the Zariski topology
for rep(Q,d): Closed sets of rep(Q,d) are defined to be exactly the zero sets

Z(I) = {Z ∈ rep(Q,d) ; f(Z) = 0 for all f ∈ I} ,

of arbitrary ideals I = (f1, . . . , fk) of K[rep(Q,d)]. Note that K[rep(Q,d)]
is noetherian, i.e. every ideal in K[rep(Q,d)] is finitely generated. Equipped
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Part I 3 Geometric and combinatorial methods

with its ring of regular functions and the Zariski topology, rep(Q,d) carries
the structure of an N -dimensional affine space over K.

There is a canonical action of the group

Gl(d) =
n∏
i=1

GL(di,K)

on rep(Q,d), given by

((g1, . . . , gn) ∗ Z)(α) = ghα · Z(α) · g−1
tα , (5)

for any g = (g1, . . . , gn) ∈ Gl(d), for any Z ∈ rep(Q,d) and for any α ∈ Q1.
Equation (5) just says that the diagram

Kdi
Z(α) //

gi

��

Kdj

gj

��
Kdi

gjZ(α)g−1
i // Kdj

commutes for any g, Z and α. Thus it becomes obvious that the Gl(d)-
orbits in rep(Q,d) are exactly the isomorphism classes of representations of
dimension d. Note that Gl(d) is a linear algebraic group. Indeed, it is a
closed subgroup of GL(N,K).

3.2 Invariants and semi-invariants

The action of Gl(d) on rep(Q,d) given in the previous subsection induces an
action of Gl(d) on the ring of regular functions K[rep(Q,d)], defined by

(g ∗ f)(Z) = f(g−1 ∗ Z),

for all g ∈ Gl(d), all f ∈ K[rep(Q,d)] and all Z ∈ rep(Q,d). This leads to
the interesting question about the existence and the structure of invariant
regular functions, i.e. functions f ∈ rep(Q,d) such that

g ∗ f = f (for all g ∈ Gl(d)).

From the definition it is clear that an invariant regular function has constant
values on each isomorphism class of representations in rep(Q,d). Note that
the constant functions in K[rep(Q,d)] trivially are invariants.
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Example 3.2. Suppose for now that Q is the oriented cycle

Q : 1
α
((
2

β

hh

and d = (r, s) a dimension vector with r, s > 0. Then the generic represen-
tation of rep(Q,d) is

X = Kr

(Xα,i,j)
++ Ks

(Xβ,k,l)

kk .

We claim that the regular function

f((Xα,i,j), (Xβ,k,l)) = det((Xβ,k,l) · (Xα,i,j))

is an invariant. Indeed, for an arbitrary g = (g1, g2) in Gl(d) we get

(g ∗ f)((Xα,i,j), (Xβ,k,l)) = f(g−1 ∗ ((Xα,i,j), (Xβ,k,l)))

= det((g−1
1 (Xβ,k,l)g2) · (g−1

2 (Xα,i,j)g1))

= det((Xβ,k,l) · (Xα,i,j))

= f((Xα,i,j), (Xβ,k,l)).

Unfortunately, if we return to the situation of quivers without oriented
cycles then there is no hope for finding a non-constant invariant: Having
no oriented cycles in Q implies that the zero representation 0d ∈ rep(Q,d)
belongs to the Zariski closure of the orbit Gl(d) ∗ Z of any representation
Z ∈ rep(Q,d).

A somewhat less restrictive but still very promising concept is the one
of rational invariants. Since K[rep(Q,d)] is a domain, one can define its
quotient field, denoted by K(rep(Q,d)). The elements of K(rep(Q,d)) are
called rational functions. Such a function f can be expressed as

f =
f1

f2

,

with f1, f2 ∈ K[rep(Q,d)]. So again, the action of Gl(d) on rep(Q,d) in-
duces an action on K(rep(Q,d)), and a function f ∈ K(rep(Q,d)) is called
a rational invariant if

(g ∗ f)(Z) =

(
g ∗ f1

f2

)
(Z) =

f1(g
−1 ∗ Z)

f2((g−1 ∗ Z)
= f(Z),
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Part I 3 Geometric and combinatorial methods

for all g ∈ Gl(d) and all Z ∈ rep(Q,d). For instance for the class of tame
quivers (also called extended Dynkin or Euclidean quivers) non-constant ra-
tional invariants exist, and they were completely classified by Ringel in [9].

For Dynkin quivers, i.e. quivers of finite representation type, again there
are only constant rational invariants: We write rep(Q,d) as

rep(Q,d) =
⋃
Z∈I

Gl(d) ∗ Z,

where I is an appropriate system of representatives of the orbits of rep(Q,d).
But since Q is representation finite, there are only finitely many possibili-
ties of forming pairwise non-isomorphic representations of dimension d, by
theorem 2.3, and hence there are only finitely many orbits. So

I = {Z1, . . . , Zk} ⊆ rep(Q,d)

is a finite set, and without loss of generality we may assume that

Gl(d) ∗ Zi 6⊆ Gl(d) ∗ Zj,

for all i, j ∈ I and i 6= j. Since rep(Q,d) is irreducible, i.e. it is not the union
of two Zariski closed proper subsets, the only way to avoid a contradiction is
to assume that I consists of only one representation Z. Hence there exists a
dense and open orbit in rep(Q,d), independently of d. And since any rational
invariant is constant on each orbit, it must be constant on rep(Q,d).

Further easing the requirements leads to the notion of a semi-invariant
(also called a relative invariant), which we want to describe now. As men-
tioned before, Gl(d) is a linear algebraic group, i.e. it carries the structure of
an affine K-variety. A group homomorphism χ : Gl(d) → K∗ is called a ra-
tional character, if χ belongs to the algebra K[Gl(d)] of regular functions on
Gl(d). It is well known that the rational characters of GL(m,K) are exactly
the integral powers (detm)z, for z ∈ Z, of the determinant function. Hence
the rational characters of Gl(d) are exactly the functions of the form

χ = (det d1)
z1 · · · (det dn)zn (z1, . . . , zn ∈ Z).

Note that the set of all rational characters of an algebraic group forms an
abelian group. For Gl(d), we denote this group by C(Gl(d)).

Based on the above, a non-zero regular function f ∈ K[rep(Q,d)] is called
a semi-invariant if there exists a rational character χf : Gl(d) → K∗ such that

g ∗ f = χf (g) · f,
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for all g ∈ Gl(d). Up to a non-zero factor, the character χf is determined
uniquely by the semi-invariant f , and

χf = (det d1)
z1 · · · (det dn)zn (z1, . . . , zn ∈ Z)

is called the weight of f . Note that sometimes it is more convenient to
refer to the vector of powers (z1, . . . , zn) ∈ Zn as the weight of f . The set
of all characters occurring as weights of semi-invariants form a subgroup of
C(Gl(d)), denoted by W (Gl(d)).

Example 3.3. Let Q be the quiver

Q : 1
α // 2

and d = (k, k) a dimension vector for Q with k > 0. Then the generic
representation X is given by

X = Kk

0
B@
Xα,1,1 ··· Xα,1,k

...
...

Xα,k,1 ··· Xα,k,k

1
CA

// Kk ,

and clearly f = det is a semi-invariant of weight

χ(g) = χ(g1, g2) = det(g2) · det −1(g1),

for all g ∈ Gl(d). As Q is a Dynkin quiver, it seems that with the notion
of semi-invariants we have finally come upon a concept which does not fall
back to its trivial case for quivers of finite representation type.

3.3 Semi-invariants of quivers

If there is an open orbit in rep(Q,d) under the action of Gl(d) then there is a
nice method due to Schofield for explicitly computing all the semi-invariants
of rep(Q,d). We want to give an overview of this method here.

Having an open orbit, rep(Q,d) is called a prehomogeneous vector space
and d a prehomogeneous dimension vector. Recall that for Dynkin quivers
we have already shown that any dimension vector is prehomogeneous. We
will always denote by T a representative of the open orbit of rep(Q,d) with
its decomposition

T =
r⊕
i=1

T λi
i

into pairwise non-isomorphic indecomposable representations Ti, occurring
with multiplicities λi ∈ N. Note that by theorem 2.3 the number r does not
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depend on our choice for T . We will assume throughout, that d is sincere,
i.e. di 6= 0, for i = 1, . . . , n. This is no restriction as we may always reduce
to the full subquiver of Q supported by d, if d is not initially sincere.

Now the first step on the way to classifying the semi-invariants for quivers
is due to Sato and Kimura. A proof of their result can be found in [10].

Theorem 3.4 (Sato, Kimura). Let d be a prehomgeneous dimension vector,
and let D1, . . . ,Ds be the irreducible components of codimension 1 of the
complement of the open orbit K[rep(Q,d)] \Gl(d) ∗ T . Denote by f1, . . . , fs
the irreducible monic polynomials such that Z(fi) = Di, for all i. Then we
have:

(i) The functions f1, . . . fs are algebraically independent semi-invariants.

(ii) Every non-constant semi-invariant f ∈ K[(rep(Q,d))] is of the form

f = c · fµ1

1 · · · fµs
s ,

for µ1, . . . , µs ∈ N, and for some constant factor c ∈ K∗.

With the above result, the aim now will be to find “enough” algebraically
independent irreducible semi-invariant polynomials. The next step is due
to Kac and tells us what “enough” means, i.e. what the value of s is. The
corresponding proof is given in [4]. We denote by

Sl(d) =
n∏
i=1

SL(di,K)

the product of the special linear groups at all vertices of Q, and by

K(rep(Q,d))Sl(d) ⊆ K(rep(Q,d))

the subfield of rational Sl(d)-invariant functions on rep(Q,d).

Theorem 3.5 (Kac). With the notations introduced above we have

tr. deg K(K(rep(Q,d))Sl(d)) = n− r.

We claim that the field K(rep(Q,d))Sl(d) is generated from K, by adjunc-
tion of the basic Gl(d)-semi-invariants f1, . . . , fs postulated in theorem 3.4.
From this we conclude that

s = n− r.
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In order to prove the claim above, we show that the algebra K[rep(Q,d)]Sl(d)

is generated by f1, . . . , fs. For this, note that there is an action of the torus

T =
∏
i∈Q0

(K∗)i

on K[rep(Q,d)]Sl(d), defined by

(t ∗ f)(X) = f((thα · t−1
tα ·X(α))α∈Q1),

for all t = (ti)i∈Q0 ∈ T , all f ∈ K[rep(Q,d)]Sl(d) and all X = (X(α))α∈Q1 ∈
rep(Q,d). It is well known that the rational characters of T are exactly the
functions of the form

χ(t) = χ((ti)i∈Q0) =
∏
i∈Q0

tzi
i (zi ∈ Z).

We denote by C(T ) the group of rational characters of T . For an arbitrary
character χ ∈ C(T ), the subset

K[rep(Q,d)]Sl(d)
χ =

{
f ∈ K[rep(Q,d)]Sl(d) ; (t ∗ f) = χ(t) · f (∀t ∈ T )

}
is a submodule of K[rep(Q,d)]Sl(d), considered as a T -module with respect
to the operation of T as described above. A character χ ∈ C(T ) for which

K[rep(Q,d)]Sl(d)
χ 6= 0

is called a weight of K[rep(Q,d)]Sl(d) with respect to the action of T . The set
of all such weights form a subgroup of C(T ), denoted by W (T ). The torus
T may be seen as a subgroup of Gl(d): We identify an arbitrary element
t = (ti)i∈Q0 ∈ T with gt = (gti)i∈Q0 ∈ Gl(d), by setting gti to be the diagonal
matrix in GL(di,K), having ti on every diagonal entry. With this, the weights
χ ∈ W (T ) are seen to be functions of the form

χ(t) = χ((ti)i∈Q0) =
∏
i∈Q0

(tdi
i )zi =

∏
i∈Q0

(det di
(gti))

zi (zi ∈ Z).

So together with the definition of weights of K[rep(Q,d)]Sl(d), it becomes
clear that the group W (T ) is canonically isomorphic to the group W (Gl(d))
of weights of semi-invariants.

A module over a torus can always be decomposed into a direct sum,
by its weights. For details on this, consult for instance [5, §III.1.3]. So
K[rep(Q,d)]Sl(d) can be written as

K[rep(Q,d)]Sl(d) =
⊕

χ∈W (T )

K[rep(Q,d)]Sl(d)
χ .

25



Part I 3 Geometric and combinatorial methods

Since W (Gl(d)) coincides with W (T ), any h ∈ K[rep(Q,d)]Sl(d) is of the
form

h = h1 + · · ·+ hk,

where each hi is a Gl(d)-semi-invariant, and hence is a monomial in the basic
semi-invariants f1, . . . , fs according to theorem 3.4.

The previous steps, showing that under our assumptions forQ and d there
are exactly s = n − r irreducible algebraically independent semi-invariants,
are the foundation for Schofields work, to which we want to turn now. He
introduces the notion of perpendicular categories, which are certain full sub-
categories of rep(Q). Then he shows that the basic semi-invariants f1, . . . , fs
are related to the simple objects of an appropriate such category. The refer-
ence for the material presented below is [11].

Let X be an arbitrary representation of rep(Q). Then the right perpen-
dicular category X⊥ is the full subcategory of rep(Q) having as objects

X⊥ =
{
Y ∈ rep(Q) ; HomQ(X, Y ) = Ext1

Q(X, Y ) = 0
}
.

Similarly the left perpendicular category ⊥X is defined as the full subcategory
with objects

⊥X =
{
Z ∈ rep(Q) ; HomQ(Z,X) = Ext1

Q(Z,X) = 0
}
.

The right and left perpendicular categories X⊥ and ⊥X are related to each
other by the equation X⊥ = ⊥τ(X), where τ is the Auslander-Reiten trans-
lation for all non-projective indecomposable direct summands of X, and
τ(Pi) = Ii for projective indecomposable representations.

Theorem 3.6 (Schofield). Let Q be a quiver with n vertices, d a prehomo-
geneous sincere dimension vector and T = T λ1

1 ⊕ · · · ⊕ T λr
r a representative

of the open orbit in rep(Q,d). Then T⊥ and ⊥T are equivalent to cate-
gories rep(Q⊥) and rep(⊥Q), respectively, where Q⊥ and ⊥Q are quivers with
s = n− r vertices.

According the above theorem, both T⊥ and ⊥T contain exactly s = n − r
simple objects. We will denote them by

S
(T⊥)
1 , . . . , S(T⊥)

s and S
(⊥T )
1 , . . . , S(⊥T )

s ,

respectively. Note that as objects of rep(Q), the simple objects of T⊥ and
⊥T are indecomposable representations, but need not necessarily be simple.

Let X and Y be representations in rep(Q,d) and rep(Q, e), respectively.
Constructing a non-zero morphism f ∈ HomQ(X, Y ) amounts to solving the
system of linear equations

Y (α) · f(i)− f(j) ·X(α) = 0 (∀α : i→ j in Q1), (6)
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with matrices of indeterminates (f(i)kl)k≤ei,l≤di
, for all i ∈ Q0. We denote

by Md,e(X, Y ) the matrix of coefficients of the system of equations given in
(6), with respect to some basis.

Theorem 3.7 (Schofield). With Q, d and T as before we get:

(i) For any X ∈ rep(Q,d) and any simple object S
(T⊥)
i the matrix

Mi(X) = M
d,dimS

(T⊥)
i

(X,S
(T⊥)
i )

is a square matrix and pi(X) = det(Mi(X)) defines an irreducible non-
zero semi-invariant pi.

(ii) The semi-invariants p1, . . . , ps are algebraically independent.

