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INTRODUCTION

Zermelo-Fraenkel set-theory (ZF) is based on the iterative conception of the set-
theoretic universe V. Accordingly, a set is an object that appears in some stage
of the cumulative hierarchy, | J,, V., obtained from the empty set by transfinitely
iterating the Power-Set operation through the ordinals. In accordance with
the cumulative hierarchy’s view of the set-theoretic universe, V' = (J, Va, is
Zermelo’s pivotal proposal [26] to consider initial segments as models for the
set-theoretic axioms. For example:

V. | ZF \ Infinity,
Vtw E ZF \ Replacement.

The question is: for which ordinals a do we have V,, = ZF? From the examples
above this reduces to asking why w “satisfies” Replacement and why w + w
“satisfies” Infinity. In the former, it is that w is a regular ordinal whereas the
latter it is that w + w is a limit ordinal greater than w. Hence the question is:
which regular limit ordinals greater than w “satisfy” ZF?

Since any regular limit ordinal is a cardinal and Replacement is known to
fail in V,, whenever «a is a successor cardinal, we are led to consider regular
limit cardinals greater than w. However, if « is such a cardinal, then all we
can conclude is that L, = ZF, where L, is the a-th stage of the constructible
hierarchy. In order to obtain V,, = ZF, we need our cardinal to further be closed
under cardinal exponentiation. Note that cardinals satisfying this property
alone are limit cardinals and we call them strong limit cardinals. Note that w
is such a cardinal. Indeed Zermelo [26] proved that

if @ > w is a regular strong limit cardinal, then V,, | ZF.

Therefore, the existence of such cardinals entails the consistency of ZF. It fol-
lows, by Godel’s Second Incompleteness Theorem, that such cardinals cannot
be proved to exist in ZF. This justifies that regular (strong) limit cardinals
greater than w are called (strongly) weakly inaccessible. Hence, inaccessible in
the sense of going beyond all the ordinals that can be reached by Power-Set and
Replacement in ZF.



2 INTRODUCTION

It is worth noticing that, due to the Axiom of Infinity, w is the only regular
strong limit cardinal whose existence can be established in ZF. The existential
postulation of an inaccessible cardinal is the first example of a strong axiom of
infinity or otherwise known as a large cardinal aziom.

So far we have seen that if « is a strongly inaccessible cardinal then V,, = ZF.
However, the converse does not hold: a consequence of the Montague-Vaught
Theorem [21]. In this sense, ZF does not characterize inaccessibility. To the
aim of achieving such a characterization, all that is required is to formulate
Replacement as a single axiom rather than a schema. Hence, we consider an
axiomatization of class-set theory, as given, for example, by von Neumann and
Bernays, (VNB) (see Bernays [3] and von Neumann [25]). Then under the
standard interpretation of class-variables as ranging over arbitrary subsets of
the domain V,,, we obtain

« is strongly inaccessible if and only if V,, = VNB.

Since VNB is finitely axiomatizable, the existential postulation of a strongly
inaccessible cardinal is equivalent to asserting that 3a(VNB)"= is true in V;
where, (VNB)V= is the result of restricting bound set- and class-variables to V,,
and V41, respectively. Under this interpretation, we talk about sets (as ele-
ments of V,,), classes (as elements of V,11) and proper-classes (as elements of
Va+1 \ Vi) Hence these are proper-classes only in this relative sense, since each
proper-class of V,, will be coextensive with a set in V1.

Since VNB I/ Ja(VNB)V= | it is natural to consider VNB + Ja(VNB) V= which
entails VNB — 3a(VNB)Y=. According to this implication, the closure of V'
under the axioms of VNB can be reasonably regarded as an existence condition
for the strongly inaccessible cardinals. By generalizing the implication above
to arbitrary properties ¢ then we obtain ¢ — Ja(p)V>. Axioms of this form
have been called Reflection principles, because they express the fact that V’s
possession of a certain property is reflected by V,’s possession of it, for some
ordinal . In other words, the whole universe of sets is beyond being captured
by any closure condition on sets; so that, any closure property we think to be
ascribable to the universe must already close off at some arbitrarily large initial
segment of the universe itself, viewed as a kind of partial universe approximat-
ing the totality of all sets.

Reflection axiom schemata are classified according to the logical complexity
of set-theoretical formulae expressing the reflected properties. Initially formu-
lated by Lévy [18] for first-order set-theoretical properties, the principle was
extended to include second-order properties and used as basis for an axiomati-
zation of class-set theory by Bernays [4]. Further generalizations of the reflected
properties to finite or even transfinite higher-orders languages have been pos-
tulated by Hanf and Scott [12]. Asserting this principle for ITi formulae entails
the existence of arbitarily large Mahlo cardinals, see Gloede [9]. Hence by the



reflection principles we are led to a hierarchy of cardinal existence axioms (in-
accessible, hyper-inaccessible,..., Mahlo, hyper-Mabhlo,...), which results in pro-
gressively axiomatizing increasingly large segments of the cumulative hierarchy.
Hence, reflection principles formally capture the open-endedness character of
the set-theoretic universe.

Over the standard structure of the natural numbers, as first observed by
Kreisel, there exists a striking difference between predicates of the form

Vi e NV3ye

and of the form
vf € {0,1} 3y,

where ¢ is a recursive predicate of natural numbers. Whereas every I} set
in the analytical hierarchy is definable by some formula of the first form, the
sets defined by formulae of the second form (i.e. in terms of quantification over
characteristic functions) are all recursively enumerable. The latter predicates
were dubbed strict TI} by Barwise in [I] and [2]. Hence, over the standard
structure of the natural numbers strict I} and ¥; predicates coincide. When
generalizing recursion theory to domains other than the natural numbers, to
admissible sets for instance, then strict II1 predicates have been recognized as
probably the most adequate analog of recursive enumerability. Indeed, over
countable admissible sets, strict I} predicates are equivalent to ¥; predicates.
However, this is no longer the case for uncountable admissible sets. It was the
context of generalized recursion theory on admissible sets that originated the
formulation of the strict IT} reflection principle. The principle might be regarded
as a set-theoretic version of Konig’s Lemma. The reader is again referred to
Barwise for a thorough introduction to the strict 111 reflection principle.

In the present contribution, following upon Bernays [4], we start off by in-
troducing and proof-theoretically analyzing a second-order axiomatization of
admissible sets based on the strict I} reflection principle. We use as base
theory Jiger’s KPu', introduced in [14], with the adjunction of the strict II}
reflection principle and A§-Comprehension (the superscript “C” is to indicate
that class-parameters are allowed to appear in the defining formulae of the Com-
prehension schema). The resulting theory is denoted by sKPuj|. In Chapter 1
we will show that sKPuj5[ is proof-theoretically reducible to Peano Arithmetic
PA (i.e., a conservative extension of PA), as long as class parameters are not
allowed in the defining formulae of the Separation schema.

It must be admitted, however, that in having such a restrictive condition
on the Separation schema, only a slight interplay between classes and sets is
attainable in sKPuj[. Therefore such a restriction is unorthodox from a pure
set-theoretic perspective. Accordingly, in Chapter 2, we strengthen the schema
by permitting free class parameters to occur in its defining formulae. Hence
the schema can then be reformulated as a single axiom which we call Ausson-
derungsaziom. As for the II reflection principle, it will be shown that the
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strict TI} reflection principle along with the Aussonderungsaxiom implies the
existence of the Power-Set axiom and admits a self-strengthening to a schema
with a super-transitive reflecting set (that is, a reflecting transitive set closed
under the subsets of its members). On the account of Aussonderungsaxiom the
strict IT1 reflection principle gains its actual “power” determining a significant
increase in strength of the resulting theory, sKPuj. Indeed the consistency of
PA is derivable in sKPuj5. However, as we shall show, the existence of w remains
underivable in sKPub. Hence, contrary to the IIj reflection principle, we cannot
regard the strict ITj reflection principle as a strong axiom of infinity. The exact
consistency strength of sKPuj is established: sKPu} turns out to be conservative
for set-theoretic Iy sentences over the power admissible set theory, as axiom-
atized by KPu" with the Power-Set axiom adjoined (see also Barwise [2] and
Friedman [3]).

We conclude Chapter 2, by showing that the strict IT1 reflection principle
along with the Aussonderungsaxiom also makes the A{-Comprehension redun-
dant. This justifies the replacement of this axiom by the schema of Predicative
Comprehension in Chapter 3. This results in a theory denoted by sBL;. In
the literature (see Gloede [9]), BL; denotes the Bernays-Lévy class-set theory
corresponding to VNB augumented with any instance of the schema of 11} reflec-
tion. Hence sBL; should be VNB augumented with any instance of the schema
of strict TI1 reflection. Indeed, this makes sense since we will show that sBL;
contains VNB as a subsystem and further the strict IT} reflection principle will
be proved to be independent from VNB.

The theory sBL; comprises the following non-logical axioms: Predicative
Comprehension, Infinity, Foundation, Aussonderungsaxiom and strict II} reflec-
tion. It will be proved that both the axioms of Infinity and Predicative Com-
prehensions are independent from the remaining axioms of sBL;. In particular,
we will show that by striking out the axiom of Infinity from sBL;, V,, is a model
of this theory, otherwise we need to make a “huge” jump to a weakly compact
cardinal: a strongly inaccessible cardinal with the tree-property. We will also
show that sBL; and BL; admit the same standard models. We conclude Chap-
ter 3, by proving the relative consistency of Gédel’s Axiom of Constructibility
with sBL;. The exact consistency strength of sBL; remains an open problem,
see Appendix B. It is a conjecture of Sy Friedman that every instance of the
schema of I1} reflection is derivable in sBL; plus some kind of Axiom of Choice.
If so, then BL; would be a susbsystem of sBL;+V=L. Hence, on the account of
the above-mentioned equiconsistency result between sBL; and sBL;+V=L, we
would have that the II} reflection principle is consistent with sBL;. It would
follow that for the consistency of the IIj reflection principle an external appeal
to a weakly compact cardinal will be no longer necessary: the assumed consis-
tency of sBL; would suffice.

A fruitful offshoot of the study of large cardinals has been the investiga-
tion of their various analogues in restricted contexts e.g., admissible set and



recursion theory, constructive set theory and Explicit mathematics. The first
substantive move in this direction was made in the early 1970’s by Richter and
Aczel [23] in the theory of inductive definitions. With the admissible ordinals
playing the role of regular cardinals, analogues of Inaccessible, Mahlo and In-
describable cardinals were developed in this context.

To the aim of providing a general framework allowing an uniform treatment
of these different analogues of such cardinals, Feferman proposed in [7], the
Operational Set Theory (OST). The cardinal notions introduced there are for
Inaccessible, Mahlo and Weakly Compact. A reflection principle entailing the
existence of all these cardinals is also formulated in this context. The consistency
strength of OST with this reflection principle adjoined, which we denote by
OST + angp, has not been established yet. A partial result in this direction has
however been achieved: in Appendix A, it will be shown that the consistency
of OST + RfnY, is not provable in ZFC.






CHAPTER 1

ADMISSIBLE SET THEORY

Theories for admissible sets are generally based on Kripke-Platek set theory
KP, a subsystem of Zermelo-Fraenkel set theory ZF, whose transitive standard
models are the admissible sets.

One of the prominent extension, among several others, of KP is the the-
ory KPu. KPu corresponds to Barwise’s theory KPU™T of admissible sets above
natural numbers as urelements [2]. We have then two axiom schemata of induc-
tion, namely complete induction on the natural numbers and full €-induction.
The theory KPu is introduced and proof-theoretically analyzed by Jager in [13],
where it is shown that KPu proves the same arithmetical sentences as Feferman’s
system ID; of one positive, non-iterated inductive definition and its correspond-
ing proof-theoretic ordinal is the Bachmann-Howard ordinal 6., , 0.

Our starting point is Jager’s theory KPu", described in [14]. KPu" is obtained
from KPu, by restricting each of the two axiom schemata of induction to sets
(hence the superscript in KPu"). It is also known from here that KPu" is a
conservative extension of Peano Arithmetic (PA) and its corresponding proof-
theoretic ordinal is &q.

1.1 THE THEORY KPu"

Let Peano Arithmetic, PA, be formulated in the first order language £ with
a constant for every natural number and countably many number variables
U, U, W, T, Y, Z,.... We assume that there are no proper function symbols in L.
Accordingly we have symbols for all primitive recursive relations and for the
graphs of the primitive recursive functions. In particular, we let the binary re-
lation symbol Sc denote the graph of the (primitive recursive) successor function.
The number terms (r, s,t,r0, So, to, ... with or without numerical subscripts) of
L are only the number constants and number variables. The atomic formulae
of £ are all expressions R(s1,...,S,) for R being a symbol for an n-ary primi-
tive recursive relation. The formulae (@, 1, @0, %o, ... with or without numerical

7



8 1. ADMISSIBLE SET THEORY

subscripts) of £ form the smallest collection containing the atomic formulae of
L closed under conjunction, negation and universal quantification.

The theory KPu" is formulated in the extended language £* = L(€,N,S)
obtained from £ by adjunction of the membership relation symbol €, the set
constant N for the set of natural numbers and the unary relation symbols S
for sets. The terms (a,b,c, ag,bg, co,...) of L* are the terms of £ plus the set
constant N. The atomic formulae of L* are the atomic formulae of £ plus all the
expressions a € b and S(a) for any term a and b. The formulae (p, ¥, o, %o, ...)
of L* form the smallest collection containing all the atomic formulae of £L* closed
under negation, conjunction and universal quantification. All the remaining
logical operators are introduced as follows: The following abbreviations are
introduced:

PV = (e A )

=1 = () VY

e = (p—=P)A W — 9);
dxp = V.

Classifications Ag, X, II, X, IT,, of formulae of £* correspond to the Lévy’s
standard hierarchy of formulae of ZF (Lévy [19]). The notation & is shorthand
for a finite string aq, ..., a, whose length will be clear from the context. Also,
equality between objects is not a primitive symbol of the language, but it is
taken to be defined by

(aeNAbeENA(a=ND))
(a=b) = \
(S(a) AS(b) AVz(z € a — x €D))
where =y is the symbol for the primitive recursive equality on the natural
numbers.

DerFiNiTION 1.1.1. For any term a and any formula ¢ of £*, the relativization
of ¢ to a, denoted by ¢(®), is the formula resulting from ¢ by binding all the
unbounded quantifiers occurring in ¢ to a; that is, replacing

Fx(...) by [z € an(..)],
Va(...) by  Vz[zr €a— (...)]
Bounded quantification is abbreviated as usual:

(Fz €a)p for Jz[z € a A ],
(Vz € a)p for  Vz[zr€a— ]

In addition, we freely make use of all standard set-theoretic notations and write,
for example, Tran(a) and On(a) for the following A( formulae:

Tran(a) :=S(a) AVa(z € a — x C a)
On(a) := Tran(a) A (Vy € a)(Tran(y)).
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The logical axioms of KPu" comprise the usual axioms of classical first order logic
with equality. The non-logical axioms are divided into the following four groups.

[. ONTOLOGICAL AXIOMS. We have for all terms a,b and ¢ of £*, all relation
symbols R of £ and all axioms ¢(Z) of group I1I whose free variables belong to
the list Z:

- a € N - =S(a),
- R(@) - €N,
- a€b—S(bh).
IT. NUMBER-THEORETIC AXIOMS. We have for all axioms ¢(Z) of PA which

are not instances of the schema of complete induction and whose free variables
belong to the list Z:

- (V7 € N)pM (7).

III. SET-THEORETIC AXIOMS. We have for all terms a,b and all Ag formulae
©(a) and ¥(a,b) of L*:

- dz(acxAberx) (PAIRING),
- Jz(b C x A Tran(x)) (TrRANSITIVE HULL),
- Jx(S(x) AVz(z €z = z € aNp(z)) (Ao-SEP),
- (Vz € a)Iyy(x,y) — 32(S(2) A (Vz € a)(3y € 2)¢(z,y)) (Ap-CoLL).

IV. INDUCTION AXIOMS. These consist of the following axioms of complete
induction on the natural numbers for sets and of €-induction respectively:

-0€an(Ve,yeN)(z €anSc(z,y) y€a) - NCa (Ao-ly),
-Jyly€a) —» ylycanvz(zey — z ¢ a)) (Ap-le).
REMARK 1.1.2. It is worth mentioning that over the theory KPu" the axioms
of €-induction and of complete induction on the natural numbers for sets are

provably equivalent to the corresponding schemata restricted to the class of
Ag-formulae of £*. Hence the notation Ag-l¢ and Ag-ly.

Let us conclude this section with two observations which will be often invoked
in the remaining part of our work.

Let the UNION axiom be (i.e. the universal closure of):

Jz[S(x) AVz(z € z — Fu(z € v Av € a))].
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ProrosiTtioN 1.1.3. The UNION aziom is derivable in KPu".

Proof. Let us argue informally within the theory KPu". Consider the following
instance of Ag-SEP:

Vy3Iz[S(z) AVz(z € x — z €y ATu(z € v Av € a))l. (1)
Replacing the term b in the axiom of TRANSITIVE HULL by {a}, we obtain
Jy(a € y A Tran(y)).
And this, along with the following implication
Jy(a € y A Tran(y)) — Jy(a C y A Tran(y)),
logically entails, by MoODUS PONENDO PONENS,
Jy(a C y A Tran(y)).
Futher,
Jy(a CyATran(y)) — IYWVz(Fv(z €vAv E€a) — 2z € y).
These last two lines logically entail, by MODUS PONENDO PONENS, the following
JyWVz(Fvu(z € vAv Ea) — z €Y). (2)
From (1) and (2) just using logic we therefore obtain:

Jz[S(x) AVz(z € z — Fu(z € v Av € a))].

Let the PAIR axiom be (i.e. the universal closure of):
Jy(S(y) AVz[z €y — (z=aV z=0D)])
ProprosiTioN 1.1.4. The following are derivable in KPu'":
(a) PAIR,
(b) A-SEP,
(¢) E-CoLL.

Proof. (a) follows from PAIRING and Ay-SEP. For a proof of (b) and (c¢) the
reader is referred to Barwise [2], p.17, Theorem 1.4.4 and Theorem 1.4.5, respec-
tively.

o



1.2. THE THEORY sKPu5| 11

1.2 THE THEORY sKPu5|

The second-order language £35 of sKPuj5[ , is obtained from £* by adjunction
of an infinite stock of class (monadic predicate) variables X,Y, Z, ..., together
with universal quantifiers binding them. Here class variables are our only class
terms. The atomic formulae are then expanded to include a € X for any term
a and class variable X. We are using the symbol “€” ambiguously, to denote
both a relation between sets and sets and a heterogenious relation between sets
and classes, but no confusion will result. Formulae of £3 are built up from the
atomic formulae of £} by closing under the propositional operators “—", “A”
and universal quantification with respect both to set and class variables. The
existential class quantifer is defined as follows:

dXp = VX .

The definition of classifications Ag, X, II¢, 3¢ and II{, of formulae of £3 is just
as for the classifications Ay, X, I, %, IT,, of £*, but with the understanding
that formulae in the former classifications might contain class variables via the
expanded class of atomic formulae; hence the superscript “c”. A formula is said
to be predicative if it contains no bound class variables. Hence predicative in
the sense of not including a reference by a quantifier to the realm of classes.
In line with the definition of the classifications ¥,, and II,, for KPu", we define
classes ¥} and II}, as follows: a formula ¢ of £3 is said to be in X}, if it is given
by prefixing n alternating class quantifiers to a predicative formula, the leading
quantifier being existential, “3”. The superscript in “X1” tells us that we are
measuring the second-order quantifier complexity of a formula . Dually, ¢ is
said to be in II} if it is given by prefixing n alternating class quantifiers to a
predicative formula, the leading quantifier being universal, “v”. Therefore, in
particular, a I} formula is a formula of the form VX ¢ where ¢ is predicative.
The definition of a strict 11} formula (s-II}) is just like the definition of IT}
except that the formula ¢ is required to be 3°. Dually, a formula ¢ of £} is said
to be strict X1 (s-X1) if it is given by prefixing an existential class quantifier to
a I1¢ formula.

REMARK 1.2.1. Towards the definition of a s-I1} (s-X1) formula, it is worth
warning the reader that such a definition differs from the one given by Barwise
in [2] (Definition VIIL.2.1, on page 316). Barwise’s class of s-II] (s-X1) formulae
correspond to our class of essentially strict 13 (X1) formulae, see Definition 1.4.1
on page 20.

In formulating the theory KPu" we chose to take equality as a defined notion,
and accordingly we make the same choice here with respect to classes. Class
equality is then only an expression for extensional equality:

X=Y =Ve(ze X sz €Y).

A special axiom of extensionality for classes is therefore not needed. Neither do
we need a special axiom expressing the substitutivity of equal classes. For, any
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instance of the schema
X =Y = (p(X) < oY)

is derivable from the previous definition of class equality, with the help of pred-
icate claculus.

The class existence axiom in this initial part of our work is given by the
following Comprehension schema restricted to the formulae of £ of logical com-
plexity A§:

Va(p(z) « p(x)) — FYVa(z € Y < p(z)) (AJ-CA),

where ¢ and v are X7 and do not contain the class variable Y free but may
contain free set and class parameters besides z.

REMARK 1.2.2. For any formula @g(z) of £} of logical complexity AY, the
corresponding instance of AJ-CA yields a class (depending on the other param-
eters occurring in ¢g(x) other than z) consisting of just those sets z such that
wo(x). By class equality there is exactly one such a class.

Expressions of the form
{z]o(z)}

are called class abstracts. Boldface upper case letters A, B,C,... are used as
metamathematical symbols standing for class-abstracts. As examples of class
abstracts we have,

ON := {z|On(z)} and V = {z]z=z}.

Further, lower case Greek letters ' «, 3, v,... are to be understood as “rela-
tivized” variables ranging over the class-abstact ON, that is

Jaf(...a...) is Jy[On(y) A (...y...)]
Va(...a...) is  Vy[On(y) — (...y...)].

ProposiTioN 1.2.3. For any set term a, the following is a direct consequence
of A-CA:

WVe(r €Y < x € a).
REMARK 1.2.4. It actually turns out that for any set a, AJ-CA yields a class

consisting of exactly the same members as a. Thus there should be no distinction
between the set ¢ and the class {z |z € a }.

This simple observation motivates our subsequent definition of equality be-
tween sets and classes:

X=y =Ve(reX —xey).

Any instance of the schema of full substituvity of equality is now derivable from
this definition of equality between sets and classes, with the help of predicate
calculus.

1With the only exception of ¢ and 1, with or without numerical subscripts, which will be
always used to denote formulae.
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ProposiTioN 1.2.5. Any instance of the following schema is derivable

X =y — (p(X) < 0y)).

Before stating the strict II} reflection principle we need to extend the defi-
nition of relativization to second-order formulae of £3.

DEFINITION 1.2.6. For any term a and any formula ¢ of £}, we define ¢(®),
the relativization of ¢ to a, to be the formula obtained from ¢ by binding all
the unbounded set quantifiers occurring in ¢ to a (as in Definition 1.1.1) and
replacing

3X(..) by  3X[X Can(.)
VX(.) by VXX Ca— (.)]

The reason for defining the relativization of the class quantifiers in this way
will appear clear in Chapter 2.

The strict I} reflection axiom schema reads as follows
©(vo, -y Un, Co, oo, Cpy)) —
— Jy[Tran(y) A v, ..., vn € y A W (vg, ..., v, Co, .. C )] (s-ITI} RFN),

for any s-I1} formulae ¢ of £3 in which y does not occur free and with no free
variables besides the displayed ones and not necessarily all of them.

REMARK 1.2.7. Under our definition of relativization of ¢(®) for £} formulae
@ if @ is s-TI} (s-X1), then () is s-TI} (s-X1) with free variables those of ¢ and
the new variable a.

The underlying logic of sKPu5 is the classical second-order with first-order
equality. The non-logical axioms are divided into the following four groups.

I. ONTOLOGICAL AXIOMS. As in KPu'.
II. NUMBER-THEORETIC AXIOMS. As in KPu'".
ITI. CLASS/SET-THEORETIC AXIOMS.

- Ag-SEP,

- s-II} RFN,

- AJ-CA

IV. InpDUCTION AXIOMS. These consist of the following axioms for induction
on the natural numbers and e-induction respectively:

-0€ AN (Vz,yeN)(x € ANSc(z,y) my€e A) - NCA (12),
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- JylyeA) = yly e ANVz(z €y — 2z ¢ A)) (12).

It is worth stressing that,
Class parameters are not allowed in the defining formulae of Ag-SEP.

ProprosiTION 1.2.8. For all L3 formulae ¢(¥, é) with no free variables besides
the displayed ones and not necessarily all of them and for any set b wich does
not occur free in the list ¥ we have the following provable in sKPuj5| :

veb— <<p(b)(17, ) = (7,0 n b)>

Proof. The proof proceeds by induction over the build-up of ¢(7, é)

(T, é) =v € C: Then we have the following derivable in sKPuj[ :

va—>(v€C<—>v6C’/\veb).

o(7,C) = —o(7,C): By LH.

Teb— (soéb) (@) = ¢’ (@,Cn b)>.
Whence by means of propositional calculus
vt (0.0 5.0

That is

and
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Whence by means of propositional calculus
veo— (@0 0.0)) o (@0 A @ C ).
That is

—

(b) (b)
vEbL— <<<p0(17, C) A p1(7, C)) - <<p0(17,Cﬂ b) A1 (T,CN b)) )

o(7,C) = Vapo(z,7,C): Fix an arbitary set term a such that a does not
occur free anywhere else. By I.H.

vebha€eb— (cpéb)(a717, C) - (péb)(m&éﬂb)).
Whence by means of propositional calculus
veb— <(a €b— @éb)(a,ﬁ,c_:)) —(aeb— @éb)(a,ﬁ,éﬂb))).
By generalizing with respect to a, then
veb— Vm((x €b— @8b)(x,676)) —(xeb— wéb)(x,ﬁ7éﬂb))).
From which we infer
veEDb— <V3:(:1: €b— @E)b)(:zr,ﬁ, C)) & Va(z € b — @éb)(:c,ﬁ,c_"ﬂ b))>

That is
_\® . (b)
veb— (ngpo(a:,ﬁ, C)) - <V3:g00(:17,17700 b)) .

o(7,C) =YX po(X,7,C): Fix an arbitary class variable A such that A does
not occur free anywhere else. By I.H.

Teb— (spgm, 7,C) = PNy, 50N b)).
From which we infer
TEBAACH— (%“(A,ﬁ,é) . @éb)(Amb,ﬁ,émb))
Note that the upon the assumption that A C b, then ANb = A. Hence

TebNACH— (@éb)(A7U7é) o gpéb)(Aziémb)).



