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Abstract

This thesis is devoted to the theoretical investigation of growth-induced po-
larity formation in single- and two-component molecular crystals. In a first
part, the evolution of polarity in solid solutions of polar (H) and non-polar
(G) molecules, or polar H and G molecules was investigated applying a layer-
by-layer growth model. This model is characterized by the assumption of
thermal equilibrium formation of adlayers, with respect to the up and down
orientation of the dipoles of H (and G) molecules and to an exchange of H
and G molecules, taking longitudinal and lateral Ising-type nearest neighbor
interactions into account. Previously attached layers are kept frozen. The
asymptotic statistics of the model after many steps of growth was analyzed by
means of a Markov mean-field approximation and Monte Carlo simulations.
The investigation mainly focused on the interplay between orientational or-
dering (ratio between up and down) and miscibility of the two components in
the solid, according to different sets of interaction energies. Native structures
(H, G) were assumed centrosymmetric.

The influence of non-polar (G) molecules on polarity formation can be clas-
sified in three different behaviors: (i) Dilution of polarity in case they are
non-selective with respect to the up and down orientation of polar (H) mole-
cules. (ii) Enhancement of polarity due to a coupled effect of H and G
molecules. (iii) Creation of polarity in case single-component systems of po-
lar (H) molecules show no macroscopic polarity. For (ii) and (iii), polarity
passes a maximum for non-zero concentrations of G molecules. Probabilities
for the occurrence of possible configurations (polarity vs molar fraction of G
molecules) were investigated by means of a statistical analysis choosing sets
of interaction energies randomly within an assumed, but realistic range. High
probabilities for significant vectorial alignment, of H molecules are found for
very low and very high fractions of G molecules, respectively, as well as for
ordered HG compounds. Generally, longitudinal interactions mainly deter-
mine the formation of polarity, while lateral couplings influence miscibility
between the two components.

In systems with two polar components, the notions of orientational selec-
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tivity and miscibility still apply. However, here lateral interactions strongly
influence both, miscibility as well as polarity formation. Potentiality to ob-
tain macroscopic polarity was compared for three types of systems: Single-
component systems of polar (H) molecules only, two-component systems of
polar (H) and non-polar (G) molecules and two-component systems of two
polar (H, G) molecules. The admixture of G molecules (non-polar or polar)
to a polar H compound increases the probability to yield a high vectorial
alignment of molecular dipoles.

In a second part, the influence of the growth mechanism on polarity formation
for single-component systems of polar molecules was investigated. The layer-
by-layer growth model was compared with four different growth processes
(growth along steps, growth along kink sites, cluster growth, and random
deposition) being characterized by a reduced lateral cooperativity between
molecules during their attachment on the crystal surface. Even though the
growth process can significantly influence polarity, in case growth proceeds
in an ordered way, polarity formation remains mainly a thermodynamically
driven process. In particular, the asymptotic statistics of ordered growth
processes can be reasonably well described by corresponding two-layer sys-
tems in thermal equilibrium. Contrarily, local kinetic effects can determine
polarity if molecules are attached in a random manner. However, for any
of the investigated growth processes, the effect of a reduced lateral cooper-
ativity between molecules may be compensated upon growth if longitudinal
couplings are strong enough. In such cases, the local lateral environment
can be represented by an effective lateral coordination number, whatever the
assumed growth process.
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Zusammenfassung

Diese Arbeit ist der Untersuchung wachstumsinduzierter Polaritatsbildung in
ein- und zweikomponentigen molekularen Kristallen gewidmet. In einem er-
sten Teil wurde die Entwicklung von Polaritit in festen Losungen von polaren
(H) und unpolaren (G) Molekiilen oder polaren H und G Molekiilen unter-
sucht unter Verwendung eines Schicht-Wachstumsmodell. Dieses Modell ist
durch die Annahme charakterisiert, dass neu angelagerte Molekiilschichten
vollstandig ins thermische Gleichgewicht relaxieren, sowohl in Bezug auf die
nach oben/unten Ausrichtung der Dipole von H (und G) Molekiilen, als auch
auf den Austausch von H und G Molekiilen, unter Beriicksichtigung von
longitudinalen und lateralen Wechselwirkungen mit nachsten Nachbarn vom
Ising’schen Typ. Vorangehende Schichten bleiben eingefroren. Die asympto-
tische Statistik des Modells wurde mittels einer Markov mean-field Naherung
und Monte Carlo Simulationen analysiert. Die Untersuchung konzentrierte
sich hauptsachlich auf das Zusammenspiel zwischen Ausrichtungsordnung
(Verhéltnis Ausrichtung der Dipole nach oben/unten) und Mischbarkeit der
beiden Komponenten im Festkorper, entsprechend verschiedenen Wechsel-
wirkungsenergien. Es wurde angenommen, dass die urspriinglichen Struk-
turen (H, G) ein Symmetriezentrum haben.