(iii) Each semi-invariant pi vanishes at X ∈ rep(Q,d) if and only if

HomQ(X,S
(T⊥)
i ) 6= 0.

Note that up to renumbering and up to a constant factor the polynomials pi
coincide with the basic semi-invariants fi of theorem 3.4. And theorem 3.7
not only gives an explicit algorithm for computing the basic semi-invariants,
but rather as well contains a method for determining their zero sets combi-
natorially.

3.4 Computing semi-invariants of quivers

The theory presented in the last subsection enables us to compute all semi-
invariants of rep(Q,d) under the action of Gl(d). All we require in addition
is to find answers to the following questions:

• What are the indecomposable direct summands of a representative T
of the open orbit?

• What are the indecomposable objects in T⊥?

• What are the simple objects in T⊥?

Since all of the above questions have to do with indecomposable represen-
tations and their relations among each other, it is not hard to guess that in
order to find answers, we will bring in the Auslander-Reiten quiver. However
before doing so, we will have to carry out some translations for the various
conditions, hidden in the above questions.
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For the question about finding a representative T of the open orbit for a
given dimension vector d, first note that in practice, e.g. when looking for
concrete examples for testing some conjecture, things are often the other way
around, meaning that one just picks appropriate indecomposable represen-
tations T1, . . . , Tr such that the representation

T =
r⊕
i=1

T λi
i (with all λi ≥ 1)

lies in the open orbit of rep(Q,d), for d = dimT . The tool used for choosing
appropriate direct summands Ti is the following: By the Artin-Voigt lemma
a representation T belonging to the open orbit of rep(Q,d) is characterized
by featuring Ext1

Q(T, T ) = 0. For a proof of this, see [9, §2]. Now requiring

Ext1
Q(T, T ) = 0 is equivalent to requiring

Ext1
Q(Ti, Tj) = 0, (7)

for all indecomposable direct summands Ti and Tj of T . Whenever as in
(7), one is only interested in the dimension of extension groups, then this
computation can be translated to the computation of dimensions of morphism
spaces, by means of the Auslander-Reiten formula

dimK Ext1
Q(X, ? ) = dimK HomQ( ? , τX),

for arbitrary non-projective indecomposable representations X, where τ is
the Auslander-Reiten translation. Note that for any projective representation
P and any injective representation I, we always have

Ext1
Q(P, ? ) = Ext1

Q( ? , I) = 0.

A proof of the Auslander-Reiten formula can be found in [1, §2]. Thus the
requirement in (7) is equivalent to the condition

HomQ(Tj, τTi) = 0,

for indecomposable direct summands Ti and Tj of T , whenever Ti is non-
projective.

For the second question, recall that

T⊥ =
{
X ∈ rep(Q) ; HomQ(T,X) = Ext1

Q(T,X) = 0
}
.

So when looking for indecomposable objects X of T⊥, the condition
Ext1

Q(T,X) = 0 can be translated to the equivalent condition

HomQ(X, τTi) = 0,
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for all non-projective indecomposable direct summands Ti of T , again by
applying the Auslander-Reiten formula.

Finally the third question, concerning simple objects in T⊥, can as well
be formulated in terms of dimensions of morphism spaces, in case Q is a
Dynkin quiver. For this we need the following fact: Recall that Q has n
vertices. Whenever we find a set

R = {R1, . . . , Rn} ⊆ rep(Q)

of n indecomposable representations, satisfying HomQ(Ri, Rj) = 0 for all
i 6= j, then

R = {S1, . . . , Sn} ,
i.e. R must be the set of all simple representations of Q. Now recall that T⊥

is equivalent to the category of representations of a quiver with s = n − r
vertices. Hence as an application of the above, if we find indecomposable
objects R1, . . . , Rs in T⊥ such that HomQ(Ri, Rj) = 0, for all i 6= j, then we

have found all simple objects S
(T⊥)
1 , . . . , S

(T⊥)
s of T⊥.

With the above, the task of computing semi-invariants of quivers with
Schofields method boils down to determining dimensions of morphism spaces
for indecomposable representations. But these dimensions can be read from
the Auslander-Reiten quiver ΓQ as we want to show now. A more formal
description of the material presented below can be found in [1].

If Q is a Dynkin quiver then ΓQ can be seen as a full subquiver of the
translation quiver ZQ associated with Q. In order to construct ZQ, we start
with the quiver Z × Q. We label its vertices with (i, j) for all i ∈ Z and all
j ∈ Q0. Moreover, for each arrow α : (i, k) → (i, l) in Z×Q we add an arrow
α′ : (i, l) → (i + 1, k). This finishes the construction of ZQ. Note that for
ZQ the orientation of Q plays no role, i.e. for any two quivers K and L with
|K| = |L| we find that ZK = ZL.

We define the translation τ by setting τ(i, j) = (i − 1, j) for all vertices
(i, j) ∈ ZQ. Note that this translation coincides with the Auslander-Reiten
translation for vertices belonging to ΓQ when embedded in ZQ, and which
are associated to isomorphism classes of non-projective indecomposable rep-
resentations. For an illustration of building a translation quiver, see example
3.10. And for the embedding of ΓQ into ZQ, the construction carried out for
a quiver of type A5 in this example may be considered as “generic” for all
Dynkin quivers.

We denote by K(ZQ) the K-category of ZQ and call it the mesh cat-
egory associated with Q. Suppose that the vertices (i, j) and (k, l) ∈ ZQ
both lie in the embedding of ΓQ, and as such are associated to the isomor-
phism classes of the indecomposable representations X and Y , respectively.
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Then the space of morphisms HomQ(X, Y ) is isomorphic to the space of mor-
phisms Hom((i, j), (k, l)) in the mesh category. And for the latter we have
the following combinatorial description:

Hom((i, j), (k, l)) =

( ⊕
σ : (i,j) (k,l),

path in ZQ

Kσ

)/
M((i, j), (k, l)). (8)

The space M((i, j), (k, l)) divided out in (8) is generated by all the meshes
in ZQ “lying between” (i, j) and (k, l). More precisely let Σ1, . . . ,Σp be the
family of all meshes in ZQ run through by some path σ : (i, j) (k, l). Each
Σu is of the form

(cu,1, du,1)
βu,1

))SSSSSSSS

τ(au, bu)

αu,1 55kkkkkkk

αu,vu ))SSSSSSS
(au, bu)

(cu,vu , du,vu)
βu,vu

55kkkkkkkk

Denote by γu,t the paths of length 2 in the mesh Σu, given by

γu,t = βu,t · αu,t,

for t = 1, . . . , uv. Then M((i, j), (k, l)) is the space

M((i, j), (k, l)) =

p∑
u=1

∑
ϕu,ψu

K(ψu · (γu,1 + · · ·+ γu,uv) · ϕu),

where ϕu and ψu are arbitrary paths in ZQ with fixed tail and head vertices
as follows:

ϕu : (i, j) τ(au, bu),

ψu : (au, bu) (k, l).

So the dimensions of spaces of morphism between indecomposable represen-
tations are given by counting paths modulo mesh relations in ΓQ.

We want to illustrate the constructions and concepts discussed so far by
some “generic” examples. In one of these examples we run through the entire
process of computing all the basic semi-invariants with Schofields method (see
example 3.10).
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Example 3.8. Suppose (i, j) is an arbitrary vertex in KQ. As the trivial
path ε(i,j) is the only path in KQ, leading from (i, j) to (i, j), we conclude
that

Hom((i, j), (i, j)) ' Kε(i,j) ' K.

Example 3.9. Consider the mesh

(c1, d1)
β1

''PPPPPPP

τ(a, b)

α1
66mmmmmmm

αm ((QQQQQQQ
(a, b)

(cm, dm)
βm

77nnnnnnn

in KQ for an arbitrary vertex (a, b). Then

Hom(τ(a, b), (a, b)) '
( m⊕

i=1

K(βi · αi)
)/

K(β1 · α1 + · · ·+ βm · αm)

' Km−1.

Example 3.10. Suppose Q is a Dynkin quiver of type A5. Then the transla-

tion quiver ZQ = ZA5 is constructed as follows: Start with the quiver Z×
−→
Q ,

where
−→
Q is the following quiver:

−→
Q : 1

α // 2
β // 3

γ // 4
δ // 5

Thus we get the picture shown in figure 5. We label the vertices of Z ×
−→
Q

with coordinates (i, j), for values i ∈ Z and j ∈ Q0. In order to complete the

translation quiver ZA5, for every arrow α : (i, j) → (i, k) in Z×
−→
Q we add an

arrow α′ : (i, k) → (i+ 1, j). This way we get ZA5, of which a part is shown
in figure 6. Any dashed line segment between two vertices not “factoring”
through a third vertex in the figure indicates a mesh. Reading any such
line segment as an arrow from right to left, gives the translation τ of the
corresponding vertex.

Now we turn to computing of dimensions of morphism spaces for this
example. Starting from a fixed vertex (i, j), denoted by the symbol “⊗⊗⊗” in
figure 7, the dimension of Hom((i, j), (k, l)) is written directly into the quiver
for every vertex (k, l), where the bullet symbol stands for zero. The area of
vertices (k, l) such that Hom((i, j), (k, l)) 6= 0 is highlighted by drawing the
dashed lines for meshes in this area, and omitting them otherwise. Similarly,
in figure 8 the dimension of Hom((k, l), (i, j)) is written directly into the
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Figure 5: Construction of the translation quiver: The first step
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Figure 8: Dimensions of morphism spaces (“backward”)

diagram for every vertex (k, l) and with respect to a fixed vertex (i, j), which
is again marked by the symbol “⊗⊗⊗”.

Now suppose Q has the following orientation:

Q : 1
α // 2

β // 3 4
γoo δ // 5

Qop : 1 2
α∗oo 3

β∗oo γ∗ // 4 5
δ∗oo

Then ΓQ can be seen as a full subquiver of ZA5 in the following manner:
Embed Qop in ZA5 such that every τ -orbit, i.e. every horizontal (dashed)
line in figure 6, is met exactly once. Thus we get the picture shown in figure
9. The vertices of the embedded copy of Qop in ZA5 represent the projective
indecomposable representations P1, . . . , P5 of rep(Q). Drawing the square of
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Figure 9: Embedding the opposite quiver in the translation quiver

vertices (k, l) with non-zero morphism spaces Hom(Pi, (k, l)) for each Pi as
shown before in figure 7, we get every vertex associated to an isomorphism
class of indecomposable representations, by the Yoneda lemma. Thus in
figure 10 we have the complete Auslander-Reiten quiver, bounded by the
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projective indecomposable representations P1, . . . , P5 to the left and by the
injective indecomposable representations I1, . . . , I5 to the right. The area of
vertices belonging to ΓQ is highlighted by drawing the dashed lines indicating
meshes inside ΓQ, and omitting them otherwise.
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Figure 10: The Auslander-Reiten quiver embedded in the translation quiver

After all these preparations, we want to compute the semi-invariants for
a dimension vector d, specified by choosing a sincere representation T , sat-
isfying Ext1

Q(T, T ) = 0. One checks that T1 and T2 in figure 11 satisfy

S
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Figure 11: An open orbit and its perpendicular category

Ext1
Q(Ti, Tj) = 0 for i, j = 1, 2. Indeed, T1 = P4 is projective, and for

Ext1
Q(T2, Ti), where i = 1, 2, we translate, by using the Auslander-Reiten

formula. Moreover, setting T = T1⊕T2 and checking all the Hom and all the
translated Ext conditions, we see that there are only three indecomposable
objects up to isomorphism in T⊥. Since n = 5 and T contains two indecom-
posable non-isomorphic direct summands, the number of simple objects in
T⊥ must be three as well. So every indecomposable object of T⊥ is simple.

The objects are denoted by S
(T⊥)
1 , S

(T⊥)
2 and S

(T⊥)
3 in figure 11. Recalling
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the positions of P1, . . . , P5 in ΓQ and applying the Yoneda lemma, we get the
following list of relevant representations for this example:

T1 ' 0
0 // 0

0 // K K1oo 1 // K ,

T2 ' K 1 // K 1 // K K1oo 1 // K ,

S
(T⊥)
1 ' 0

0 // 0
0 // 0 0

0oo 0 // K ,

S
(T⊥)
2 ' 0

0 // 0
0 // 0 K0oo 0 // 0 ,

S
(T⊥)
3 ' K 1 // K 1 // K 0

0oo 0 // 0 .

We want to compute the semi-invariant denoted p1(X) in theorem 3.7 and

associated to S
(T⊥)
1 . Since this object is supported only at vertex 5, the

system of linear equations having to be solved turns out to be

S
(T⊥)
1 (δ) · f(4)− f(5) ·X(δ) = 0.

But as S
(T⊥)
1 (δ) = 0, the system further reduces to

f(5) ·X(δ) = 0.

Taking generic matrices of appropriate dimensions for both, f(5) and X(δ),
we get (

f(5)11 f(5)12

)
·
(
Xδ,1,1 Xδ,1,2

Xδ,2,1 Xδ,2,2

)
=
(
0 0

)
.

Executing the multiplication on the left hand side and remembering that
the f(5)ij are the indeterminates, we get the homogeneous system of linear
equations with coefficient matrix M1(X):

M1(X) ·
(
f(5)11

f(5)12

)
=

(
Xδ,1,1 Xδ,2,1

Xδ,1,2 Xδ,2,2

)
·
(
f(5)11

f(5)12

)
=

(
0
0

)
.

So our first semi-invariant p1 is defined by setting

p1(X) = det(M1(X)) = det(X(δ)),

for all X ∈ rep(Q,d). In a similar fashion the remaining two semi-invariants
are evaluated to be

p2(X) = det(X(γ)),

p3(X) = Xα,1,1,

for all X ∈ rep(Q,d).
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Example 3.11. With this last example we want to show that the basic semi-
invariants may as well be a bit more complicated than the ones computed in
example 3.10. Suppose Q is the same quiver as in example 3.10:

Q : 1
α // 2

β // 3 4
γoo δ // 5 .

Consider the dimension vector d = (1, 2, 2, 2, 1). Then with the same meth-
ods as above, we get the following list of relevant representations of Q:

T1 ' 0
0 // K 1 // K K1oo 0 // 0 ,

T2 ' K 1 // K 1 // K K1oo 1 // K ,

S
(T⊥)
1 ' 0

0 // 0
0 // K K1oo 0 // 0 ,

S
(T⊥)
2 ' 0

0 // K 1 // K K1oo 1 // K ,

S
(T⊥)
3 ' K 1 // K 1 // K 0

0oo 0 // 0 .

With this, the corresponding semi-invariants are seen to be as follows:

p1(X) = det(X(β)),

p2(X) = det

(
X(β) ·X(α) X(γ)

0 X(δ)

)
= det

(
(X(β)·X(α))11 X(γ)11 X(γ)12
(X(β)·X(α))21 X(γ)21 X(γ)22

0 X(δ)11 X(δ)12

)
,

p3(X) = det(X(γ)),

for all X ∈ rep(Q,d).

4 Preface to the main parts

Having presented algorithms for computing semi-invariants of quivers in the
previous section, we now turn to the questions that are treated in the follow-
ing two parts of this document.

4.1 The zero set of semi-invariants

The main object of investigation in these parts is the affine subvariety of
common zeros of all non-constant semi-invariants of rep(Q,d), denoted and
defined by

ZQ,d = {X ∈ rep(Q,d) ; p1(X) = · · · = ps(X) = 0} ,
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respectively, where p1, . . . , ps are the basic semi-invariants. Note that ZQ,d
can be written as

ZQ,d = Z(p1) ∩ · · · ∩ Z(ps),

i.e. as the intersection of the zero sets of the individual semi-invariants. But
for the latter, Schofields theorem 3.7 gives a criterion saying at which X ∈
rep(Q,d) exactly they vanish: Namely pi(X) = 0 if and only if

HomQ(X,S
(T⊥)
i ) 6= 0 (i = 1, . . . , s).