16 1. ADMISSIBLE SET THEORY

Whence

—

veb— ((ACb—><p( (A, 7,0)) = (ACb— o (A7 émb))).

By generalizing with respect to A, then

—

ﬁeb—>VX<(X Cb— (X, 50) (ng—><pgb>(x,a,émb))>.
And from this
teb— (VX(X Cb— oP(X,5,0) = VX (X Cb— P (X, ﬁ,émb))).

That is
_A\® . (b)
Teb— (VXQDO(X, 7, C)) o (VchO(X, 7,0N b)) .

O

PROPOSITION 1.2.9. For any s-1I} formula (7, C) in which y does not occur
free and with no free variables besides the displayed ones and not necessarily all
of them, the following are shown to be provably equivalent in sKPuj| :

(a) (@, C) — y[Tran(y) AT € y A pW(5,C)),
(b) (@, C) — Jy[Tran(y) AT € y AW (&, C Ny,
(c) @@, C) — Jy[Tran(y) A W (7, C)]
(d) (@, C) — Fy[Tran(y) A @ (7,C Ny)).
Proof. (a) « (b) immediately follows from Proposition 1.2.8, after noticing that

Teb— <<p(b) (7,C) = o (7,0 n b)>
is logically equivalent to
TebAe®(7,C) = Tebne® (@ CNb).

(a) — (¢) and (b) — (d) are trivial. We are left with showing that (¢) — (a)
and (d) — (b). Let us take the former first. For any s-TI} formula (7, C) =
©(vg, ..., Un, Co, ..., ) by means of the equality axioms we have the following
derivable in sKPu5 | :

O(V0, eey U, Coy vy O) /\ Fz(z = v;) A p(vg, ..., U, Coy vy O ).

0<i<n
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By the definition of a s-II} formula we know that
O(V0y <oy Uy Coy voey C) = VX (00, -ovy O,y Coy ooy Oy X))
where ¢ has logical complexity ¥. Hence we have

D(V0, ey Uy Coy vy Oy /\ 3z(z i) AVXY(vg, ..., O, Coy oy Oy X))

0<i<n

That is

gp(vo,...,vn,co,...,cm)<—>VX< /\ Elz(z—vi)/\1/}(1)0,...,vn,C'O,...,Cm,X)>.

0<i<n

s-I17
Hence from (c) we obtain
©(V0, eey U, Coy vy Cp) —
(v)
— Ty lTran(y) A <VX< /\ Fz2(z = v;) A(voy vy Uy Coy oy C’m,X)>> ] .
0<i<n
Whence

‘P(U07 vy Un, Co,y ey Cm) —
(v)
— Hy [Tran(y) A (VX - y) < /\ HZ(Z = ’Ui) A ’(/)(1)07 very Un, 007 ey C,,HX)) :| .

That is

90(U07 cery Uny,y C’07 sy C’m) —

(v)
—>3y[Tran( YA (VX Cy) (( /\ Jz(z ) w(y) (vo, ..., Un, Co, .. 7C’WX))].

0<i<n

This last implication, along with “Vy(f) C y)”, Proposition 1.2.3 and Proposi-
tion 1.2.5, entails the following:

@(V0y ey Uy, Coy ey Cy)) —

(y)
— Ty [Tran ( JAREELE ) A (VX cy)(w@)(um...71;7“007...707,“)())}.

0<i<n

That is

(V0 ey Uy Coy ey Cr) —

(v)
—>E|leran /\< /\ 3z(z ) /\w(y)(vo,...,vn,C’o,...,C’m) .

0<i<n
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By resolving the relativization to vy,
O(V0, eey U, Coy vy Op) —

— Jy lTran(y) A /\ Fz(zeyNz=1v) AW (vg, ..., 00, Co, ... Cin) |

0<i<n

And from this
©(v0, eey U, Coy vy C) —

—>E|leran(y)/\ /\ vi €y AW (v, ..., v, Co, ooy Ci) |-

0<i<n

That is
(7, C) — Fy[Tran(y) AT € y A ™ (@, C)].

Analogously for (d) — (b). O

ProprosiTiON 1.2.10. The following two schemata are provably equivalent in
sKPu5| :

(a) TI° RFN,

(b) s-XI RFN.
Proof. In the substantive diregtion, let 3X (X, v, é) be a s-%1 formula Whgre
¥ is TI°. Assume IX (X, ¥, C). So there is a class Cy such that ¥(Cy, v, C).
By applying II° RFN to this formula then we get

Jy[Tran(y) AT € y A pW) (Cy, 7, )],
and from this in virtue of Proposition 1.2.8 we obtain
Jy[Tran(y) AT € y AW (Cony, 7 CNy).
Therefore
Jy[Tran(y) AT ey AIX(X CyApW(X,7,CNny).

And again by Proposition 1.2.8, we get

Jy[Tran(y) AT € y A (AXY(X,7,C))W)].
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1.3 KPu" SUBSYSTEM OF sKPuj |

We are concerned with showing that any theorem of KPu'" is also a theorem
of sKPu5l. We will show, in fact, that all the single axioms and the axiom
schemata of KPu", that do not already appear among the axioms of sKPu5[, are
derivable within the theory sKPuj5[. This in turn reduces down to prove the
following propositions.

ProprosiTioN 1.3.1. Any instance of Ay-COLL is derivable in sKPuj].

Proof. Any instance of Ag-COLL is also an instance of s-1I} RFN. O

ProrPosITION 1.3.2. PAIRING is derivable in sKPu5[.

Proof. PAIRING is simply obtained once we apply $-II1 RFN to the formula
Ve(x €a— x €a)AVe(x €b— x €D)

which is derivable from a = a. Denoting this last formula by “p(a,b)” we then
get, by MobuUs PONENDO PONENS,

Jy[Tran(y) Aa €y AbeyA ¥ (a,b),

yielding in particular
Jyla ey Ab €yl

ProrosiTiON 1.3.3. TRANSITIVE HULL s derivable in sKPuj].

Proof. In order to derive the axiom of TRANSITIVE HULL, we argue as follows.
If p(a) is a provable s-II1 formula, then we obtain from s-II} RFN, provided
that the variable y does not occurr free in ¢(a),

p(a) = Fy[Tran(y) Aa € y A oW (a)],
yielding, by MobUs PONENDO PONENS,
Jy[Tran(y) Aa € y A ™ (a)].

From this we infer in particular,

Jy[Tran(y) Aa € y].
And this, along with the following implication,

Jy[Tran(y) Aa € y] — Jy[Tran(y) Aa C gy,

logically entails, by MoDUS PONENDO PONENS,

Jy[Tran(y) Aa C y].
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ProposSITION 1.3.4. Ag-l¢ is derivable in sKPuj].

Proof. Propostion 1.2.3 and Proposition 1.2.5 along with IZ logically entail
AO"E' D

PropPOSITION 1.3.5. Ag-ly is derivable in sKPuj].

Proof. Propostion 1.2.3 and Proposition 1.2.5 along with 1% logically entail
Ap-ly. O

CoROLLARY 1.3.6. Every theorem ¢ of KPu" is also a theorem of sKPuj],

KPu"lp = sKPuy| F .

1.4 sKPu5| CONSERVATIVE EXTENSION OF KPu'

So far we have seen that that any theorem of KPu" is also a theorem of sKPuj].
The next step we are concerned with is to prove that the theory sKPuj[ is
conservative over KPu" for a certain class of formulae. In other words, we will
show that as far as the derivability of a particular class of formulae is concerned,
one can prove in sKPu5[ nothing more than one can prove already in KPu". The
result will be established through an adaptation of the tecnique employed by
Cantini [5] to the current context. The main modifications are worked out.

The reduction proceeds into two steps. First, we sketch a Tait-style refor-
mulation of sKPu5| allowing us to establish a partial cut-elimination theorem,
yielding quasi-normal derivations. In a second step quasi-normal derivations of
such a Tait-style reformulation of sKPuj| are then reduced to KPu" by means
of an asymmetric interpretation. We take up the first step.

DEFINITION 1.4.1. The essentially strict IT} formulae ([s-T11]¥) form the small-
est class containing the A§ formulae and closed under A,V,Vz € ¢,3z € ¢,3x
and the clause V.X.
The essentially strict 1 formulae [s-X3]® form the dual class: that is, the small-
est class containing the A§ formulae and closed under A,V,Vz € t,3z € t,Vz
and the clause 3.X.

REMARK 1.4.2. It is worth mentioning that one of the basic features of the
essentially strict I} formulae is that each of them is equivalent to one of the
form:

VX Jye(X,y,...).

where ¢(X,y,..) is Aj. For a proof, the reader is referred to Barwise [2],
Lemma VIII.2.5, p. 318. This is done by simple quantifier-pushing manipu-
lations. Unfortunately, this is no longer the case in our logico-axiomatic frame-
work. In order to advance a set quantifier over a class quantifier in a suitable
way, it seems necessary to assume some kind of axiom of choice. Consider for
example, the following [s-TT}]® formula:

VXIYWZAxp(X,y, Z, x, ...).
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In order to show that
VXIWZxp(X,y, Z, x, ...) = VXVZIy3xp(X,y, Z, x, ...)

we need to switch the universal class quantifier “ VZ” with the existential set
quantifier “dy”. But in our framework this manipulation is only possible in
presence of X1-AC,

VedYy(z,Y,...) = YV (2, Yy, ...)

for 1 being ¥{ and Y, = {v : (x,v) € Y} being the standard coding for
sequences of classes. The result is then simply obtained by contracting both
universal class and existential set quantifiers.

A Tait-style reformulation of sKPuj| can be regarded as the one-sided coun-
terpart of Gentzen systems for sKPuj5| or as “Gentzen-symmetric”, since sym-
metries of classical logic given by the De Morgan duality are built in. We need
then a different treatment of negation. We assume that formulae are constructed
from positive and negative atomic formulae * by closing against conjunction
and disjunction as well as existential and universal quantification in both sorts.
Negation — satisfies == = ¢ for atomic formulae ¢, and is defined for com-
pound formulae by De Morgan duality. In the sequel we identify formulae of
L5 and their translations in the Tait-style language corresponding to £3. It is
worth noticing that for the proof-theoretic analysis of sKPu5[ we aim at, it is
not required to analyze the structure of formulae of complexity [s-T11]¥ /[s-£1]E.
This fact also motivates the subsequent definition of rank of a formula.

The rank of a formula ¢, rk(y), is recursively defined as follows:
- rk(p) = 0/if @ is [s-TT}]F or [s-21]F,
otherwise,
rk( 0 9) = max(rk(¢), rk(¢)) + 1,
rk(Qx € y.) = rk(p) + 2,
- rk(Qz.) = rk(QX.p) = rk(p) + 1.
where @ =V, and o = A, V.

Let T; denote a Tait-style reformulation of sKPu5[. Axioms and inference
rules of Ty are stated for finite set I', A, ... of formulae which have to be inter-
preted disjunctively. We write, for example, T'; A, p, % for T, A U {p,¥}. We
distinguish between free and bound occurrences of variables. For a set I" of L}
formulae we let FV(T") denote the set of parameters (free variables) occurring
in the formulae of I'. If T" is the singleton {¢}, we omit the curly brackets “{}”.
Let T' = {©o, ..., on—1}, we shall use the following notations:

\/F =@oV..V,_1,

2Both types of atomic formulae are treated as primitives.
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-T = {"@07 ceey "gon—l}

Let a denote either a set or class variable and let t denote either a set or class
term. By £[a/t] we denote the result of substituting the term t for the variable
a in the expression &. Similarly, £[a/{]

denotes the result of simultaneously substituting the terms t = ti, ..., t,, for
the variables @ = ay, ..., a,.

The logical axioms and inference rules of T are as follows.
Logical Azioms:
L=, 0

for all atomic formulae .

Inference Rules:

Lo T,o
L,ony Fovey

L, olz/y] L, olz/t]
I, Vzo (v) I, 3ze 3)

Lyp0

(N) (V)

F¢MX/Y](2) FwﬁX/Y](Q)
T,VX o T,3X ¢

where for each of the two universal rules the variables y and Y do not occur free
within the conclusion.

We further introduce two derived rules, (bV) and (b3), which are in fact just
particular instances of (V) and (3) respectively,

Iy €a— plz/y
T, (Vx € a)p

It eanpz/t]
I, (3z € a)p

(b¥) (b3)

where (bV) is under the same restrictive conditions as above.

Cut rule:
r -
The rank of a cut is defined to be the rank rk(y) = rk(—¢p) of its cut formulae.

As far as the non-logical axioms are concerned, we notice that all axioms
of sKPu5 |, except s-II} RFN and A{-CA, can easily be written in a Tait-style
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manner so that the principal formulae are at most [s-TI1]¥ /[s-£1]E. For example,
IZ and |3 are reformulated respectively as:

DVy(y ¢ A),Fyly € AnVa(z ey — 2 ¢ A) (12);
,0¢ A (3z,y € N)(x € ANSc(z,y) Ay g A)NCA (If).
In order to allow partial cut-elimination up to [s-IT1]¥/[s-21]F formulae, s-TI}
RFN and A{-CA are replaced by the following two non-logical inference rules,
where the principal formulae are [s-1T}]® and [s-31]¥ respectively:
I, o(a,C)
T, Jw[Tran(w) A d@ € w A ™) (@, C)]

(s-I1} RFN)

(s-mij e
for ¢ being s-TI1 and w ¢ FV(¢p).

I Va(p(e) — =p(x)) T,Va(=p(r) — ¢(x))
[3Y[Ve(x €Y — w(z)) AVa(p(z) =z €Y)]

(Af-CA)

[S-=HE
for ¢ and ¢ being XY and Y ¢ FV({p,¢}).

Since any derivation is a finite syntactic object, this implies that only a finite
number of instances of the schema of Ag-SEP are involved in any such derivation.
Collect together all the A formulae of such instances and let Ca, be such a finite
collection of Ay formulae of £L* (not containing class parameters). By Ty [CAO
we then denote the subsystem of T; where the schema of Ag-SEP is restricted
to the formulae of Ca,.

Tl[CAO F& T' expresses that there is a derivation in TerAO of depth < n
ending with the finite set I' of £3 formulae, where all cuts in the derivation have
rank < k.

EMBEDDING OF sKPu;[ INTO Tifc, . Let ¢ be a L5 formula such that
sKPus| + .

Then there are two natural numbers n and k and a finite collection Ca, of Ao
formulae of L* such that
T: chO Z ¥
Standard cut elimination techniques are then applied in order to show that all
cuts of rank greater than zero can be eliminated. The depth of the so-obtained
quasi-normal derivations is measured as usual by 2j(n) where we set

20(n) = n,
Qps1(n) = 92k(n)

The above-mentioned considerations are synthetized in the following partial cut
elimination theorem.
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PARTIAL CUT ELIMINATION FOR T3 [CAO. For all finite sets I' of L3 formulae
and all natural numbers n and k,

Tl[cAD e I = TlchD F?k(n) I

Proof. Observe that the principal formulae of the axioms and of each of the
two non-logical rule of inference are all [s-11}]* or [s-X1]®. Then the result is
obtained by the same proof as, for example, in Schwichtenberg [24]. O

CoOROLLARY 1.4.3. Let ¢ be a L3 formula such that
sKPu5| .

Then there is a natural number and a finite collection Ca, of Aoy formulae of
L* such that

Tl rCAO '7? ¥

The next step of reducing sKPu5[ to KPu" consists in setting up a partial
model for sKPu5[ (e.g. a model for the set-theoretic IIy sentences of sKPujT),
which will subsequently be used in order to prove an asymmetric interpretation
theorem for quasi-normal Ty[., derivations. It is argued that the whole pro-
cedure can be formalized in KPu". In particular, the partial models needed for
an interpretation of sKPu5| are available in KPu".

For any set a, let

Ua = {z|(Fvea)(zev)}.

This is a set by Proposition 1.1.3.

-,

For each formula ¢ in Ca,, we define a X-function symbol F(a, b) such that:

—

Fo(a,b) = {z € a|o(x,b)}.

Given Ca, and an arbitrary set term h we define by recursion on n a finite
hierarchy (L, (h))nen of set terms Ly, (h) depending on Ca,:

Lo(h) := h,
Lpy1(h) := Ly(h) U
Ln(h)} U
{Fu(a,b)|a,b € Ly(h) & o € Ca, }-

—~

LemMmwMA 1.4.4. For any natural number n € N,

KPu' + Vh (Tran(h) — Tran(Ln(h))>.
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Proof. The proof runs by induction on n. We work informally within the theory
KPu". Fix an arbitrary h and assume Tran(h).

n =0 Trivial.

n—n+1 Byl H. we have provable in KPu": L, (h) is a transitive set. We
have to prove that L,1(h) is a transitive set in KPu". We first show that KPu"
proves that L,11(h) is transitive. Assuming Tran(L,(h)) we have to show that
each operation for generating L,41(h) preserves transitivity. The induction-
step breaks up into three subcases; we restrict ourselves to the separation case.
Assume d € Ly, 41(h) and ¢ € d. Then

—

d={z€a|p(x,b)}

with a,b € Ly,(h). From ¢ € d we then infer ¢ € a € Ly(h) and by LH.
Tran(Ly,(h)). Therefore ¢ € Ly (h) and ¢ € Lyp4+1(h). The desired result is then
obtained by summing-up with respect to the remaining transitive members of
Ly41(h). It remains to show that L,,41(h) is a set. The only operation for which
Ly41(h) could fail to be a set is separation. Thus proving the result reduces to

showing that . .
{Fu(a,b)|a,be Ly(h) & ¢ €Ca, }, (1)

is a set in KPu". Once we have this, then the result is obtained again by
summing-up with respect to the remaining members of L,1(h). Note that (1)
corresponds to

U (Fo(a,b)abe La(h)}.

peCa,

And since Ca, is finite it is enough to prove for an arbitrary ¢ € Ca, that
{Fy(a,b)|a,b e Ly(h)}
is a set in KPu". Thus, given ¢ € Ca, we know
Va,b(a,b € Ly(h) — Jy(S(y) A Fyla,b) = y)).
Since Ly, (h) is a set by LH., then by ¥-CoOLL there exists a set v such that
Va,b(a,b € Ln(h) — Jy(y € v A S(y) AFy(a,b) =y)).

Through A-SEP we then isolate from the set v a set vy consisting of all the y’s

-

such that y = F,(a,b), that is

- —

vo ={ Fy(a,b)|a,be Ly(h)}.

Sets and classes are interpreted, respectively, as elements and subsets of

U Ln(h).

neN



26 1. ADMISSIBLE SET THEORY

We adopt the following convention. Let ¢(3, 6) be any formula of £3, whose
all set and class parameters came from the lists §, C_’respectively. We write
@Ln(M)(F, &) to denote the result of replacing in (5, C)

- every unbounded set quantifier Qx by Qx € L, (h),
- every class quantifier QY by Qy C L, (h),
- every class variable C' by a set variable c.

We avoid conflict of variables.

LEMMA 1.4.5. For any formula (3, C, ﬁ) of L, with no free variables besides
the displayed ones and not necessarily all of them and for any set b wich does
not occur free in the list § we have the following provable in KPu" :

Feb— (w(b)(iad) = o"(5enb, 3).

Proof. The proof, adapted in the obvious way, is as for Proposition 1.2.8. O

Before providing an asymmetric interpretation of Tq[, Ao into KPu", let us

state essential persistence properties of [s-IT}]* and [s-X1]F formulae with re-
spect to the hierarchy (L (h))nen.

PERSISTENCY. For all [s-II1E formulae o(5,C) and [s-S3E formulae (3, C)
of L5, we have:

KPu" F VthVmV§V6<(Tran(h) Ag>mAm>0A
A§€LAMA€§LAMA¢@mWN§@>H

— a3, E)) (UPWARD PERSISTENCY);

KPu" F VthVmV§VE(<Tran(h) Ag>mAm>0A

A§€LAMA8§LAMAw@WW@@>a

-

— pEn) (3 3 (DOWNWARD PERSISTENCY).

Proof. The proof proceeds by induction over build-up of formulae. We content
ourselves to showing Upward Persistency for [s-11}]¥ formulae.

A§: Immediate by absoluteness of Ag-formulae for transitive sets.
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0(5,C) = po(5,C) A ¢1(5,C). By LH.,

KPu" - VthVmV§V5<<Tran(h) Ag>mAm>0A
AFE Ln(h) ANEC Ly(h) A oS (g, a)_> (1)

— M, 53)

and

KPu" - VthVmVé’VE’((Tran(h) Ag>mAm>0A
AFE Ln(h) ANEC Ly(h) A pEm M3, 5))—» @

= a)

From (1) and (2), we infer respectively

KPu" I VthVmV§V6<<Tran(h) Ag>mAm>0A

AFE Lin(h) AEC Ly(h) AplEmM (588 (3)
and

AFE L(h)ANEC Ly(h) A EFm M5y n  (4)
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Hence from (3) and (4) we obtain

KPu" +- VthVmV§V5<(Tran(h) ANg>mAm>0A
NS € Ly (h) NEC Ly(h) A

Lin(h)) (= Ln(h)) /=
N5 50 )

Lg(h)) /= Lq(h)) /=
ng(”@aAwé(”@®>-

Similarly for disjunction and bounded set quantifiers.

©(3,C) = Jzpy(z, §,C). Fix an a such that a does not occur free anywhere
else.
By LH.,

KPu" I VthVmV§V€<(Tran(h) ANg>mAm>0A
ANS€ Ly(h)ANa € Lyp(h) NEC Lg(h) A (5)

Aee M a5, 5)> =y (a5, 5)) |

By construction of (L, (h))nen we have
KPu" - VR Vg V¥m (q >mAm>0Aa€ Ly(h) —ac Lq(h)>.

From this last line we infer

KPu" - VthVmV§V€<(Tran(h) ANg>mAm>0A
ANS€ Lp(h)ANa€ Ly(h)ANéEC

L
(LM(h))(a S, 5) —>a€L )

Hence from (5) and (6) we obtain

KPu" + VthVmV§V€<<Tran(h) Ag>mAm>0A
NS € Ly(h)Na € Lp(h) ANEC Ly(h) A

A QEn (g 3, g))_> a € Ly(h) Al (q, 5‘5)) :
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Thus
KPu" +- VthVmV§V5<<Tran(h) ANg>mAm>0A

NS € Ly (h)ANa € Ly (h) ANEC Ly(h) A

N 0,5.9)
— 3a(z € Ly(h) A o1 (2,5, a)>.
And from this we obtain

KPu" I VthVmV§VE<<Tran(h) Ag>mAm>0A
NS € Lpy(h) ANEC Lg(h) A

AaﬂzeLAMAwSM“RLaaO‘*

— Jz(z € Ly(h) A cp((JL‘I(h))(:U, g, E'))) .

©(3, é) =VXpo(X,3, é) Fix an a such that a does not occur free anywhere
else.
By L.H.

KPu" +- VthVmV§VE<<Tran(h) ANg>mAm>0A

From which we infer

KPu" - VthVmV§V€<(Tran(h) ANg>mAm>0A
NS € Ly (h)Na C Ly(h) ANEC Ly(h) A

7
Awﬁmwkamme»aa)ﬁ "

~<%““Wmaaewﬁwmwaa>)
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By Lemma 1.4.5,
KPU' - VhYmVY5ve <§’e Lin(h) A ot M (5 a0 L (h), &) — ot (5, a, 5)) :

From this last line we infer

KPu" - VthVmV§VE<<Tran(h) ANg>mAm>0A

AFE Ln(h) Aa C Ly(h) AGC Ly(h) A

8
Awéwh”(aﬂLm(h),s*,c”))e ®)

- sa),
From (7) and (8) we then get

KPu" + VthVmV§V€<<Tran(h) Ag>mAm>0A

AFE Ln(h) Aa C Ly(h) AGC Ly(h) A

9
/\cp((JL’"(h))(aﬂLm(h),g,é'))—) )

=y ", 7) .
Obviously
KPu" = VhVm (a N Ly, (k) C Ly, (h)). (10)

(9) along with (10) logically entails the following

KPu' VthVmVé’VE((Tran(h) Ag>mAm>0A
NS E L (h) ANEC Lq(h) A

- ( C Lo(h) — o™ (0,3, *))>

A (a0 L) € L) o (00 Lon(1),5.0) ) -
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Therefore

KPu" +- VthVmV§VE((Tran(h) Ag>mAm>0A
NS € Ly (h) NEC Ly(h) A

AVa(@ C Lin(h) = 0" (@, 5, 6>>>*

- ( C Lo(h) = ¢ " (a, 5, ﬁ))

Finally,

KPu" - VthVmV§V5<<Tran(h) ANg>mAm>0A
NS € Ly (h) NEC Ly(h) A
AV C Lin(h) — o5 (x, 5, 6)>>*
—Va(z C Ly(h) — o§" "™ (x, 3, a>>'
Downward Persistency for [S—E}]E formulae is proved following the same pattern.

O

Let ' 5 be a finite set of [s-IT{]" and [s-X1]F formulae of £3 whose all set

and class parameters come from the lists §, C respectively and let ¢ > m > 0.
We write Fgﬁg|:m, q} to denote the result of replacing in I'; 5

- every [s-XHE formula (5, C) by ¢En(M)(5,3),

- every [s-II}E formula (5, C) by oL«M)(3, ).

Note that upon the assumption that § € L,,(h) then, by Lemma 1.4.5 and the

construction of (L, (h))nen, I's,z|m, q| equivals to the result of replacing in T 5

- every [s-S1E formula ¢(5,C) by En(M)(3,0 Ly (h)),

- every [s-IIN] formula (5, C) by ¢Fa«(M) (52N Ly(h)).

COROLLARY 1.4.6. For all [s-IIN|E formulae ¢(3,C) and [s-SHE formulae
¥(5,C) of L5 and for any finite set I'. 5 of [s-ITHE and [s-X3]F formulae of
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L5, we have:

KPu" + VthVmV§V€<<Tran(h) Ag>mAm>0A

AT E Lin(h) AEC Lo(h)A

) A M) (5,20 Lm(h))> =

— plLalh)) (S@)

KPu"+ VthVmV§VE(<Tran(h) Ag>mAm>0A

KPu" I+ VthVerVmV§VE((Tran(h) ANg>rAr>pA

Ap>mAm>0A
ANE € Ly (h) NEC Ly(h) A

[\/rm m[ , ] \/A])
= [\/Fg,a[m,q] \/\/AD.