Der Einfluss von unpolaren (G) Molekiilen auf die Polaritdtsbildung kann in
drei verschiedene Verhalten eingeordnet werden: (i) Verminderung von Po-
laritat im Falle, dass unpolare Molekiile nichtselektiv in Bezug auf die nach
oben/unten Ausrichtung von polaren (H) Molekiilen wirken. (ii) Steigerung
der Polaritét, wegen eines gekoppelten Effekts von H und G Molekiilen. (iii)
Schaffung von Polaritat im Falle, dass einkomponentige Systeme von po-
laren (H) Molekiilen keine makroskopische Polaritét aufweisen. Fiir (ii) und
(iii) tritt ein Maximum der Polaritét fiir nichtverschwindende Konzentratio-
nen von G Molekiilen auf. Wahrscheinlichkeiten fiir das Auftreten moglicher
Zusammensetzungen (Polaritit vs molarer Anteil der G Molekiile) wurden
mittels einer statistischen Analyse untersucht, bei der Wechselwirkungsen-
ergien zuféllig innerhalb eines angenommenen, jedoch realistischen Bereichs
ausgewahlt wurden. Hohe Wahrscheinlichkeiten fiir signifikante vektorielle
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Ausrichtung von H Molekiilen wurden fiir sehr kleine, beziehungsweise sehr
grosse Anteile von G Molekiilen gefunden, als auch fiir geordnete HG Struk-
turen. Im allgemeinen bestimmen longitudinale Wechselwirkungen haupt-
sachlich die Polaritatsbildung, wahrend laterale Kopplungen die Mischbarkeit
zwischen H und G Molekiilen beeinflussen.

Die Vorstellungen von Orientierungsselektivitat und Mischbarkeit sind auch
in Systemen mit zwei polaren Komponenten giiltig. Jedoch beeinflussen
hier laterale Wechselwirkungen nebst der Mischbarkeit auch die Polaritats-
bildung. Das Potential zur Bildung makroskopischer Polaritat wurde fiir
drei Typen von Systemen verglichen: Einkomponentige Systeme bestehend
aus polaren (H) Molekiilen, zweikomponentige Systeme aus polaren (H) und
unpolaren (G) Molekiilen und zweikomponentige Systeme aus zwei polaren
(H,G) Molekiilen. Die Beimischung von G Molekiilen (unpolar oder polar)
erhoht die Wahrscheinlichkeit zur Erzeugung einer hohen vektoriellen Aus-
richtung der molekularen Dipole.

In einem zweiten Teil wurde der Einfluss des Wachstumsprozess auf die Po-
laritatsbildung fiir einkomponentige Systeme aus polaren Molekiilen unter-
sucht. Das Schichtwachstumsmodell wurde mit vier verschiedenen Wach-
stumsprozessen verglichen (Wachstum entlang Kanten, Wachstum entlang
Knick-Stellen, Cluster Wachstum und zufillige Anlagerung), die sich durch
eine reduzierte laterale Kooperativitat zwischen Molekiilen wahrend ihrer
Anlagerung auf der Kristalloberfliche auszeichnen. Obwohl der Wachstum-
sprozess die Polaritat erheblich beeinflussen kann, im Falle, dass das Wachs-
tum in einer geordneten Art und Weise verlauft, bleibt die Polaritatsbildung
ein thermodynamisch gefithrter Prozess. Insbesondere kann die asymptotis-
che Statistik geordneter Wachstumsprozesse ziemlich gut durch entsprechen-
de Zwei-Schichtsysteme im thermodynamischen Gleichgewicht beschrieben
werden. Im Gegensatz dazu konnen lokale kinetische Effekte die Polaridtsbil-
dung bestimmen, wenn Molekiile in einer zufilligen Art und Weise ange-
lagert werden. Jedoch kann der Effekt der reduzierten lateralen Kooper-
ativitat zwischen Molekiilen fiir irgendeinen der untersuchten Wachstum-
sprozesse durch hinreichend starke longitudinale Wechselwirkungen wahrend
des Wachstums kompensiert werden. In solchen Fallen ist es moglich die
lokale laterale Umgebung durch eine effektive laterale Koordinationszahl zu
beschreiben, unabhéingig vom vorausgesetzten Wachstumsmodell.
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Chapter 1