Thus we get a description of ZQ,d which allows us to carry out investigations,
using methods similar to those discussed in the previous section:

ZQ,d =
{
X ∈ rep(Q,d) ; HomQ(X,S

(T⊥)
i ) 6= 0, (for all i = 1, . . . , s)

}
.

Note that with this description, ZQ,d is characterized purely in terms of
dimensions of morphism spaces of indecomposable representations.

4.2 Complete intersections

The main goal in the two following parts is to give a description of the
dimension vectors d for quivers Q of type Dn, for which ZQ,d is a set theoretic
complete intersection. The property of being a complete intersection for
varieties can briefly be described as follows: From linear algebra we know
that the set L of all solutions of a system of linear equations of rank s in
N variables is always a subvariety of the N -dimensional affine space V of
dimension

dimL = N − s,

provided that L is non-empty. This of course is equivalent to saying that L,
if non-empty, always has codimension

codimL = dimV − dimL = s.

Now if we generalize to arbitrary affine subvarieties, i.e. the solution sets of
systems of polynomial equations in an affine space, then the corresponding
fact is no longer an equation but rather only an estimate: Suppose a non-
empty affine subvariety L of the N -dimensional affine space V is described
by a system of s polynomial equations f1, . . . , fs, i.e.

L = Z(f1, . . . , fs).

Then the codimension of L can be estimated by

codimL ≤ s.
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Based on this, we say that L is a set theoretic complete intersection if

codimL = s.

A nice introduction to this subject, including a proof of the above estimate
for codimL, can be found in [6].

In the first of the two main parts of this document, we establish a good
criterion and in the third part even a characterization of when ZQ,d is a
complete intersection, for a quiver Q of type Dn. Both criteria are in terms
of the constellations of the indecomposable direct summands T1, . . . , Tr of T
in the Auslander-Reiten quiver ΓQ, and in terms of the multiplicities λi of
the direct summands Ti of T . Recall that T is a representative of the open
orbit of rep(Q,d) with respect to the action of Gl(d).

The results presented in the following parts are refinements of and based
on the work of Ch. Riedtmann and G. Zwara found in [8]. For a more general
class of quivers, namely for all Dynkin and Euclidean quivers, they give a
somewhat coarser criterion for ZQ,d being a complete intersection. Their
criterion is based only on the multiplicities λi of the indecomposable direct
summands Ti of a representative of the open orbit T .

4.3 Some final remarks

In this preface, we started out with the notion of a vector space over a field
K. Then we gradually moved on to the more general concepts of modules
over finite dimensional K-algebras. Now returning to the starting point, one
might ask what the theory corresponding to the notions and results discussed
here would look like in the context of vector spaces. The answer to this
is quite simple: From the definition of quivers and their representations it
becomes obvious that the category of finite dimensional vector spaces over a
field K is equivalent to the category rep(Q), where Q is the quiver with only
one vertex and no arrows, i.e. the quiver resembling the “trivial case” for the
theory presented here. It comes as no big surprise that most of the notions are
no longer too useful: For instance there is no point of defining projective or
injective vector spaces, since every vector space has this property. Moreover,
there is only one indecomposable vector space up to isomorphism – the simple
one. So the Auslander-Reiten quiver is again just one vertex with no arrows.
And in coincidence with theorem 3.5 there are no semi-invariants, etc. But
still, it is interesting to note that the corresponding theory for vector spaces
fits into the concepts of representation theory as a special case.
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Part II

On the zero set of
semi-invariants for Dn-quivers

Abstract

Let Q be a quiver of type Dn, d a dimension vector for Q, and
T a representative of the open orbit of the variety rep(Q,d) of d-
dimensional representations of Q, under the product Gl(d) of the gen-
eral linear groups at all vertices of Q. Let T = T λ1

1 ⊕ · · · ⊕ T λr
r be a

decomposition of T into pairwise non-isomorphic indecomposable rep-
resentations Ti with multiplicities λi. We show that it depends on the
multiplicity of at most one such direct summand whether or not the
set of common zeros of all non-constant semi-invariants for rep(Q,d),
with respect to the action of Gl(d), is a set theoretical complete in-
tersection.

Samuel Beer

1 Introduction

Let K be an algebraically closed field, and let Q = (Q0, Q1, t, h) be a finite
quiver, i.e. a finite set Q0 = {1, . . . , n} of vertices and a finite set Q1 of arrows
α : tα→ hα, where tα and hα denote the tail and the head of α, respectively.

A representation of Q over K is a collection

(X(i); i ∈ Q0)

of finite dimensional K-vector spaces together with a collection

(X(α) : X(tα) → X(hα); α ∈ Q1)

of K-linear maps. A morphism f : X → Y between two representations is a
collection (f(i) : X(i) → Y (i)) of K-linear maps such that

f(hα) ◦X(α) = Y (α) ◦ f(tα) for all α ∈ Q1.
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By σ(X) we denote the number of pairwise non-isomorphic indecompos-
able direct summands occurring in a decomposition of X into indecompos-
ables. According to the theorem of Krull-Schmidt, σ(X) is well-defined. The
dimension vector of a representation X of Q is the vector

dimX = (dimX(1), . . . , dimX(n)) ∈ NQ0 .

We denote the category of representations of Q by rep(Q), and for any
vector d = (d1, . . . , dn) ∈ NQ0

rep(Q,d) =
∏
α∈Q1

Mat(dhα × dtα,K)

is the vector space of representations X of Q with X(i) = Kdi , i ∈ Q0. The
group

Gl(d) =
n∏
i=1

Gl(di,K)

acts on rep(Q,d) by

((g1, . . . , gn) ·X)(α) = ghα ◦X(α) ◦ g−1
tα .

Note that the Gl(d)-orbit of X consists exactly of the representations Y in
rep(Q,d) which are isomorphic to X.

We call d a prehomogeneous dimension vector if rep(Q,d) contains
an open orbit Gl(d) · T . Such a representation T is characterized by
Ext1

Q(T, T ) = 0 (see [8]). If Q admits only finitely many indecomposable
representations, or equivalently if the underlying graph of Q is a disjoint
union of Dynkin diagrams A, D or E (see [2]), every vector d is prehomo-
geneous. Indeed, any representation is a direct sum of indecomposables and
therefore rep(Q,d) contains finitely many orbits, one of which must be open.

Let d be prehomogeneous, and let f1, . . . , fs ∈ K[rep(Q,d)] be the irre-
ducible monic polynomials whose zeros Z(f1), . . . , Z(fs) are the irreducible
components of codimension 1 of rep(Q,d) \Gl(d) · T , where Gl(d) · T is the
open orbit. It is easy to see that

g · fi = χi(g)fi

for g ∈ Gl(d), where χi : Gl(d) → K∗ is a character. A regular function
with this property is called a semi-invariant. By [9], any semi-invariant is a
scalar multiple of a monomial in f1, . . . , fs, and the f1, . . . , fs are algebraically
independent. We denote by

ZQ,d = {X ∈ rep(Q,d); fi(X) = 0, i = 1, . . . , s}
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the closed subvariety of rep(Q,d) of the common zeros of all non-constant
semi-invariants. Obviously we have codimZQ,d ≤ s, and equality means
that ZQ,d is a set theoretic complete intersection (simply called a complete
intersection in the sequel). Note that ZQ,d might be a complete intersection
even if codimZQ,d < s. Indeed, it is not clear whether f1, . . . , fs always form
a minimal set of generators for the ideal (f1, . . . , fs) of K[rep(Q,d)]. This
problem cannot be solved by the fact that non-equidimensional varieties never
are complete intersections: Example 1.1 encompasses a case where ZQ,d is
irreducible and codimZQ,d < s.

Now suppose Q is a connected quiver of type Dn and let T1, . . . , Tr
be pairwise non-isomorphic indecomposable representations of Q such that
Ext1

Q(Ti, Tj) = 0, for i, j = 1, . . . , r. In [7], Ch. Riedtmann and G.
Zwara proved that ZQ,d is a complete intersection, for any dimension vector
d =

∑r
i=1 λi dimTi, provided that all λi ≥ 2. They also showed that ZQ,d is

irreducible if all λi ≥ 3. For the refinements we want to give, we need some
additional terminology: In §2.1 we introduce a coordinate system for the ver-
tices of the Auslander-Reiten quiver ΓQ of Q. Based on these coordinates, for
vertices (i, j) and (k, l) ∈ ΓQ, we call (i, j) high if j ≥ n−1, and we call (i, j)
higher than (k, l) if j > l. For an arbitrary indecomposable U ∈ rep(Q), we
have dimU(z) ≤ 2, for all z ∈ Q0, and we call U a 2-root if equality holds
for some vertex z (see §2.2 for details). It will become clear later on that
if there are any 2-roots among T1, . . . , Tr then they are totally ordered with
respect to the “higher than”-relation (see lemma 3.4), and hence there is a
unique highest 2-root.

Theorem. Let Q be a connected quiver of type Dn. Let T1, . . . , Tr be
pairwise non-isomorphic indecomposable representations of Q such that
Ext1

Q(Ti, Tj) = 0, for i, j = 1, . . . , r. Choose positive integers λ1, . . . , λr
and set d =

∑r
i=1 λi dimTi.

(i) If there is a high indecomposable representation or if there are no 2-
roots among T1, . . . , Tr then ZQ,d is a complete intersection. Moreover,
ZQ,d is irreducible if all λi ≥ 2.

(ii) If there is no high indecomposable representation and if Tl is the highest
2-root among T1, . . . , Tr and has multiplicity λl ≥ 2 then ZQ,d is a
complete intersection. Moreover, ZQ,d is irreducible if λl ≥ 3 and all
other λi ≥ 2.

Note that in [5], Ch. Riedtmann already showed that ZQ,d is a complete
intersection if some of the Ti are high. In a forthcoming paper we will give
an exact description of when ZQ,d is a complete intersection. However, the
arguments used there will be much more technical than the proofs given here.
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Also note that in case K is the field C of complex numbers, the fact
that ZQ,d is a complete intersection implies that rep(Q,d) is cofree as a
representation of the subgroup Sl(d) of Gl(d), i.e. the algebra C[rep(Q,d)]
is a free module over the ring C[rep(Q,d)]Sl(d) of Sl(d)-invariant polynomials
(see [11, §17]).

Example 1.1. Consider the quiver and dimension vector

2α2

vvmmmmmm

Q : 1
α1 // 4

3α3

hhRRRRRR

1
kkkkkk

e = 1 2
1

SSSSSS

and set d = λ · e, for λ ∈ N. There is an indecomposable representation T1

in rep(Q, e), and the complement of the open orbit of T = T λ1 in rep(Q,d)
has three irreducible components of codimension 1, defined by

det((X(α1), X(α2)) = det((X(α1), X(α3)) = det((X(α2), X(α3)) = 0.

Now X belongs to ZQ,d if and only if X either contains the simple projective
P4 or else all of the two-dimensional projective representations P1, P2 and
P3. It is easy to see that

ZQ,e is irreducible and of codimension 2,

ZQ,2·e has two irreducible components of codimension 3 each,

ZQ,λ·e is irreducible and of codimension 3, for λ ≥ 3.
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mann. My very special thanks go to her for many fruitful discussions, the
guidance, and encouragement all along. Many thanks also go to G. Zwara
for the careful reading of preliminary versions of this paper. I am grateful to
the Swiss National Science Foundation for financial support.

2 Preliminaries and Notations

2.1. We will assume throughout that the quiver Q is connected and of type
Dn, i.e. the underlying graph |Q| is a Dynkin diagram Dn. Following [5], we
recall some notations used to describe the Auslander-Reiten quiver ΓQ of Q.
We label the vertices of |Q| as follows:

n− 1
ggggg

1 2 3 . . . n− 2
n

XXXXXX
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By
−→
Q we denote the quiver with

∣∣∣−→Q ∣∣∣ = |Q|, for which all arrows “point to

the right”, i.e. if there is an edge i − j in |Q| and if i < j, then there is an

arrow α : i → j in
−→
Q . The translation quiver ZDn is defined as follows (see

[4] or [3]): Start from Z ×
−→
Q and add an arrow (i, j) → (i + 1, j − 1) for

i ∈ Z and 2 ≤ j ≤ n− 1, and an arrow (i, n) → (i+ 1, n− 2) for i ∈ Z. The
translation is given by τ(i, j) = (i− 1, j).

Note that the vertices of ZDn are partially ordered by defining X ≤ Y ,
for X, Y ∈ ZDn, if and only if there is a path from X to Y in ZDn. For any
subset U and any vertex A of ZDn we say that A lies to the left (to the right)
of U if A ≤ X (X ≤ A) for some vertex X ∈ U .

We call a vertex x ∈ Q0 low if x ≤ n − 2 and high otherwise. Similarly,
for vertices of ZDn we call (i, j) low if j ≤ n − 2 and high otherwise. Two
high vertices (i, j) and (k, l) are said to be congruent if i+ j ≡ k + l mod 2.
The high vertices (i, n− 1) and (i, n) will be called adjacent.

We will also use the following (non-reflexive) partial order relation on the
set of vertices of of ZDn: Given arbitrary vertices (i, j) and (k, l), we call
(i, j) higher than (k, l) if and only if j > l.

The Auslander-Reiten quiver ΓQ of Q can be viewed as a subquiver of
ZDn in the following manner: Embed the opposite quiver Qop in ZDn as a
section, i.e. in such a way that each τ -orbit of vertices of ZDn is met exactly
once. Define the Nakayama translate ν(i, j) of a vertex to be (i+ n− 2, j) if
(i, j) is low, and to be the high vertex with first coordinate i+n− 2 which is
congruent to (i, j) if (i, j) is high. Then the Auslander-Reiten quiver ΓQ of
Q can be identified with the full subquiver of ZDn whose vertices lie between
Qop and ν(Qop) (see [3]).

2.2. Recall from [3] the dimensions of the spaces of morphisms in the mesh
category K(ZDn), or equivalently in rep(Q) if the vertices (i, j) and (k, l)
belong to ΓQ:

Proposition 2.1.

(i) dim Hom((i, j), (k, l)) ≤ 2.

(ii) dim Hom((i, j), (k, l)) = 2 if and only if j, l ≤ n − 2 and i + 1 ≤ k ≤
i+ j − 1 and i+ n− 1 ≤ k + l ≤ i+ j + n− 3.

(iii) dim Hom((i, j), (k, l)) ≥ 1 if and only if one of the following conditions
is satisfied:

(a) j ≤ n− 2, i ≤ k ≤ i+ j − 1 and i+ j ≤ k + l,
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(b) j ≤ n − 2, l ≤ n − 2, i + n − 1 ≤ k + l ≤ i + j + n − 2, and
k ≤ i+ n− 2,

(c) j ∈ {n− 1, n}, l ≤ n− 2, i+ n− 1 ≤ k + l and k ≤ i+ n− 2,

(d) j, l ∈ {n− 1, n}, k ≤ i+ n− 2 and (k, l) congruent to (i, j).

With Px and Ix we always denote the projective and injective indecom-
posable representations associated with the vertex x ∈ Q0, respectively. The
coordinates of Px in ΓQ are those of the vertex x of Qop embedded in ZDn

when constructing ΓQ (compare §2.1). So Px = (i, x), for some i ∈ Z.
We call a vertex x ∈ Q0 a sink if it is the head of some arrows but the

tail of none. Similarly we define sources. Using the same labelling for the
vertices of |Q| as in §2.1, we state:

Lemma 2.2.