Proof. (i) and (ii) immediately follow from Lemma 1.4.5 and the Persistency

result. (iii) is immediate by the definition of T'z [ p] (i) and (ii). O

(iii)

ASYMMETRIC INTERPRETATION OF Ti[c, INTO KPu". Assume thatT'; 5 is
a finite set of [s-TIH|® and [s-X1E formulae of L3 so that

Tiley, Fi Tz

for some natural number n. Then for all natural numbers m > 0 we have

KPu' - VA V5YE (Tran(h) ANERAFE Ly (h) AEC Lyyan(h) —

- \/Fg)g[m,m + 2"D
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Proof. By induction on n. This is essentially the same treatment carried out by
Cantini in [5]. We just show how the current asymmetric interpretation verifies
s-TI} RFN.

s-II} RFN  Suppose that L.gis the conclusion of the non-logical rule of

inference for s-1I} RFN. Then there exists a s-II1 formula ¢(3, 6) and a natural
number ng < n such that

Tile,, Fi° Ty 05, 0). (1)

The L.H. applied to (1) yields for all natural numbers m > 0
KPu"+ VhV3VeE <Tran(h) AN €ehANSE Lyu(h) ANCC Lyqano(h) —
— {\/ I‘;c{m, m + 2”“} V Lmano (h))(§, E)] ) )

From this by instaciating ¢ by ¢N Ly, +2n0 (h) we obtain
KPu' - VA VS (Tran(h) AN € RAFE Lu(h) AGN Lipsono(h) C Lunyono (h) —

— [\/ Fé',éhLergno (h) |:m, m + 2”0] \%

B O 0 Lo ()] )
(2)
By construction of (L, (h))nen we have
KPu"t Vh (5 € Ly, (h) — §€ Lyytane(h)). (3)

From (2) and (3), just using logic we obtain
KPu' - VA VS (Tran(h) AN € hAFE Lu(h) AGN Linyano (k) C Lupyano (h) —

— |:\/ FgfﬁLergno (h) [m, m + 2"0:| V

Vi <§€ L iono(h) A (p(Lerzno (h))(g; &N Lyyyomo (m))}) .
(4)
Lemma 1.4.4 trivially entails that

KPu" F Vh(Tran(h) — Tran(L.,12n0 (h)). (5)
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Therefore from (4) and (5) we infer

KPu' - VhV3 (Tran(h) AN ERAFE Lin(h) AZN Lyaro (h) € Linamo (h) —
— [\/ LaanL,, ,ano(h) {m, m+ 2”“] V (Tran(LmHm (h)) A

NSE Loy (1) A B0 D520 Lysars (1) )| )
(6)
By construction of (L, (h))nen we have
KPU' b VA (Lysano (h) € Lyngan (h)). (7)

Therefore from (6) and (7) we infer
KPu' I VA VS <Tran(h) ANERASE Lm(h) AEN Lyyano (h) € Lynsano (h) —

— [\/ LsenL,, om0 (h) [mﬂn + 2"0} V (L7n+2”0 (h) € Limgan (h) A

A Tran(Lu2n0 (h)) A § € Lmyano (h) A
A @(Lm+2710 (h)) (5,80 Lo (h)))} )

From this last expression we then infer,

KPu" - Vh VS (Tran(h) ANehASE Lm(h) ACN Lpton0 (h) C Lp42m0 (h) —

— [\/ Fé’,é’ﬂLerQno (h) |:m, m + 2”0] V

V 3w[w € Ly yon(h) A Tran(w) A § € w A o™)(5,&N w)]] ) .
(8)

(8) along with Lemma 1.4.5 trivially entails

KPu' + VhV3 (Tran(h) AN E R AFE L(h) AEN Ligano (h) € Lipano (h) —

— |:\/ ngaﬂLergno (h) [m, m + 2"0:| V

V Jw[w € Lppyon (h) A Tran(w) A5 € w A W) (5, E)]} ) .

Obviously,
KPu"+ VA (€N Lytano (h) € Lyytaono (h)). (10)
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Therefore from (9) and (10) we obtain
KPu' - VhVS (Tran(h) AN EhAFE L(h) —
- {\/ Lsanr,, ,ano (h) [m, m+ 2"“} % (11)
V Jw[w € Lppyon (k) A Tran(w) A5 € w A o) (3, cﬁ]] >
From (11) through Corollary 1.4.6.(iii), we obtain

KPu' - VA V5YE (Tran(h) ANERAFE Ly(h)AEC Lyyan(h) —

— |:\/ F§75|:m, m + 2n] \Y
V Jw[w € Lpyon(h) A Tran(w) A5 € w A @) (5, 5)]} >

Since the formula Jw[w € Ly, on (k) A Tran(w) A5 € w A () (5,8)] is contained
in Fgﬁg[m, m + 2™ |, the asymmetric treatment of the non-logical inference rule
of s-II} RFN is complete. O

II,-CONSERVATIVITY. sKPu5[ conservatively extends KPu" for set-theoretic
Il sentences.

Proof. Suppose that ¢ is a set-theoretic Il sentence derivable in sKPu5[. Writ-
ing ¢ as Ya3dyy(a,y) where ¢ is Ay, then

sKPuy| + Va3dyy(a,y).
From which we infer, by Inversion, for an arbitrary a,
sKPuS | F Jyi(a,y).

By Corollary 1.4.3, there is a natural number n and a finite collection of Ca, of
Ay formulae of £* such that

Tilen, F1 3y¥(a,y).

By the asymmetric interpretation of Tif, o into KPu" then for any natural
numbers m > 0 we have that

KPu" - VhVa (Tran(h) ANehNa€ Ly(h) —

3y (5 € Ly () A () )).
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Obviously

KPu" F VhVa <3y (y € Liyan(h) A(a,y)) — Hyw(a,y)).
Hence from (1) and (2) we obtain

KPu' - VhVa (Tran(h) AN € hAa€ L(h) — 3yp(a, y)).

Since h ¢ FV(¢), then (3) logically entails

KPu' + Va3h (Tran(h) AN€EhANac€ Lm(h)>—> Yadyy(a,y).

By construction of (L, (h))nen we have
KPu" F VaVh (a €Eh—ac Lm(h)>.
Therefore from (4) and (5) we infer
KPu" F Va3h (Tran(h) AN€ehANace h>—> Ya3yy(a,y).

By PAIRING,
KPu"F Vady(a € y AN € y).

By TRANSITIVE HULL,
KPu' + Vy3h (Tran(h) ANy C h).
From these last two expressions, just using logic, we infer
KPu" - Vaﬂh(Tran(h) AN€ehANace h)

Finally from (6) and (7), by MoDUs PONENDO PONENS, we infer

KPu" - Va3dyy(a, y).

THEOREM 1.4.7. KPu" is a conservative extension of PA.
For a proof of this result the reader is referred to Jager [11].

THEOREM 1.4.8. sKPu,| is a conservative extension of PA.
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The proof-theoretic strength of an axiom system Ax formulated in the lan-
guage L* or a similar one containing the first-order language of PA, is generally
measured in terms of its proof-theoretic ordinal. To introduce this notion we
proceed as usual and set for any primitive recurisve relation C and any L£*-
formula ¢:

fieldlC) :={z|Jy(zCy)VIYy(y = x) },
Prog(C, ) := (¥z € field(C)) <Vy(y C oo o) - w<x>),

TI(C, ¢) := Prog(C, ¢) — (Vz € field(C))p(z).

DerFINITION 1.4.9. Let Ax be a theory formulated in the language £*.

1 An ordinal « is provable in Ax if there exists a primitive recursive well-
ordering C of order-type « so that Ax - (Vo C N)TI(C, z).

2 The proof-theoretic ordinal of Ax, denoted by |Ax]|, is the least ordinal
which is not provable in Ax.

THE PROOF-THEORETIC ORDINAL OF sKPujJ.

[sKPU5 T | = |KPu'| = |PA] = &p.






CHAPTER 2

AUSSONDERUNGSAXIOM:
FroM ADMISSIBLE T'O POWER
ADMISSIBLE SET THEORY

At this stage of our work, the schema of Ay-SEP is extended in as much as we
also allow free class parameters to occur in its defining formulae. The separation
schema is then reformulated as a single axiom which we call Aussonderungsaz-
iom. It will be shown that s-II] RFN along with the Aussonderungsaxiom
implies the existence of the power-set, determining then a significant increase in
strength. The exact consistency strength of the corresponding extended theory
will be established. The notion of power admissible sets goes back to Harvey
Friedman [8]. They are the transitive standard models of admissible set theories
augmented by the power-set axiom.

2.1 THE THEORIES KPu'+P AND sKPuj;

Let the POWER SET axiom be (i.e. the universal closure of):
YVz[z € y « S(2) AVa(r € z — x € a)).

We write {J(a) for the power-set of a. The first-order theory KPu"+P is just
KPu" plus the POWER SET axiom.

Let AUS denote the Aussonderungsaxiom,
Jx(S(x) AVz(z €ex - z€aNnzeC).

The second-order theory of sKPu} is obtained from sKPuj| through replacement
of A¢-SEP by AUS.

REMARK 2.1.1. Note that, for any class C' and any set term a, A{-CA yields
the class {z|z € a A z € C'} consisting of exactly the same member as the set
x whose existence being asserted by AUS.

39
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Accordingly, using our definition of equality between sets and classes, the
following two expressions are then derivable in the theory sKPuj as immediate
consequences of AUS.

ProposIiTION 2.1.2. The following are derivable in the theory sKPuj:
(a) Jz(S(x) Az =anC),
(b) VY(Y Ca— Jz(S(z) Az =Y)).

Thus on account of AUS, we might say that the intersection of a class with
any set is a set and that a subclass of a set is a set.

ProrosiTioN 2.1.3. For any formula ¢ and any set a, we have the following
derivable in sKPuj:

(a) VX(X Ca— @) o Ve(z Ca— p),
(b) IX(X CaAnp)«—dx(zr CaAp).

Proof. The direction from left to right in (a) and the direction from right to left
in (b) immediately follow follow from the fact that any set is a class (Propo-
sition 1.2.3) and the full substitutivity of equality (Proposition 1.2.5). The
remaining directions in (a) and (b) follow from the fact that any subclass of a
set is a set (Proposition 2.1.2.(b)) and the full substitutivity of equality (Propo-
sition 1.2.5). O

ProprosiTioN 2.1.4. Ag-ly and |2N are provably equivalent in sKPuj.

Proof. That I% implies Ap-ly has already been proved in Proposition 1.3.5. The
proof of the reverse implication is accomplished by the method of Specker pre-
sented by Bernays in [3]. Apply s-II} RFN to the formula

0e AANVaVy(x e NAyeNAz € AANSc(z,y) —ye A ANTx(z eNAxz ¢ A).

Denoting this formula by (0, N, A), thus
©(0,N, A) — 3z [Tran(z) ANOezAN€EzAEP (0N, A)].
From which we infer using Tran(z) and N € z

<p(O,N,A)—>EIz<0€A/\()€z/\

AVzVy(r e NAyeNAxz € ANz € 2 ASc(x,y) —
—yeEANYyE2)A

/\EI:C(J:GN/\JC%A/\:EEZ)).
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This last formula, along with Proposition 2.1.2.(a) and Proposition 1.2.5, logi-
cally entails the following

»(0,N, A) —>3u(0€u/\VxVy(m eNAyeNAz €uASc(z,y) =y €u)A
ANdz(z eNAz ¢U)>
But the conclusion of this implication is the negation of Ag-ly, hence by MoDUS
TOLLENDO TOLLENS, we have —p(0, N, A), that is IZ. O

ProposiTioN 2.1.5. Ag-le and IZ are provably equivalent in sKPuj.

Proof. That |26 implies Ag-l¢ has already been proved in Proposition 1.3.4.
Because of the presence of an unbounded universal set quantifier in the negation
of I%, we do not know how to apply the previous argument to the proof of the
current implication. However the result can be established arguing as follows.
Consider the contrapositive of 12,

Vy((Vz € y)(z € A) —y € A) — Vy(y € A)

and assume the premise holds and that © ¢ A. By TRANSITIVE HULL, let ¢ be
a transitive set such that {z} C ¢ and consider the set

v={ylyethy¢ A},

given by AUS. By Ag-l¢, since z € v, there is a yg € v such that yo Nv = 0. If
z € yo then, by transitivity of ¢, z € t and z ¢ v; so z € A. By assumption then
we have yo € A, contradicting yo € v. |

We show that proof-theoretic strength of sKPuj significantly differs from
that of sKPu5[. It turns out, in fact, that KPu"+P and sKPu} prove the same
set-theoretic IIs sentences. In order to prove that all the theorems of KPu'+P
are provable in sKPuj, it is enough to prove in sKPu} all the axioms of KPu"+P.

2.2 KPu'4+P SUBSYSTEM OF sKPuj

LEMMA 2.2.1. Every instance of Ag-SEP is derivable in sKPub.
Proof. This is immediate by A{-CA and AUS. O

In order to introduce the next argument, the following definition of super-
transitivity is needed.

DerFiNITION 2.2.2. For any set a, we let

Stran(a) := Tran(a) AVz(z € a = Vy(y Cax — y € a)).
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In words, a super-transitive set is a transitive set closed under the subsets
of its members.

REMARK 2.2.3. Bernays [4], pp.138 and 139, proves that the full second-order
schema of reflection (or even a schema of IIj reflection, as already noted by
Gloede [9]) applied to the formula

VYVa(Y Ca— Jz(z =Y))

admits a self-strengthening to a schema with a super-transitive reflecting set.
The latter schema is then showed to imply the existence of the POWER SET.
Bernays’ argument can be adapted to the current context in showing that the
existence of the POWER SET is already derivable from a schema of reflection re-
stricted to second-order set-theoretic formulae of logical complexity s-II}. Sur-
prisingly enough, the subsequent simple observation does not seem, at least to
our knowledge, to have been made before.

LEMMA 2.2.4. The POWER SET aziom is derivable in sKPu5.

Proof. In order to derive the POWER SET axiom we apply S-II] RFN to the
derivable formula

VU<Uga—>3x(S(x)Ax_Uma)>. (1)

Note that “UNa” in (1), is needed to keep the logical complexity of this formula
down to s-II1. Let us briefly denote this formula by “¢(a)”. We then get

p(a) = Jw {Tran(w) ANa € wAN gp(“’)(a)] ,
which yields by MoDUs PONENDO PONENS
Jw [Tran(w) ANa € wA ap(w)(a)] . (2)
Before relativizing ¢(a) to the reflecting set w we have to replace within ¢(a)

the symbols “C”, “N” and “=” by their corresponding defining expressions.
Accordingly, ¢(a) stands for the formula

VU(Vy(yEUHyEQ)e

_>E|:c<S(:z:)/\Vz<(z6z—>zeUAZEa)A(zeU/\zéa—»zéz)))).

By Proposition 2.1.3.(a), the relativization of this formula to the reflecting set
w yields

Vu(ugany(yeu—w/Ea)a

—>3ac<:c€w/\5(m)/\v,z<(zG:E—>z€u/\z€a)/\(z6u/\z€a—>z€m)))>.
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If, after doing this, we reinstate in this last expression the symbols for inclusion,
intersection and equality, then we obtain along with (2),

EIw{Tran(w) /\aEw/\Vu(ug wAuCa— Jz(x € w/\S(x)/\x—uﬁa))}
From which we infer, using Tran(w) and a € w,
Jw [Tran(w) Na€wAVu(luCa— Jz(rewAS(z) Az = u))}

From this, using the fact that
Jx(zebAS(E)Ax=u) —S(u)Auebd

we infer,
Jw [Tran(w) Na € wAVuluCa— S(u)Auée w)}
Therefore, in particualr
JuwVu(u C a — S(u) Au € w),
and obviously
JuwVu(u C a AS(u) — u € w).

This last expression asserts that each subset of the set a is an element of w.
The result is then obtained through an application of Ag-SEP. It follows that
the POWER SET axiom is derivable in sKPuj. O

COROLLARY 2.2.5. Every theorem ¢ of KPu'+P is also a theorem of sKPuj,

KPu'+PFy = sKPuiF .

2.3 A SELF-STRENGTHENING OF s-II} RFN

The main concern of this Section is to show that, as for II} RFN, also s-I1}
RFN admits a self-strengthening to a schema with a super-transitive reflecting
set. For II} RFN such a strengthening is obtained by reflecting the formula
of Remark 2.2.3. Things are not that easy with s-II} RFN. The difficulty, in
this respect, relies on the presence of the unbounded universal set-quantifer in
the formula of Remark 2.2.3. In other words, the formula of Remark 2.2.3 is
of logical complexity IT} and we cannot apply s-II} RFN to it. Henceforth, we
have to proceed in a different way. We begin by observing that the power-set
of any transitive set is a super-transitive set.

LEMMA 2.3.1.

KPu'+P F Ya (Tran(a) - Stran(p(a))).
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Proof. We shall argue informally within the theory KPu"+P. Assume Tran(a),
for an arbitrary set a. We have to show Stran(§(a)), i.e.

(1) Tran(§2(a)) and

(2) Va(z € Q(a) = Vy(y Sz —y € P(a))).
(1) Assume c € (a) and d € c. Then, ¢ C a and d € a. By transitivity of a,
d is a subset of a. It follows that d is an element of {(a).

(2) Assume ¢ € §(a) and d C ¢. From d C ¢ and ¢ C a, it follows d C a.
Hence, d € §(a). O

The next result is a direct generalization of the Persistency Lemma of Section
1.4 to arbitrary transitive sets.

Lemma 2.3.2. For any [s-TT}® formula ¢(vo, ..., v, Co, ..., Cr) of L5, with no
free variables besides the displayed ones and not necessarily all of them we have:

sKPuj F Yoy...vv, VCy..VC,, VyVz ( (y C z A Tran(y) A Tran(z) A

ANvVgy ...y Uy € y/\C’O,...,Cm CzA

A sD(U) ('U07 ey Un, Co N Y, ey Cpy N y)) —

— (P(Z) (V0 ++ry Un, Co,y oovy Om)> .

Proof. Note that the implication above, by Proposition 2.1.3.(a) and Proposi-
tion 1.2.8, is provably equivalent to

Yvg...YopVep.. Ve, VyVz ( <y C z ATran(y) A Tran(z) A

AV, ety Un €EYANCYyeeey Cy, T 2 A

A w(y)(vo, ooy Upy €Oy oeer cm)) —

— go(z)(’l)o, ey Uny €Oy oeey Cm)> .

And this is established by a straightfoward inductive argument on the build-up
of ¢(vg, ..., v, Co, ..., Cpp) following exactly the same pattern as in the proof of
the Persistency Lemma of Section 1.4. O

THEOREM 2.3.3. For any s-1I} formula ¢(vo, ..., v, Co, ..., Crm) with no free
variables besides the displayed ones and not necessarily all of them, the following
1s derivable within the theory sKPuj:

©(V0, ey U, Coy ooy C)) —
— Jz[Stran(z) A vg, ..., Uy € 2 A o (V0 <y Uy Coy eey Cin) |-
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Proof. Let ¢(vo, ..., Un, Co, ..., Cpy) be a given s-II1 formula. Consider the corre-
sponding instance of the schema of s-II1 RFN:

SO(/U07 ceey Uny,y COu ceey Cm) -
- Ely [Tran(y) A V0, -y Un €Y A w(y)(’UOa coey Uny,y OO) ey Om)]a

which is, by Proposition 1.2.9, provably equivalent to

O(V0,y <oy Uy Coy voey Cp)) —
— Jy [Tran(y) A vg, ..., € Y A w(y)(vo, s U, CoNyy oo, Cru NY) .

By Lemma 2.2.4, we obtain

@(V0y vy Ury Coy ooy Crp ) —

— JyIz [Tran(y) Az = O(y) Avo, ..., vn €Y A go(y)(vm ey U, Co Ny, ey Crn NY) .
And this, along with the observation that y C z, can be rewritten as follows,

o(v0, ooy Uny Coy ooy Crp ) — FyFz [Tran(y) A z = ©(y) ANvo, ..., vn EYA

A np(y)(vo, s Uny (CoNz) Ny, (Cw N 2)Ny) ]

Therefore, by Lemma 2.3.2 (instanciating Cy, ..., Cp, by (Co N 2), ..., (Cry N 2))
and Lemma 2.3.1, we get

©(V0, ey Uy Coy ooy C)) —
— Jz[Stran(z) A vg, ..., Uy € 2 A cp(z)(vo, ey Uy, Co Nz, ey Co N 2) ],

which is, by by Proposition 1.2.8, provably equivalent to

©(V0, vy Uny Coy ooy C)) —
— Jz[Stran(z) A vg, ..., U € 2 A go(z)(vo, very Upy Coy oy Co) ]

O

Even though the schema of s-II} RFN admits a self-strengthening to schema
with a super-transitive reflecting set, the theory sKPu) remains “relatively”
weak. As we shall have occasion to see in the next Section, sKPuj does not
prove, for example, the existence of w. By contrast, the schema of 113 RFN,
along with AuS and Ag-lg, already entails the existence of arbitrarily large
Mahlo cardinals. This should also make the reader appreciating the “explosion”
in strength we shall be getting, as soon as we shall replace A{-CA by the full
schema of Predicative Comprehension.
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2.4 sKPu, CONSERVATIVE EXTENSION OF KPu'4-P

In order to prove that all the set-theoretic Ils sentences of KPu'+P provable
in sKPuj are also theorems of KPu'+P, we proceed by carrying through an
asymmetric interpretation of quasi normal sKPu} derivations into finite segments
of the cumulative hierarchy. As in Section 1.4, we proceed into two steps. First,
we provide a Tait-style reformulation of sKPuj that allows us to establish a
partial cut elimination theorem yielding quasi-normal derivations. In a second
step, quasi-normal derivations of such a Tait-style reformulation of sKPuj are
then reduced to KPu"+P by means of an asymmetric interpretation. We take
up the first step.

A Tait-style reformulation of sKPuj is the same as for sKPuj[, where AUS
reads as follows:

For all finite sets I' of formulae of L3,

I3z(S(x) AVz(z€x > z€anze()).

[s-1}]E
The Tait-style reformulation of sKPu} is denoted by T».
EMBEDDING OF sKPuj INTO Ty. Let ¢ be a L3 formula such that
sKPuj F .
Then there are two natural numbers n and k such that
ToFL .

The non-logical axiom AUS has logical complexity [S—HHE. We then es-
tablish a partial cut elimination theorem (up [s-IT}]® and [s-X1]F formulae),
yielding quasi-normal T, derivations exactly as in Section 1.4.

PARTIAL CUT ELIMINATION FOR T». For all finite set I' of L3 formulae and
all natural numbers n and k,

ToFp, T = T
The following result concludes our first step.
COROLLARY 2.4.1. Let ¢ be a L5 formula such that
sKPuj F .
Then there is a natural numbers n such that

T2 F? ®.
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The second step of reducing quasi-normal T, derivations to KPu"+P consists
in setting up a partial model for sKPu5 (e.g. a model for the set-theoretic II5
sentences of sKPu%) which will subsequently be used in order to provide an
asyminetric interpretation theorem for quasi-normal T, derivations. It is argued
that the whole procedure can be formalized within KPu'+P. In particular, the
partial models needed for an interpretation of sKPuj are available in KPu'+P.

For any set a,
Na = {z|(Wwea)(zev)}.

Whenever a # 0, ()a is a set; it is a subset of any v € a. (By our definition,
(® = V, but this is not a case that will ever concern us).

DEFINITION 2.4.2. For any set a, the transitive closure of a, denoted by TC(a),
is the smallest transitive set including a. That is TC(a) is transitive, a C TC(a)
and if b is any other transitive set such that a C b, then TC(a) C b.

The existence of this set can be justified within KPu'+P using the POWER
SET axiom as follows.

ProrosiTioN 2.4.3.
KPu'+P F Va3dz(x = TC(a)).

Proof. We argue informally within KPu™+P and fix an arbitrary a. We need
to prove the existence of a unique transitive set which includes a and is itself
contained in every transitive set including a. The TRANSITIVE HULL axiom
provides for any set a a set ¢ such that

Tran(c) and aCec.
By applying Ag-SEP to §J(c) we isolate the transitive sets containing a:
32(S(2) AVy(y € z = y € QO(c) A Tran(y) Aa C y).

At this stage we consider the set ()z. We aim to prove that [z = TC(a).
Obviously,

aC ﬂz and Tran(ﬂz).

What is required to prove is that the set () z is included in any transitive set
including a, that is

Vo(Tran(v) Aa C v — ﬂz C o).

For any term b, assume
Tran(b) Aa C b.

By combining our assumption with the derivability of

Tran(c) and aCc and ce€ ((c),
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we infer

Tran(bNe¢) and aC(bNec) and (bNc) € O(c).
By definition of the set z, we then obtain
Tran(b) Aa Cb— (bNe) € .
and in particular
Tran(b) Aa Cb— [z Cb.
o

At this stage, working in KPu'+P, let us introduce finite segments of the
cumulative hierarchy which will subsequently be used in order to prove an asym-
metric interpretation theorem for quasi-normal T, derivations.

For any set z, we define by recursion on n a finite hierarchy (V,N(2)),en of
set terms V,N(z) as follows:

Vo' (2) = TC({N, 2}),
Vo (2) = p(V;'(2)).
We write VN if VN(2) = TC({N}) and V,, if VN(2) = 0.
LEMMA 2.4.4. For all natural numbers n € N,
KPu'+P I VzTran(VN(2)).
Proof. By induction on n. We work informally within the theory KPu"+P. Fix

an arbitrary z.

n =0 We need to show V(z) is a transitive set. By definition of VJ¥(z),
this reduces to showing that TC({N, z}) is a transitive set. And this is so by
definition of transitive closure.

n—mn+1 We need to prove that VnNH(z) is a transitive set. We first
show that VnNH(z) is transitive. Assume for two arbitary sets a and w that
a €V (z) and w € a. Since a € VN, ;(z) we also have that a C V,)'(z) and
thus w € VN(z). By LH., w C VN(z). Hence w € VN ,(z). We are left with
proving that VN, (z) is a set. By LH., we have that V,N(z) is a set. Then so is
VN, (2), by the POWER SET axiom. O

Sets and classes are interpreted, respectively, as elements and subsets of

U VN(2).

neN

We keep the same notation as in Section 1.4. Let ¢ (8, é) be any formula of L3,
whose all set and class parameters came from the lists §, C' respectively. We
5C

)

write w(‘@y('z))(i @) to denote the result of replacing in ¢(



2.4. sKPu; CONSERVATIVE EXTENSION OF KPu'+4-P 49

- every unbounded set quantifier Qz by Qz € V,N(2),
- every class quantifier QY by Qy C VN(z),
- every class variable C' by a set variable c.

We avoid conflict of variables. It is worth noticing, however, that the trans-
lated formula w(Vg (2))(5, &) has logical complexity Ag, for any unbounded set
quantifier Qy C V,N(z) being in fact converted to a bounded set quantifer
Qy € Vol (2).