Introduction

The invention of the transistor in 1948 (Nobel prize in physics for W. Shock-
ley, J. Bardeen and W. Brattain) set off the revolution in computer technol-
ogy [14]. Nowadays, millions of transistors are arranged in integrated circuits
and the ongoing miniaturization of these devices allows the design of even
more complex and faster logical circuits. However, the transistor was not
the first three terminal device being capable to amplify electrical signals or
make an electrical switch. The vacuum tube triode preceded the transistor
by nearly 50 years and fulfilled the same tasks, i.e. in that sense, the tran-
sistor was not a new functional device.

Why is the transistor such an important discovery? Because the functional-
ity of the device (amplifier/switch) is inherently linked to the properties of
the semiconducting material it is made of. While the vacuum tube triode
consisted of a large and energy consuming apparatus, for the transistor an
elegant combination of semiconductor p-n-junctions was sufficient to reach
and overpass the same functionality, due to the unique properties of this ma-
terial.

This example shows that the investigation and understanding of the physics
of materials and the production of new materials with designed properties is
of great importance and can have a large technological and also social im-
pact. Besides, the study of physical properties of materials is a fascinating
scientific field for itself as well as a rich source for new model systems in
theoretical and computational physics.

Most of the research in material sciences is devoted to the investigation of
solid-state bulk properties, such as ferromagnetism, ferroelectricity, super-
conductivity, luminescence and others [67].

However, particularly for molecular crystals, certain physical properties are
strongly related to the growth process, due to different physical and chem-



ical environments or broken symmetries at growing surfaces compared to
the bulk state [49, 86, 89, 90]. In this thesis, we investigate theoretically
such a growth-induced property, namely growth-induced polarity formation
in molecular crystals.

Experimentally, this type of phenomenon has been found in single-component
crystals [51], solid solutions [52], host-guest systems of organic molecules
[35, 41] as well as in living systems (tissue polarity) [37].

Beside growth-induced polarity formation, the only way to yield polarity with
a high probability is to use enantiomerically pure dipolar building blocks.
Crystallization in one of the 11 enantiomorphic groups gives high chances to
obtain third-rank tensor properties such as piezoelectricity and second-order
optical nonlinearity (being allowed only for 10 of the 11 point groups). How-
ever, growth-induced polarity has the advantage to be observed in a wider
range of compounds (even non-chiral), which is of special interest when con-
sidering that polar and acentric materials have found applications in various
real devices such as frequency doublers, amplitude modulators or pyroelec-
tric sensors. Apart from these practical issues, conceptual investigation of the
mechanism leading to polarity during crystal growth has shown to provide
for the first time an explanation as to why all living tissue is pyroelectric [37].

Theoretically, growth-induced polarity formation has been described by the
following model: A crystal built up from polar molecules is subjected to slow
layer-by-layer growth. Molecules are attached to a face (hkl) of a given seed
crystal structure. Among the possible processes which can occur during the
attachment of molecules on surface sites, only the up and down orientations
of the molecular dipoles along the growth direction is considered. Adlayers
relax to thermal equilibrium with respect to these two orientational states,
while previously grown layers (substrate) are kept frozen. This is justified
due to the large energy of activation for dipole reversals in the bulk for the
types of molecules considered.

Grown as such, macroscopic polarity may evolve, (irrespective of the symme-
try of the initial seed structure), because each layer forms some orientational
disorder and grown-in orientational defects in the substrate influence the de-
gree of disorder in the next adlayer. See [31, 30, 33, 78, 34, 42, 76, 4, 43,
39, 5, 40, 36, 38| (chronological order) for a complete overview of theoretical
work on growth-induced polarity formation by means of this model.

Principally, this growth model makes reference to two concepts in related
fields of statistical physics: The solid-on-solid (SOS) model which is widely
applied to describe crystal growth processes [53, 15, 45, 27, 28, 88|, and the
Ising model well known in magnetism [44, 11, 12, 6, 71, 70, 72, 21, 69, 32].
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With respect to SOS systems, the actual growth model shows the essential
features to describe crystal growth, i. e. decomposition of the space into nutri-
ent (gas or liquid phase), interface (surface layer) and bulk (solid phase), as
well as the directionality of the growth. Besides, the solid state is described
in a discrete manner, i.e. molecules are represented as building blocks oc-
cupying discrete sites on a periodic lattice and vacancies or overhangs are
excluded. However, the main purpose of solid-on-solid models is to study the
influence of kinetic effects on solid-state properties, such as surface diffusion
or evaporation-deposition rates. In the present layer-by-layer growth model,
these effects are not taken into account.