(i) If U is an indecomposable representation of Q then either dimU(x) ≤ 1
for all x or

1
dimU = 0 · · · 0 1 · · · 1 2 · · · 2

1

and dimU contains at least one 2 and at least three 1.

(ii) (a) In case {n− 1, n} consists of a sink and a source, an indecompos-
able representation U of Q is high in ΓQ if and only if either U is the
one dimensional representation supported at n− 1 or n or else

1
dimU = 0 · · · 0 1 · · · 1

1
or

0
dimU = 0 · · · 0 1 · · · 1

0

(b) In case {n− 1, n} consists of either two sinks or two sources, an
indecomposable representation U of Q is high in ΓQ if and only if

1
dimU = 0 · · · 0 1 · · · 1

0
or

0
dimU = 0 · · · 0 1 · · · 1

1

(c) The pairs of dimension vectors exhibited in (a) and (b) correspond
to pairs of adjacent high vertices.
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Proof. From the Yoneda lemma, we get [Px, V ] = dimV (x), for arbitrary
V ∈ rep(Q) and x ∈ Q0. Now the lemma follows from proposition 2.1,
combined with the description of the coordinates of Px in ΓQ. �

Based on the above, we call an indecomposable representation U a 2-root
if there exists a vertex x ∈ Q0 with dimU(x) = 2, and we denote by T 2 the
set of all 2-roots in ΓQ. Moreover, we call U a 2x-root if dimU(x) = 2 for a
vertex x ∈ Q0 and denote by T 2x the set of all 2x-roots in ΓQ.

2.3. All varieties considered in this paper are locally closed subvarieties of
some vector space, usually some rep(Q,d), with respect to the Zariski topol-
ogy. Which space is always clear from the context. The term “codimension”
is with reference to this ambient space.

We will assume that T1, . . . , Tr are pairwise non-isomorphic indecompos-
able representations of Q with Ext1

Q(Ti, Tj) = 0, for i, j = 1, . . . , r, and that
the representation

T =
r⊕
i=1

T λi
i with λi ≥ 1

is sincere, i.e. T (k) 6= 0 for all k ∈ Q0. Note that the orbit of T is open
in rep(Q,d), where d = dimT . The sincerity of T is no restriction as
the full subquiver which supports T is a disjoint union of connected quivers
K1, . . . , Km of types A and D, implying that

ZQ,d =
m∏
j=1

ZKj ,d|Kj
.

For quivers of type A there are no 2-roots and no high indecomposable rep-
resentations. So only the first part of our theorem is applicable for such
quivers. But the corresponding results were already shown in [7]:

Proposition 2.3. Let K be a connected quiver of type A. Let
D1, . . . , Dr be pairwise non-isomorphic indecomposables in rep(K) such that
Ext1

K(Di, Dj) = 0, for i, j = 1, . . . , r. Choose positive integers µ1, . . . , µr and
set e =

∑r
i=1 µi dimDi. Then ZK,e is a complete intersection, independently

of the multiplicities µi, and is irreducible if all µi ≥ 2.

2.4. The material presented below can be found in [10]. Also compare [6].
For a representation X ∈ rep(Q), the right perpendicular category X⊥ is the
full subcategory of rep(Q) whose objects are{

A ∈ rep(Q); [X,A] = 1[X,A] = 0
}
,

47



Part II 2 Preliminaries and Notations

where

[X,A] = dimK HomQ(X,A) and 1[X,A] = dimK Ext1
Q(X,A).

Similarly, the left perpendicular category ⊥X has as objects{
A ∈ rep(Q); [A,X] = 1[A,X] = 0

}
.

Note that X⊥ = ⊥(τX), where τ is the Auslander-Reiten translation for all
non-projective indecomposable direct summands of X and τ(Px) = Ix for all
x ∈ Q0. Using the same symbol for the Auslander-Reiten translation and
for the translation of vertices of ZDn will cause no confusion. Which one is
meant will always be clear from the context.

If X is sincere and 1[X,X] = 0 then the category X⊥ is equivalent to
the category of representations of a quiver with n− σ(X) vertices. Thus T⊥

contains n − r simple objects for our representation T . If S is one of them,
the set

{A ∈ rep(Q,d); [A, S] 6= 0}
is an irreducible component of codimension 1 of the complement

rep(Q,d) \Gl(d) · T.

Non-isomorphic simple objects of T⊥ lead to distinct irreducible components,
and all irreducible components of codimension 1 are obtained in this way.
Thus ZQ,d is the zero set of n − r (algebraically independent) polynomials.
From now on, we will denote the underlying reduced variety of ZQ,d by the
same symbol. This will cause no confusion since we are only interested in
the dimension and the number of irreducible components of ZQ,d. We have
the following descriptions:

ZQ,d =
{
A ∈ rep(Q,d); [A, S] 6= 0 for all simple objects S ∈ T⊥}

=
{
A ∈ rep(Q,d); [S ′, A] 6= 0 for all simple objects S ′ ∈ ⊥T

}
.

2.5. We fix a sink z ∈ Q0 which is the head of some arrows αj : yj → z,
for j = 1, . . . , t. Let Ez be the simple projective supported at z. By Q we
denote the full subquiver of Q with Q0 = Q0 \ {z} and by d the restriction
of d to Q0. Note that if z ∈ {n− 1, n} then Q is of type An−1. Otherwise
z < n− 1 and then Q is the disjoint union

Q = L
·
∪H,

where L and H are the full subquivers of Q with vertex sets

L0 = {1, . . . , z − 1} and H0 = {z + 1, . . . , n} .
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Clearly, L is always of type Az−1. If z < n − 3 then H is of type Dn−z.
Otherwise H is of type A3 or is a disjoint union of two copies of A1 if z = n−3
or if z = n− 2, respectively. We will also use the fact that

ZQ,d = ZH,d|H ×ZL,d|L.

By definition of Ez, we have

E⊥
z = {A ∈ rep(Q); A(z) = 0} ,

which we identify with rep(Q). Note that the orbit of the restriction

T =
r⊕
i=1

T i
λi

to Q is open in rep(Q,d). Indeed, we get 1[T , T ] = 0 by computing the
Hom-Ext-sequences (T,Σ) and (Σ, T ) of the short exact sequence

Σ: 0 −→ Ez
dz −→ T −→ T −→ 0.

We decompose T into indecomposable direct summands

T =

ρ⊕
i=1

Ui
µi ,

with pairwise non-isomorphic Ui. Then ρ = σ(T ), and it is easy to see that
min {µi; i = 1, . . . , ρ} ≥ min {λi; i = 1, . . . , r}.

In order to have a unified terminology for ZQ,d as well as for ZQ,d, we
fix the following: For a quiver K with some connected components of type
A and at most one of type D and for a sincere dimension vector e, suppose
that

D =
k⊕
i=1

Dνi
i .

is the decomposition of a representative D of the open orbit of rep(K, e) into
pairwise non-isomorphic indecomposables Di with multiplicities νi. We will
use the following abbreviations to denote the hypotheses of our theorem: We
will say that D satisfies (M1) or (M2), respectively, if

(M1) : All νi ≥ 1. If K contains a connected component K1 of type D, if none
of the Di in ΓK1 are high, if there is a 2-root in ΓK1 , and if Dl is the
highest 2-root in ΓK1 , then νl ≥ 2.
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(M2) : All νi ≥ 2. If K contains a connected component K1 of type D, if none
of the Di in ΓK1 are high, if there is a 2-root in ΓK1 , and if Dl is the
highest 2-root in ΓK1 , then νl ≥ 3.

In order to show that ZK,e is a complete intersection if D satisfies (M1), we
will prove that under the same condition

codimZK,e = #K0 − σ(D). (1)

If equation (1) holds we will say that ZK,e has proper codimension. Note that
it might be a stronger statement to say that ZK,e has proper codimension
than to say that ZK,e is a complete intersection. Despite of this, for the
connected components of K of type A, we are still in the position to rely on
the results of proposition 2.3. Indeed, in the proof of this proposition in [7],
the approach to verify complete intersections is the same as ours, namely to
show that under the hypothesis of proposition 2.3 the corresponding variety
has proper codimension.

We will also frequently state that “our theorem holds for ZK,e”. By this
we mean that if D satisfies the hypothesis (M1) or (M2) then ZK,e has proper
codimension or is irreducible, respectively.

2.6. With the sink z as in §2.5, we define a new quiver Q′ by deleting z
and α1, . . . , αt and by adding a new vertex z′ and arrows βj : z

′ → yj, for
j = 1, . . . , t. Note that the simple representation E ′

z′ of Q′ supported at z′ is
injective. Let

Fz : rep(Q) −→ rep(Q′)

be the reflection functor associated with z (see [2] and also [7]). If Ez is not
a direct summand of T , we have dz ≤

∑t
j=1 dyj

, and the dimension vector
d′ = dimFzT of FzT is given by

d′i =

{
di, i 6= z′(∑t

j=1 dyj

)
− dz ≥ 0, i = z′.

In order to compare ZQ,d with ZQ′,d′ , we decompose:

ZQ,d = Z ′
Q,d

·
∪Z ′′

Q,d and ZQ′,d′ = W ′
Q′,d′

·
∪W ′′

Q′,d′ ,

where

Z ′
Q,d = {A ∈ ZQ,d; [A,Ez] = 0} , Z ′′

Q,d = {A ∈ ZQ,d; [A,Ez] > 0} ,
W ′

Q′,d′ = {A′ ∈ ZQ′,d′ ; [E ′
z′ , A

′] = 0} , W ′′
Q′,d′ = {A′ ∈ ZQ′,d′ ; [E ′

z′ , A
′] > 0} .

Using these notations, we recall the following results from [7]:

50



Part II 3 Properties of 2-roots

Summary 2.4.

(i) Z ′′
Q,d = ZQ,d×Nd, whereNd =

{
A ∈ Mat(dz ×

∑t
j=1 dyj

); rankA < dz

}
.

(ii) Z ′′
Q,d = ZQ,d, σ(T ) = σ(T ) − 1 and codimNd = 0 if dz >

∑t
j=1 dyj

or
equivalently if E is a direct summand of T .

(iii) Z ′′
Q,d = ZQ,d, σ(T ) = σ(T ) and codimNd = 1 if dz =

∑t
j=1 dyj

or

equivalently if E ∈ T⊥.

(iv) codimZ ′
Q,d = codimW ′

Q′,d′ if dz <
∑t

j=1 dyj
.

(v) Irreducibility of W ′
Q′,d′ implies irreducibility of Z ′

Q,d if dz <
∑t

j=1 dyj
.

(vi) codimNd = d′z′ + 1 if dz <
∑t

j=1 dyj
.

Note that the determinantal variety Nd above is always irreducible (see [1,
§1]).

3 Properties of 2-roots

For this section we fix a sink z ∈ Q0, once for all. First we gather results
which are in association with the reflection functor Fz. We use the notations
of §2.1 and §2.6. For the construction of the Auslander-Reiten quiver ΓQ′ ,
we embed (Q′)op in ZDn in such a way that all vertices except for z′ coincide
with the vertices of the embedding of Qop. From this we immediately get the
following two results:

Lemma 3.1. Let U = (i, j) 6= Ez be an indecomposable representation of Q.
Denote by U ′ = (i′, j′) = FzU the corresponding representation of Q′. Then
as elements of ZDn we get (i′, j′) = (i, j).

Lemma 3.2. If z 6= n − 2 then the 2-roots of ΓQ are mapped bijectively to
the 2-roots of ΓQ′ by Fz.

Next we give a description of the sets T 2x of 2x-roots. We denote by
αx ∈ Q1 the unique arrow between the vertices x and x + 1 in Q0, for
x ∈ {1, . . . , n− 3}. With the same arguments as in the proof of lemma 2.2
we get:

Lemma 3.3. Set Ln−2 = τ−1Pn−2 and Rn−2 = τIn−2. Then we have:

T 2 = T 2n−2 = {U ∈ ΓQ; U not high and Ln−2 ≤ U ≤ Rn−2} .

51



Part II 3 Properties of 2-roots

Moreover, for x ∈ {n− 3, . . . , 2}, we get the recursive description

T 2x = {U ∈ T 2x+1; Lx ≤ U ≤ Rx} ,

where {
Lx = τ−1Lx+1 and Rx = Rx+1 if t(αx) = x,

Lx = Lx+1 and Rx = τRx+1 if h(αx) = x.

Recall the Auslander-Reiten formula 1[U, ?] = [?, τU ], for non-projective
indecomposable representations U (see [3, §2]). This formula and the re-
quirement 1[T, T ] = 0 for the representation T imply that [Ti, τTj] = 0, for
i, j = 1, . . . , r. Together with the description of T 2 in the lemma above, we
get:

Lemma 3.4. The 2-roots among T1, . . . , Tr are totally ordered, with respect
to the “higher than”-relation introduced in §2.1. Moreover, if Tl = (p, q) is
the highest 2-root then all the other 2-roots among T1, . . . , Tr are contained
in the set

U = {U ∈ T 2; U to the right of C and to the left of D} ,

where

C = {(p, i) ∈ ΓQ; i = 1, . . . , q} ,
D = {(p+ q − j, j) ∈ ΓQ; j = 1, . . . , q} .

Proposition 3.5. Suppose z < n − 3. Moreover, suppose Tl is the highest
2-root among T1, . . . , Tr.

(i) If Tl is neither a 2z-root nor a 2z+1-root then the restriction Tl|H is in-
decomposable and is the highest 2-root among the indecomposable direct
summands of T |H.

(ii) If Tl is a 2z-root or a 2z+1-root then the restriction Tl|H contains high
indecomposable direct summands.

Proof. The second part is a direct consequence of lemma 2.2: The restriction
to H of a 2z-root or a 2z+1-root always consists of the same pair of adjacent
high indecomposables.

In order to prove the first part, for an indecomposable representation U
we set

b(U) = number of 2 in dimU.

From lemmas 3.3 and 3.4 we see that b(Tl) ≥ b(Tk), for all Tk. Since Tl is
neither a 2z-root nor a 2z+1-root, with lemma 2.2 we conclude that no Tk
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belongs to T 2z or T 2z+1, that the restriction Tk|H of any Tk is indecompos-
able, and that b(Tk) = b(Tk|H), for all Tk. From lemmas 3.3 and 3.4 we
also see that if b(Tj) > b(Tk), for a fixed j and for all k 6= j, then Tj is
the highest 2-root of T , i.e. j = l. So if b(Tl) > b(Tk), for all k 6= l, then
b(Tl|H) > b(Tk|H) as well, for all k 6= l, and hence the proposition follows
in this case.

So we are left with the situation that b(Tk) = b(Tl) = b for some k 6= l.
Note that in order to evaluate the relation “Tl|H is higher than Tk|H”, we
may consider rep(H) as a full subcategory of rep(Q) and ΓH as embedded
in ΓQ, since the “higher than”-relation depends only on the difference of the
second coordinates of Tk|H and Tl|H. As a direct consequence of proposition
2.1 and lemma 3.3, we know that Tk and Tl as well as their restrictions to H
are all contained in the “line segment”

Lx = T 2x+1 \ T 2x = {U ∈ ΓQ; b(U) = n− 2− x} ,

where x = n− 2− b. For arbitrary U and V in Lx we have{
[U, V ] 6= 0 if and only if U is higher than V if t(αx) = x,

[V, U ] 6= 0 if and only if U is higher than V if h(αx) = x.