LEMMA 2.4.5. For any formula ¢(8, C_", 5) of L5, with no free variables besides
the displayed ones and not necessarily all of them and for any set b wich does
not occur free in the list § we have the following provable in KPu'+P :

gebﬁ(¢“@ad%+¢“@50aﬁ)

The proof of Lemma 2.4.5 is obvious in virtue of Lemma 1.4.5 and the
fact that KPu" is a subsystem of KPu'+P. Persistence properties are obviously
satisfied; we confine ourselves to stating the following result which will be often
invoked in the subsequent asymmetric interpretation.

COROLLARY 2.4.6. For any finite set T 5 of [s-II1]F and [s-X1]F formulae of
L5, we have:

KPu"+P + VquVerVmV§VE<<q>r/\r >pAp>mAm>0A

ANFEVN(2)ANEC V() A
A {\/ Lzanvnge) [2% 7‘} vV AD-’
- {\/rg,a[m,q] \/\/AD.

As for the asymmetric interpretation of T1[e Ay into KPu", we interpret any

given quasi-normal Ty derivation of T' (where T' only contains [s-IT}]® and
[s-X1F formulae) by assigning bounds to existential set and universal class
quantifiers occurring in the derivation, depending on any given bound for exis-
tential class and universal set quantifiers of the derivation.

ASYMMETRIC INTERPRETATION OF [, INTO KPu"+ P. Assume that I.5is
a finite set of [s-TI}|® and [s-X1E formulae of L3 so that

To ! To s

for some natural number n. Then for all natural numbers m > 0 we have

KPu'+P I V2 V5Ve (§e VN ANECUN L. (2) — \/Fg)g{m,m + 2”} )
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Proof. By induction on n. The subsequent asymmetric interpretation of T into
KPu'+P is proved following the same pattern as for the asymmetric interpreta-
tion of Ty f¢, ~into KPu'.

n =0 We content ourselves in showing how the asymmetric interpretation
verifies AUS.

AUS Suppose that I'; 5 is the non-logical axiom AUS. Then
ToF) 32(S(x) AV2(z €z 2z €anz € C)).

Given an arbitrary a € VN(z), by transitivity of VN(2), we have a C VN(2).
This means that for any set ¢, (aN¢) C VN(2). And this immediately provides
us with the upper bound for the existential set quantifer, since

KPu'+P I (anc) € VN (2).

n >0 We content ourselves in showing how the asymmetric interpretation
verifies AJ-CA.

AJ-CA  Suppose that Pegis the conclusion of the non-logical inference

rule for A§-CA. Then there are two X formulae o(a, 5, C) and 9(a, 5,C) and
two natural numbers ng,ny < n such that

T2 F?O Fg‘ﬁcﬂavx(w(xv §7 é) - _‘1/)(13a 47 é))v
T2 " Ty g, Va((2, 5, C) — ¢(x, 5,0)).
Let p = max({ng,n1}). Then we have

To H) Ty g, Va(p(, 5, C) — —v(z, 5,C)), (1)

Ty F2 T, g, Va(—~¢(x, 5, C) — ¢(, 5,0)). (2)

‘S)

By inversion, we witness the universal quantifiers in (1) and (2) by some a such

that a ¢ FV (I‘, ®, w), obtaining then

ToHY T, a-p(a, 5, C), ~(a, 5, C), (3)

T2 '711) F*évw(a7§7é)7¢(a7§7é)' (4)

57

The I.H. applied to (4) yields for all natural numbers m > 0,

KPu' +P + VzV5Va Ve <§e VN(z)ANa e VN(z)AEC VN (2) —

— {\/F;yg[m,m—i—?] V

v (ﬁw(VnNL+2P (Z))(a/, g” é‘) s SD(V7,7\‘1+2P (Z))(a/’ g’ a):|)
(5)
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And from this, we infer
KPu+P F VzVsVa <§'€ VN(z)Na € VN(Z)ACAVN 50 (2) C VN 0 (z) —
— {\/ F§,€ﬂV£‘1+2p(z) [m, m 4+ 27”] Vv
v (0¥ (a5 0 Y (2)

— Wi (0, 5,20 VN, (Z))ﬂ ) :

(6)
Since
KPu+P = Vz(enN VN .. (2) CVNL L. (2)). (7)
(6) and (7) along with Corollary 2.4.6 entail
KPu+P F Vz2V35Va Ve <§6 V() Aa € VN(Z)AEC VN, on(2) —
— |:\/ F§7g|:m, m + 2”] \%
(8)

v (0¥ 50 Y (2)
— Ve @) (a, 5,20 VN, (Z))ﬂ ) :
The I.H. applied to (3) yields for all natural numbers m > 0,
KPu'+P F V2 V5Va Ve <§‘e V() ANa € VN(z)AEC VN, o0 (2) —
— {\/ F§)5|:m, m+ 21"] Vv (9)
Y <@<vx<z>>(a, 57) - ﬂ/,(vmz))(mgﬂ)])_
By instanciating m by m + 2P, we get
KPu'+P | V2V5Va Ve <§e VN on(z)ANa € VN o (2) NEC VN 0ni0n(2) —
- [\/Fg,g{er 2 m + 2P + 21”] Vv

y (sp(v,ﬂﬂp(z))(% 5,8) — —pVms2r ) (g, 3, 5))])
(10)



52 2. POWER ADMISSIBLE SET THEORY

By Lemma 2.4.5, we have

KPu'+P I V5Va <§’e VN w(z)Na € VN . (2) —

- <<P<Vﬂ+2p D (a,5.8) = Ve (a, 520 VN o (z>>>

(11)
and
KPu'+P + V5Va <§e Vinyor (2) Aa € Ve ion(2) —

N <ﬁ1/)(v7':i+zp(2))(a7 5,0 < _‘w(VTI:‘L+2p(Z))(G/, 5en Vri\lwrzp (Z))))
(12)

Accordingly, by (11) and (12) we infer from (10),
KPu'+P F VzVsVaVe <§6 VN on(2)Aa € VN 0 (2) NEC VN gpion(2) —
= |:\/1—‘§75|:m+ 2P m + 2P + 21”] v
v (QD(VJ:*W(Z)) (a7 gén V17’\1‘+2P (Z)) N

R ﬁw(vjr\'wrz?(z)) (a,5,¢N Vn’;‘+2” (Z))>:| ) '

(13)
By construction of (V,N(2)),en we have
KPU+P F Vz(b € VN (2) = b e VN ,.(2)). (14)
Hence from (13) and (14) we infer
KPu'+P + V2 V5Va Ve <§e VN Na e VN()AEC VN b 0n(2) —
- {\/ F;g{m + 2P, m 4 2P + 21"] v
(15)

y (spmmzp(z))(mgm Vbian(2)) —

- ﬁw(‘/:?\‘l‘f’?p(z)) (a,5,¢N Vn’;‘Jer (Z))>:| ) '
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From this last expression we get
KPu'+P | VzV5Va (ge VN Aa e VN(2) A
ACN Vn'3+2p+2p (2) C Vn'\zl+2p+2p (z) —
- {\/ Daanv o () |+ 20 m 4+ 27 + 2P] v

v (M»W”(a, 5 ENVN gane (2)) VN (2) —

N - I
- ﬁw(vmﬂp( ))(a, 5, (N Vn'\zl+2p+2p (2)) N V7r'\7‘,+21’ (2)))] )
(16)

By construction of (VN(2)),en we have provable, within KPu'+P, that

Vn'\:+2p (z) € V77'\:+2P+2P (2)-

This obviously implies that

(8ﬁ Vn§+2r'+2p (Z)) N V’rr'\7‘,+2p (Z) = (6ﬂ V’rr'\7‘,+2p (Z))

Accordingly we obtain from (16) that
KPu'+P F VzV5Va (ge VNG Aa e VN(2) A
ANENVN ri0n(2) CVN o on(2) —
- [\/ Laanvit o on () [m +2m A2+ 2”} Yooar)
! (‘P(V"N”‘”P a,5.20V0 00 (2) =
— ﬁl/i(v’?i“p(z))(aa §,EN VN o (2)))] ) :
Since
KPU+P - V2(@NVN, 50 i00(2) CVN 00 (2)). (18)
(17) and (18) along with Corollary 2.4.6 entail
KPu'+P + V2 V5Va Ve <§‘e VN ANa e VN()ACCUN L. (2) —
— {\/ F;g{m, m 4+ 2”] Y,

(19)
y ( pVms2r () (4, 5,20 VN, (2)) —

— ﬁw(VJr\iHP(Z)) (a,5,éN Vn’;‘Jer (Z))>:| ) )
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Hence from (8) and (19) we obtain

KPu'+P - VzV5Va Ve <§'€ V() ANa e VN(z)AEC VN L. (2) —

— |:\/ F;g[m,m + 2"] \Y

v (sp(mt{“p(z))(a, 5,cN V,,'\f+2p (2)) &

- j,lb(V,',\‘LJrgp (Z))(a’ 5’, cnN Vn';lJrQP (Z))>:| ) '

Accordingly, we can form the set

which is a subset of V,N(z). Therefore we get
KPu'4+P I V2 V5Ve <§ eVNEACCUN L. (2) — [\/ rg@[m, m 4+ 2”] Vv

\/Ely(y EVN.(2) /\Va(ae VN(z) —

B Ka €y VO (g 520V, (2))) A

. (@mmu))(a, 5,ENVN, 0(2) —ac y>D>} )

And from (21) by Corollary 2.4.6 we finally obtain

KPu'+P I V2 V5VéE <§e VN()ANEC VN L. (2) — [\/ rg,g[m,m + 2”} Vv
v E|y<y eVN 1 (2) /\Va(a cVN(z) -

R [(a €y — D (0,520 v,mz))) A
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Since the formula

Hy(y eV (2) /\Va(a cVN(z) —
- Ka €y— V@) (a5 VN (z))>/\

N (w(vgl(z))(a’ 5¢NVN(2) —ac y)]>>,

is contained in I's z|m, m 4 2" |, the asymmetric treatment of the non-logical
inference rule for A{-CA is complete. O

II;-CoNsERVATIVITY. sKPu, conservatively extends KPu™+P for set-theoretic
II, sentences.

Proof. Analogous to the proof of IIo-Conservativity for sKPuj /. O

DEFINITION 2.4.7. The hierarchy (VN),con is defined by the following re-
cursion on the class of all ordinals:

V= TC({N})

VaN+1 = p(Vo’z\‘)
V= [ J V2, for Lim(\).
a<A

For any class A and B and any binary relation E we let
EWXBl — f(x y)|z e ANy e BAzEy).
When A = B, we simply write E[], instead of EAXAl
Let Ax be a theory formulated in the language £* or £5. We make use of

the following abbreviations:

(Vo[\l> Ax = (VN E[V(Q']> E{p|yisaX, sentence and Ax F ¢},
x

Sn

(VaN> Ax = (VN eVl Yy E{¢|y¢isall, sentence and Ax F ¢ }.
x

rI’Vl
DEFINITION 2.4.8. Let Ax be a theory formulated in the language £* or L3.

We define
(V‘y> [Ax] }

Sn

() s, )

Tp

|AX|s, = min{ «

|AX||m, = min{ a
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COROLLARY 2.4.9.

w = [|sKPu3||m,
= [[KPu"+P|[m,

Proof. Let us first show that w = ||sKPuj||m,. Let ¢ be a set-theoretic Iy
sentence derivable in sKPub. Write ¢ as Va3yy(x,y), for ¢ being Ag. Then we
have, for an arbitary set term a, that

sKPuj = Jyi(a, y).
By Corollary 2.4.1, there is a natural number n such that
T2 B Fyid(a, y).

Assume a to be an element of V. This means that there exists an 0 < m < w
such that a € V,N. The asymmetric interpretation of T, into KPu'+P tells us
for any m > 0,

KPu'+P F VzV¥a (a € VN(z) — Fy(y € VN, gu (2) A pVmsan (D) (q, y))).
Instanciating z by the set term N, we therefore obtain
KPu'+P F Ya (a e VN = Jy(y € VN, ou A gpVmsan) (g, y))).

From this last line, using our assumption we then obtain
KPU'+P F Jy(y € VN, o A gpVmsan) (a, ).

Since a was an arbitrary element of V), this means that we have shown within
the theory KPu"+P that

N
(VI eVely = o

Concerning minimality, it is enough to note that the derivable set-theoretic I1o
sentence Va3y(x € y) is such that for no n < w we have

(VN eValy = vady(z € y).

That w = ||KPu"+P||r1, follows from w = ||[sKPu||1r, and the conservation result
previously established. O

The next step we are going to undertake consists in replacing A{-CA by a
class existence axiom for any predicative formula. The argument used to justify
this further strengthening of our axiom system, is contained in the following
subsection.
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2.5 ON THE DERIVABILITY OF AJ-CA

We make use of an itermediate theory which we denote by sKPuj5. To the aim
of presenting the theory sKPuj, we need to introduce the following axiom.

Let A§-SEP denote the following second-order axiom schema:
Jz(S(x) AVz(z € z = z € a A p(2)).

for any A§ formula ¢ of £5.

The intermediate theory sKPu} is obtained from sKPu5 by dropping A{-CA,
adding the axiom Vx3Y (z = Y) and replacing AUS by Af-SEP.

THEOREM 2.5.1. The following is derivable in sKPuj:
Vo(p(z) — ~¢(z)) — YVo(z €Y < p(x)),

where ¢ and ¢ are £ and do not contain the class variable Y free but may
contain set and class parameters besides x.

Proof. The argument is accomplished by the the method of Specker presented
by Bernays in [4]. We shall argue informally within sKPu}. Assume

Va(p(z) < p(z)),
and apply s-1I} RFN to the following s-I1} formula
VYH:E((QC eY AY(x)) V (p(z) ANz ¢ Y)),

which we denote by g and which we assume, without loss of generality, does
not contain the variable w free. Therefore,

o — Fw[Tran(w) A @i

By making explicit the relativization of g to the reflecting transitive set w
and using the fact that Vz3Y(z = Y) along with the full substitutivity of
equality (Proposition 1.2.5) we then obtain,

wo — Jw lTran(w) A Vy <y Cw— E|x<x cwA (zeynyp™(x)v

vwwM@Az¢wQ>y
which is logically equivalent to

wo — Jw

Tran(w) /\Vy(y Cw— E|x<(:c cwAz ey (z))V

\/(mew/\w(w)(:c)/\xéy))>].
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In particular we can drop “Tran(w)” and upon the premise “y C w” we can
suppress “x € w” within the first member of our disjunction. Hence,

Yo — 3wa<y Cw— 31‘((96 ey AP @)V (zewh ™ (z) Az ¢ y)))

Denote this last implication by ¢o — 1. Here (") (z) and ) (z) are A§
formulae of £} of the form v (z,w) with no bound-class variables. By Aj-SEP
we have
yVz(x € y < x € a AN1(z,a)).
This last formula is obviously equivalent to
EIsz((a: cy—ze€ahy(z,a)) ANz €anp(z,a) > x € y)),
and from this we infer in particular

3y<y - a/\Vz((:z: cy—Yi(z,a)) Az €aNr(z,a) > x € y)>>
and trivially
3y<y C aAva:<(a: ¢yVir(xz,a))A(x ¢ aV - (z,a) Ve e y)>>
By generalizing with respect to a we then infer
Vwﬂy(z; C w/\Vm((iv FyV iz, w) Az ¢wV gy (z,w) Ve y)))
Instanciating “¢1 (z,w)” by “—¢(*)(x)” we then get
vy <y Cunve((o v @) Ao gy 9 (o) va e y>>> )

At this stage note that

where 9 and 1 are A§ formulae of £3. Note that the assumption
Vo (Jups (u, ) « Yu)s(u, x)),
logically entails the following

(Vo € w)(Fu(u € w A p2(u,z)) — Yu(u € w — ha(u, z))).
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By definition of relativization, this last expression obviously entails the following

(V2 € w)(e! (z) — ™) (2)). (2)
And (1), along with (2), yields the following:

Vwﬂy(y C w/\Vm((:v ¢yV @) A (x¢wV - (z) Ve y)))

But this is the negation of 1y. Therefore we obtain by MoDUS TOLLENDO
TOLLENS —¢y, i.e.

WVe((x €Y — —w(z)) A (p(z) >z €Y)).

And this, along with the assumption

Va(p(z) < ~(x)),
logically entails the following
WVz((z €Y — p(x) A(p(x) =z €Y)).

That is
WVr(z €Y « ¢(z)).

O

For more results on the derivability of Comprehension axiom shemata from
second-order reflection principles the reader is reffered to Gloede [9].

COROLLARY 2.5.2. For any formula ¢ of L5, we have
sKPuf ¢ <= sKPujF o.

Proof. From right to left. By proposition 1.2.3, we have derivable in sKPu} that
every set is a class. The fact that any instance of Af-SEP is derivable in sKPuj
follows from AUS and A§-CA.

From left to right. This is immediate by Theorem 2.5.1 and the fact that AuS
is just a particular instance of A§-SEP. O

Accordingly, we can regard sKPu}, as the same theory as sKPuj.

COROLLARY 2.5.3.

w = [|sKPu||m,
= [|KPu"+P|[m,

= [IsKPu3 ][,






CHAPTER 3

PREDICATIVE COMPREHENSION:
FroM POWER ADMISSIBLE TO
CLASSICAL SET THEORY

Given the strengthening of the axiom system sKPu5[ to sKPu}, the result of Sec-
tion 3.4 shows that it would be inadequate to keep the Comprehension schema
restricted to £3 formulae of logical complexity A{. Accordingly, the class exis-
tence axiom is extended in as much as we shall allow any predicative formula
to occur in it. The extended class existence axiom is called Predicative Com-
prehension and denoted by PCA.

DEerFiNITION 3.0.4. The Predicative Comprehension schema is formulated as

follows:
FVe(r €Y < o)) (PCA),

where ¢ is any predicative formula of £3 not containing the class variable Y
free but which may contain free set and class parameters besides .

The question is now whether we are adding something which is genuinely
new or whether, as for A7-CA, it is already derivable in the theory sKPu}. Let
El—lN be

¢(0) AVx,y € N (p(x) ASc(z,y) — »(y)) — Vo € Np(z),

for every L£* formula of logical complexity ¥;. Further, ¥¢-ly is used to denote
the above-mentioned schema but for any X{ formula of £35. Let

KPu' + P + (Zl-lN)

be the theory obtained from KPu"+ P through the replacement of Ag-ly by
Y1-ly. Let us introduce the following abbreviations:

Lim(a) := On(a) Na#0A (Vx € a)(3z € a)(z =z U {z})
Hawp(z) = Fu(p() AVy(ely) — z=1y)).

61
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THEOREM 3.0.5.
KP4+ (S110) F 31 (Lim(©) A ¥y < € = Lim(n) ).

Proof. For the proof the reader is referred to Theorem 3.2 of Jager [15] on page
69. O

DerFiNITION 3.0.6. The Comprehension schema restricted to the formulae of
L5 of logical complexity 3¢, is formulated as follows:

IWVe(z €Y « ¢(z)) (X9-CA),

where ¢ is any X formula of £3 not containing the class variable Y free but
which may contain free set and class parameters besides x.

THEOREM 3.0.7. Not every instance of £{-CA is derivable in sKPu}, (sKPuj).

Proof. Suppose not. Then in particular we would have any instance of X§-lIy
derivable in the theory sKPub (sKPuj). But then every derivable statement
of KPu"+ P + (31-ly) would also be a theorem of sKPuj (sKPuj). Once we
have this then, by Theorem 3.0.5, the existence of w become derivable in sKPuj
(skKPuj). And this contradicts the result stated in the Corollary 2.5.3. O

It is at this point that the reader might be tempted to make a simplifying
mistake, thinking that once we have PCA at our disposal and given the presence
of class-parameters in the reflected s-II} formulae, then the schema of s-II] RFN
does immediately imply IT} RFN. In order to clarify this and convince the reader
that things are not that easy we need to introduce some notation.

If in a formula ¢(C) the class parameter C is to be replaced by a formula
¥, we write o([C'/Ax.¢p]) for the formula obtained from ¢ by replacing every
occurrence t € C' by v[z/t]. Neither set nor class parameters of Vat) are allowed
to become bound when substituting. It is worth remarking that 1) may contain
other free variables besides z and ”Az” is needed to indicate which terms are
substituted for which variables.

(b)

We write ( ¢([B/ Aa:.z/;])) for the formula obtained from ¢®) by replacing

every occurrence
teB by O/
(b)

In other words, <<p([B / Aa:.z/;])) is used to denote the formula obtained from ¢
after performing the operation of first substituting and then relativizing. On the
other side, ¢ (B)[B/Az.1] is used to denote the formula obtained from ¢ after
performing the operation of first relativizing and then substituting. It is worth
mentioning that in general, even upon the premises “Tran(b)” and “a, z € b7,
the formula

(itarB/30.0) v
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is different from
¢ (a, B)[B/Az.y).

Take, for example, ¢(a, B) = a € B. Then

(b)
<<p<a, [B/Am.w)) = O le/dl,

and
¢ (a, B)[B/Az4)] = [z /a).

If we take the class variable B intersected with the reflecting transitive set b,
then we would run in the same problem as before since in general

Bnb={zeb|e(x)}
£
BONnb={zecb|p®(x)}.

We will show however that once we have PCA at our disposal, s-II1 RFN and 11}
RFN are, in a sense which will be made precise later on, ”intimately connected”.
Further, as we have already occasion to see in the proof of Theorem 3.0.7, the
theory sKPuj, augumented by PCA proves any instance of ¥{-lIy and therefore
the existence of w. Accordingly we reformulate this theory, denoted in the fol-
lowing by sBLj1, in a slight different way without assuming the natural numbers
as urelements and using a different language which we shall denote by L.

3.1 THE THEORIES VNB AND sBL;

Let L denote the language of first order predicate calculus augumented by the
binary predicate symbol €. As in Section 2.2, the second-order language Lo
is now obtained from L¢ by adjunction of an infinite stock of class variables
X,Y, Z, ..., together with universal quantifiers binding them. All the notions
introduced in Sections 1.1 and 1.2 (formulae, classifications of formulae, defini-
tions of equality,...) are adapted to the current context in the obvious way. As
for the previous part of our work, we freely make use of all standard set-theoretic
notations and write

<a7b> = {{a}’ {a7b}}v
rel(R) := Va(r € R — Jy3z(x = (y,2))),
fun(F) := rel(F) AVaVyVz((z,y) € F A {(x,2) € F — y = z),
dom(F) := {z: Jy((=,y) € F)},
)

mg(F) :={y:z((z,y) € F)}.

The theory VNB is formulated in the second-order language £5. The underly-
ing logic of VNB is the classical second-order logic with first-order equality. The
non-logical axioms of VNB are the following:
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PAIR: VaVbayVzzr € y « (x =aVx =b)],

UNION: VadyVe[z € y « Jz(x € 2 A z € a)],

POWER SET: VadyVe(z € y < = C a),

AusS: VCVaFyVe(z ey —z €anzx e C),

INFINITY: 32[0 € 2 AVz(x € z = 2 U {a} € 2)],

REPLACEMENT: VC[fun(C) A 3z(x = dom(C)) — Jz(x = mg(C))],

12: VC(Ty(y € C) —» Jyly e CAVz(x e y — x ¢ C))),

PCA: ICVz(z € Y — o(2)),

for any predicative formula ¢, not
containing the class variable C' free
but which may contain free set
and class parameters besides z.

The theory sBL; is formulated in the second-order language Lo of VNB. The
underlying logic of VNB is the classical second-order logic plus the substitutivity
axiom for set equality. The non-logical axioms of sBL; are the following:

Ao-le, AUS, s-TI1 RFN, INFINITY, PCA.

3.2 VNB SuBsYsTEM OF sBL;

We show that every theorem of VNB is also a theorem of sBL;. This is easily
seen once we know that the second-order axiom of REPLACEMENT of VNB is
derivable in sBL; since the axioms AUS, INFINITY, PCA of VNB are also axioms
of sBL; and, as we have already seen, the axioms 12, PAIR, UNION, POWER
SET are all derivable in sBL;. Before dealing with the derivability in sBL; of
the second-order axiom of REPLACEMENT, let us first summarize the above-
mentioned considerations in the following propositions.

ProposITION 3.2.1. |2 is derivable in sBL;.

Proof. By Proposition 2.1.5. O
ProrosiTioN 3.2.2. PAIR s derivable in sBLy.

Proof. By Proposition 1.3.2 and Proposition 1.1.4.(a). O

ProprosiTioN 3.2.3. UNION is derivable in sBL;.
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Proof. By Proposition 1.3.3 and Proposition 1.1.3. O

ProrosiTioN 3.2.4. POWER SET is derivable in sBLy.

Proof. By Lemma 2.2.4. O

DEeFINITION 3.2.5. The second-order axiom of COLLECTION reads as follows:

Ve(x € a — 3z((z,2z) € B)) —
yVe(x € a — Jz(z € yA{z,2z) € B)).

LEMMA 3.2.6. The azioms of REPLACEMENT and COLLECTION are shown to
be provably equivalent in VNB.

Actually for the result we are aiming to show it is enough to know that
COLLECTION implies REPLACEMENT; a detailed proof of such an implication
can be found in Bernays [4] pp. 133-134, where COLLECTION is called the
second-order version of Thiele’s Replacement axiom. For a proof of the other
direction the reader is referred to Gloede in [9] p. 293.

ProprosiTioN 3.2.7. COLLECTION is a theorem of sBLy that is

sBL; FVz(z € a — 32((z,2) € B)) —
— JyVz(zr €a — Fz(z€eyA(x,z) € B)).

Proof. Apply s-II§ RFN to the 3¢ formula
Ve(x € a — 3z((x,z) € B)).

O

REMARK 3.2.8. In the proof of Proposition 3.2.7, we rely on the fact that
ordered pairing is a provably A, function. Hence in the process of relativization
we make use of the absoluteness property of Ay notions for transitive sets. In
other words, we treat it as it were an atomic symbol of the base language Ls.
This observation will be often tacitly invoked in the remaining part of our work.

ProprosiTiON 3.2.9. REPLACEMENT is derivable in sBL;.

Proof. By Lemma 3.2.6 and Proposition 3.2.7. [l

COROLLARY 3.2.10. Every theorem ¢ of VNB is also a theorem of sBLy,

VNBF ¢ = sBL;F .
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3.3 VNB PrROPER SUBSYSTEM OF sBL;

So far we have seen that any theorem of VNB is also a theorem of sBL;. The
next question is whether we can prove in VNB, everything that can be proved
in sBL;. Since Ag-le and the schema of s-II1 RFN are not among the axioms
of VNB and Ap-l¢ is derivable in VNB (cf. Proposition 1.3.4) this reduces to
asking whether each instance of s-II{ RFN is derivable in VNB. The answer to
this question is no: The schema of s-II} RFN is, in fact, independent from the
axiom system of VNB.