To the contrary, the surface layer is treated as in the two-dimensional Ising
model. Polar molecules are represented by a finite number of degrees of free-
dom, which are in the present case, the up and down orientation of molecular
dipoles. Further on, the surface layer is allowed to relax to thermal equilib-
rium with respect to these two orientational states, taking nearest neighbor
interactions among molecules within the adlayer and with the substrate into
account. That is, the statistics of orientational order is solely determined by
the requirement of the global minimum of the free energy of an adlayer.

This layer-by-layer growth model has satisfactorily described polarity for-
mation in single-component systems, (including host-guest systems, without
interactions between host and guest components). However, growth-induced
polar properties were also observed in two-component systems, such as solid
solutions, and no theoretical model was available so far. In these systems,
the interplay between growth-induced polarity formation and miscibility be-
tween the two components is of particular interest.

In this work, the growth model is extended to describe two-component sys-
tems, composed of polar and non-polar molecules (Chapters 2, 3 and 4), and
two polar components (Chapter 5), respectively. In both cases, in addition to
the two orientations of dipoles, the chemical nature of the molecules has to
be taken into consideration for the occupation of a surface site. Specifically,
the study focuses on the following issues:

e Characterization of fundamental behaviors of growth-induced polar-
ity formation as a function of the composition of polar and non-polar
species in the solid (Chapter 2).

e Influence of specific molecular interactions on growth-induced polarity
formation and miscibility between the two components (Chapter 3).

e Overview of different types of structural order/disorder (e.g. ordered
mixed structure, solid solution or non-miscible crystal) and their degree
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of polarity by means of a statistical distribution analysis (Chapters 3,
4 and 5).

e Comparison of the phenomenology of macroscopic polarity formation
between two-component systems of polar/non-polar and two polar com-
ponents, respectively (Chapter 5).

e Prediction of the statistical potentiality to provide polarity for the three
systems: (a) single-component crystals of polar molecules only, (b)
crystals with polar/non-polar components, and (c) crystals with two
polar components (Chapter 5).

Thermal equilibration of the surface layer implies slow growth conditions or,
equivalently, some form of fast redistribution of molecules on the surface.
Especially in case of molecular crystals, this requirement can not be fulfilled
always. Geometrical constraints, sterical hindrances or reduced mobility of
molecules in connection with kinetic effects lead to much more complex pro-
cesses on the surface than being described by a layer-by-layer model.

In Chapter 6, a first attempt is made to take such effects into considera-
tion, in order to study their influence on growth-induced polarity formation.
Four different growth mechanisms for the attachment of molecules on sur-
face sites are introduced and compared with the layer-by-layer growth model.
These growth processes reflect particularly a reduced cooperativity between
molecules during their attachment on a crystal surface, however, being still
based on the original model. Two main points are addressed:

e Influence of the growth mechanism (and in particular the mobility of
molecules on the surface) on growth-induced polarity formation.

e Dependence of the appearance of phase transitions on the growth pro-
cess and, therefore, on the cooperativity between molecules on the sur-
face.

It has been shown that the asymptotic statistics of the layer-by-layer growth
model is equivalent to the canonical distribution of a specific two-layer system
in thermodynamic equilibrium [5]. Motivated by this result, we additionally
investigate to which extent it is possible to describe the non-equilibrium dy-
namics of the other growth models by similar equilibrium two-layer systems.

Monte Carlo (MC) simulations [9, 8, 66, 58] are widely used, both, in ther-
modynamic equilibrium statistical physics (like the Ising model [57]), as well
as for the investigation of dynamic processes in crystal growth (kinetic Monte
Carlo [28, 60, 46, 47]). A major strength of this method is the possibility to
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treat only relevant degrees of freedom at certain time scales of a system.
An alternative to MC for the simulation of crystal growth is molecular dy-
namics (MD) [29, 59]. The time needed for numerical integration of Newton’s
laws can be kept in reasonable ranges by considering only most important
degrees of freedom (e.g. molecules are treated as rigid) and by describing
intermolecular interactions with a simple potential. However, in case of crys-
tal growth, MD still faces a major problem in the choice of the integration
time step [9]: It is required to be much less than the characteristic time
of the fastest degree of freedom (optimization of the molecules attached on
the surface), but it has to be sufficiently high to ensure the evolution of the
system (approach and attachment of the molecules on the surface). This is
principally for that reason that MC methods are preferentially employed for
the simulation of crystal growth processes and therefore, are also chosen for
the present study.