So either [Tk, Tl] 6= 0 or [Tl, Tk] 6= 0, depending on the orientation of Q.
And clearly [Tk, Tl] 6= 0 implies [Tk|H,Tl|H] 6= 0, and [Tl, Tk] 6= 0 implies
[Tl|H,Tk|H] 6= 0. Hence Tk|H cannot be higher than Tl|H. �

Finally we want to prepare an estimate for codimZ ′′
Q,d. In addition to

the notations of §2.6, we set

x = dimX(z) and x′ =
( t∑
j=1

dimX(yj)
)
− dimX(z),

for any representation X of Q. We will also need the following auxiliary
result:

Lemma 3.6. Let U , V and W1, . . . ,Wk, for k ≥ 2, be pairwise non-
isomorphic indecomposable representations. Assume that U 6∈ T 2z, that V is
high, and that all Wi ∈ T 2z. Also suppose that 1[V,W1] = 1[W1, V ] = 0 and
set X =

⊕k
i=1Wi and Y = V ⊕W1. Then we get:

(i) σ(U)− σ(U)− u′ ≤ 0.

(ii) σ(Wi)− σ(Wi)− w′
i = 1 (i = 1, . . . , k).

(iii) σ(X)− σ(X)− x′ ≤ 0.
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Part II 3 Properties of 2-roots

(iv) σ(Y )− σ(Y )− y′ ≤ 0.

Proof. Note that σ(U) = σ(V ) = σ(Wi) = 1, for all i. The first two parts
are a direct consequence of the fact that

σ(A) ≤
t∑

j=1

dimA(yj) = a+ a′,

for any indecomposable representation A. From the description of 2-roots
and high indecomposable representations given in lemma 2.2, it is easy to
see that the restriction to H of any 2z-root always consists of the same pair
of adjacent high indecomposables. Hence we get

σ(X) ≤ 2 +
k∑
i=1

w′
i = 2 + x′,

and this proves part (iii). For the last part, with the Auslander-Reiten
formula we translate the requirement 1[V,W1] = 1[W1, V ] = 0 to [W1, τV ] =
[V, τW1] = 0. From this we see that if W1 = (p, q) then V belongs to the set

U = {Z ∈ ΓQ; Z to the left of C and to the right of D} ,

where

C = {(p, i) ∈ ΓQ; i = q, . . . , n} ,
D = {(p+ q − j, j) ∈ ΓQ; j = q, . . . , n− 1} ∪ {(p+ q − n+ 1, n)} .

Hence with the arguments of the proof of lemma 2.2, we get dimV (z) = 1.
And from lemma 2.2, we conclude that V |H is a direct summand of W1|H.
Thus

σ(Y ) ≤ σ(V ) + σ(W 1)− 1

≤ (1 + v′) + (2 + w′
1)− 1

= σ(Y ) + y′.

This finishes the proof. �

Proposition 3.7. Suppose Ez is neither a direct summand of T nor an object
of T⊥. Moreover, assume that codimZQ,d = n− 1− σ(T ). Then we have:

(i) codimZ ′′
Q,d ≥ n− σ(T ) if T satisfies (M1),

(ii) codimZ ′′
Q,d > n− σ(T ) if T satisfies (M2).
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Proof. Consider the following conditions:

(a) T contains a 2z-root and no high indecomposable direct summand.

(b) T either contains no 2z-root or else contains a high indecomposable
direct summand as well.

By means of lemma 3.6, we get the inequality

σ(T )− σ(T )−
∑r

i=1 t
′
i ≤

{
1 under condition (a),

0 under condition (b).

Since by assumption Ez is neither a direct summand of T nor an object of
T⊥, we know that

codimZ ′′
Q,d = codimZQ,d + codimNd = codimZQ,d + d′z′ + 1,

from part (vi) of summary 2.4. Note that by definition, d′z′ = t′ =
∑r

i=1 λit
′
i.

Now by replacing the term codimZQ,d with n − 1 − σ(T ) and applying the
inequality above, we get

codimZ ′′
Q,d ≥

{
n− σ(T )− 1 +

∑r
i=1(λi − 1)t′i under condition (a),

n− σ(T ) +
∑r

i=1(λi − 1)t′i under condition (b).

By lemmas 3.3 and 3.4, if T contains a 2z-root then the highest 2-root Tl of
T must be a 2z-root as well. Since t′i ≥ 0 for all i, and from the fact that

d′z′ =
r∑
i=1

λit
′
i > 0

(see [7, §4]), we conclude that t′i ≥ 1, for some i. And if Tl is a 2z-root then
t′l ≥ 1. Using this, from the estimate for codimZ ′′

Q,d above, we conclude
that under either of conditions (a) or (b) we get codimZ ′′

Q,d ≥ n− σ(T ) if T
satisfies the hypothesis (M1). And by replacing (M1) with (M2) in the last
argument, we get the strict inequality codimZ ′′

Q,d > n− σ(T ). �

4 Proof of the theorem

We proceed by induction on the number n of vertices of Q. For n ≤ 3 the
quiver Q is of type A, and hence our theorem holds, by proposition 2.3. Now
for n > 3 we may assume that the theorem holds for ZQ,d, by the inductive
hypothesis. We fix a sink z ∈ Q0 and we first treat the following cases:
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(a) Ez is a direct summand of T .

(b) Ez is an object of T⊥.

In both cases Ez is a direct summand of any X ∈ ZQ,d, thus implying that

ZQ,d = Z ′′
Q,d = ZQ,d ×Nd.

Indeed, Ez is a direct summand of any X ∈ rep(Q,d) in case (a), and Ez is
a simple object in T⊥ in case (b).

For any connected component K of Q of type A, clearly T |K satisfies
(M1) or (M2) if T does, respectively. So suppose H is of type Dn−z. If T
contains a high indecomposable direct summand or does not contain any 2-
root then the same is true for T |H, by lemma 2.2. And if Tl is the highest
2-root of T then either Tl|H is the highest 2-root of T |H or else contains high
indecomposable direct summands, by proposition 3.5. So we conclude that
T |H satisfies (M1) or (M2) if T does, respectively. Hence by the inductive
hypothesis, we know that ZQ,d has proper codimension or is irreducible if T
satisfies (M1) or (M2), respectively.

Now with parts (i) and (ii) of summary 2.4 in case (a), and with parts
(i) and (iii) of summary 2.4 in case (b), respectively, the theorem follows for
ZQ,d. So we are left with the case that

(c) Ez is neither a direct summand of T nor an object of T⊥.

The main tool for proving case (c) are reflection functors. Using the notations
of §2.6, we verify the following steps:

(c1) If T satisfies (M1) or (M2) then

codimZ ′′
Q,d ≥ n− σ(T ) or

codimZ ′′
Q,d ≥ n− σ(T ) + 1, respectively.

(c2) If z 6= n − 2 and if T satisfies (M1) or (M2) then FzT does as well,
respectively.

(c3) If W ′
Q′,d′ has proper codimension or is irreducible then Z ′

Q,d has these
properties as well, respectively.

In order to prove (c1), note that if T satisfies (M2) then it automatically
satisfies (M1) too. So suppose (M1) holds for T . Then it holds for T as well,
by the same arguments as in the proof of case (a) and (b). Hence by the
inductive hypothesis, ZQ,d has proper codimension, i.e.

codimZQ,d = n− 1− σ(T ).
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Now (c1) follows from proposition 3.7. The claim (c2) is a direct consequence
of lemmas 3.1 and 3.2. And (c3) follows immediately from parts (iv) and (v)
of summary 2.4.

By using the above claims, we reduce case (c) to either (a) or (b): Since
Z ′′
Q,d is a closed subset of ZQ,d, from (c1) we conclude that the theorem holds

for ZQ,d if and only if it holds for Z ′
Q,d, i.e. if and only if T satisfying (M1) or

(M2) implies that Z ′
Q,d has proper codimension or is irreducible, respectively.

Dually the theorem holds for ZQ′,d′ if and only if it holds for W ′
Q′,d′ . Now

consider the set
A = {X ∈ ΓQ; Pn−2 ≤ X ≤ In−2} .

If there is a Tk outside of A then by duality, we may assume that Tk is to
the left of A. So using a finite sequence of reflection functors, none of which
are associated with the vertex n− 2, we reach the situation of (a) or (b), for
ZQ′,d′ . But then we are done, by (c2) and (c3).

So assume that all Tk are contained in A. From the description of T 2 in
lemma 3.3 and from the requirement 1[T, T ] = 0, we conclude that in A\T 2
it is impossible to have Ti to the left and Tj to the right of T 2 simultaneously
and such that Ti and Tj are not high. So by duality, we may assume that all
Tk are inside or to the left of T 2. With these constraints for T , we get the
following assertion:

(c′2) If T satisfies (M1) or (M2) then FzT does as well, respectively, for any
sink z ∈ Q0 and so particularly for z = n− 2.

Because of (c2), we only have to prove (c′2) for z = n − 2: If T contains a
high indecomposable direct summand then so does FzT . And assuming that
Tl is the highest 2-root of T , if FzTl is a 2-root then it is the highest 2-root
of FzT , by lemma 3.1. On the other hand, if FzTl is not a 2-root then FzT
contains no 2-root, by lemmas 3.3 and 3.4.

Now after a finite sequence of reflection functors at successive but oth-
erwise arbitrary sinks, again we reach the situation of (a) or (b), for ZQ′,d′ ,
and so the theorem holds for ZQ,d, by (c′2), and (c3).
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Part III

Quivers of type Dn,
semi-invariants and complete
intersections

Abstract
Let Q be a quiver of type Dn and d a dimension vector for Q. We

give a necessary and sufficient condition for the set of common zeros
of all non-constant semi-invariants for d-dimensional representations
of Q, under the product of the general linear groups at all vertices of
Q, to be a set theoretical complete intersection.

Samuel Beer

1 Introduction

Let Q = (Q0, Q1, t, h) be a finite quiver, i.e. a finite set Q0 = {1, . . . , n} of
vertices and a finite set Q1 of arrows α : tα → hα, where tα and hα denote
the tail and the head of α, respectively. Let K be an algebraically closed field
of characteristic zero.

A representation of Q over K is a collection

(X(i); i ∈ Q0)

of finite dimensional K-vector spaces together with a collection

(X(α) : X(tα) → X(hα); α ∈ Q1)

of K-linear maps. A morphism f : X → Y between two representations is a
collection (f(i) : X(i) → Y (i)) of K-linear maps such that

f(hα) ◦X(α) = Y (α) ◦ f(tα) for all α ∈ Q1.

By σ(X) we denote the number of pairwise non-isomorphic indecompos-
able direct summands occurring in a decomposition of X into indecompos-
ables. According to the theorem of Krull-Schmidt, σ(X) is well-defined. The
dimension vector of a representation X of Q is the vector

dimX = (dimX(1), . . . , dimX(n)) ∈ NQ0 .
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We denote the category of representations of Q by rep(Q), and for any
vector d = (d1, . . . , dn) ∈ NQ0

rep(Q,d) =
∏
α∈Q1

Mat(dhα × dtα,K)

is the vector space of representations X of Q with X(i) = Kdi , i ∈ Q0. The
group

Gl(d) =
n∏
i=1

Gl(di,K)

acts on rep(Q,d) by

((g1, . . . , gn) ·X)(α) = ghα ◦X(α) ◦ g−1
tα .

Note that the Gl(d)-orbit of X consists exactly of the representations Y in
rep(Q,d) which are isomorphic to X.

We call d a prehomogeneous dimension vector if rep(Q,d) contains
an open orbit Gl(d) · T . Such a representation T is characterized by
Ext1

Q(T, T ) = 0 (see [8]). If Q admits only finitely many indecomposable
representations, or equivalently if the underlying graph of Q is a disjoint
union of Dynkin diagrams A, D or E (see [1]), every vector d is prehomo-
geneous. Indeed, any representation is a direct sum of indecomposables and
therefore rep(Q,d) contains finitely many orbits, one of which must be open.

Let d be prehomogeneous, and let f1, . . . , fs ∈ K[rep(Q,d)] be the irre-
ducible monic polynomials whose zeros Z(f1), . . . , Z(fs) are the irreducible
components of codimension 1 of rep(Q,d) \Gl(d) · T , where Gl(d) · T is the
open orbit. It is easy to see that

g · fi = χi(g)fi

for g ∈ Gl(d), where χi : Gl(d) → K∗ is a rational character. A regular
function with this property is called a semi-invariant. By [9], any semi-
invariant is a scalar multiple of a monomial in f1, . . . , fs, and the f1, . . . , fs
are algebraically independent. We denote by

ZQ,d = {X ∈ rep(Q,d); fi(X) = 0, i = 1, . . . , s}

the closed subvariety of rep(Q,d) of the common zeros of all non-constant
semi-invariants. Obviously we have codimZQ,d ≤ s, and equality means
that ZQ,d is a set theoretic complete intersection (simply called a complete
intersection in the sequel). Note that in general, a variety Z defined as the
intersection of s irreducible hypersurfaces might be a complete intersection,

60



Part III 1 Introduction

even though codimZ < s. However, in conjunction with semi-invariants for
quivers, in §2 we show that ZQ,d is a complete intersection if and only if
codimZQ,d = s.

Now suppose Q is a connected quiver of type Dn and let T1, . . . , Tr
be pairwise non-isomorphic indecomposable representations of Q such that
Ext1

Q(Ti, Tj) = 0, for i, j = 1, . . . , r. Choose positive integers λ1, . . . , λr and
set

T =
r⊕
i=1

T λi
i

and d = dimT . In §4 we introduce the notion of folded rectangles. These
are certain subsets of vertices in the Auslander-Reiten quiver ΓQ and include
a special vertex, called the bent down corner. A folded rectangle is called
suitable for T if, among other rules, its bent down corner is an indecompos-
able direct summand of T , say T1, with multiplicity λ1 = 1. This gives rise
to the following classification:

Theorem. The variety ZQ,d is a complete intersection if and only if there
is no folded rectangle suitable for T .

In [7] Ch. Riedtmann and G. Zwara proved that ZQ,d is a complete in-
tersection, for any dimension vector d =

∑r
i=1 λi dimTi, provided that all

λi ≥ 2. By means of folded rectangles, we get the following refinement:

Corollary. Suppose ZQ,d is not a complete intersection. Then there exists
a folded rectangle suitable for T with bent down corner T1, where T1 is an
indecomposable direct summand of T with multiplicity λ1 = 1.

(i) Increasing λ1 yields a dimension vector d′ such that ZQ,d′ is a complete
intersection.

(ii) Increasing any other λi yields a dimension vector d′′ such that ZQ,d′′
is not a complete intersection.

Note that in case K is the field C of complex numbers, the fact that ZQ,d
is a complete intersection implies that rep(Q,d) is cofree as a representation
of the subgroup Sl(d) of Gl(d), i.e. the algebra C[rep(Q,d)] is a free module
over the ring C[rep(Q,d)]Sl(d) of Sl(d)-invariant polynomials (see [11, §17]).

The paper is organized as follows: In §2 we show that for an arbitrary
quiver Q and a prehomogeneous dimension vector d, the semi-invariants
f1, . . . , fs always form a minimal set of defining polynomials for ZQ,d. The
idea of the proof for this is due to G. Zwara. In §3 we fix the notations for
the remaining parts and recall the relevant facts and definitions which are
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Part III 2 On the number of equations defining ZQ,d

used later on. In §4 we introduce the notion of folded rectangles and prove
a series of results which are used in §5. This last section is devoted to the
proof of the theorem stated above.