To the aim of proving the above-mentioned result and all of the results con-
tained in Section 3.6 we need to introduce the notions of “Indescribability” and
“Tree”. Before starting, we should emphasize that, with the exception of the
so-called “Strong Upward Persistency Property” of [s-II}]¥ formulae, the mate-
rial we present in this part of our work is known in the literature (the reader is
referred, for example, to Kanamori [16], Kunen [17], Lévy [20] and Barwise [2]),
so we do not have any claims to originality except possibly regarding the presen-
tation of the material itself and the way in which standard results are used and
adapted to achieve the current task. We take up the notion of “Indescribability”
first, and this in turn requires the presentation of some preliminary material.
For the following, we fix ZFC as our metatheory. But there is an important
caveat: By the Godel-Tarski undefinability of truth argument the general satis-
faction relation for proper-class structures is formally indefinable in ZFC. This
is the source of possible unformalizability in our work, and the issue is discussed
as it arises (see, for example, Appendix B)

DerFiNtTION 3.3.1. By a full structure for Lo we mean a ordered 4-tuple
(A, BW, ©O(A), elAxpAly
with

- A # 0 being either a set or a class (possibly proper class) and serving as
the range of the set variables (we call A the domain of the structure);

- ((A) serving as the range of class variables;
- El4l interpreting the membership relation € between sets and sets;
- AP interpreting the relation € between sets and classes.

REMARK 3.3.2. Hence by “full” we mean the intended interpretation of second-
order variables as ranging over arbitrary subcollections of the domain of the
structure. Formulae of £ are interpreted in ( A, B4 ©(A), elAx©A]) in the
obvious way.

Some abbreviation is introduced. Let (v, ..., vy, Co, ..., Cp) be any formula
of Lo with free variables as indicated. We write

<A7 E[A] > ':2 @[a@v ...,Cl,n,B(), 7B’m]
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to indicate that the formula ¢ of £, is satisfied in the structure
(A, B, o(4), ol
with the variable assignment taking v; to a; € A and C; to B; € ((A).

DerFiNtTION 3.3.3. When A is an €-transitive class, we call the corresponding
full structure for L9 of the form

the intended or standard model for Lo.

REMARK 3.3.4. It is also worth noticing that, when dealing with interpretation
of formulae of L5 in the standard model for Lo, then any free set-variable might
also be regarded as a free-class variable. Further, when A is an €-transitive set
of the form V,, for some ordinal « then, we have the corresponding well-known
structute of the form

(Va, €', p(Va), elVox®ell),
The structure above is a very particular example of the standard models for Ls.

To reiterate, with full models for Lo, by fixing a domain A we thereby fix
the range of both the set and class variables. There is no further “interpreting”
to be done. This is not the case with the next models we are going to introduce.
As we will see, we must separately determine a range for the set variables and
a range for the class variables.

DerFiNiTION 3.3.5. By an Henkin structure for Lo we mean a ordered 4-tuple
(A, B, Sy, eldxsal)

where the items A, EM and €l4*S4] are explained for the Henkin structures
as for the full structures for £o but where

0 #SaC PA).

REMARK 3.3.6. Hence the central facet of any given Henkin structure for Lo
is that the class variables range over a fixed collection of subcollections of the
domain A which may not include all the subcollections of A. To reiterate, an
Henkin structure for Lo differs from the full structure for £ by having a possibly
smaller collection S4 of subcollections of elements from A to serve as the range
of the class variables.

For any formula ¢(vy, ..., Un, Co, ..., Cp, ) of Lo with free variables as indicated,
we write
<A7 E[A]a SA7 G[AXSA] > ': (p[a07 ey Gy BO) ey Bm]
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to indicate that the formula ¢ of £, is satisfied in the structure

(A, EW, 8, elhxsal)

with the variable assignment taking v; to a; € A and C; to B; € Sa.

INDESCRIBABILITY. For = being either s-113 or I13.

(-)

An ordinal o is Z-indescribable if and only if o > 0 and for each formula
©(V0, vy U,y Coy ooy C) in E, in which z does not occur free and with no
free variable besides the displayed ones free and not necessarily all of them,
for any set ag, ..., a, € V, and any By, ..., By, C Va,

<VO¢5 E[VQ] > ':290[61’07 ...,Cl,n,Bo, 7B’m] -
— Jz[Tran(z) A ag, ..., an € 2 A go(z)[ao, veey Gy, Boy ooy Bin]]-

« is Z-describable if and only if « is not Z-indescribable.

A structure (A, B ©(A), €O s =_indescribable if and only if
A is non-void and for each formula p(vg, ..., Un, Co, ..., Cry) in 2, in which
z does not occur free and with no free variable besides the displayed ones
free and mot necessarily all of them, for any set ag,...,a, € A and any

By, ...,By, € p(A),
<A3 E[A] > ':2<P[007 "'7a’n7B05 aBm] -
— Jz[Tran(z) A ag, ..., an € 2 A cp(z) [ag, ...y an, Boy ..., Bm]]-

A structure { A, EW ©(A), elA*OWIY s =_describable if and only if
(A, B ©(A), eld9@DY s not Z-indescribable.

A structure (A, B, ©(A), A9 satisfies the schema of = RFN
without class-parameters if and only if A is non-void and the full struc-
ture (A, B ©(A), €O satisfies each instance of = RFN where
class-parameters are not allowed to appear in the corresponding defining
formula.

REMARK 3.3.7. As in the remaining part of our work we shall be quoting
Barwise [2], it is worth pointing out the following differences between the current
approach and his approach:

Barwise introduces the notion of “Z=-indescribability” by using instead of
= formulae ¢(vg, ..., vn, Co, ..., Cr,) of Lo containing free class-variables
“Co, ..., Cp”, the corresponding formula ¢(vg, ..., v, Ro, ..., Ry) contain-
ing unary predicate constants “Ry, ..., R,;,” and considering, instead of the
full structure ( A, EM ©(A), €PN for £, the extended first-order
structure (A, EW | Ry, ey Ry ) with arbitrary R; € A (0 <4 < m) in-
terpreting the unary predicate constant R;. Moreover, the extended first-
order structures considered by Barwise are always admissible sets of the
form ( A, €l R) where (as A is closed under PAIR) Ry, ..., R,, are coded
up into a single R C A.
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- With respect to the above-mentioned structures, Barwise defines an ad-
missible set A to be Z-indescribable if and only if ( A, €[4 R) satisfies
each instance of the schema of Z RFN for any R C A.

- Further, Barwise introduces the notion of “a-indescribability” with respect
to the H,’s and not for the V,,’s as in our case. However, this is of no harm,
as in the following we will only be concerned with “a-indescribability” for
a = w or for a being a strongly inaccessible cardinal (see Definition 3.3.9).
In these cases H, = V, (for a proof we referr to Kunen [17] Lemma 6.3
p.131).

- We also warn the reader that “satisfying the schema of = RFN without
class-parameters” corresponds (up to the above-mentioned differences) to
the Barwise expression “satisfying = RFN”.

ExAMPLE 3.3.8. An ordinal « is s-IIi-indescribable if and only if for any s-I1}
formula (v, ..., vy, Co, ..., C) and any set ag, ..., a, € V,, and any By, ..., B, C
Vi, if

<V067 G[Va] > ':2 @[a’Oa ceey Ay B07 ceey B’m]7
then there is a transitive set a € V,, such that ao,...,a, € a and by Proposi-
tion 1.2.9,

(Va, elVal )2 go(a)[ao, oy Gy, BoNa, ..., By Nal.

That is

go(“ﬂv"‘)(ao, ey Gy, BoNa, ..., By, Na).

But since a € V,, and V, is transitive, this means that a NV, = a. Therefore
cp(a)(ao, vy anyBoNa, ..., By Na).
Which is again equivalent to
(a, eld Y =2 @lag, ..., an, Bo N a, ..., By, Nal.

In connection with the presentation of the set-theoretical notion of “Tree”,
it is worth introducing also the following notions.

Given a function f and a C dom(f), we define the image of a under f to be

fla]:={f(@)|xeca}.

DerFiNiTION 3.3.9. Let C € ON. We say that C is cofinal in ON or un-
bounded in ON, denoted by unbounded(C), if and only if for any ordinal «,
C ¢ a, eg. C is a proper class of ordinals. Let 8 be a limit ordinal, and
let C C B. We say that C is cofinal in 8 or unbounded in 3, denoted by
unbounded(C, ), if and only if Va(a € § — Fy(y € C Aa < +)). The cofinality
of an ordinal 3, denoted by cf(3), is the least ordinal « such that there is a func-
tion f : @« — [ with range cofinal in 8. A limit ordinal [ is regular, denoted
by reg((), if and only if cf(3) = 8 and singular, denoted by sing(3), otherwise.
An ordinal § is strongly inaccessible, denoted by inacc(8), if and only if § is
an uncountable regular ordinal and closed under cardinal exponentiation, e.g.

YA\ < B — 22 < B).
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Note that the definition of unbounded(C, 3) is just the relativization of the
definition of unbounded(C') to the set V3, for Lim(8). For any ordinal [,
cf(8) < B. So, a limit ordinal g is singular if and only if cf(8) < 5. On a
formal level, the definitions of unboundedness, regularity and singularity can be
applied to any ordinal and not only to limit ordinals. We confined ourselves to
the limit ordinals just because these notions turn out to be trivial in the case of
successor ordinals. For example, let A C £ + 1 for some ordinal £&. Then, when-
ever £ € A, we obviously have unbounded(A4, ¢ + 1). Further, for any successor
ordinal «, cf(a) = 1. To see this, let &« = v + 1, for some ordinal 7. Then the
map f:1 — v+ 1, defined by f(0) =, is such that f[1] is cofinal in vy + 1.
Hence reg(1) and any other successor ordinal is singular. It is a triviality that
reg(0). And reg(w) since for every n € w and every function on n into w, f[n] is
a strictly bounded subset of w.

DEerFiNtTION 3.3.10. An ordinal « is a cardinal if and only if for no § < «

there is function f : 3 oo,

Note that the regularity of an ordinal a directly implies the « is a cardinal,
altough the converse does not hold. Hence in the following we will always speak
of regular cardinal as also of strongly inaccessible cardinals. Further, any infinite
successor cardinal (i.e. cardinal of the form N,1) is regular (the proof of this
last assertion requires the Axiom of Choice (AC)). Towards Definition 3.3.9,
we also remark that the requirement of closure under cardinal exponentiation,
used in the definition of strong inaccessibility, requires AC. Without AC, we
do not even know that 2%¢ is an aleph. For an alternative definition of strong
inaccessibility dispensing AC and equivalent to our definition in presence of AC,
the reader is referred, for example, to Bernays [4], p. 157.

Next is the set-theoretical notion of “Tree”.

DEerFINITION 3.3.11. A tree is a partially ordered set (7T, <r) such that for
any t € T the set {s € T'| s <p t} is well-ordered by the relation <r.

Sometimes we shall blur the distinction between a tree and its underlying
node-set, referring to 7" when we mean (7T, <t ).

DEerFINITION 3.3.12. Let T be a tree.

(-) The order-type (ot) of the set {s € T'|s <p t} under <7 is called the
height of ¢ in T', denoted by ht(t).

(-) For any ordinal «, the a-th level of of (T, <7 ), denoted by Ty, is

T(a) ={teT|ht(t) = a}
={teT|ot(({seT|s<rt},<r)) =al.

(-) The height of T', denoted by ht(T'), is the least a such that T,y = 0.
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(-) A chain C of T, denoted by chain(C), is a linearly ordered subset of T'.

(-) A branch B of T is a maximal chain of T (i.e., a chain B such that for
noz € T\ B, is BU {z} a chain). The length of a branch B of T is its
order-type under <.

(-) A cofinal branch B of T is a branch with members at every non-empty
level of T
Va(a < ht(T) — BN T(a) # ().

REMARK 3.3.13. Associated to each chain C' of T is its order-type under <.
By definition, we know that C is a linearly ordered subset of 7. Hence all we
are left with is to show every non-empty subset Cy of C has a <p-minimal
element. Let t be an element of Cy. If ¢ is not <p-minimal in Cy, then the set
{s € Cy|s <r t} is a non-empty subset of the well-ordered set {s € T'| s <p t}.
Hence {s € Cy|s <r t} has a <p-minimal element, say y. We claim that y is
also a <p-minimal element of Cy. Suppose not. Then there would be an z € Cy
such that * <r y <r t. It follows that  <r ¢t and = € {s € Cy|s <7 t},
contradicting the <zp-minimality of y.

To get used to this terminology, let us consider a simple example. It is
customary to represent a tree (7T, <7 ) pictorially using vertical (near vertical)
connecting lines to denote the ordering < in the upward direction and drawing
the levels of T" on horizontal lines.

ExaAamMPLE 3.3.14. The tree T pictured below has 4 non zero levels. Hence T
is a tree of height 4.

m n h i J T
ARNVA
l d e f g T(2)
N
b c Ty
N
a Tioy
- Ty = {a};
- Ty = {b,c};

- T(Q) = {l7d7e7f7g};

- T(3) = {m7na h7l7.]}
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The set {a,b, c} is not a chain;

- The set {a,b,l} is a chain but not a branch;

The set {a,b,d} is a branch but not a cofinal branch;

- The set {a,c, f,j} is a cofinal branch.

ProprosITION 3.3.15. Let (T, <7 ) be a tree of height &.
(a) For any node t € T, T has a branch containing t;
(b) For any v <&, T has a branch of length bigger or equal to v.

Proof. The reader is referred to Lévy [20], Proposition 2.6, p.294. The proof
of both point (a) and (b) requires AC. Point (a) essentially tells us that, using
AC, every chain can be extended to a maximal chain; point (b) gives us a lower
bound on the length of the branches a tree can go along. O

To reiterate, according to Proposition 3.3.15.(b), any tree of height ¢ has
branches of length bigger or equal to v, for any v < £. But since a tree is, in
fact, a branching process we are interested in knowing not only the minimal
length of all the branches the process can go along, but also the existence of
branches of length &, e.g. cofinal branches.

When £ = 7 + 1 for some ordinal 7, then every branch through a node of
T(x) is a cofinal branch. This is a direct consequence of Proposition 3.3.15.(a).
However, at least for this particular simple case, AC can be dispensed with
arguing as follows. Since ht(T') = m+ 1, we have that Vo(o < m+1 — T(,) # 0).
Let o = m and t € T(,). It is easy to check (more details concerning this
point, however, can be found in the proof of Theorem 3.6.6.(3)) that the set
{s € T'|s <p t} is a chain such that for any ¢ < 7 there is a unique node
s € T(, such that s <r t. Since T(r11) = (@, there is no v € T such that t <7 v,
e.g. t has no successor node in 7. Therefore the set {s € T'|s <p t} U {t} is a
chain intersecting every non void level of T, e.g. a cofinal branch.

On the other hand, if £ is a limit ordinal, then it is not guaranteed that such
a cofinal branch exists: see Figure 3.1 on the next page. With regard to this ex-
ample, we might cogently argue that the reason for which 7 fails to have a cofinal
branch relies on the fact that this tree is infinitely branching or, in a looser way,
too wide. The above-mentioned tree is, in fact, such that |T(1)| = w, for example.
Therefore we could think to impose a narrowness condition on T’ by requiring
that for any n, |T(,)| < w. And indeed any finitely branching tree of height
w has a cofinal branch (Konig’s Lemma). This narrowness condition, how-
ever, is not sufficient to guarantee in general the existence of cofinal branches.
There exists, in fact, a tree of height wy such that Va(a < wy — |T(o)| < w1)
but with no cofinal branch (see for example Kunen [17], Theorem 5.6, p.70).
As already remarked, the question concerning the existence of cofinal branches
for trees of height ¢ where £ is a successor ordinal, has an immediate answer.
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Figure 3.1: A tree T of height w where every branch is finite.

Ty

Tn-1)

T
T :
Accordingly, we might content ourselves to the case of limit ordinals. Fur-
ther, as long as singular ordinals £ are concerned, trees of height & such that
Va(a < § — |Tia| < [¢]) and with no cofinal branch are known to exist (see, for

example, Kanamori [16], p.78). Hence the subsequent definition will be stated
only for regular cardinals.

T2

DerFiNITION 3.3.16. For any regular k, a k-tree is a tree T' of height x such
that
Va(a <k — [Tiy)| < k).

A k-Aronszajn tree is a k-tree with no cofinal branch. A regular cardinal x has
the tree-property if and only if there are no x-Aronszajn trees.

In other words, a regular cardinal x has the tree-property if and only if every
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k-tree has a cofinal branch. Therefore, w has the tree-property and there exists
an wi-Aronszajn tree. The tree-property under discussion trascends inaccessi-
bility: the existence of a k-Aronszajn tree is, in fact, known to be true for the
first, second and many more strongly inaccessible cardinals. It is also known
that the first strongly inaccessible cardinals x for which this property fails is a
lot bigger than the first strongly inaccessible cardinal.

WeakLYy CompPACT CARDINALS. The weakly compact cardinals are those
cardinals that are strongly inaccessible with the tree property.

REMARK 3.3.17. As well-known the weakly comapct cardinals have many di-
verse model-theoretic characterizations. We have chosen the tree-property char-
acterization of weak compactness as our base definition. For an equivalent al-
ternative definition we referr to Barwise [2]. We also warn the reader that our
definition of a weakly compact cardinal k rules out the possiblity that kK = w.
This is not the case with Bariwise: w is the only countable example of a weakly
compact cardinal! Towards a detailed analysis of the relative size of a weakly
compact cardinal with respect to the strongly inaccessible cardinals, as well as
Mabhlo cardinals, the reader is referred, for example, to Lévy [20] pp. 303-304.

Before stating the next result, we remind the reader that class parameters
are allowed in the definition of “s-II}-indescribability”. The role played by the
class-parameters in the notion of “s-II}-indescribability” will be brought out in
Section 3.6.

THEOREM 3.3.18. An ordinal o is s-111 -indescribable if and only if either it is
w or is a weakly compact cardinal.

A proof of Theorem 3.3.18, appealing to compactness properties of infini-
tary languages, can be found in Barwise [2], Theorem VIII.9.10, p.361. An
alternative proof (exploiting the connection between s-II} RFN and the tree-
property) of the necessary conditions needed to be satisfied by an ordinal « for
being s-I1}-indescribable, will be presented in Section 3.6. (see Theorem 3.6.6).
Before stating the subsequent result we remind the reader that if p is the first
strongly inaccessible cardinal then (V,,, €[Vsl) =2 VNB; for a proof the reader
is referred, for example, to Kanamori [16] p. 19.

THEOREM 3.3.19. The schema of s-II} RFN is independent from VNB.

Proof. If p is the first strongly inaccessible cardinal, then
(V,,eVuly1I=2 VNB and g is s-IT}-describable.

This means that there is some instance of the schema of s-II§ RFN which is not
derivable in VNB. On the other hand, if y is the first weakly compact cardinal
then

(V,,,eVely =2 VNB and p is s-I13-indescribable.

And this, in turn, entails that there is also some instance of the schema of s-11}
RFN whose negation is not derivable in VNB. O
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To reiterate, there are instances of s-II1 RFN which cannot be proved in
VNB. Accordingly we may regard our theory sBL; as being VNB + s-TI} RFN .
Summing up, Theorem 3.3.19 tells us that sBL; is a theory stronger than VNB.
But how much stronger? The exact consistency strength of the theory sBL;
remains an open problem.

We conclude this section by stating and proving the so-called “Strong Upward
Persistency Property” of [s-11}]* formulae. The subsequent preliminary notions
are needed:

Let (A, B Sy, €[4%Sal) be a Henkin structure for £,. For any set a € A,
we define
apa = {xe AlzEWa}.

Let A and B be two Henkin structure for Ls:

B=(B, FIPl, Sp, elBxSnl),
We define B to be an end extension of A or A to be an initial substructure of B
if and only if A C B and for any a € A, agia) = aps. We also define B to be
a proper end extension of A or A to be a proper initial substructure of B if, in
addition, A # B. When B is an end extension of A (A is an initial substructure

of B), we write
A C end B.

When B is a proper end extension of A (A is a proper initial substructure of
B), we write
-A g pend B.

ProrosiTioN 3.3.20. Let A and B be two Henkin structure for Lo:
B={(B, Pl Sy, €lB*Ssl),
Assume that A C B and Tran(A). Then A Cena B.

Now, one of foundamental properties of [s-IT}]F formulae is their upward
persistency under end extensions with the intended interpretation of second-
order variables as ranging over arbitrary subsets of the domain

UPWARD PERSISTENCY. Let o(vg, ..., Un, Co, ..., C) be a [s-TT}HE formula of
Lo with no free variables besides the displayed ones and not necessarily all of
them. Let A and S be two full structures for Lo

A= (A, E[A]7 ©O(A), E[AX@(A)]>

S=(8, F¥, (8), el#>9)



76 3. CLASSICAL SET THEORY

such that A Ceng S. Then for any ag, ...,an, € A and any By, ..., By, C S if
<A7 E[A] > ':2 <P[a07 "'7a’n7B0 mAa 7Bm N A]
then
<S5 F[S]> ':2 <P[a07 ...,Cl,n,B(), aBm]

Cf. Barwise [2], Lemma VIII.2.2, p. 317 as also our persistency result
proved in Section 1.4. Such a property, however, admits a strengthening in
the following sense: Under end extensions and the same intended interpretation
as above, [S—HHE formulae are shown to persist upward while keeping all the
existential set quantifiers relativized to the domain of the initial substructure.
And it is indeed this strengthening that we shall refer to as the “Strong Upward
Persistency Property”. Let us start by proving the following:

ABSOLUTENESS. Let ¢(vg, ..., Un, Co,...,Cr,) be a A§ formula of Lo with no
free variables besides the displayed ones and not necessarily all of them. Let A
and S be two full structures for Lo

A=(A, BV, ©O(A), elAxp(Aly
S=(S, Fl5, ©(9), elSxPly
such that A Ceng S. Then for any ag, ...,a, € A and any By, ..., B, C S,
(A, EYY =2 plag, ..., an, By N A, ..., By, N A

if and only if
(S, FIS] Y =2 @lag, ..., an, Bo, ..., Bm)].

Proof. The proof proceeds by induction on the build-up of the A§ formula
SD(’U07 veey Un,y 007 ceey Cm)

©(V0y <oy Uy Coy ooey C) = 0o € v1: For any ag, a1 € A, we have

aOE[A]al — aOF[S]al.

©(V0y ey Uny, Coy ooy C) =09 € C: For any ag € A and any By C S, we
trivially have

agp E[Axp(A)] BoNA < ag E[SX@(S)] By.

O(V0, ey Uy Coy vy Or) = —00(V0, -y Up, Co,y ooey Cr )+ For any ag, ..., a, € A
and any By, ..., B, C S,

<A7 E[A] > ':2 ﬁ‘PO[am “eey Qmyy By N A7 ) BN A]
if and only if

(A, BV 2 polag, ..., an, By N A, ..., By, N A
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If and only if (by I.H.)
<S, F[S] > [752 QDQ[ao, ceey Qpyy BQ, ceoy Bm]

If and only if
<Sv F[S]> ':2 _‘@O[a()v ...,Cl,n,B(), aBm]

©(V0y ey U, Coy ooy Cn) = 00 (V0 oy Uny Coy ooy Cin) A 01 (V0,4 -vvy Uny Co,y ooy O )

For any ag,...,a, € A and any By, ..., By, € S,
(A, MY =2 oolao, ..., an, BoN A, ..., Bm N Al A @1[ao, ..., an, Bo N A, ..., Bm N A]
if and only if
(A, EYY =2 olag, ..., an, By N A, ..., By N 4]

and
<A, E[A]> ):2 cpl[ao,...,an,Bo NA,.. By, ﬂA]

If and only if (by I.H.)
<S, F[S] > ':2 QDQ[(LQ, ceey Qg BQ, ceoy Bm]

and
<Sv F[S]> ':2 @1[&0,...,QH,B0,...,Bm]-

If and only if
<57 F[S] > ':2 @0[“07 ceny Ay B07 cey Bm] N 1 [a07 veey Gy B07 ceey Bm]
Similarly for disjunction.

O(V0, ery U, Coy vy C) = (2 € Vi A 00(Voy vvy Uy , Co,y ooy Ci) )

For any ag,...,an, € A and any By, ..., B, C 5,
(A, B E2 3a(z € an A polag, ..., an, 2, By N A, ..., By N A])
if and only if for some e € A,
(A, ElA YE=2e € an Agolag, ..., an, e, BoN A, ..., By, N Al
If and only if for some e € A,
(A, EMY =2 e cay,

and
(A, ElAl Y =2 @olaog, ..., an, e, BoN A, ..., By, N A

If and only if (by I.H. and the fact that an _,; = an ) for some e € S,

(S, FIS1Y =2 e € ay,
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and
(S, F[S]> )22 ©olagy «vs Any €y Bo,y ooy By

If and only if for some e € S,
<Sv F[S] > ':2 ecapA @O[aOa "'aanaeaB07 7B’m]
If and only if

(8, F¥1Y =2 3u(x € ayn A @olag, ..., an, &, Bo, ..., Bm)).

O(V0y ey Uy Coy vony C) = V(2 € vy — 00(V0, ooy Uny @, Coyy vy Ci)):

For any ay,...,an € A, any By, ..., By, C 5,
(A, XY =2 Va(z € a, — @olao, -, an, x, Bo N A, ..., By 0 A]).
If and only if for any e € A,
(A, EA Y=2ed a, V@olag, ..., an, e, BoN A, ..., By N Al
If and only if for any e € A,
(4, BA) 2 e ¢,

or
(A, ElAl Y =2 @olaog, ..., an, e, Bo N A, ..., By, N Al

If and only if (by I.H. and the fact that Un ) = anF[S]) for any e € 5,
(s, F¥l) |22 e ¢ ap

or
(S, F[S]> =2 wolag, ..., n, e, Bo, ..., Bm).