In this work, analytical descriptions are based on a mean-field approxima-
tion [11, 12]. In consideration of the complexity of models to be investigated,
which are, nevertheless, idealized representations of processes compared to
real systems, this level of theory is considered to be sufficient. To work out
its validity is also part of this study.






Chapter 2

How Symmetrical Molecules
Can Induce Polarity:
On the Paradox of Dilution

2.1 Abstract

Monte Carlo simulations show that solid solution H;_ x Gx formation between
dipolar (H) and symmetrical molecules (G) can yield a high degree of polar
order, although both the structure of the dipolar and symmetrical component
is assumed centrosymmetric. Previous studies have shown that polarity can
evolve in a centric packing of dipolar molecules only if the difference in error
probabilities for attaching the molecule in a faulted state 'up’ or '"down’ is not
zero. This, however, is not necessary if a centrosymmetric growing seed of
dipolar molecules is being diluted by symmetrical molecules. Here, polarity is
arising from the presence of G molecules influencing the 'up’ and ’"down’ states
of dipolar H molecules. Most pronounced effects of polarity are predicted for
molecules H and G undergoing a strong hydrogen-bond type interaction. As
maxima of polarity can occur at relatively low values of X (molar fraction of
symmetrical molecules), there is no need for finding systems undergoing solid
solution formation over a wide range. Values of X < 0.3 may be sufficient
to yield an X,e (net polarity, molar fraction of aligned dipoles) of about
0.4 - 0.6.

2.2 Introduction

It sounds like a paradox, but Monte Carlo simulations and the Markov-chain
theory of polarity generation [40] make it clear: Increasing the molar fraction
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X of a symmetrical molecule G forming a solid solution H;_xGx with the
centrosymmetric lattice of a dipolar molecule H can induce polar properties
(pyroelectricity) for the solid solution material (0 < X < 1).

In case a solid solution H; xGyx is existing for the entire range of composi-
tion, a maximum of net polarity can be obtained (Fig. 2.1b and 2.1d) which
corresponds to a concentration X of symmetrical G molecules inducing a sig-
nificant dilution of H. The paradox refers to the fact that dilution of a cen-
trosymmetric lattice by symmetrical molecules results in a vectorial physical
property [67] being not allowed for the components H(s), G and also G(s) (s
stands for solid state). Furthermore, the phenomenon is predicted for condi-
tions which do not fulfill the general criterion established for growth-induced
polarity formation in molecular crystals such as channel-type inclusion com-
pounds [42, 43] or single component materials [40, 36]. For these cases, it is a
necessary condition for polarity formation upon growth of a centrosymmetric
seed crystal to have a difference in the attachment probabilities (dipole "up’
or "down’) P; and Pj; referring to distinct molecular fragments ¢ and j, such
as terminal functional groups (i = A = acceptor, j = D = donor) [40, 42].
The present study shows that polarity can form during the growth of a solid
solution H;_xGx even if P44 = Ppp.

The reason for this is simply that symmetrical G molecules give rise to ori-
entational selection ('up’ vs 'down’) exceeded by dipolar species H. This
orientational selectivity increases with the number of G molecules present in
the solid solution. However, as X is increased, the available fraction (1 — X)
of dipoles H being aligned in the same direction is reduced. Consequently, a
maximum of net polarity is expected somewhere in between X =~ 0.2 — 0.6
(Fig. 2.1b and 2.1d).

In the following sections, we present a formal description of the system along
with Monte Carlo simulations using assumed, but realistic molecular inter-
action energies for input parameters.

2.3 Definitions and General Survey

For any detailed introduction concerning a general discussion of growth-
induced polarity formation and its experimental confirmation, we refer here
to original work and reviews [40, 35]. A sur-view on literature reporting on
effects of polarity in solid solutions is given in Ref. [52].