Many of the proofs presented here are in terms of coordinates of vertices
in some Auslander-Reiten quiver. Unfortunately the explanatory diagrams of
these quivers had to be omitted due to limited space. The reader is strongly
urged to redraw the pictures in order to get an easier access to the arguments.

Acknowledgments. The results presented in this paper form a part of my
doctoral dissertation, written under the supervision of Professor Ch. Riedt-
mann. My very special thanks go to her for many fruitful discussions, the
guidance, and encouragement all along. Many thanks also go to G. Zwara
for the careful reading of preliminary versions of this paper and for the con-
tribution of the results in §2. Moreover, I am grateful to the Swiss National
Science Foundation for financial support.

2 On the number of equations defining ZQ,d

In this section let Q be an arbitrary finite quiver and d a prehomogeneous
dimension vector. We set

Sl(d) =
∏
i∈Q0

Sl(di,K).

The algebraically independent Gl(d)-semi-invariants f1, . . . , fs generate the
ring of Sl(d)-invariants, i.e.

K[rep(Q,d)]Sl(d) = K[f1, . . . , fs].

Let ZQ,d be the closed subscheme of rep(Q,d) defined by the semi-invariants
f1, . . . , fs, i.e.

ZQ,d = Spec (K[rep(Q,d)]/(f1, . . . , fs)) .

We want to prove the following:

Theorem 2.1. The minimal number of generators of the ideal

(f1, . . . , fs)CK[rep(Q,d)]

is s. Consequently ZQ,d is a complete intersection if and only if codimZQ,d =
s.
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The quotient

rep(Q,d)/ Sl(d) = Spec(K[rep(Q,d)]Sl(d)) = Spec(K[f1, . . . , fs])

is an s-dimensional affine space, and we consider the quotient map

π : rep(Q,d) → rep(Q,d)/ Sl(d)

induced by the inclusion

K[rep(Q,d)]Sl(d) ⊆ K[rep(Q,d)].

Of course the regular morphism π is dominant, i.e.

π(K[rep(Q,d)]) = K[rep(Q,d)]/ Sl(d),

but we need more:

Proposition 2.2. The quotient map π is surjective.

Proof. This fact is true for base fields of characteristic zero and for reductive
groups acting regularly on affine varieties (see for example [3, Theorem 4.6]).
�

Lemma 2.3. The semi-invariants f1, . . . , fs satisfy f1 6∈ (f2, . . . , fs).

Proof. Suppose that f1 ∈ (f2, . . . , fs). Then

f1 = g2 · f2 + · · ·+ gs · fs,

for some polynomials gi ∈ K[rep(Q,d)]. We identify K[rep(Q,d)]Sl(d) with
the affine space As such that the point p = (1, 0, . . . , 0) ∈ As corresponds
with the maximal ideal

m = (f1 − 1, f2, . . . , fs)CK[rep(Q,d)]Sl(d).

By proposition 2.2, the point p belongs to the image of π, which implies that

m = n ∩K[rep(Q,d)]Sl(d),

for some maximal ideal n C K[rep(Q,d)]. This in turn is equivalent to the
fact that the ideal

m ·K[rep(Q,d)]EK[rep(Q,d)]
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is proper. But on the other hand

1 = −(f1 − 1) + g2 · f2 + · · ·+ gs · fs ∈ m ·K[rep(Q,d)],

which gives a contradiction. �

For K[rep(Q,d)] we have the following description:

K[rep(Q,d)] = K[Xα,i,j]α∈Q1, i≤dhα, j≤dtα ,

where Xα,i,j corresponds to the (i, j)-entry of the generic α-matrix in
rep(Q,d).

Example 2.4. Let Q be the quiver

1
α // 2

β //

γ

��

3

4

and d = (3, 2, 1, 1). Then we have the variables

K3

�
Xα,1,1 Xα,1,2 Xα,1,3

Xα,2,1 Xα,2,2 Xα,2,3

�
// K2

(Xβ,1,1 Xβ,1,2 )//

(Xγ,1,1 Xγ,1,2 )

��

K

K

For the remaining part of this section we set

I = (f1, . . . , fs),

m = (Xα,i,j; α ∈ Q1, i ≤ dhα, j ≤ dtα)CK[rep(Q,d)].

Obviously m is a maximal ideal and K[rep(Q,d)]/m = K.

Lemma 2.5. Suppose that I = (g1, . . . , gk). Then the residue classes of
g1, . . . , gk generate the K-vector space I/I ·m.

Proof. The claim follows from the facts that the residue classes of g1, . . . , gk
generate the K[rep(Q,d)]-module I/I ·m, that this module is annihilated by
m, and that K[rep(Q,d)]/m = K. �

As a direct consequence of the above lemma we have:

Corollary 2.6. Suppose that I = (g1, . . . , gk). Then k ≥ dimK(I/I ·m).
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Let (eα)α∈Q1 denote the standard basis of the free commutative group
ZQ1 . We have a natural grading on the K-algebra K[rep(Q,d)], by the group
ZQ1 : Set the degree of the variable Xα,i,j to be eα. If Q and d are as in
example 2.4 then

deg(Xα,2,2) = (1, 0, 0),

deg(X5
β,1,1) = (0, 5, 0),

deg(X2
α,1,1 ·Xα,2,3 ·Xγ,1,2) = (3, 0, 1).

Here, the first coordinate corresponds to α, the second to β and the third to
γ.

Lemma 2.7. With respect to the above grading, the semi-invariants
f1, . . . , fs are homogeneous polynomials in K[rep(Q,d)]. Moreover, their de-
grees are pairwise different.

Proof. Let (fi)i∈Q0 denote the standard basis of the free commutative group
ZQ0 . Moreover, let (f∗i )i∈Q0 denote the dual basis in (ZQ0)∗. We identify the
elements of (ZQ0)∗ with the weights of the rational characters of Gl(d). We
define a Z-linear function

Ψ: (ZQ1) → (ZQ0)∗, Ψ(eα) = −f∗hα + f∗tα.

Observe that if f ∈ K[rep(Q,d)] is a homogeneous function and g =
(gi)i∈Q0 ∈ Gl(d), where each gi is of the form ci · Idi

, with ci ∈ K∗, then

g ∗ f = Ψ(deg f)(g) · f = (cd11 )y1 . . . (cdn
n )yn · f (yi ∈ Z). (1)

Moreover, if f ∈ K[rep(Q,d)] is a semi-invariant and g an arbitrary element
of Gl(d) then

g ∗ f = χ(g) · f = (det g1)
z1 . . . (det gn)

zn · f (zi ∈ Z). (2)

Now suppose the semi-invariant fi is not homogeneous. Then we may write

fi =
u∑
j=1

fij (fij homogeneous).

Combining this with equations (1) and (2), for any g ∈ Gl(d) of the type
used in equation (1), we get

g ∗ fi =
u∑
j=1

χ(g) · fij =
u∑
j=1

Ψ(deg fij)(g) · fij.
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So we conclude that

Ψ(deg fij) = Ψ(deg fik) (j, k = 1, . . . , u),

and hence,
fij
fik

(j 6= k)

is a non-trivial rational invariant in K(rep(Q,d)). But this is a contradiction
to our assumption that d is prehomogeneous. So the semi-invariant fi indeed
is a homogeneous function and its weight is equal to Ψ(deg fi). Moreover,
since the weights of f1, . . . , fs are pairwise different, the degrees of f1, . . . , fs
must be pairwise different as well. �

We conclude from the above lemma that the ideal I is homogeneous. Ob-
viously the maximal ideal m is also homogeneous. Indeed, m is described by
the following property: A nonzero homogeneous polynomial h ∈ K[rep(Q,d)]
belongs to m if and only if deg(h) 6= (0, . . . , 0).

Lemma 2.8. The residue classes of f1, . . . , fs in I/I · m are linearly inde-
pendent.

Proof. Suppose this is not the case. Then

a1 · f1 + a2 · f2 + · · ·+ as · fs ∈ I ·m,

for some scalars ai ∈ K, such that not all of them are zero. We may assume
that a1 6= 0. Since the ideal I · m is homogeneous and the polynomials fi
are homogeneous of pairwise different degrees, we conclude that f1 belongs
to I ·m. So

f1 = f1 · g1 + f2 · g2 + · · ·+ fs · gs,

for some polynomials gi ∈ m. Let hi be the component of the polynomial gi
of degree deg(f1)− deg(fi). Observe that

f1 = f1 · h1 + f2 · h2 + · · ·+ fs · hs.

Since h1 has degree (0, . . . , 0) and belongs to m, we know that h1 = 0. But
this implies that f1 ∈ (f2, . . . , fr), a contradiction with lemma 2.3. �

Now corollary 2.6 and lemma 2.8 imply that the number of generators of
I is at least s. And this proves theorem 2.1.
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3 Preliminaries and Notations

3.1. From now on we will assume throughout that the quiver Q is connected
and of type Dn, i.e. the underlying graph |Q| is a Dynkin diagram Dn. Fol-
lowing [5], we recall some notations used to describe the Auslander-Reiten
quiver ΓQ of Q. We label the vertices of |Q| as follows:

n− 1
ggggg

1 2 3 . . . n− 2
n

XXXXXX

By ~Q we denote the quiver for which all arrows “point to the right”, i.e. if
there is an edge i−j in |Q| and if i < j, then there is an arrow α : i→ j in ~Q.
The translation quiver ZDn is defined as follows (see [4] or [2]): Start from

Z× ~Q and add an arrow (i, j) → (i+ 1, j − 1) for i ∈ Z and 2 ≤ j ≤ n− 1,
and an arrow (i, n) → (i + 1, n − 2) for i ∈ Z. The translation is given by
τ(i, j) = (i− 1, j).

Note that the vertices of ZDn are partially ordered by defining X ≤ Y ,
for X, Y ∈ ZDn, if and only if there is a path from X to Y in ZDn. For any
subset U and any vertex A of ZDn we say that A lies to the left (to the right)
of U if A ≤ X (X ≤ A) for some vertex X ∈ U .

We call a vertex x ∈ Q0 low if x ≤ n − 2 and high otherwise. Similarly,
for vertices of ZDn we call (i, j) low if j ≤ n − 2 and high otherwise. Two
high vertices (i, j) and (k, l) are said to be congruent if i+ j ≡ k + l mod 2.
The high vertices (i, n− 1) and (i, n) will be called adjacent.

We will also use the following (non-reflexive) partial order relation on the
set of vertices of of ZDn: Given arbitrary vertices (i, j) and (k, l), we call
(i, j) higher than (k, l) if and only if j > l.

The Auslander-Reiten quiver ΓQ of Q can be viewed as a subquiver of
ZDn in the following manner: Embed the opposite quiver Qop in ZDn as a
section, i.e. in such a way that each τ -orbit of vertices of ZDn is met exactly
once. Define the Nakayama translate ν(i, j) of a vertex to be (i + n − 2, j)
if (i, j) is low, and to be the high vertex with first coordinate i + n− 2 and
which is congruent to (i, j) if (i, j) is high. Then the Auslander-Reiten quiver
ΓQ of Q can be identified with the full subquiver of ZDn whose vertices lie
between Qop and ν(Qop) (see [2]).

3.2. Recall from [2] the dimensions of the spaces of morphisms in the mesh
category K(ZDn), or equivalently in rep(Q) if the vertices (i, j) and (k, l)
belong to ΓQ:
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Proposition 3.1.

(i) dim Hom((i, j), (k, l)) ≤ 2.

(ii) dim Hom((i, j), (k, l)) = 2 if and only if j, l ≤ n − 2 and i + 1 ≤ k ≤
i+ j − 1 and i+ n− 1 ≤ k + l ≤ i+ j + n− 3.

(iii) dim Hom((i, j), (k, l)) ≥ 1 if and only if one of the following conditions
is satisfied:

(a) j ≤ n− 2, i ≤ k ≤ i+ j − 1 and i+ j ≤ k + l,

(b) j ≤ n − 2, l ≤ n − 2, i + n − 1 ≤ k + l ≤ i + j + n − 2, and
k ≤ i+ n− 2,

(c) j ∈ {n− 1, n}, l ≤ n− 2, i+ n− 1 ≤ k + l and k ≤ i+ n− 2,

(d) j, l ∈ {n− 1, n}, k ≤ i+ n− 2 and (k, l) congruent to (i, j).

With Px and Ix we always denote the projective and injective indecom-
posable representations associated with the vertex x ∈ Q0, respectively. The
coordinates of Px in ΓQ are those of the vertex x of Qop embedded in ZDn

when constructing ΓQ (compare §3.1). So Px = (i, x), for some i ∈ Z, and
Ix = ν(i, x).

We call a vertex x ∈ Q0 a sink if it is the head of some arrows but the
tail of none. Similarly we define sources. Using the same labelling for the
vertices of |Q| as in §3.1, we state:

Lemma 3.2.

(i) If U is an indecomposable representation of Q then either dimU(x) ≤ 1
for all x or

1
dimU = 0 · · · 0 1 · · · 1 2 · · · 2

1

and dimU contains at least one 2 and at least three 1.

(ii) (a) In case {n− 1, n} consists of a sink and a source, an indecompos-
able representation U of Q is high in ΓQ if and only if either U is the
one dimensional representation supported at n− 1 or n or else

1
dimU = 0 · · · 0 1 · · · 1

1
or

0
dimU = 0 · · · 0 1 · · · 1

0
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(b) In case {n− 1, n} consists of either two sinks or two sources, an
indecomposable representation U of Q is high in ΓQ if and only if

1
dimU = 0 · · · 0 1 · · · 1

0
or

0
dimU = 0 · · · 0 1 · · · 1

1

(c) The pairs of dimension vectors exhibited in (a) and (b) correspond
to pairs of adjacent high vertices.

Proof. From the Yoneda lemma, we get [Px, V ] = dimV (x), for arbitrary
V ∈ rep(Q) and x ∈ Q0. Now the lemma follows from proposition 3.1,
combined with the description of the coordinates of Px in ΓQ. �

Based on the above, we call an indecomposable representation U a 2-root
if there exists a vertex x ∈ Q0 with dimU(x) = 2, and we denote by T 2 the
set of all 2-roots in ΓQ. Moreover, we call U a 2x-root if dimU(x) = 2 for a
vertex x ∈ Q0 and denote by T 2x the set of all 2x-roots in ΓQ.

3.3. We recall the following material from [8] and from [10]. For a quiver Q,
the Euler form is the Z-bilinear form on ZQ0 defined by

〈d, e〉 =
∑
i∈Q0

diei −
∑
α∈Q1

dtαehα.

For X ∈ rep(Q,d) and Y ∈ rep(Q, e) it can be computed as

〈d, e〉 = [X, Y ]− 1[X, Y ],

where

[X, Y ] = dimK HomQ(X, Y ) and 1[X, Y ] = dimK Ext1
Q(X, Y ).

The quadratic form
q(d) = 〈d,d〉

associated with the Euler form is the Tits form of Q. It is positive definite
if the underlying graph |Q| is a Dynkin diagram, and so particularly if Q is
of type Dn.

3.4. The following notations and results are gathered from [12]. Given a
short exact sequence of representations in rep(Q)

Σ: 0 −→ X −→ Y −→ Z −→ 0,
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we define the additive functions

δΣ(A) = [X ⊕ Z,A]− [Y,A],

δ′Σ(A) = [A,X ⊕ Z]− [A, Y ],

on representations A ∈ rep(Q). For representations X,U ∈ rep(Q), where
U is indecomposable, we denote by µ(X,U) the multiplicity with which U
occurs as a direct summand of X. For a non-injective indecomposable rep-
resentation U ∈ rep(Q) we denote by Σ(U) an Auslander-Reiten sequence

Σ(U) : 0 −→ U −→ E(U) −→ τ−1U −→ 0.