If and only if for any e € S,
(S, FIS] YE2e ¢ an V @olao, ..., an, €, Bo, ..., Bp).
If and only if
(S, FIS1Y =2 Va(x € an — @olag, ..., n, x, By, ..., Bm)).
O
In order to state and prove the strong upward persistency property of [S—HHE

formulae, some notation is introduced. If ¢ is a a [s-TT}]¥ formula then we denote
by lI®ll the formula ¢ with only the existential-set quantifiers relativized to b.
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STrRONG UPWARD PERSISTENCY. Let ¢(vo, ..., Un, Co, ..., Cry) be a [s-TIH]E
formula of Lo with no free variables besides the displayed ones and not neces-
sarily all of them. Let A and S be two full structures for Lo

A=(A, BV, ©O(A), elAxp(Aly
S=(8, Jai ©(9), E[SX@(S)]>
such that A Ceng S. Then for any ag, ...,a, € A and any By, ..., By, €S if
<A7 E[A] > ':2 <P[a07 "'7a’n7B0 N Aa 7Bm N A]
then
(S, F!S] )y =2 ol Al [ag, ..., @n, Bo, -, B

Proof. The proof proceeds by induction on the build-up of the [s-IT}]* formula
90(1)07 -y Un,y COv ) C’m)

A§: This is immediate by the previous result.

Concerning the induction step we need only to consider the following two
cases, since the other cases [A, V, (Va € v) and (Jz € v)] are treated as for the
previous result.

©(V0y eovy Uy €Oy voey C) = Fx00 (V0 ooy U, 2, Coy,y ooy O )

Assume for any ay, ..., a, € A, any By, ..., B, € S that
(A, B Y =2 3xwolag, ..., an, 2, Bo N A, ..., By, 0 Al
This means that for some e € A, we have

(A, EYY =2 polag, ..., an, e, ByN A, ..., By N A

By I.H.
<Sv F[S]> ':2 @gAIl[a’Oa "'aanaeaBOa aBm]
Further
(S, FISy =2 e € A.
Hence
(S, FIS1y =2 3a(z € AN @M ag, ..., an, =, Bo, ..., Bn)).
That is

(S, FIS] =k ol Al [ag, ..., @n, Bo, ..., Bm].

O(V0, eey U, Coy vy Or) = VX 00(v0, oy Uy Coy evey Cry X

Assume for any ag, ..., a, € A, any By, ..., B, € S that

(A, Y)Y =2 VX gglag, ..., an, Bo N A, ..., B,y N A, X].
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This means that for any D C S, we have
(A, EYY =2 oolag, ..., an, BoN A, ..., B, N A, DN Al (1)

By LH.
(S, FIS1y =2 Q4 a4y, By, ..., By, D).

Hence
<Sv F[S]> ':2 QDHA” [aOa "'aanaB07 7B’m]

O

If we were to allow Henkin structures instead of full structures point (1), for
example, would fail: just because D is an arbitrary element of Sg, there is no
reason to suppose that D N A is an element of S4 at all!

To reiterate, the Strong Upward Persistency property tells us that the rela-
tivization of a s-TI} formula to some transitive set b for example, will be indif-
ferent to the replacement of VX[X C b — ...] by VX ... and to the replace-
ment of C N'b by C. As a result, the notion of s-II}-indescribablity can be
recasted as follows. An ordinal « is s-IT{-indescribable if and only if for any
s-I formula ¢(vo, ..., Un, Co, ..., Cpp) with free variables as indicated and any
set ag, ...,an € Vo and any By, ..., B, €V, if

<V0¢7 G[Va] > ':2 @[a’Oa ceey Ay B07 ceey B’m]
then there is a transitive set a € V,, such that ao,...,a, € a and

<VOH E[VQ] > ':2 @Ha” [aOa o5 Qs B07 ) B’m]

3.4 THE THEORY BL;

The Bernays-Lévy theory BL; is formulated in the second-order language Lo of
VNB and it consists of the following three axioms:

BL; := Ag-le, AuUS, IT§ RFN.

REMARK 3.4.1. Actually, the theory BL; as known in the literature (the reader
is referred to Gloede [22] on page 303) includes also the axiom of EXTENSION-
ALITY. Our approach dispenses with EXTENSIONALITY by introducing an ex-
plicit definition of equality between sets. This is, of course, of no harm as in
the process of relativization we make use of the above-mentioned absoluteness
property of Ay notions for transitive sets (cf. Reamark 3.2.8), allowing us to
treat “equality” as it were an atomic symbol of the base language Lo.

The theory VNB + II} RFN is known in the literature as BL;. To see why we
state and quickly sketch the proof of the following result.

THEOREM 3.4.2. PAIR, UNION, INFINITY, POWER SET, REPLACEMENT, I%
and each instance of PCA are all derivable in BL;.
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Proof. PAIR, UNION, POWER SET, I% and REPLACEMENT, as we had already
occasion to see, are derivable using s-II1 RFN and essentially the same proofs
apply here. Concerning the derivability of INFINITY and PCA (i.e. each instance
thereof) the reader is referred to Bernays [1] on p. 128 and Gloede [9] on p.305,
respectively. O

Therefore in virtue of this result we can indeed regard BL; as being VNB+11}
RFN. We also remark that BL; proves the consistency of VNB.

THEOREM 3.4.3. For any 11§ formula p(vg, ..., U, Co, .., C) with no free vari-
ables besides the displayed ones and not necessarily all of them, the following is
derivable within the theory BL:

©(V0, vey Uy Coy ooy Cpy,)) —
— 3B [inacc(B) A v, e v € Va A @) (09, .., U, Coy oy Cr) |-

And, in turn, this strengthened schema of II} RFN admits a further self-
strengthening to a schema entailing the existence of arbitrarily large Mahlo
cardinals. All the details of this argument are discussed at length in Bernays [4]
and Gloede [9].

Unfortunately, due to the low logical complexity of s-II1 formulae none of
these self-strengthening is known (at least to the author) to hold, within sBLq,
for the s-II} RFN axiom schema. established. As next step, we make a compar-
ison between the theories sBL; and BL;. It will also be shown that these two
theories admit the same standard models.

3.5 COMPARING sBL; WITH BL;

To the aim of pointing out resemblances and differences between sBL; and BL;,
it will be convenient to list simultaneously their correspondig set of axioms, in
the following synoptic way:

BL; := Ag-le, AUS, II} RFN.
sBL; := Ag-lg, AUS, s-TI} RFN, INFINITY, PCA.

As we had already occasion to see in the previous section, INFINITY and each
instance of PCA are derivable in BL;. Further every instance of s-II} RFN is
also an instance of II} RFN. The following observation is therefore obvious.

CoOROLLARY 3.5.1. Every theorem ¢ of sBL1 is also a theorem of BLy,
sBLiFp = BLi}F .

To reiterate, INFINITY and each instance of PCA are derivable in BL;. At
this stage let us consider the following intermediate theory

strictBL; := Ag-le¢, AUS, s-II1 RFN.
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Contrary to BLy, neither INFINITY nor each instance of PCA are derivable in
strictBL;. Indeed we shall prove that

- strictBL; U {PCA} ¥ INFINITY,
- strictBL; U {PCA} ¥ —INFINITY.
And
- strictBL; U {INFINITY} ¥ PCA,
- strictBL; U {INFINITY} ¥ —-PCA.
Before starting, let us remark the following.
ProPOSITION 3.5.2. Every theorem ¢ of strictBL; is also a theorem of sKPuj,
strictBL1 - = sKPuj - ¢.
COROLLARY 3.5.3. We have
strictBL; ¥ INFINITY,

and

strictBL; ¥ PCA.

Proof. These two facts are entailed by Proposition 3.5.2, Corollary 2.4.9 and
Theorem 3.0.7, respectively. O

3.6 THE INDEPENDENCE OF INFINITY
Let

(strictBL;) ™ := strictBL; U {PCA}.
LeEMMA 3.6.1. INFINITY s not derivable in (strictBLy)™T.

Proof. Let us show that
(V,,eVely =2 (strictBLy)* and (V,,elVely 2 INFINITY.

AUS and Ag-l¢ are readily seen to hold in this model. PCA holds due to the
particular choice of our satisfaction relation which interprets classes as arbitrary
subsets of V,,. By Theorem 3.3.18, w is s-II}-indescribable. Clearly INFINITY
does not hold. O

COROLLARY 3.6.2. There are instances of the schema of PCA which are in-
dependent from strictBL;.

Proof. By the proof of Lemma 3.6.1 we know that
(Vo, ey =2 strictBL;  and  (V,,,el")) =2 PCA.

And this implies that there are instances of the schema of PCA whose negation is
not derivable in strictBL;. The result is obtained along with Corollary 3.5.3. O
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LeMMA 3.6.3. The negation of INFINITY is not derivable in (strictBLy)™.

Proof. Let pu be the first weakly compact cardinal. By Theorem 3.3.18, p is
s-II{-indescribable. Clearly INFINITY does hold, for w € V,,. Therefore,

(V,,, Vel y 1=2 (strictBLy ) * and (V,,, eVl y =2 InFINITY.
O

We have then established the independence of the axiom of INFINITY from
our theory (strictBL;)*. As obvious consequence we also have that

COROLLARY 3.6.4. The aziom of INFINITY is independent from strictBL;.

Proof. By Lemma 3.6.3 and Corollary 3.5.3. (|

According to Theorem VIII.3.3 of Barwise [2], every countable admissible
set satisfies the schema of s-II} RFN (for a proof of this result the reader is
referred to Barwise [2], pp. 322-323). We warn the reader of the striking differ-
ence between “satisfying the schema of s-II} RFN” and “s-IIi-indescribability”.
Satisfying s-II} RFN means, according to our terminology, satisfying s-II} RFN
(i.e. each instance thereof) without class-parameters. And indeed Theorem
VIII.3.3 can be restated as follows

Every countable admissible set satisfies the schema of s-11} RFN without
class-parameters.

As for any other schema of reflection, it is worth emphasizing that “satisfying
the schema of s-II1 RFN without class-parameters” is a much weaker notion
than “s-IIi-indescribability” and indeed as long as class-parameters are allowed
to occur in the schema of s-II} RFN, Theorem VIII.3.3 fails.

LEMMA 3.6.5. L, cx is s-IIj-describable.

Proof. wch is the least countable ordinal which cannot be represented by a
recursive well-ordering on the natural numbers. Let us work informally within
ZFC where the existence and countability of w{’® can be proved. It is a folklore
result that w{X is the least admissible ordinal above w. Since

Lyge|= jwi™| = o,

(see Lemma 3.8.7.(vi) on page 97) we have that L cx is a countable admissible

set. Furthermore, from |w{®| = Ry, it follows that sing(w{X) and cf (W) = w.
This means there must be a function F' such that

F:w—w

CK and Wik = U F(n).

necw
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We claim that Lcx is s-IT}-describable. If s-TI} RFN held in

(Lyex, 6[ngK]7 O(Lex), lbugr xp(ngK)]>

then since
(Loex, elbug] ) =% Vn (n €w— Iy(y € ONA(n,y) € F)),

there would be a transitive reflecting set b € L cx such that w € b and

(b,elly =2 Vn(néw—>§lfy(7€ ONA{n,v) € F N b))

By the Strong Upward Persistency property we shall have

b
( Lyox, elbugx] ) =2 (Vn(n €w— Fy(y € ON A (n,v) € F))) H ”,
which is equivalent to
(Lo, elbegd ) =2 Vn<n Ew—Iy(yebAYEONA(n,v) € F)>
Let b 1 ON = «. Hence we obtain
Ha(a < AVn(n €w — F(n) < a)).

But this contradicts the fact that

wi = J Fn),

necw

that is
Va<o¢ < Wik Hﬂn(nEwAagF(n))).

O

Thus in general countable admissible sets fail to satisfy the schema of s-
I} RFN with second-order parameters. Hence the main question needed to be
addressed: is there any countable admissible set which is s-IIi-indescribable?
By Theorem 3.3.18, we already know that this question has a positive answer, for
the countable admissible set V,, is the only such an example. Having (hopefully)
convinced the reader of the relavance of the class-parameters in the notion of
“s-TI1-indescribability”, we now turn to a detailed analysis of Theorem 3.3.18.
As already mentioned in Section 3.3 (cf. paragraph following Theorem 3.3.18
itself), we want to give here a different proof of the necessary conditions needed
to be satisfied by an ordinal « for being s-II}-indescribable.
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THEOREM 3.6.6. If a is S-I1}-indescribable, then « is a regular infinite cardinal
closed under cardinal exponentiation and with the tree-property.

Proof. We shall work informally within ZFC and assume that our ordinal « is
s-II}-indescribable. The argument breaks up into the following three cases:

(1) « is regular (hence a cardinal): If not, there would be a 4 < « and a
functional class F' such that

F:p—a« and a:UF(f).
E<p

We argue as in the proof of Lemma 3.6.5. It is worth noticing that 0 and
1 are both regular cardinal. However, under the assumption that « is a
s-IT}-indescribable, the possiblity that either a = 0 or o = 1 is trivially
ruled out. Since any other finite cardinal is singular, & must be a regular
infinite cardinal.

(2) « is closed under cardinal exponentiation: If not, then there would be a
A < a such that a < 2* and a functional class G : (9(\) — « being
surjective. By (1), «v is an infinite cardinal, hence a limit ordinal. Hence,
for X < o and Lim(a), Vayo C Vo. Since () € Vayo , then QO(N) € V,.
Therefore

(Va, €lVely 22 Vy<y € P(\) — F1(y € ON A (4,7) € G>).

By hypothesis there is a transitive set b € V,, such that {()) € b and
(b, ell) 2 Vy<y € () - Iy (y€ONA(y,7) €GN b))-
By the Strong Upward Persistency property we shall have
llol
(Va, €41 2 (\fy (e ) = 317 € ON A () € G>)> ,
which is equivalent to
(Vo 1) 2 (1 € ) — F1(y € A7 € ON A1) € 6) ).
Let b N ON = 3. Hence we obtain
36(5 < AVl € O — Gl < 9))-
But this violates the assumption that the range of G is all of «, that is

Vﬂ(ﬁ <a—Ilye PO As= G(y»).
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(3) « has the tree-property: Suppose not. Then there is an a-Aronszajn tree.

Let (S,<g) be such a a-Aronszajn tree. By definition of “a-Aronszajn
tree”, we know that ht(S) = a. Hence we have the following assertion to
hold true of V:

- <EIO [C C S Achain(C) A (Vy < a)(S,) NC # @)})

The first step of our argument consists in finding an isomorphic copy
(T,<p) of (S,<g) such that T' C V,,, <y C V,, and (since ht(T") will be
aand ONNV, = a)

(Vo elVely 22 (30 [C C T Achain(C) A (Vy € ON)(T(,y N C # (Z))D

We claim that | S| = «. Since ht(S) = « then for every v < «, the y-th
level S(,) of S is non-empty, and we certainly have that a < |S|. To
obtain the reverse inequality we first note that S = (J{ S, |7 < a}. So

US(V) §Z|S(V)|§Zo¢:a®oz:a.

<o <o <o

|S1=

Hence | S| = « and by definition of cardinality this implies the existence
of a bijection g of S onto a. Then a partial ordering <, ca be defined on
a by <g and g setting

<a={(g(s),g(t))|s€e SAte SA (s, t)e<s}.
Therefore we obtain an order preserving function g, e.g.
(Vs,t € S)(s <T t < g(s) <a g(t))

mapping S one-to-one and onto . That is an order isomorphism g from
(S,<s) onto (a, <4 ). Accordingly we have established that the p.o.’s
(S,<g) and (a, <, ) are isomorphic and we write

<Sv<5> = <a7<a>'

Let us introduce the following abbreviation. For any tree (S, <g) and for
any t € S we let
prg(t) := {seS|s<st}

Let us show that (o, <4 ) is a a-tree with no cofinal branch. The argument
breaks down to proving the following points:

(a)

(a, <4 ) is a partially ordered set such that for any v < « the set
pr, (7) is well-ordered by the relation <,;
h

(b)

t(a) = o
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(€) V(v <a—=law | <a)
(d) (@, <4 ) has no cofinal branch.

Point (a) in turn reduces down to prove the following points

(al) (v <a)((7, 7) ¢ =<a);

(a2) (V7,80 <a)((7; B) €<a A(B; 0) €<a— (7, 6) € <a);

(a3) (Vv < a)(<al pry(y) is a partial order relation),

(ad) (Vy <a)(VB,6 € pry(1))(B=10V (B,0) €<a V (4, ) €=a),

(ab) (Vy < a)(Vz C pro (7)) (z = 0VIv(v € 2A=TFy(y € 2 A (y,v) €=<4)).

We sketch the proof of the following points:

(al) (a2) These two points are immediate, for g is a bijection of S onto
a such that (Vs, ¢t € S)(s <t < g(s) <4 g(t)).

(a3) (ad) (ab) For any t € S we know, by definition of tree, that <g[ prg(t)
is a well-ordering relation. Since g is an order isomorphism and order
properties are invariant under order isomorphism (order invariant)
then, for any v < «, <[ pr,(7) is a well-ordering relation too.

(b) Suppose not. Then there would be a node § in « such that
ot((pra(8), <a)) = a.

But this means that there is a < « with the same order-type as a.
A contradiction.

(¢) Suppose for some v < «,

gl = {7 < alot((pra(y),=a)) =7} > a.

And since isomorphic p.o.’s have the same order-type and g is a
bijection of S onto u, then

ISty = {t € Slot((prg(t),<r)) =7} > a.

A contradiction.

(d) If C were a cofinal branch of { o, <, ) then since g is an order isomor-
phism from (S, <g) onto {a, <4 ), then g=1(C) would be a cofinal
branch of (S, <g) as well, contradicting the fact (S, <g) does not
have cofinal branch.

Obviously, « = ON NV, C V,. Further, <, C V, x V,. And since V,
is closed under PAIR (« is a limit ordinal), <, C V,,. Therefore, (a, <4 )
is the isomorphic copy (T, <7 ) of (S, <g) we were looking for. And, we
certainly have

(Vo elVely 22 o <§|O[C C T Achain(C) A (Vy € ON)(T() NC # (Z))D.
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This concludes the first step of our argument. At this point it is worth
noticing that the expression “t € T(,)” stands for the following formula:

af [f is a bijection A dom(f) =y AVs(s € mg(f) < s<rt)A

A (Ve ENEEn e F(E) <o f<n>>]

And this, in turn, makes the whole assertion
- (30 {O C T Achain(C) A (Vy € ON)(T() N C # (Z))] ) (1)

of logical complexity I13. Therefore, the second step of our argument, con-
sists in showing that the formula (1) can be rendered by a set-theoretical
formula of logical complexity s-II}. In order to achieve this we proceed
as follows. We first prove that for every v < a, T, is a set in V,. Fix
an arbitrary v < a. We already know that T(,) C V, and by definition
of a-tree, |T(,)| < a. Hence for some cardinal v < a we shall have that
|T()| = v. This implies, in particular, the existence of a surjective map
f v — T4y and by REPLACEMENT (« is regular infinite cardinal) the
range of this map is a set. Thus, having shown that each T\, is actually
an element of V,,, we set

LEV ={(v,z)|v<arz =T}

LEYV is a relation and as directly involved in the definition itself

V%z,y<<%z> € LEVA(y,y) € LEV -z —y>-

Therefore LEV is a functional class (in V,) mapping each ordinal v to
the y-th level T,y of T. Hence the assertion (1) can indeed be rendered
by the following s-I1} formula holding in V:

(Vy, €lValy 22 vo [<CQTAvxvy<xecAy60—>
— <<:c,y> eE<pVz=yV (y,z) €<T>)> —
—>E|7§Iw(<”y, w) ELEV/\Vz(zew—nz%C’))}

We are, of course, using T', <7 and LEV as class-parameters. Under the
assumption that « is s-II}-indescribable there exists a transitive reflecting
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set b € V, such that
(Va, elVely 22 <vc chTmbAw\fy<xe(JAyGC—>
— ((ac,y) e(<rnNb)Ve=yV(y,z) € (<r ﬂb)))) —
(©]
—>373w<(7, w) € (LEVﬂb)/\Vz(sz—mz%C’))]) .

Transitivity of V,, together with b € V,, implies that b NV, = b. Hence
we obtain

(b, €l ):2VCKCQTﬁb/\VmVy(xEC/\yECH
~ (o) e (<r ) va =y v o (<rn) ) ) -
— EI*yEIw((*y, w) € (LEVNb)AVz(zEw— 2z ¢ C’)) }
By the Strong Upward Persistency property, then we obtain
(Va, €lVoly |22 <VC[<CCT/\VmVy<:c€C/\y€C—>
— <(x,y> e<rVr=yV(y,z) €<T))> —
[Iefl
—>E|nyIw<<7,w)eLEVAVz(sz—»zgéC))}) .

Since T, <7 and LEV are subclasses of V,, and all the set-quantifiers of
this formula are relativized to b and b NV, = b, we have that

vC

CQVQ—><<Vx(:v€b/\x€C—>x€T)/\

/\V:z:Vy(be/\yEb/\mEC/\yeCH

— | (z,y) e<r Ve =y V (y,z) E<r —
( )

—>373w(76b/\w€b/\<’y,w> € LEV A

/\Vz(ZEw—>z§éC))>
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From this, using the fact that b C V,,, we obtain

vC

CCVy— ((Vm(meVa/\xEC—WCET)/\

/\V;ny(xEVa/\yEVa/\xEC/\yeCﬁ

— | (z,y) e<r Ve =y V (y,z) €E<r —
( )

—>EI~yEIw<’y€b/\w€Va/\<’y,w> € LEV A

/\Vz(zéw—>z§é0))>

Thus
(Va, eVely 22 vo KCQT/\V:CVy<:z:€O/\y€C’—>
— <<:c,y> e<rVr=yV{y,x) €<T>)> —
—>373w(7€b/\<'y7 w) € LEV A
/\Vz(zEw—nzgéC))}
From which we get by definition of LEV, since « = ON NV,
(Va, €lVely 22 o [(CQT/\Va:Vy(xE CAyeC —
— (:1: <ryVz=yVy <Tx))> —
—>EI~yEIw<'y€b/\7€ON/\w—T(V)/\
/\Vz(zEw—ngéC))}
Let £ = b N ON. We then have
(Va, €lVely =2 vo [(CQTAvxvy<xeCAyeC—>

— <x<Ty\/:E:y\/y<T:E>>> —

—»EI*yEIw(”y<§/\w—T(7)/\Vz(z€w—>z¢C’))].
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By definition of a-tree we know that ht(T) = « and, again, since ON N
V. = a, we have

(Va, €Yoy E2W5(5 € ON — T(5) # 0).
And so since £ < a, we have in particular
(Va, €1y |22 Ty # 0.
Accordingly let t € V,, be such that
<Va, EW"‘] > )22 t e T(g).

For any ordinal 8 and for any node u such that ht(u) = [, the definition
of “height of «” implies the existence of a bijection of {v € T'|v <p u}
onto 3. Hence for every d < [ there is a unique <p-predecessor v of u
such that ht(v) = §:

(Va, €Yy E2VBVuVS |3 € ONAu € Tipy A6 < 3 —
— v (v e T Av<ru)|.

But then for t € T there would be a chain
C={seT|s<rt}

such that for every v < ¢ there exists exactly one s € T{,) such that
s <7 t. Hence we would have that

(Vy, €lValy 22 EIO[CQT/\VxVy<x€C/\y€C’—>
— <x<Ty\/m_y\/y<Ta:>>/\

/\Vva('y<£/\w:T(,y)—>wﬂC7é(Z)>],

a contradiction.
O

It must be reported, however, that if V,, is an admissible set satisfying the
schema of s-II1 RFN without class-parameters then the tree-property can be
shown to hold, at least, for V,,-recursive trees (see Barwise [2], Theorem VIIL.7.1,
pp. 344-345).

COROLLARY 3.6.7. If « is s-II1-indescribable, then either & = w or « is a
weakly compact cardinal.
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Next is the Hanf-Scott characterization result [12]of a weakly compact car-
dinal:

THEOREM 3.6.8. « is a weakly compact cardinal iff o is 11} -indescribable.

For a proof the reader is referred to Kanamori [16], Theorem 6.4, pp. 59-60.
It follows that being a weakly compact cardinal is also a sufficient condition for
being s-TI}-indescribable. As well known, w is II}-describable, indeed w is de-
scribed by the II5 sentence Va3y(z € y). By contrast, in view of Theorem 3.3.18,
we have that

LEMMA 3.6.9. w is s-I11 -indescribable.
We have reached the end of this story. All the above-mentioned observations
are synthesized in the statement of Theorem 3.3.18.

Let us conclude this subsection with the following observation:

THEOREM 3.6.10. The theories sBLy and BLy admit the same standard models:
(Vi,eVely =228l = (V,, ey =2 sBL,.

Proof. The direction from left to right is trivial. The other direction follows
from Corollary 3.6.7 and Theorem 3.6.8. The possibility that x = w is ruled out
by INFINITY. O

3.7 THE INDEPENDENCE OF PCA

Let
(strictBLy) ™ := strictBL; U {INFINITY}.

LemmMaA 3.7.1. There are instances of the schema of PCA whose negation is
not derivable in (strictBLy) .

Proof. By the proof of Lemma 3.6.3 we know that if u is the first weakly compact
cardinal then

(V,, €Vely =2 (strictBLy)* T and  (V,,elVs)) =2 PCA.
O

We are left with showing that there are instances of the schema of PCA
which are not derivable in (strictBLy)™™.

Let
sKPuj, + INFINITY and KPu" 4+ P + INFINITY

be the theories obtained from sKPuj and KPu"+ P respectively through the
adjunction of the axiom of INFINITY.



3.7. THE INDEPENDENCE OF PCA 93

LemwMmA 3.7.2. Every theorem ¢ of KPu"+ P + INFINITY is also a theorem of
sKPu5 + INFINITY,

KPu"+ P+ INFINITY ¢ =  sKPuj + INFINITY F ¢.

From Section 2.4, we know that sKPuj conservatively extends KPu" + P for
set-theoretic IIo sentences. The key point of the present argument consists in
showing that such a conservation result also holds when replacing sKPu} and
KPu"+P by sKPuj + INFINITY and KPu" 4 P 4 INFINITY, respectively.

The Tait-style reformulation T3 of sKPu}, + INFINITY is the same as for sKPu}
where the non-logical axiom of INFINITY reads as follows:

For all finite sets I' of formulae of L3,

[, Ju[deunVe(zeu— (xU{z}) €u)].

[S-1i}]E
EMBEDDING OF sKPuj, + INFINITY INTO T3. Let ¢ be a L3 formula such that
sKPuj + INFINITY - ¢.
Then there are two natural numbers n and k such that
Tsby ¢

Since the non-logical axiom of INFINITY is of logical complexity [s-T1}]%, we
then establish a partial cut elimination theorem (up to [s-TI}]¥ and [s-X1]F
formulae) yielding quasi-normal T3 derivations exactly as in Section 2.4.

PARTIAL CUT ELIMINATION FOR T3. For all finite sets I' of L3 formulae and
all natural numbers n and k,

Tsbpy I o= Tk T
COROLLARY 3.7.3. Let ¢ be a L5 formula such that
sKPuj + INFINITY F ¢.
Then there exists a natural number n such that
T3 FT .

The next step of reducing sKPuj + INFINITY to KPu"+ P + INFINITY con-
sists in setting up a partial model for sKPuj + INFINITY (e.g. a model for
the set-theoretic II, sentences of sKPu5 + INFINITY) which will subsequently be
used in order to prove an asymmetric interpretation theorem for quasi-normal
T3 derivations. It is argued that the whole procedure can be formalized in
KPu"+ P 4+ INFINITY. In particular, the partial models needed for such an in-
terpretation are available within the theory KPu"+ P + INFINITY.
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For any set z, we define by recursion on n a finite hierarchy (V,N%(2)), ey of
set terms V,N'%(z) as follows:

Vo “(2) = TC({N, w, 2}),
Vi () = PV (2).
LemMmwMmA 3.7.4. For all natural numbers n € N,
KPu' + P 4 INFINITY F V2Tran(VN(2)).

Sets and classes are interpreted, respectively, as elements and subsets of

U VN (2).

neN

We keep the same notation as in Section 2.4. Let ¢ (8, é) be any formula of L3,
whose all set and class parameters came from the lists s, C' respectively. We
write (V2 “())(5, ) to denote the result of replacing in (3, C)

- every unbounded set quantifier Qz by Qx € VN« (2),
- every class quantifier QY by Qy C VN-w(z),
- every class variable C by a set variable c.

We avoid conflict of variables. Persistence properties are obviously satisfied; we
confine ourselves to stating the following result.

COROLLARY 3.7.5. For any finite set I'; 5 of [s-TIE and [s-21)F formulae of

L5, we have:

KPu" + P 4 INFINITY + VquWVmeV§VE’<<q >SrAr>pAp>mAm>0A
AFEVNY(2)AEC V™ (2) A
A {\/ Ly v 2 {p, r} v \/A}>_>
— |:\/F§,g|:m7q:| \/\/A}).

As for the asymmetric interpretation of T, into KPu" 4+ P, we interpret any
given quasi-normal T3 derivation of T' (where I' only contains [s-IT}]® and
[s-X1F formulae) by assigning bounds to existential set and universal class
quantifiers occurring in the derivation, depending on any given bound for exis-
tential class and universal set quantifiers of the derivation.
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ASYMMETRIC INTERPRETATION OF T3 INTO KPu" 4+ P + INFINITY. Assume
that 'y 5 is a finite set of [s-TIHE and [s-S1E formulae of L3 so that

LEL 1 A

for some natural number n. Then for all natural numbers m > 0 we have

KPu" 4+ P + INFINITY VZVEVE<§€ VN@( ) AEC Vn'ijn (z) —

- \/F§7g|:m, m+ 2”])

Proof. By induction on n. Apart from the non-logical axiom of INFINITY, all
axioms and rules of inference are treated in exactly the same way as for the
asymmetric interpretation of sKPu5.

INFINITY Suppose I'; 5 is the non-logical axiom of INFINITY. Then
T3 9 Hu[ﬂy(y cuAVw(w €y — w# w))A
AVz(r €u— Jyly e uANVw(w Ey s w=zVwe z)))}

Let m > 0 be given. We work within KPu"+ P + INFINITY informally. We have
to show, for any z, that

Hu[uengl/\ﬂy(yEu/\Vw(wey—>w7éw))/\
/\V:v(xEu—>3y(y€u/\Vw(waHw:;v\/MEx)))].

By construction of (V,N(2)),ecn, we have that w € V" (z) C Vrgfl (z). Hence
this formula is seen to be true by taking u = w. [l

II>-CONSERVATIVITY. sKPuj5 + INFINITY conservatively extends
KPu"+ P + INFINITY for set-theoretic IIy sentences.

Proof. Mutatis mutandis analogous to the proof of Ils-Conservativity for sKPus5.
O

THEOREM 3.7.6. Not every instance of PCA is derivable in sKPu}, + INFINITY.

Proof. Suppose not. Let sKPuj, + INFINITY + PCA denote the augmented the-
ory of sKPuj} + INFINITY obtained by adding any instance of the schema of Pred-
icative Comprehension. By Corollary 3.2.10, we know that VNB is a subsystem
of sBL;. Further, sBL; is in turn a subsystem of sKPuj + INFINITY + PCA.
Then we would have VNB as subsystem of sKPuj + INFINITY + PCA. Ar-
guing along the same line as in the proof of Corollary 2.4.9, then we can
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show that VN is a model of all the set-theoretic Il sentences derivable in
sKPub + INFINITY + PCA. Henceforth, VN would be also a model of all the
set-theoretic Iy sentences derivable in VNB. But in VNB we can prove the
existence, for example, of w + w. It would follow that w 4+ w € VN“. A contra-
diction. O

LeEMMA 3.7.7. Every theorem ¢ of (strictBL1)1™ is also a theorem of
sKPuj}, + INFINITY,

(strictBL1) Tt ¢ == sKPuj}+ INFINITY I .
Proof. By Proposition 3.5.2. O
THEOREM 3.7.8. Not every instance of PCA is derivable in (strictBLy) .

Proof. By Lemma 3.7.7 and Theorem 3.7.6. O

COROLLARY 3.7.9. The schema of PCA is independent from (strictBLy) .
Proof. By Theorem 3.7.8 and Lemma 3.7.1. O

3.8 THE ConNsISTENCY OF GODEL’Ss AxioMm OF CON-
STRUCTIBILITY WITH sBL;

In this section, the consistency of Gédel’s Axiom of Constructibility with the
theory sBL; will be established. The current task is to show that sBL; + V=L
is conservative over sBL; for set-theoretic Y1 sentences. Although previous con-
servation results relied on proof-theoretic methods, involving a direct analysis of
the structure of the derivations, the present conservation result will be obtained
by semantical, i.e. model-theoretic methods. The main technique that is going
to be used belongs to inner model theory.

DerFiNiTION 3.8.1. Let Ax be a theory formulated in the language L. For a
proper class A: A is an inner model of Ax if and only if A is a transitive class,
ON C A and, for each axiom Ax of Ax, Ax - (Ax)4.

Note that ZF has a trivial inner model, namely V. Roughly speaking, inner
models are constructed by identifying a certain property of sets and reinterpret-
ing the notion of “set” as “set with that property”. What we are going to do
is to assume that that the axioms of VNB together with every instance of the
schema of s-II] RFN (sBLj) hold true of the universe V, and to construct under
this assumption an inner model such that the axioms of VNB together with
every instance of the schema of s-II1 RFN plus V=L hold in this inner model.
Since we are concerned with class-set theories, in constructing our inner model,
we must separately identify both a property ¢o of sets and a property @1 of
classes. And then we have to reinterpret the notions of “set” and “class” as “set
with the property o” and “class with the property ¢17, respectively. As it will
appear clear later, we are going to construct (so to speak) a second-order inner
Henkin model. We begin by constructing the first-order part of our model.
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DEeFINITION 3.8.2. A set y is said to be first-order definable over a structure
A = (A, €Y allowing parameters from A if and only if there exists a first-
order formula ¢(vg) in the language of A and with parameters from A and no
free variables other than vg, such that

y={acA|(A €)= pld]}.
For any set z,

def(z) := {y C z|y is first-order definable over (z, €/ }.

REMARK 3.8.3. To be precise, in order for the definition above to make sense
we need to know that the syntax and the semantics of the language of A are
formalizable within set theory itself. But since we only need to know that this is
possible, not how it may be done, we do not emphasize this for the time being.
We have also not bothered to distinguish between an element a € A and the
constant of the language of A denoting it in the structure .A.

DerFINITION 3.8.4. It is well-known that within ZF the notion of “constructible
set” is defined in terms of an auxiliary hierarchy of sets, the L,’s, which are
defined for all ordinals «, by transfinite recursion in the usual way:

LO = @
LaJrl = def(LQ)

Ly = |J La, for Lim(\).
a<

(Lu Yacon is the constructible hierarchy.

DEerINITION 3.8.5. The constructible universe is the class
L:= |J La
aceON

A set is a constructible set if and only if it belongs to L. And the assertion
Va(x € L) is the Aziom of Constructibility, denoted by V=L.

REMARK 3.8.6. The property of being constructible is first-order definable in
ZF. Therefore L is, by PCA, a class of sBL;.

We will take L to be the first-order part of our model, i.e. we will reinterpret
the notion of “set” as “set with the property of being constructible”.

The subsequent Lemma establishes results about the constructible hierarchy
and the constructible universe which will be often invoked in the remaining part
of our work.

LEMMA 3.8.7. We have:
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(i) Va(Tran(Lq)),
(iil) Ya(La C Vi),

(v) Vala <w — L, = V),

)
)
)
(iv) YaVB(a < 8 — (e € Lg A L, € Lg)),
)
(vi) Va(a =2 w — |La| = |al),

)

(vii) For any awiom Ax of ZF, ZF  (Ax)L.
For a proof, the reader is referred, for example, to Kunen [17].

REMARK 3.8.8. We remind the reader that we already made use of point (vi)
in the proof of Lemma 3.6.5 on page 83. By (ii), we have that Tran(L) and,
by (iv), ON C L. This two facts along with (vii), tell us that L is an inner
model of ZF. In this respect, it worth noticing that the first-order part of the
second-order inner Henkin model we are constructing is itself an inner model of
ZF.

We now turn to the range of class variables. We will follow Go6del’s def-
inition [10], of constructible classes, which are nowadays customarily called
“amenable classes”.

DerFiNITION 3.8.9. We say that a class C' is an amenable class, denoted by
amenable(C, L), if and only if all its elements are constructible sets and if the
intersection of C' with any constructible set is also a constructible set, that is

amenable(C, L) := CC LAVuVy(u e LAy=unC — y € L).

REMARK 3.8.10. Note that “amenable class” is a well-defined notion in sBL,
for the intersection of a class with a set is again a set (AUS). Hence, it is
already obvious why AUS is going to hold under this particular choice of the
interpretation for the class variables (see Lemma 3.8.15 on page 101). Note also
that if we were to interpret classes as ranging over arbitrary subclasses of L, (in
other words, if we were to adopt a full-interpretation), then AUS would fail: just
because C is a subclass of L, there is no reason to suppose that the intersection
of C' with a constructible set is an element of L at all! Note that w € L 1. If
{©(w) € L, then there is a non-constructible set ¢ of positive integers, hence a
subclass of L, and a constructible set, namely w, such that their intersection,
i.e. citself, is not constructible.

LEmMmwMaA 3.8.11. The following are derivable in sBLy:
(i) amenable(L, L),

(ii) Ya(a € L — amenable(a, L)),
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(ili) YCVa(a € L A amenable(C, L) — amenable(C' Na, L)).

Proof. These are immediate consequences of the definition of amenability.

(i) Obviously, L C L. Let u € L and y = u N L be given. By transitivity of L,
w C L. Hence, y=uNL=wand y € L.

(ii) For a € L, by transitivity of L, a C L. Let u € L and y = uNa be
given. Hence y € L, by Lemma 3.8.7.(vii), i.e. the corresponding instance of
the Separation schema of ZF in L.

(iii) Let @ € L and amenable(C, L) be given. From the amenability of C, we
obviously have that (CNa) C L. Let w € L and y = u N (C Na) be given. We
need to show that y € L. Clearly, un(CNa) = CN(uNa). By Lemma 3.8.7.(vii),
(uNa) is an element of L. Therefore, from the amenability of C itself, it follows
that y € L. O

More relevant closure properties of the amenable classes will be analized in
the proof of Lemma 3.8.26 on page 109.

We denote the collection of amenable classes by ac(L):

ac(L) := {C|amenable(C, L) }

REMARK 3.8.12. Actually, we are being a bit sloppy here: ac(L) is a family of
classes and not a class of sBL;. Therefore the expression “B € ac(L)” is, in sBL1,
merely une fagon de parler for amenable(B, L) which is a perfectly meaningfull
formula of the language L.

We will reinterpret the notion of “class” as “class with the property of being
amenable”. Roughly speaking, we will take ac(L) to be the second-order part
of our inner model.

The classes and sets of our inner model form a subfamily of the classes
and sets of the theory sBL;, and the €-relations of the model are the original
e-relations of sBL; but restricted to the classes and sets of of our model:

(L, €, ac(L), elFreettl),

We adopt the following convention. Let ¢ be any formula of L2. We write
()%2(F) to denote the result of replacing in ¢

- every unbounded set quantifier Qx, occurring in ¢, by Qx(x € L...),
- every class quantifier QY’, occurring in ¢, by QY (amenable(Y, L)...).

The first step we are going to undertake, and which will be foundamental to all
of our next work, consists in establishing the following result:

L,ac(L)
SBL1 H (SBLl) .
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This will be Theorem 3.8.28 on page 111. For each axiom and axiom schema
(i.e. each instance thereof) Ax of sBL; in turn, we argue in sBL; to prove
(Ax)%-2(L) " The next two lemmata are standard (see Lemma 3.8.7.(vii)); their
corresponding proofs have been included for completeness sake only.

LEMMA 3.8.13.

L,ac(L)
SBL1 H (AO'|€> .

Proof. We must show that

L,ac(L)
sBL; F (Va[EIy(y €a)— ylycanVz(zey — 2z ¢ a))}) .

Let us argue informally within the theory sBL;. Let a € L be given, a # 0.

L,ac(L)
We must show that (Ely(y €EanVz(z €y — 2z ¢ a))> . Note that

L,ac(L)
<3y(y EanVz(zey—z¢ a))) . Since a € L, by transitivity of L, y €

Ao

L,ac(L)
L too. Therefore (Hy(y EanVz(z €y — 2z ¢ a)) is the same as

Jy(y € aAVz(z € y — 2z ¢ a)). Upon the assumptions that a € L and a # 0,
by Ag-le itself, there is a y € a such that Vz(z € y — 2 ¢ a). Obviously, y is as
required. O

LEMMA 3.8.14.
L,ac(L)
sBL; <INFINITY) .

Proof. We must show that
sBL; F <EIz[EIy(y €zAYw(w ey — w# w))A
L,ac(L)
/\V:c(zéz—>§|y(y62/\Vw(wEwa—IVwEI)))]) .

Note that

sBL1 - <E|z[Ely(y €zAVw(w €y — w#w)) A

Ao

L,ac(L)
/\V:c(zéz—>§|y(y62/\Vw(wEwa—IVwEI)))]) .

Ao
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Let us argue informally within the theory sBL;. Since Ag-formulae are closed
under conjunction, all we are left with is finding a z € L such that

Jyly € zAVw(w € y — w # w)) A
AVz(z €z — Fy(y € 2 AVw(w €y - w=zVwex))).

And, for w € L, 41 C L, this is seen to be true of L by taking z = w. O

L,ac(L)
sBL; <AUS) .

LEMMA 3.8.15.

Proof. We must show that
L,ac(L)
sBL; F (VCVaHyVm(m cy—rc€alxe C)) .

Let us argue informally within the theory sBL;. Let C € ac(L), a € L be
L,ac(L)

given. We seek a y € L such that (V:v(x cy—zeanzel) . From
C € ac(L) it follows, in particular, that VuVy(u € LAy =unNC — y € L).
From this, using the assumption ¢ € L, we obtain Vy(y = anNC — y € L).

By AUS itself, there is a y such that Vz(z € y <> © € a Az € C). Therefore
y € L. [l

We are left with showing that the schemata of s-II} RFN and PCA (i.e.
each instance thereof) hold true of our inner model. We take up the schema of
s-TI} RFN first. The argument used in the proof of Lemma 3.8.25 on page 104
appeals to arguably one of the most relevant results in constructibility theory.

DEFINITION 3.8.16. 3, is defined by transfinite recursion on a:

:0 =w
:a+1 = 230‘
3y :=sup{3a|a < A}, for Lim(A).
DerFiNITION 3.8.17. The Continuum Hypothesis, denoted by CH, is the asser-

tion:
w1 = :1.

The Generalized Continuum Hypothesis, denoted by GCH, is the assertion:
Va(we = o).

Here is an outline of the proof that V=L implies CH; similar reasoning
establishes GCH. All the details of this argument are discussed at length in
Godel [10]. Tt is well-known that the constructible hierarchy grows at a much
slower rate than the cumulative hierarchy. While |V, || is already as big as 271,
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L2 is countable. In fact, §(w) € V42, but only denumerably many subsets
of w are in L, 492. More, but not of all them, will appear at the next level, and
so on. Hence we ask: how far along in the constructible hierarchy might we still
be getting new subsets of w? As shown by Godel [10], in proving that V=L
implies GCH, there is a bound to this gradual-growth process: {(w) C L, ,
i.e. any subset of w is constructed at some countable stage. Hence

[Pl =31 < [Luy | = wr.
More generally, the following holds

THEOREM 3.8.18. Let p be a cardinal. If v € (L) NL for some o < i, then
x € L,.

Obviously, if w > u, the result holds trivially, for L, = V,,. This result tells
us, that the cardinal levels of the constructible hierarchy are “super-transitive”:
closed under the constructible subsets of its elements. We will see the rele-
vance of Thereom 3.8.18 in the proof of Lemma 3.8.22. We start by making a
preliminary observation.

LEMmMa 3.8.19.
sBL; F (Va € L)((a) N L = O(a) Nac(L)).

Proof. Let us argue informally within the theory sBL;. Let a € L be given. By
Lemma 3.8.11.(ii) we have

©(a) N L C O(a) Nac(L).

Next we prove that

g(a)Nac(L) C ©(a)N L.
Let z € (a) Nac(L) be given. We must show that = € ((a) N L. By making
explicit the assumption “z € §(a) Nac(L)” we get

xCanNLAVuVylue LAy=una —ye€L).
Since a € L, by transitivity of L, we have that ¢ C L. Hence we obtain
xCaAVuVy(lue LAy=unNa —y€EL).
This last expression entails, in particular, that
(ceLANz=anz—x€l).

At this stage we note that, by assumption, a € L. And, since z C a, then
x=aNz. Thus, x € L. O

CoOROLLARY 3.8.20.

sBLy - (Vo € ON)((Lo) N L = @(Le) Nac(L)).
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Proof. By Lemma 3.8.19, along with the observation that L, € L. |
DerFiNITION 3.8.21. For any a € L and for any set ¢, we define

amenable(c,a) := cCaAVuVy(lu EaAy=uNc—y € a),
ac(a) := {c|amenable(c,a) }.

Note that ac(a) is a set, for ac(a) C §(a).

LeEMMA 3.8.22. The following set-theoretic inclusion is provable in sBLj:
For any cardinal p,

£(Ly) Nac(L) € ac(Ly).
Proof. By Corollary 3.8.20,

P(Ly) N L= (L) Nac(L).

We show that
(Lp)NL S ac(Ly).

Let w € (L) N L be given. Obviously, w C L,. We need to show that
VuVy(u € LyAy=uNw —y € L,,).
Let u € L, and y = uNw be given. We distinguish between two cases:

# <w Then L, =V,. The result follows at once.

w < g Then g is a limit ordinal. By the recursive definition of the con-
structible hierarchy, u € L, for some a < p. Further y € L, for y is the inter-
section of two constructible sets. By transitivity of L,, we have that u C L.
Therefore, y C u C L,. It follows that y € {2(Lo) N L for some o« < p. By
Theorem 3.8.18, y € L. |

The set-theoretic inclusion established in Lemma 3.8.22 fails for ordinals
which are not cardinals.

LEMmMA 3.8.23.
sBL; p(Lw+1) NL SZ ac(Lw+1).

Proof. Let ~y be the least ordinal greater than w + 1 for which
OW) N (Ly \ Lot1) # 0.

Such a 7 must exist, for otherwise D(w) N L C L.4;. But this then would
violate the fact that |Ly41]| = Ro in L, for [{D(w) N L| > Xg in L (The Cantor
Theorem holds in L). Let  be an element of {(w) such that € (L \ Ly41).
Such an = must exist, for (w) N (Ly \ Lo41) # 0. Since QO(w) C (Lw+1),
z € O(Lyt1)NL. If v € ac(Ly41), then

VuVy(u € Lypyi Ay=uNw — y € Ly41)-
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And this obviously entails (w € Lyy1 Az = wNxz — x € L,41). Note that
w € Ly,41 and, for £ C w, z = wNz. Therefore, x € L,,41. But this contradicts
the choice of x. O

For the proof of Lemma 3.8.25 on this page, the following result will be
usefull too. See, for example, Chang and Keisler [6], p. 560.

LEMMA 3.8.24.
VYa(Va, NL=Lg,)

LEMMA 3.8.25.
L,ac(L)
sBL; + <S—H% RFN) )

Proof. We must show that if ¢©(vo, ..., vn, Co, ..., Cy,) is any s-II1 formula of Lo
in which z does not occur free and with no free variables besides the displayed
ones and not necessarily all of them, then

SBL1 - (V’UQ...V’UnVCQ...VCm (gD(’UQ, veey Uy Co, ...,Cm) —

L,ac(L)
— z[Tran(z) A vg, ..., Up € 2 A cp(z)(vo, ey Uny Co,s o, Cm)]>> .

Let us argue informally within the theory sBL;. Let ag,...,a, € L, By, ..., By €
ac(L) be given. We must check that

(gﬁ(ao, very@py Boy oooy Br) —
L,ac(L)
— 3z[Tran(z) A ag, ..., an € 2 A (p(z)(ao, eeey Gy Bos -y Bm)]> .
That is
L,ac(L)
(cp(ao,...,an,Bo,...,Bm)> —
L,ac(L)
— (Hz[Tran(z) ANag, ...,y € 2 N\ go(z)(ao, ceey Gy By ooy Bm)]> .

By definition of s-II} formula we know that
©(V0, eey U, Coy vy Cp) = YWO(W, 00, ..., Up, Co, o, Crn),
where 1 has logical complexity ¥. Therefore under the assumption that

VYW (amenable(W, L) — w(L)(W/, ag, -y any Bo, -y Bm)),
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we must show, using Proposition 1.2.9, that

(Elz[Tran(z) Aag,...,an € 2N\

L,ac(L)
AVW (W C z — 3 (W, ag, ..., an, Bo N z, ..., By N z))]> )

This means that we seek a set z € L such that Tran(z) and ao, ..., a, € z and

L,ac(L)
<VW(Wgz—>¢(Z)(W,a0,...,an,Boﬂz,...,Bmﬂz))> .
That is

YW (W C z A amenable(W, L) — ") (W, aq, ..., an, Bo N 2, ..., By N z)).

By making explicit the definition of “amenable(W, L)” and in virtue of Propo-
sition 2.1.3, then this formula is shown to be provably equivalent to

Vw(wgz/\wQL/\VuVy(uEL/\y:wHUHyEL)ﬂ

— w(mL)(w, AQy ey Ay Bo N 2, ooy By N z)>

By transitivity of L, z C L. And for z C L, the formula above is shown to be
equivalent to

Vw(wgz/\VuVy(ueL/\y:wﬂtueL)ﬁ
(1)
— w(z)(w,ao,...,an,Boﬂz,...,Bm ﬂz))

By Lemma 3.8.11.(iii), we clearly have that B;Nz, with 0 < ¢ < m, is an element
of ¢(z) Nac(L). Therefore (1) is just another way of saying that

(z, €l ©(z) nac(L), elx(PEnac(L))]y
YW[W, ag, ..., an, Bo N 2, ..oy By N 2]

Hence to sum up, for under the assumptions that ag,...,a, € L, By, ..., By €
ac(L) and

YW (amenable(W, L) — w(L)(W, aQy ey Apy Boy ooy Bim)),
we must find a z € L such that Tran(z), ao, ..., a, € z and
(z, €l ©(z) nac(L), elx(PEnac(L))]y

YW[W, ag, ..., an, Bo N 2, ..., By N 2],



106 3. CLASSICAL SET THEORY

or equivalently, by Lemma 3.8.19,
(2 €V, p(z) N L, @A)
YW[W, ag, ..., an, Bo N 2, ...y By N 2]

Before starting, let us recall the definition of “amenable(C, L)”:

Ve(xre C -z e L)AVuwWy(u e LAVz(zx ey >z eunaxeC)) -yel).

HC
Therefore

VW (amenable(W, L) — X (W, aq, ..., an, Bo, ..., Bm)) -

TI¢C »eC

s-1m!

And we know this formula to hold true of V. Therefore, by s-II} RFN itself,
there exists a reflecting transitive set b such that ag,...,a, € b and

(b, €, @(b), €Oy = IV (amenable(W, L N b) —

— YpEON W, ag, ..., an, BoNb, ..., By, N D).

The reflecting transitive set b will appear in V, for some ordinal k. By transi-
tivity of V,, we then have that b C V... At this stage, we consider the cardinal
J... Then, obviously, b C V,; C V5,_. Hence

(b, €, @(b), POy = VIV (amenable(W, LN (bN V3,)) —
— EOCOVID W g, ...y an, Bo N (bNVa,), ..., By N (BN VA)]).
That is
(b, € ©(b), elbx o) ) E VYW (amenable(W, (LN V3,)Nb) —
— IOV W a0 an, (BoNVa. )N b, ..., (Bm NV1.) N D).
Thus, by Upward Persistency, we have
(Va,, V2l o(Va,), elV=2xPWa0ly = vl (amenable(W, LN V1, ) —
— YEVEIW, ag, ..., an, BN VA, , ..., B N V3, ]).

By making explicit the definition of “amenable(W, L NV5_)” we get

(Va,, €2l o(va), elVawx9Vadly vw<vu(v EW—veLNVa,)A
AVuVy(u e LNV AVe(zey—zcunzeW)—-yelLnVay, ) —

— pEWVEIW, ag, ..., an, BN Ve, ..., By N V;N]>.
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By relativizing this formula to the set V3, we then obtain

Vw(wngﬁ — ((V’U(’UE’LU—)’UGLQV:N)/\

AVuVy(u e LNVy, Ay e Vo, A

AVz(z €y =T EUNT E W) —>yELﬂVgﬁ)>—>
— ’(/}(LQV:N)(’LU,G,(), ...,an,Bo N VDK, ,Bm N Vjﬁ))) .