With these notations we get:

Lemma 3.3. For X,U ∈ rep(Q), where U is non-injective and indecompos-
able, we have the following formulæ:

δΣ(U)(X) = µ(X,U) and δ′Σ(U)(X) = µ(X, τ−1U).

3.5. All varieties considered in this paper are locally closed subvarieties of
some vector space, usually some rep(Q,d), with respect to the Zariski topol-
ogy. Which space is always clear from the context. The term “codimension”
is with reference to this ambient space. When referring to the codimension
of the Zariski closure of some orbit Gl(d) · X, we usually omit the closure
bar and only write codim Gl(d) ·X. Given representations X, Y ∈ rep(Q,d),
we call Y a degeneration of X if Y belongs to the closure of the orbit of X
and denote this by X ≤deg Y .

We will assume that T1, . . . , Tr are pairwise non-isomorphic indecompos-
able representations of Q with Ext1(Ti, Tj) = 0, for i, j = 1, . . . , r, and that
the representation

T =
r⊕
i=1

T λi
i with λi ≥ 1

is sincere, i.e. T (k) 6= 0 for all k ∈ Q0. Note that the orbit of T is open
in rep(Q,d), where d = dimT . The sincerity of T is no restriction as
the full subquiver which supports T is a disjoint union of connected quivers
K1, . . . , Km of types A and D, implying that

ZQ,d =
m∏
j=1

ZKj ,d|Kj
.

Note that for a quiver K of type A and for an arbitrary dimension vector e
the variety ZK,e is always a complete intersection, by the results of [7].
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Also recall the Auslander-Reiten formula

1[U, ?] = [?, τU ],

for non-projective indecomposable representations U (see [2, §2]). Here τ
denotes the Auslander-Reiten translation. Using the same symbol as for
the translation of vertices of ZDn will cause no confusion. The applying
translation will always be clear from the context. This formula and the
requirement 1[T, T ] = 0 for the representation T imply that [Ti, τTj] = 0, for
i, j = 1, . . . , r.

3.6. The material presented below can be found in [10]. Also compare [6].
For a representation X ∈ rep(Q), the right perpendicular category X⊥ is the
full subcategory of rep(Q) whose objects are{

A ∈ rep(Q); [X,A] = 1[X,A] = 0
}
.

Similarly, the left perpendicular category ⊥X has as objects{
A ∈ rep(Q); [A,X] = 1[A,X] = 0

}
.

Note that X⊥ = ⊥(τX), where τ is the Auslander-Reiten translation for all
non-projective indecomposable direct summands of X and τ(Px) = Ix, for
all x ∈ Q0.

If X is sincere and 1[X,X] = 0 then the category X⊥ is equivalent to
the category of representations of a quiver with n− σ(X) vertices. Thus T⊥

contains n − r simple objects for our representation T . If S is one of them,
the set

{A ∈ rep(Q,d); [A, S] 6= 0}

is an irreducible component of codimension 1 of the complement

rep(Q,d) \Gl(d) · T.

Non-isomorphic simple objects of T⊥ lead to distinct irreducible components,
and all irreducible components of codimension 1 are obtained in this way.
Thus ZQ,d is the zero set of n − r (algebraically independent) polynomials.
From now on, we will denote the underlying reduced variety of ZQ,d by the
same symbol. This will cause no confusion since we are only interested in
the dimension of ZQ,d. We have the following descriptions:

ZQ,d =
{
A ∈ rep(Q,d); [A, S] 6= 0 for all simple objects S ∈ T⊥}

=
{
A ∈ rep(Q,d); [S ′, A] 6= 0 for all simple objects S ′ ∈ ⊥T

}
.
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3.7. We fix a sink z ∈ Q0, i.e. a vertex which is the head of some arrows
αj : yj → z, for j = 1, . . . , t. Let Ez be the simple projective supported at z.
By Q we denote the full subquiver of Q with Q0 = Q0 \ {z} and by d the
restriction of d to Q0. Note that if z ∈ {n− 1, n} then Q is of type An−1.
Otherwise z < n− 1 and then Q is the disjoint union

Q = L
·
∪H,

where L and H are the full subquivers of Q with vertex sets

L0 = {1, . . . , z − 1} and H0 = {z + 1, . . . , n} .

Clearly, L is always of type Az−1. If z < n− 3 then H is of type Dn−z. Oth-
erwise H is of type A3 or is a disjoint union of two copies of A1, respectively,
if z = n− 3 or if z = n− 2. We will also use the fact that

ZQ,d = ZH,d|H ×ZL,d|L.

By definition of Ez, we have

E⊥
z = {A ∈ rep(Q); A(z) = 0} ,

which we identify with rep(Q). Note that the orbit of the restriction

T =
r⊕
i=1

T i
λi

to Q is open in rep(Q,d). Indeed, we get 1[T , T ] = 0 by computing the
Hom-Ext-sequences (T,Σ) and (Σ, T ) of the short exact sequence

Σ: 0 −→ Ez
dz −→ T −→ T −→ 0.

Define a new quiver Q′ by deleting z and α1, . . . , αt and by adding a new
vertex z′ and arrows βj : z

′ → yj, for j = 1, . . . , t. Note that the simple
representation E ′

z′ of Q′ supported at z′ is injective. Let

F−
z : rep(Q) −→ rep(Q′)

be the reflection functor associated with the sink z, and dually

F+
z′ : rep(Q′) −→ rep(Q)
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the reflection functor associated with the source z′ (see [1] and also [7]). If
Ez is not a direct summand of T , we have dz ≤

∑t
j=1 dyj

, and the dimension
vector d′ = dimF−

z T is given by

d′i =

{
di if i 6= z′,(∑t

j=1 dyj

)
− dz ≥ 0 if i = z′.

For the construction of the Auslander-Reiten quiver ΓQ′ , we embed (Q′)op

in ZDn in such a way that all vertices except for z′ coincide with the vertices
of the embedding of Qop (compare §3.1). From this we immediately get the
following result:

Lemma 3.4. Let U = (i, j) 6= Ez be an indecomposable representation of Q.
Denote by U ′ = (i′, j′) = F−

z U the corresponding representation of Q′. Then
as elements of ZDn we get (i′, j′) = (i, j).

In order to compare ZQ,d with ZQ′,d′ , we decompose:

ZQ,d = Z ′
Q,d

·
∪Z ′′

Q,d and ZQ′,d′ = W ′
Q′,d′

·
∪W ′′

Q′,d′ ,

where

Z ′
Q,d = {A ∈ ZQ,d; [A,Ez] = 0} , Z ′′

Q,d = {A ∈ ZQ,d; [A,Ez] > 0} ,
W ′

Q′,d′ = {A′ ∈ ZQ′,d′ ; [E ′
z′ , A

′] = 0} , W ′′
Q′,d′ = {A′ ∈ ZQ′,d′ ; [E ′

z′ , A
′] > 0} .

For the purpose of studying Z ′′
Q,d we set

γ′′Q,d = #Q0 − σ(T )− codimZ ′′
Q,d,

γQ,d = #Q0 − σ(T )− codimZQ,d

and
δQ,d = γ′′Q,d − γQ,d.

We will need to estimate the contributions to δQ,d arising from the direct
summands T1, . . . , Tr. For an indecomposable representation U 6= Ez with
dimension vector u we set

ρ(U) = σ(U)− 1− u′z′ .

With the notations introduced above we state the following results from [5]:
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Summary 3.5.

(i) If T contains a high vertex H of ΓQ as a direct summand then ZQ,d is
a complete intersection.

(ii) δQ,d =

{
0 if dz ≥

∑t
j=1 dyj

σ(T )− σ(T )− d′z′ if dz <
∑t

j=1 dyj

}
≤ 1.

(iii) If δQ,d > 0 then δQ,d ≤
r∑
i=1

ρ(Ti).

We will also use the following results from [7]:

Summary 3.6.

(i) If dz ≥
∑t

j=1 dyj
then ZQ,d = Z ′′

Q,d.

(ii) If dz <
∑t

j=1 dyj
then codimZ ′

Q,d = codimW ′
Q′,d′ .

3.8. For a fixed sink z ∈ Q0 \ {n− 1, n} we describe the restriction functors

Lz : rep(Q) −→ rep(L) and Hz : rep(Q) −→ rep(H),

in terms of coordinates for indecomposable representations in ΓQ.

Proposition 3.7. Let (0, z) be the coordinates of Ez and (i, j) an arbitrary
vertex of ΓQ. Then we have:

(i) Lz(i, j) = 0 for the ranges:

(a) i ≤ 0,

(b) z ≤ i and i+ j ≤ n− 1,

(c) z + n− 1 ≤ i+ j.

(ii) Lz(i, j) = (i, j) for the ranges:

(d) i+ j ≤ z − 1,

(e) n− 1 ≤ i.

(iii) Lz(i, j) = (n− 1, i) for the ranges:

(f) 1 ≤ i ≤ z − 1 and z ≤ i+ j ≤ n− 1,

(g) 1 ≤ i ≤ z − 1 and n− 1 ≤ j.

(iv) Lz(i, j) = (n− 1, i+ j + 1− n) for the range:
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(h) z ≤ i ≤ n− 2 and n ≤ i+ j ≤ z + n− 2.

(v) Lz(i, j) = (n− 1, i)⊕ (n− 1, i+ j + 1− n) for the range:

(i) i ≤ z − 1 and n ≤ i+ j and j ≤ n− 2.

Proof. With the same arguments as in the proof of lemma 3.2 we conclude
that Lz, as described above, satisfies

dim(Lz(i, j))(k) =

{
dim(i, j)(k) if k < z,

0 if k ≥ z,

for all (i, j) ∈ ΓQ. Moreover, for representations (i, j) where Lz(i, j) consists
of more than one indecomposable direct summand, we also have

1[Lz(i, j),Lz(i, j)] = 0,

by applying the Auslander-Reiten formula (see §3.5). These two properties
yield a necessary and sufficient condition for Lz to be the restriction functor
to rep(L). �

With analogous arguments one also proves the following description of
the restriction functor to rep(H):

Proposition 3.8. Let (0, z) be the coordinates of Ez and (i, j) an arbitrary
vertex of ΓQ. Then we have:

(i) Hz(i, j) = 0 for the ranges:

(a) i+ j ≤ z,

(b) n− 1 ≤ i.

(ii) Hz(i, j) = (i, j) for the ranges:

(c) i ≤ −1,

(d) z ≤ i and i+ j ≤ n− 2,

(e) z + n− 1 ≤ i+ j.

(iii) Hz(i, j) = (z, i+ j − z) for the range:

(f) 0 ≤ i ≤ z − 1 and z + 1 ≤ i+ j ≤ n− 2.

(iv) Hz(i, j) = (i, z + n− 1− i) for the range:

(g) z + 1 ≤ i ≤ n− 2 and n− 1 ≤ i+ j ≤ z + n− 2.
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(v) Hz(i, j) = (z, n− 1)⊕ (z, n) for the range:

(h) i ≤ z and n− 1 ≤ i+ j and j ≤ n− 2.

(vi) Hz(i, j) = (z, l) with l ∈ {n− 1, n} such that (i,j) and (z,l) are congru-
ent, for the range:

(i) 0 ≤ i ≤ z − 1 and n− 1 ≤ j.

4 Folded Rectangles

Based on the coordinate system for ZDn and ΓQ introduced in §3.1 we now
give the following definitions:

Definition 4.1. Let U = (p, q) be a vertex in ZDn.

(i) If q 6= n then by the diagonal through U we mean the subset of vertices
in ZDn denoted by

DU = D(p,q) = {(i, j); i = p+ q − j, j ∈ Q0 \ {n}}∪{(p+ q − n+ 1, n)} .

If q = n we set DU = D(p,q−1).

(ii) By the codiagonal through U we mean the subset of vertices in ZDn

denoted by
CU = C(p,q) = {(p, j); j ∈ Q0} .

Definition 4.2. Let U be a vertex in ZDn. By Sr,U we denote the sector to
the right of U in ZDn, i.e. the subset of all vertices X ∈ ZDn which lie to the
right of DU and also to the right of CU . By Sb,U we denote the sector below
U , i.e. the subset of all vertices X ∈ ZDn which lie to the left of DU and to
the right of CU . In a similar way we also define the sectors to the left of and
above U and denote them by Sl,U and Sa,U , respectively.

Definition 4.3. Let N = (N1, N2) be a pair of low vertices with N1 < N2

in ZDn and consider the following set of rules:

(i) CN1 ∩ DN2 = ∅.
(ii) DN1 ∩ CN2 = ∅ and DN1 ∩ CτN2 6= ∅.
(ii′) DN1 ∩ CN2 6= ∅.

• If N either satisfies ((i) and (ii)) or else ((i) and (ii′)) we call the area

RN = Sr,N1 ∩ Sl,N2

a folded rectangle of type I or of type II in ZDn, respectively.
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• Given a folded rectangle RN , let H1 and H2 be high vertices on CN1 and
on DN2 , respectively. Then we call the unique vertex M1 ∈ DH1 ∩ CH2

the bent down corner of RN .

• If RN is of type II we call the unique vertex M2 ∈ DN1 ∩ CN2 the low
corner of RN .

Definition 4.4. Let X = Xµ1

1 ⊕ · · · ⊕ Xµr
r be a representation of Q, with

pairwise non-isomorphic indecomposable direct summands Xi and positive
multiplicities µi. Let RN be a folded rectangle contained in ΓQ such that the
following holds:

(i) The bent down corner of RN is a direct summand Xi of X with µi = 1.

(ii) If RN is of type II the low corner of RN is a direct summand Xj of X
with arbitrary µj.

(iii) There are no other direct summands of X except for Xi and Xj con-
tained in RN .

Then we call RN (X) = RN a folded rectangle suitable for X.

Given a folded rectangle RN (X) suitable for a representation X as in
definition 4.4, we set N = N1⊕N2. Up to renumbering, we assume X1 to be
the bent down corner of RN (X) and X2 to be the low corner in case RN (X)
is of type II. Also, we will occasionally use the notation of decomposing
X = X ′ ⊕X ′′, where

X ′ =

{
X1 if RN (X) is of type I,

X1 ⊕X2 if RN (X) is of type II.

Note that X ′′ may contain copies of X2 as direct summands, even if RN (X)
is of type II.

With these definitions we now gather some results which will be used
in §5.1 to prove the first implication of our theorem. Recall that T is the
representative of the open orbit of rep(Q,d).

Proposition 4.5. Suppose there exists a folded rectangle RN (T ) suitable for
the representation T = T ′ ⊕ T ′′ ∈ rep(Q,d). Setting D = N ⊕ T ′′ we get:

(i) dimD = d and hence T ≤deg D.

(ii) codim Gl(d) ·D = 2.
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Proof. Part (i): Consider the short exact sequence

Σ: 0 −→ X −→ Y −→ Z −→ 0

obtained by taking the direct sum

Σ =
⊕

U,τ−1U∈RN (T )

Σ(U)µU

of the Auslander-Reiten sequences in RN (T ) with multiplicities

µU =

{
1 if U is high or if {U, τ−1U} 6⊆ Sa,T1

2 if U is low and if {U, τ−1U} ⊆ Sa,T1 .

Then one checks that the multiplicity of any indecomposable direct summand
is the same inX⊕Z and in Y , except forN1, N2, and for the indecomposables
of T ′. The direct summands N1 and N2 occur exactly once in X ⊕ Z, but
never in Y . On the other hand, if the multiplicity of a direct summand Ti of
T is mi in X ⊕ Z then it is mi + 1 in Y . This implies dimT ′ = dimN and
hence we get dimD = dimT = d.

Part (ii): By the Artin-Voigt lemma (see [8]), stating that for arbitrary
representations X we get

codim Gl(d) ·X = 1[X,X],

and by the fact that the Tits form satisfies

q(dimX) = [X,X]− 1[X,X],

we conclude

codim Gl(d) ·D = [D,D]− q(d)

= [D,D]− [T, T ] + 1[T, T ]

= [D,D]− [T, T ].

Observe that [N,N ] − [T ′, T ′] = 2 for both types of folded rectangles, by
proposition 3.1. Hence we obtain

codim Gl(d) ·D = 2 + [N, T ′′]− [T ′, T ′′] + [T ′′, N ]− [T ′′, T ′]

and by the arguments of part (i) concerning the multiplicities of direct sum-
mands of the components of Σ, this is seen to be

codim Gl(d) ·D = 2 + δΣ(T ′′) + δ′Σ(T ′′).
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Now since the direct summands of T ′′ lie outside of RN (T ) or possibly at the
low corner only, in case RN (T ) is of type II, we get

δΣ(T ′′) = δ′Σ(T ′′) = 0,

by applying lemma 3.3. �

Lemma 4.6. Suppose there exists a folded rectangle RN (T ) suitable for the
representation T and with bent down corner T1 = (p, q). Then either the
adjacent high vertices H1, H2 with first coordinates p + q − n + 1 are both
simple projective objects in T⊥ or else the adjacent high vertices H3, H4 with
first coordinates p− 1 are simple injective objects in T⊥.

Proof. The existence of RN (T ) implies that the second coordinate of T1 lies
in the range q ∈ {2, . . . , n− 2}. For q = n− 2 we have {H1, H2} = {H3, H4}
and in this case the stated property is easily seen to be true.

Now for q ≤ n− 3, the existence of RN (T ) implies that the entire sector
Sa,(p−1,q+1) lies in ΓQ and hence belongs to T⊥

1 . It is clear that, as objects of
T⊥

1 , the vertices H1, H2 are both projective andH3, H4 are both injective. We
first show that either H1, H2 or else H3, H4 are simple in T⊥

1 : Suppose H1, H2

are not simple in T⊥
1 . Then the vertex A on CH1 with second coordinate

n− q − 2 must belong to T⊥
1 and hence to ΓQ. But then no vertex (k, l) on

DH3 with l ≤ n− q− 2 belongs to ΓQ and hence neither to T⊥
1 . This in turn

implies that H3, H4 must be simple in T⊥
1 .

Assuming that H1, H2 are simple and projective in T⊥
1 , we only have to

show that they belong to T⊥, because then, of course, they are simple and
projective in T⊥ as well. Now if they do not belong to T⊥ then this implies
that T has a direct summand Tj on CH1 being lower or equal to A. But then
Tj belongs to T⊥

1 and, in contradiction to our assumption, H1, H2 are not
simple in T⊥

1 . A similar argument shows that if H1, H2 are not simple in T⊥
1

then H3, H4 belong to T⊥. �

Lemma 4.7. Suppose there exists a folded rectangle RN (T ) suitable for the
representation T and with bent down corner T1 = (p, q). If RN (T ) is of type
I we set u to be the first coordinate of N2, and v = 0. If RN (T ) is of type II
we set T2 = (u, v). Then at least one of the following vertices belongs to T⊥:

Y1 = (p, u+ v − p),

Y2 = (u− 1, v + 1),

Y3 = (u− 1, p+ q − u).
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Proof. First note that Yi belongs to T⊥ if and only if T belongs to ⊥Yi.
Remembering also that T must satisfy 1[T, T ] = 0, we obtain the following:

Y1 6∈ T⊥ if and only if T contains a direct summand Tj ∈ A1 ∪ A2,

Y2 6∈ T⊥ if and only if T contains a direct summand Tj ∈ A1 ∪ A4,

Y3 6∈ T⊥ if and only if T contains a direct summand Tj ∈ A3 ∪ A4.

The areas Ai are obtained in the following way: Considering the vertices

A1 = (u+ v − n+ 1, p+ q − u− v − 1),

A2 = (p, u− p− 1),

A3 = (u+ v + 1, p+ q − u− v − 1),

A4 = (p+ n, u− p− 1),

we define

A1 = {X ∈ CA1 ; X not higher than A1} ,
A2 = {X ∈ CA2 ; X not higher than A2} ,
A3 = {X ∈ DA3 ; X not higher than A3} ,
A4 = {X ∈ DA4 ; X not higher than A4} .

Note that there are special cases of folded rectangles, where some of the Yi
coincide. In these cases some of the Al have non-positive second coordinates,
and we consider the corresponding Al to be empty. Now the result follows
from the fact that Al and Ak cannot exist in ΓQ simultaneously if |l − k| ≥ 2.
�

Proposition 4.8. Suppose there exists a folded rectangle RN (T ) suitable for
the representation T . Then there are non-trivial morphisms from N1 to three
different simple objects of T⊥.

Proof. The first two simple objects of T⊥ arise from lemma 4.6, since for any
folded rectangle we get [N1, Hi] = 1, for i = 1, . . . , 4. Moreover, also for the
Yj of lemma 4.7 we always obtain [N1, Yj] = 1, for j = 1, . . . , 3. Note that
the Yj belonging to T⊥ might not be simple in T⊥. But by an easy filtration
argument, we get a non-trivial morphism from N1 to a simple object S of
T⊥. And S cannot be one of the Hi, since Yj and Hi evidentially belong to
different connected components of T⊥. �

The remaining results in this section will be used in §5.2 to prove the
second implication of the statement of our theorem. We fix a sink z ∈ Q0

once for all.
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Lemma 4.9. Let U be an arbitrary vertex in ΓQ. Any vertex V ∈ ΓQ,
satisfying 1[U, V ] = 1[V, U ] = 0 and not belonging to Sa,U ∪ Sb,U , cannot
belong to any possible folded rectangle suitable for U .

Proof. We set U = (p, q). Clearly, any vertex V satisfying the above condi-
tions must belong to

Sl,(p−2,1) ∪ Sr,(p+q+1,1).

But every folded rectangle suitable for U is completely contained in

Sr,(p+q−n+1,n−q) ∩ Sl,(p+q−1,n−q)

and therefore cannot intersect with the area of possible locations of V . �

Lemma 4.10. Suppose Z ′′
Q,d is not a complete intersection and δQ,d = 1.

Then we get:

(i) The sink z is not a high vertex of Q.

(ii) Exactly one direct summand of the representation T , say T1, belongs to
T2,z, and its multiplicity is λ1 = 1.

(iii) Let X = (u, v) be the lowest vertex in T2,z. Then no direct summand
of T on C(u+1,v−1) can be higher than or equal to (u+ 1, v − 1).

(iv) Let Y be the unique vertex in CT1∩DEz . Then no other direct summand
of T on CT1, except for T1, can be higher than or equal to Y .

Proof. For part (i) suppose z is a high vertex of Q. Then Ez is a high vertex
in ΓQ and therefore cannot be a direct summand of T by part (i) of summary
3.5. For any other indecomposable U 6= Ez, we find ρ(U) ≤ 0 by means of
propositions 3.7 and 3.8. So by part (ii) of summary 3.5 also δQ,d ≤ 0, which
contradicts our hypothesis on δQ,d.

For the remaining parts we may assume z ∈ Q0 \ {n− 1, n}. Again, by
means of propositions 3.7 and 3.8 we get

ρ(U)

{
= 1, if U ∈ T2,z

≤ 0, otherwise.

So T must contain a direct summand T1 ∈ T2,z. However, for any further
copy of T1 occurring in T , or for any other direct summand of T belonging
to T2,z or to one of the ranges described in (iii) and (iv), the gain on

σ(T ) + d′z′
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would strictly exceed the gain on

σ(T ).

But by part (iii) of summary 3.5, this would imply δQ,d ≤ 0. �

Proposition 4.11. Suppose Z ′′
Q,d is not a complete intersection and δQ,d =

1. Then there exists a folded rectangle suitable for the representation T .

Proof. Let T1 = (p, q) be the unique direct summand of T belonging to T2,z

according to part (ii) of lemma 4.10. The folded rectangle RN (T1) of type I,
defined by requiring N1 ∈ DEz , is clearly suitable for T1, but not necessarily
for T .

By lemma 4.9, any further direct summand of T belonging to RN (T1)
must also be in Sb,T1 . By applying parts (ii) to (iv) of lemma 4.10, the
range of possible direct summands of T in RN (T1) can be further reduced as
follows: Setting

Z = (p+ 1, q − 2),

any further direct summand of T belonging to RN (T1) is seen to be in

A = Sb,Z ∩RN (T1).

If there is no direct summand of T in A, then RN (T1) is also suitable for
T and we are done. Otherwise let T2 be a highest indecomposable direct
summand of T in A. Then we obtain a folded rectangle R′

N ′(T ) of type II
suitable for T as follows:

R′
N ′(T ) = RN (T1) ∩ Sa,T2 .

�

Proposition 4.12. Suppose Q contains a connected component H of type
Dn−z and there exists a folded rectangle suitable for T |H in ΓH . Then there
exists a folded rectangle suitable for T .

Proof. By proposition 3.8, the bent down corner of the folded rectangle
RNH

(T |H) in ΓH is the restriction to H of a direct summand, say T1, of T .
Assuming RNH

(T |H) to be of type I, we have to distinguish different cases,
depending on the position of T1|H embedded in ΓQ. We set Ez = (0, z) and
T1|H = (i, j):
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(i) For i = z and j ≤ n− z − 2, by proposition 3.8, the possible positions
for T1 are

T1 ∈ {(k, z + j − k); k = 0, . . . , z} .

In this situation we get a folded rectangle RN (T1) suitable for T1, by
setting N1 = (NH)1 and N2 to be the unique vertex in

C(NH)2 ∩ D(k,n−1).

(ii) For z + 1 ≤ i ≤ n− 2 and i + j = z + n− 1 the possible positions for
T1 are

T1 ∈ {(i, j − k); k = 0, . . . , z} .

Here we obtain a folded rectangle RN (T1) suitable for T1, by setting
N2 = (NH)2 and N1 to be the unique vertex in

D(NH)1 ∩ C(i+j−k−n+1,n−1).

(iii) For all other possible positions of T1|H in ΓQ, namely for

• i ≤ −1,

• z + 1 ≤ i and i+ j ≤ n− 2,

• z + n− 1 ≤ i+ j,

we conclude that T1 = T1|H. And by setting N1 = (NH)1 and N2 =
(NH)2, again we get a folded rectangle RN (T1) suitable for T1.

In all of the above cases RN (T1) must also be suitable for T since the restric-
tions U |H of arbitrary vertices U ∈ RN (T1) lie in RNH

(T |H).
With similar arguments also folded rectangles of type II suitable for T |H

can be lifted to folded rectangles suitable for T in ΓQ. �

Proposition 4.13. Suppose there is a folded rectangle suitable for G−T as
well as one suitable for G+T , where G− and G+ are compositions of some re-
flection functors at successive sinks or successive sources, respectively. Then
there is a folded rectangle suitable for T .

Proof. Suppose RN1(X), . . . ,RNk
(X) are different folded rectangles suitable

for X ∈ rep(Q), with bent down corner X1 = (p, q). From the definition of
folded rectangles it is clear that they are all contained in the area A ∩ ΓQ,
where

A = Sr,(p+q−n+1,n−q) ∩ Sl,ν(p+q−n+1,n−q).
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Note that the vertices (N1)1, . . . , (Nk)1 all lie on C(p+q−n+1,n−q).
By lemma 3.4, RF−z Ni

(F−
z X) is a folded rectangle suitable for F−

z X, for
any i = 1, . . . , k, unless (Ni)1 = Ez. In the latter case, we say that RNi

(X)
is destroyed by the reflection functor F−

z . Similarly we say that a folded
rectangle suitable for F−

z X is created by F−
z if this rectangle is destroyed by

F+
z′ .

From the above facts, it is clear that if RNi
(X) is destroyed by F−

z then
(Ni)1 is the lowest vertex among (N1)1, . . . , (Nk)1. Combining this with the
description of A, we conclude that if a folded rectangle RNi

(X) is destroyed
by F−

z then all vertices of A are to the left of ΓQ. Hence no folded rectangle
will ever be created under any sequence of reflection functors at successive
sinks.

Now suppose there is no folded rectangle suitable for T . This implies that
under the inverse reflections of G+ any folded rectangle suitable for G+T as
well as any additional folded rectangle created at some intermediate stage is
destroyed, before reaching T . But then by the above arguments, there is no
folded rectangle suitable for G−T . And this contradicts our hypothesis. �

5 Proof of the theorem

5.1. We first prove that the existence of a folded rectangle suitable for T
implies that ZQ,d is not a complete intersection.

By proposition 4.5, a folded rectangle RN (T ) yields a degeneration D =
N ⊕ T ′′ of T , with codim Gl(d) · D = 2. On the other hand Gl(d) · D
belongs to the intersection of three different irreducible hypersurfaces of the
complement of the open orbit rep(Q,d)\Gl(d)·T , by §3.6 and by proposition
4.8. Hence the variety

B = Gl(d) ·D

is not a complete intersection. Now since the zero representation of rep(Q,d)
belongs to B as well as to any irreducible hypersurface of rep(Q,d) \Gl(d) ·
T , the intersection of B and the remaining irreducible hypersurfaces of
rep(Q,d) \ Gl(d) · T must contain an irreducible component of ZQ,d which
is not a complete intersection.

5.2. Now we prove that if ZQ,d is not a complete intersection then there
exists a folded rectangle suitable for T .

We proceed by induction on the number n of vertices of Q. First assume
n ≤ 3. Then Q is of type A, and hence ZQ,d is a complete intersection, by
the results of [7]. As there are no folded rectangles for quivers of type A, our
claim holds for the base case. Now for n > 3 we fix a source y and a sink
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z ∈ Q0 and use the notations of §3.7. We have to distinguish the following
cases:

(a) An irreducible component of ZQ,d with too small codimension belongs
to Z ′′

Q,d with respect to z.

(b) An irreducible component of ZQ,d with too small codimension belongs
to W ′′

Q,d with respect to y.

(c) Every irreducible component of ZQ,d with too small codimension be-
longs to Z ′

Q,d with respect to z, and belongs to W ′
Q,d with respect to

y.

In case (a), we know that δQ,d can only take the values 0 or 1, by part (ii)
of summary 3.5. If δQ,d = 1 then there is a folded rectangle suitable for T ,
by proposition 4.11. So assume δQ,d = 0. As

γ′′Q,d = δQ,d + γQ,d > 0,

we conclude that ZQ,d is not a complete intersection. Hence z < n − 3,

i.e. Q contains a connected component H of type Dn−z, and ZH,d|H is not a
complete intersection. So by the inductive hypothesis, there exists a folded
rectangle suitable for T |H. But then there is a folded rectangle suitable for
T , by proposition 4.12.

In case (b) there is a folded rectangle suitable for T , by the dual of the
arguments used in case (a).

In case (c) we have ZQ,d 6= Z ′′
Q,d with respect to the sink z. By summary

3.6, up to a series of reflection functors at successive sinks, we may assume
that an irreducible component of ZQ′,d′ with too small codimension belongs
to Z ′′

Q′,d′ with respect to a sink z1. So by case (a), there is a folded rectangle
suitable for F−

z T . And by duality, we may assume that there is a folded
rectangle suitable for F+

y T as well. Hence by proposition 4.13, there is a
folded rectangle suitable for T .
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