Note that “amenable(B;, L)”, with 0 < ¢ < m. And this entails, in particular,
that B; C L. Hence we can rewrite this last expression as

Vw<w§V3ﬁ—> <(Vv(v€w—>veLﬂV3ﬁ)/\

AVuvy(u € LNVa, Ay e Vo, A

AVz(x €y oz EuNz €w) —>y€LﬂV3K)>—>
— pEWV3) (w, ag, ..., an, (BoNL)N Ve, , ..., (Bm N L) N V:N)>>.
That is

Vw(wQVJK—» <<Vv(v€w—>veLﬂV3ﬁ)/\

AVuVy(u e LNVa, Ay e Vg, A

/\V:v(xEyHmEu/\me)—>y€LﬂV:N)>—>
—>w(LmV:'N)(w,ao,...,an,Boﬂ(LQVJK),...,Bmﬂ(Lﬂvjﬁ)>>-
By Lemma 3.8.24, we have that V5, N L = L3,_. Thus
Vw((wQVJN/\ng:[N/\
/\VuVy(ueL:ﬁ/\yEV:lﬁ/\y:UﬂUJ—)yeL:lmo—)

— ) (w, ag, ...y any, Bo N L3, ooy By N L3~)>'
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This last expression logically entails the following:

Vw((wngﬁ NLa, /\VuVy(ueL:N/\y:uﬂwﬁyELJN))—>

— E3)(w, ag, ..., an, BoN L3, ..., By N L:N)> .
By Lemma 3.8.7.(iii), we have that L5, C V3, . Therefore,

Vw((wgLgﬁ/\VuVy(ueLgﬁAy—uﬁwHyeLgﬁ))a

— 1/;(L3~)(w,a0, vy, BoN Lo ,...;By N Lm))-

That is
Vw(amenable(w, Lo, ) — ¥*3<)(w, ag, ...,an, BN L3, ..., Bpy N La,)).

By Lemma 3.8.11.(iii), we clearly have that B; N Lo, , with 0 < ¢ < m, is an
element of ((L o, ) Nac(L). By lemma 3.8.22,

(Lo, )Nac(L) Cac(La,).
Therefore,
Vw(w C L3, Aamenable(w, L) — ¢ *3<) (w, ag, ...,an, BN L=, ..., BmNL3.)).
That is,
(La,, €= ©(La,)Nnac(L), el o x(@La)nacL)]y 1
YW IW, ag, .., an, Bo N L=, .. By N L1,].

Which is, by Corollary 3.8.20, equivalent to
(La,, elbasl ©(La)NL, E[L:KX(@(L:K)QL)U =
YW[W, ag,...,an, BoN L3, ..., B N Lo,
Clearly L3, is as required. O

Next is the schema of Predicative Comprehension (PCA). In showing that
each istance of PCA hold true of our inner model (see proof of Lemma 3.8.26
on the next page) we shall make use of the following well-known result:

THE GENERALIZED REFLECTION PRINCIPLE OF VNB. Let Z be a class and,
for each a € ON, Z,, is a transitive set. Suppose also
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- VaVB(a < B — Zo C Zg),
VAIIMN) = Zy = U, Za),

a<\ “Fo
-Z= UaEON Za-

Let o(vg, .., vp, Co, ..., C) be a predicative formula of Lo with no variables be-
sides the displayed ones free and not necessarily all of them. Then the following
is a theorem of VNB:

Va3s|a < B Alim(8) A Yug.. Yo, (vo, .., vn € Zg —

— (% (0, +, V1, Coy ey Or) > 022 (0, .oy VU, Co N Zg, ooy Crn N Z5))) |-
The proof is just as for the Generalized Reflection Principle of ZF', with an
additional base case, for the atomic formula “v € C”, thrown into the induc-

tive argument. For a detailed argument the redear is referred, for example, to
Gloede [9].

LEMMA 3.8.26.
L,ac(L)
sBL; F (PCA) .

Proof. Let ¢(vo, ..., vp, Co, ..., Cp) be a predicative formula of Lo with no vari-
ables besides the displayed ones free and not necessarily all of them. We must
check that

L,ac(L)
sBL; (Vvo...anVC’o...VC’m (3YV$(:E €Y < ¢(x,vo, ..., vn, Co, ..., Cm))>> .

Let us argue informally within the theory sBL;. Let ag,...,a, € L, By, ..., By, €
ac(L) be given. We must show that

y <amenab|e(Y,L) AVz(ze L — (€Y « o(z ag,...,an, By, ..., Bm)))>
By making explicit the definition of “amenable(Y, L)”, we have
HY(YQ LAVuWy(u e LAy=unY —y e L)A
AVe(z e L — (z €Y « o (z, a, ..., an, By, ...,Bm)))>.
That is

EIY<Y§L/\VuVy(ueL/\y—uﬁY—»yEL)/\

AVz(zx eY ANz €L —xze LA ap(L)(x,ao, weey Uy, Bo, ...,Bm))>,

LOf course, by “class” in ZF, it is meant a definable class, i.e a class abstract Z =
{z|e(z,v0,..,vn)} where ¢ is a formula of Lc.
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which is, in turn, equivalent to

HY(YQL/\VuVy(uEL/\y:uﬂYHyGL)/\

(1)
AVz(z €Y oz e LA <p(L)(:c,a0, eeey Gy B, ...,Bm))>.
By PCA itself we clearly have
FVe(x €Y - x € LA <p(L)(:c, aQy ey Any Boy ooy B)).
And this, in turn, logically entails the following:
HY(Y CLAVz(zeY o xzeLApP (x a,..,an, Bo, ...,Bm))).
Thus, having shown that
3y (Y CLAY ={zeL|e"(x,a0,.., an, Bo,..., Bm) }), (2)
next we prove that
W<<Y CLAY ={zeL|o"(z,a0,...,an, Bo, ..., Bm) }) —

(3)

—>VuVy(u€L/\y—uﬂY—>y€L)>.

Obviously, (2) and (3) logically entail (1). So, let
Y CLAY ={zeL|oP(z,aq,...,an, Bo, ..., Bm) }
be given. We need to show that
VuVy(u e LAy=uNnNY —y € L).
Solet w € L and y =uNY be given. We need to show that y € L. Note that
y=unyY

={z|zeYAzeu}
={z|lze{zeL|eW(x,a0,....an,Bo, ... Bm) } Az €u}
={zlze LApP)(z,a0,....,an, By, ... Bm) ANz €u}
={z|zeLnNuA ap(L)(27a0, weey Gy Boyoooy Bm) }
={z|lz€uA w(L)(z,ao, weeyQpy Boy ooy B

The last equality holds because, by assumption, we know that u € L. And, by
transitivity of L, w C L. At this point, it is worth pausing a moment to note



3.8. THE CONSISTENCY OF GODEL’S AXIOM OF . .. 111

the following. A schema of Predicative Comprehension, where class-parameters
are not allowed to appear in the corresponding defining formulae is easily seen
to hold true of our inner model, for

y={z]z € unp® (a0, .an)}

is a constructibe set, by the corresponding instance of the schema of Separation
of ZF in L (Lemma 3.8.7.(vii)). To overcome the difficulty given by the presence
of class-parameters in the formula ¢ we use the Generalized Reflection Principle
of VNB. Fix an « so that u,ag,...,an, € Lo. By applying the Generalized
Reflection Principle of VNB to the constructible hierarchy, we can find a § > «
such that

(V2,a0, -, G, u € Lg)((2 € u A @(2, a0, .., ny Bo, .y Bp))E)
— (z€unp(z,a0,....,an, BoNLg, ..., By N Lﬁ))(LB)).

And this last expression, along with
y={z|zeLgA(z€uo(zag,..an, Bo,.... Bm)) L},
logically entails the following

y={z|lz€LgA(z€uNe@(za,..,an, BoNLg, ..., By N L)) )}
={z|lzelghzecuN w(LB)(z,ao, woy@n, BoNLg,...,BynNLg)}
={z|lzeLgNuA cp(L")(z,ao, ey, BoN Ly, ..., By, N Lg) }
={z|lzeunp®)(z aq,..,an, ByNLg,..., Bm N Lg)}.

At this stage we note that B; N Lg, with 0 < i < m, is an element of L, for the
intersection of an amenable class with a constructible set is again a constructible
set (Lemma 3.8.15). Hence y € L, by the corresponding instance of the schema
of Separation of ZF in L (Lemma 3.8.7.(vii)). O

REMARK 3.8.27. In our approach the theory of VNB has being cast with the
schema of Predicative Comprehension. However it is well-known that VNB is
finitely axiomatizable since such a schema can be replaced by a finite number
of its instances (the two formulations of VNB are equivalent). This was indeed
the approach undertaken by Godel [10] in 1940, where it is also shown that the
amenable classes are closed under these eight operations for generating classes.
Lemma 3.8.26 obviously implies that any predicative class is also an amenable
class. We do not know if it can be proved within the axiom system of VNB that
any amenable class is also a predicative class.

L,ac(L)
SBLl H <SBL1) .

Proof. An immediate consequence of Lemmata 3.8.13, 3.8.14, 3.8.15, 3.8.25,
3.8.26. O

THEOREM 3.8.28.
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As shown by Gédel [10], VNB - (V=L)%2<(l) By Corollary 3.2.10, we know
that VNB is a subsystem of sBL;. Hence, sBL; F (V=L)%2<(5), Accordingly
we also have

THEOREM 3.8.29.
L,ac(L)
sBL; (sBLl + VzL) .

As consequence of Theorem 3.8.29 we obtain that the theory sBL; is therefore
consistent with Godel’s axiom of constructibility V=L. In other words, the
consistency of the theory of sBL; + V=L follows from the consistency of sBL;:
Given a proof of an inconsistency in sBL; + V=L we can, in a higly effective
way, produce from it a proof of an inconsistency in sBL;. We begin by proving
a more general theorem from which the above-mentioned equiconsistency result
follows.

THEOREM 3.8.30. sBL; + V=L conservatively extends sBLy for set-theoretic
Y1 sentences.

Proof. Suppose that ¢ is a set-theoretic ¥, sentence derivable in sBL; + V=L.
Let v, ..., ¥, be a formal proof of ¢ in the theory sBL; + V=L. Thus for each
i (0 <4 < n), ¢; is either an axiom of sBL; + V=L or else follows from some
of g, ...,1;—1 by an application of a logical rule and v, is the statement ¢.
Consider now the sequence (¢g)%2<(F) ... (ah,)F>2<(E) If 4); is an axiom of
sBL; 4+ V=L then sBL; I ()% 2<(X) And if 9; follows from some of g, ..., ¥; 1
by an application of a rule of logic, then (1);)%2<(F) follows from the correspond-
ing members of (¢g)L2() . (,)F>2<(F) by the same rule. Hence (i, )% 2(F)
is a theorem of sBL;. That is (@)% 2<(F) is derivable in sBL;. Hence, by persis-
tency, ¢ is a theorem of sBL; too. O

CoROLLARY 3.8.31. IfsBL; is a consistent theory then so too is sBL; + V=L.

Proof. Suppose that sBL; + V=L were not consistent. Then, in particular, the
statement “0 = 1”7 would be derivable in sBL; + V=L. By Theorem 3.8.30 dis-
cussed above, such a contradictory statement would also be provable in sBL;.
Hence, sBL; would be inconsistent too. o

Analogous results hold here also for sBL; + AC and sBL; + GCH.



APPENDIX A

THE OPERATIONAL REFLECTION
PRINCIPLE

A fruitful offshoot of the study of large cardinals has been the investigation of
their various analogues in restricted contexts e.g., admissible set and recursion
theory, constructive set theory and Explicit mathematics. The first substantive
move in this direction was made in the early 1970’s by Richter and Aczel [23]
in the theory of inductive definitions. With the admissible ordinals playing the
role of regular cardinals, analogues of Inaccessible, Mahlo and Indescribable car-
dinals were developed in this context.

To provide a general framework allowing an uniform treatment of these dif-
ferent analogues of such cardinals, Feferman proposed in [7], the Operational
Set Theory (OST). The cardinal notions introduced there are for Inaccessible,
Mahlo and Weakly Compact. A reflection principle entailing the existence of
all these cardinals is also formulated in this context. The consistency strength
of OST with this reflection principle adjoined, denoted by OST + angp, has
not been established yet. A partial result in this direction has however been
achieved: we will show that the consistency of OST + RfnJ is not provable in

ZFC.

A.1 OPERATIONAL SET THEORY

Let L(¢c —) denote the language of set theory given by countably many individual
variables a, b, ¢, x,y, z, ..., the binary predicate symbols €, = and the logical op-
erations -, A, V. Assuming classical logic, V, —, 3 are defined as usual. Formulae
of L(¢ —) are built up from the atomic formulae x € y, x = y by closing under
the logical operations as expected. As usual, ZF denotes Zermelo-Fraenkel set
theory in L¢ ), ZFC that theory with axiom of choice adjoined.

The theory OST + angp starts off from the language L extending L¢ —) by
a three-place relation symbol App, an infinite stock of operational variables

113
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f,9,h,..., the individual constants k,s,t,f,el, cnj, neg,all, the operational
constants S, R, C . Basic terms (r, s,t, ro, So, to, ...) are variables and constants
of either sorts. Atomic formulae are then expanded to include App(r,s,t) for
all terms r,s,t. Formulae (p,,6,...) are built up using the propositional op-
erations and quantifiers applied both to individulal (Va,3z) and operational
(Vf,3f) variables. By a V-op formula, we mean a formula in which all the
quantifed occurrences of the operational variables are in positive V-form. The
formula (® is the result of relativizing all the unbounded individual quantifiers
to a, that is replacing

Jz(...) by 3Jz[rean(..)],
Va(...) by Vzjzea— (..)].
Bounded quantification is abbreviated as usual:
(z € a)p :=Tz[z € a A @),
(Vz € a)p :=Vz[r € a — ¢).
The following abbreviations are adopted:
t~x:=t=ux,
st~ z:=3Jxy[s ~ax At ~yAApp(z,y,2)],
s~t:=(s] Vt])— (s=1),
t]:=3x(x =t),
s=t:=JaTyls=axAt=yAx =y,
teb:=3x(t=xAzx ),

o(t) = Jx(t =~ x A p(x)),
fra—b:=Vr(x €a— freb),
f:a®> —b:=VavVylr €aNy€a— fry €D),

We also adopt the convention of association to the left so that syss...s, stands
for (...(s182)...sn). Additionally, we write s(t1, ..., t,) for stj...t,. Note that

(fira—bAd Ca)— f:d —b.

The logical axioms of OST + an\gp comprise the usual axioms of classical first-
order logic with equality. The non-logical axioms are divided into the following
five groups.

APPLICATIVE AXIOMS
l.ay~zAzy~w— z =w,
2. kzy = x,

3. szyz ~ (x2)(yz).



A.1. OPERATIONAL SET THEORY 115

LocicAL OPERATIONS

Lt AT,

—_

2. el: V2 — {t,f} AVaVylelzy =t < x € ],
3. cnj: {t,f}2 — {t,f} AVaVy[enjzy =t > x =t Ay = t],
4. neg: {t,f} — {t,f} AVz[x =tV y=f — negz # 7],
5. (f:a— {t,f}) — allfa € {t,f} Afallfa = t < Vz(z € a — fz = t)].
GENERAL SET AXIOMS
l.Vz(zr€a—z€d) —a=0,
2. yly€a) = ylycanVe(z ey — x ¢ a)).
SET EXISTENCE AXIOMS
1. (f:a— {t.f}) = Sfa | AVz[zr € Sfa -z €aA fx=t],
2. (f:a—V)—=Rfal AVVyly € Rfa— Jz(x € a N fx=y)],
3. Jz(fr=t) — Cf | Af(Cf) =t.

OPERATIONAL REFLECTION PRINCIPLE
For each V-op formula ¢(z, f), we have

pla, f) — Fy[Tran(y) Az € y A oY (, f)].
The Operational Reflection Principle is denoted by angp.

REMARK A.1.1. Note that in the process of relativization of a V-op formula, the
oprational quantified variables remain unaffected. With respect to the original
formulation of this axiom-system, as introduced by Feferman in [7], our theory
OST + angp does not include the set-theoretic axioms of EMPTY SET, PAIRING,
UNION and INFINITY, among the SET EXISTENCE AXIOMS. As we shall have

occasion to see in the subsequent section, these axioms are all derivable in
OST + Rfn,.

A-abstraction and the fixed point theorem are well-known to be entailed by
the APPLICATIVE AXIOMS.

THEOREM A.1.2 (A-abstraction). For each L term t and all variables x there
exists an L term Ax.t, whose variables are those of t, excluding x, such that

OST + RfnJ, - Azt | A(Az.t)y ~ tly/z].
THEOREM A.1.3 (Fixed point). There ezists a closed L term rec such that

OST + an\gp F recf | Al(recf = g) — gz ~ fgzx].
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A.2 ON THE STRENGTH OF OST+Rfn],

We are concerned with showing that the consistency of OST + angp is not
provable in ZFC. We do this by showing that ZF is indeed a subsystem of
OST + angp. This, in turn, amounts to prove that PAIR, UNION, INFINITY,
EXTENSIONALITY, Agp-lc, POWER SET and any instance of the schemata of
Separation and Replacement are all derivable in OST + an\gp. Let us start by
showing that any instance of the schemata of Separation and Replacement are
derivable in OST + angp.

LEMMA A.2.1. Corresponding to each Ao formula p(z) in the language of ZF
there ewists an associated closed term t, such that

OST + anjp Fio LA, V" — {t,f}) AVz[p(z) < toz =t].
Proof. See Feferman [7], Lemma 1.(i). O

Lemma A.2.1 allows the SET EXISTENCE AXIOMS 1 and 2 to take the place
of the expected schemata for Ag formulae. Hence

LeMMA A.2.2. For all Ag formulae in the language of ZF, the aziom schemata
of Separation and Replacement are derivable in OST + angp.

We shall show that any instance of the schemata of Separation and Replace-
ment are derivable in OST + angp, by generalizing Lemma A.2.1 to arbitrary
formulae in the language of ZF.

LEMMA A.2.3. Let p(x) be any formula in the language of ZF. Then
OST + Rfng, = 3f((f : V" — {t.£}) AVzlp(z) < fz =t]).

Proof. This is accomplished by an adaptation of Specker’s method concerning
derivability of comprehension axiom schemata from reflection principles. We
work informally within the theory OST + angp. Assume without loss of general-
ity that “¢” does not contain the variable “y” (this can be achieved by renaming,
if necessary). Apply the operational reflection principle to the formula

VI((f: V" — {t,f}) — Fz-[p(z) < fz=1t]),

which is indeed the negation of the formula we aim to prove. After eliminating
all the abbreviations and relativizing, we infer

VI((f: V" — {t,£}) = Fa-lp(z) < fr=t]) = Fy[Tran(y) At cy Af €y A
AVF((Va(z €y — fz € {t,£})) — Ja(z € y A -[pW(z) & fz =t]))]
and from this
VI(f: V" — {t,f}) — Fa—[p(z) < fz=1t]) —
— IVF((Va(fz € {t,£}) = Tz-[pW (2) & fz = t)).
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Therefore,
VI((f: V" — {t,£}) — Fz-[p(z) < fz=t]) — (1)
— W[V — {t,F}) = Faz-[eW (z) < fz=1t)), (2)

Here, “p®)(z)” is a Ag formula of the form ¢ (z,y). By Lemma A.2.1, corre-
sponding to the Ay formula (¢, a) we have a closed term ¢, such that

ty LAty s VT — {6, £}) AVyVa[i(z, y) < tyay = t],

as also
ty LA (ty : VT — {6, F}) AVE[) (2, a) < tyza = t].
By letting
t(a) = )@.twga,
we get
t(a) A (t(a) VP — {t,f}) AVz[Y(z,a) — L)z = t].
and

f(f: vt — {t,f}) AV§[¢(£7 a) < fr= t])

By generalizing with respect to “a” we therefore infer

Vy3f((f: V" — {t,f}) AVz[Y(z,y) < fz =t]).

and
Vyf((f : V" — {t,£}) AVz[eW (z) & fz =t]).

which is the negation of (2). This implies, by MoDUs TOLLENDO TOLLENS,
the negation of (1), whence the result. O

LeMmMA A.2.4. For all formulae in the language of ZF the aziom schemata of
Separation and Replacement are derivable in OST + angp.

LEMMA A.2.5. PAIR, UNION and INFINITY are derivable in OST 4 Rfn.

Proof. For PAIRING, first apply angp to the derivable formula a = a A b= b to
obtain Jy(a € y A b € y). Hence PAIR, by Separation. For UNION, first derive
from an\gp the axiom of TRANSITIVE HULL as in Proposition 1.3.3 and then use
Separation as in Proposition 1.1.3. For INFINITY apply RfnY to the derivable

p
formula V23yVz(z € y < z = x). O

Since EXTENSIONALITY and Ap-l¢ are the GENERAL SET AXIOMS of the
theory OST + angp all we are left with is to show that POWER SET is derivable
in OST + angp.

LEMMA A.2.6. POWER SET is derivable in OST + angp
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Proof. From the SET EXISTENCE AXIOM 1,
(f:a—{t,f}) = Sfa | A\Vx(z € Sfa -z €aA fr=1t),
we readily infer its corresponding non-uniform version,
VI((f:a— {t,f}) - Fuvaz(z € u =z €a A fx =1t)),

which may briefly be denoted by “i¢(a, {t,f})”. Taking for “¢” in the opera-
tional reflection principle the formula “¢(a, {t,£})”, we get through an applica-
tion of the cut-rule

Jy [Tran(y) Aa € y A {t, £} € y A @ (a, {t, £})].

Observe that
(Tran(b) A{t,f} €b) -t cbAf €.

We therefore obtain,
Jy[Tran(y) hacyAt ey Af cyAv®(a, {t,})].

As usual, before performing the relativization of “i(a, {t,f})” to the reflecting

Wy,

set “y” we have have to eliminate within “(a, {t,f})” the abbreviations
(f :a— {t,f}) and fx=t.
They will be reinstated afterwards. In place of “i(a, {t,f})” we thus obtain
ViVe(x € a — Fz((App[f, z, 2] Az =t) V (App[f,z, 2] A z = 1))
— JuVz(x € u = z € a AJz(App[f,x, 2] A z = t))).

It is worth noticing that each operational variable is in functional position. By

(3]

relativizing this last expression to the reflecting set “y”, we therefore obtain
Jy[Tran(y) NhaeyAteyAf ey

Vi(Ve(z € a — Jz(z € y A (App[f, z, 2] Az =t) V (App[f, z, 2] Az =1)))
— Ju(u e yAVe(z € u - x € aAJz(z € y AApp[f,z, 2] Az =1t))))].

Upon the conditions “t € y” and “f € y” and using the equality axiom we
therefore infer

Jy[Tran(y) NhaeyAteynf ey
Vi(Ve(xz € a — Jz((Applf,z, z] Az =t) V (App[f,z, z] A z = 1))
— Ju(u € yAVz(z € u = x € a AIz(App[f,z, 2] Az =1t))))],

and from this, in particular

Jy Vi(Ve(x € a — Fz((App[f,z, 2] A z =t) V (App[f,z, 2] A z = 1))
— Ju(u e yAVa(z € u = x € aAIz(App[f,z, 2] Az =1t))))].



A.2. ON THE STRENGTH OF OST + RfnJ, 119

Reinstating the abbreviations, this last expression can be rewritten as
IWVF((f:a—{t,f}) > Fu(ueyAVz(z eu—azcan fx=t)). (1)
Next we prove that
Vw(w Ca—3f((f:a—{t,f})AVz(z ew ez €an fr=1t)) (2)

The proof of (2) goes as follows. Assume “b C a” for an arbitrary set “b”. From
the logical operation (ii), that is

(el : V2 — {t,f}) AVaVy[z € y < elzy = t],

and letting
Az.elrb = t(b),

we get
(twy : V — {t,f}) AValz € b ty)yz = t],
and from this
(twy:a — {t,f}) AVr(z €a — [x € b tpyr = t]),
and by means of propositional calculus we obtain
(tpy:a — {t,fP) AVz(z canzebxcartpyr =t).

Further, upon the assumption that “b C a” we get

bCa— (tgy:a— {t,f})AVe(z €b— 2 €atpr=t)),

and,
bCa—3f(f:a— {t,f}P) AVz(x €b—xz €aA fx=1)).

The assertion (2) is established by generalizing with respect to “b”. At this
stage we infer from (1) and (2) by making use of EXTENSIONALITY

JyWWw(w Ca — (u € y Aw = u)).
From this, using the fact that
VyVw((u e yAw =u) — w € y)

we infer
IyWw(w Ca — w € y).

This last expression asserts that each subset of the set “a” is an element of the
set “y”. The result is then obtained through an application of Separation,

c={wey|lwCa}.
It follows that POWER SET is derivable in OST + angp. O
THEOREM A.2.7. ZF is a subsystem of OST + RfnJ,.
THEOREM A.2.8. The consistency of OST + an\gp is not provable in ZFC.

Proof. If the consistency of OST + angp were to be derivable in ZFC, then by
Theorem A.2.7, also the consistency of ZF would be derivable in ZFC. And this
contradicts Godel’s equiconsistency result between ZF and ZFC. O
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OPEN PROBLEMS

Here is a list of selected open problems.

- In Appendix A, we have proved that the consistency of OST + angp is
not provable in ZFC. We are also confident that OST + angp entails the
existence of all the “real” inaccessible and Mahlo cardinals and hence, in
particular, the consistency of ZFC. On the other hand, it is not obvious
whether the theory OST + Rfn, is consistent. If so, then it would be rea-
sonable to expect that this theory is as strong as BL;.

- Friedman’s conjecture: sBL; = V=L — II} RFN. If so, then on the ac-
count of Theorem 3.8.30, we would have that BL; conservatively extends
sBL; for set-theoretic 31 sentences. In which case this result implies that
for the consistency of the I} reflection principle an external appeal to a
weakly compact cardinal will be no longer necessary: the assumed consis-
tency of sBL; would suffice. We are not far from a proof of this result, but
still several technical points needed to be checked out. We are, however,
confident of the soundness of our argument and we hope to present it in
a future publication. The argument that we are actually carrying out has
been suggested by Sy Friedman and it consists in a generalization of Bar-
wise’s Theorem VIIL.9.7 [2] where instaed of the set-model H, with the
standard interpretation of class variables as ranging over subsets of H,
and where cf(k) > w, we use the proper-class L with classes interpreted as
amenable classes. The main difficulty in this respect, is that by Tarski’s
argument of undefinability of truth, a uniform satisfaction relation for the
proper-class L is formally undefinable in sBL;. This limitation requires a
reworking and adapatation to our context of the compactness argument
used by Barwise. But the details do not look simple.

- What is the strength of (strictBL;)™? We believe that this theory is a con-
servative extension of PA. Note that the existence of w is not derivable in
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(strictBL;) ™. The above-mentioned conservation result, could presumably
be achieved using recursively saturated models.

What is the strength of (strictBL;)*+? We conjecture that this theory has
the same strength as sKPub, + INFINITY. That (strictBL; )" is a subsystem
of sKPuj5 + INFINITY is a triviality. For the converse direction, the only
serious fact that needs to be verified is that every instance of A{-CA
is derivable in (strictBL;)™*. Note also that since we are working with a
theory entailing the existence of w the presence of urelements is superfluous
in sKPuj + INFINITY.
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