For a demonstration of basic phenomena we assume to have organic molecules
featuring molecular interactions of the following type:

(i) Interactions of dipolar molecules H described as A—m— D (two possible
states for the dipole: | or 1):
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Figure 2.1: Four representative cases showing the variation of polarity | Xnet| with respect
to the molar fraction X of symmetrical molecules G in solid solutions H; _ x Gx with polar
molecules H.



Exa(—A---A-), Epp(—D---D—), Eap(—A---D—), where A/D are
acceptor /donor fragments, respectively.

E,(} --- 1), Egp(l --- 1), where p/ap are parallel/antiparallel lateral
interactions.

(ii) Interactions of symmetrical molecules G described as N —7 — N (single
state: |), where N = A or D:
Exny(=N---N-=), E,(]---|), with n denoting the lateral interaction.

(iii) Interactions between dipolar and symmetrical molecules:
Eun(—=A---N=), Epny(=D---N=), E,,({ ---|,1 - --|), where m reads

for mixed interactions.

We limit our discussion here to symmetrical molecules of the type A — 7 — A,
(N = A). Therefore, it is assumed to have Exy = Fay = Fa4 and Epy =
Eap, whereas in general E, # E,, # E,, # E,. To summarize, we will use
the following energies and energy differences:

Eap = Epn, Epp, Ean = Ean = Enn, Eop, By, Ep, E,
and
AEjy = Eapa — Eap, AEp = Epp — Eap, AE, = E, — E,,.

A similar description holds for symmetrical molecules of the type D — 7 — D,
(N =D).

Referring to the introduction, we consider only cases where AE, > 0, i.e.
where molecules exceed either no lateral alignment (channel-type inclusion
compounds) or are aligned in anti-parallel fashion (centrosymmetric single
component structures).

As already extensively studied [40, 43, 36], a basic requirement for polarity
formation in a centric structure of dipolar species is to have a difference of
energy AE; = AE4 — AEp being non zero. Considering that the preferred
longitudinal interaction is —A---D—, AE; can be interpreted as the dif-
ference between the appearance of two types of defects, namely —A--- A—
(probability of appearance Ps4 driven by E44) and —D - - - D— (probability
Ppp driven by Epp). Moreover, it has to be emphasized that these defects
may arise only for differences AE, and AEp which are sufficiently small.
This can be easily understood by the example of strong synthons —A--- D—
leading to almost no creation of defects, even if AE; # 0. A real example
is p-nitroaniline (centrosymmetric structure) featuring strong —NH---O—
interactions and showing almost no second harmonic generation effect for
chemically very pure samples [48].
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In case of solid solutions, AE; # 0 is not anymore a necessary condition
for polarity formation, because the deviation from 50 : 50 up/down can be
effected by symmetrical molecules: For AE; = 0, polarity can arise if the dif-
ference in the probabilities between docking a molecule H "up’ (—A--- N—) or
"down’ (=D --- N—) and a molecule G is sufficiently high. This corresponds
to the energy difference E4y — EFpy. As we limit the study to N = A, here
the difference is described by Exq — Eap = AFE 4.

The creation of polarity by symmetrical molecules G (AE4) can interfere
with that arising from the dipolar molecules (AE}), leading thus to four
cases represented in Fig. 2.1. On the vertical axis, Xt = Xa(}) — Xp(1)
(X4, Xp, molar fractions of H molecules in the solid with the acceptor- and
donor-terminal oriented towards the nutrient, respectively) is a measure for
net polarity [40]. On the horizontal axis, we have the molar fraction X of
symmetrical molecules in the solid solution. The dotted line with derivative
—1 is the asymptotic limit for any of the curves in (a) to (d): All curves in the
limes (limx _,1 Xpet) are joining this line and no curve of X, can surpass it
at any X. The four cases presented in Fig. 2.1 can be interpreted as follows:

(a) In many centrosymmetric crystal structures, dipolar molecules pack
into sites where on average the molecular orientation is 50 : 50 %. In
such structures there is obviously no strong AFE, responsible for an
anti-parallel alignment, nor are there strong synthon interactions to
form e. g. polar chains. However, already a small AE can introduce a
significant polarity for X = 0 [40]. Because of the absence of a strong
synthon interaction —A - -- D—, the insertion of symmetrical molecules
will essentially give rise to a dilution, i. e. reduction of the intrinsic po-
larity. In terms of energy, absence of selectivity effected by symmetrical
molecules G can be explained by Fyy — Fpy = AE4 = 0. Recently,
this was demonstrated for 4-chloro-4’-nitro-stilbene, forming a solid
solution with 4,4’-dinitrostilbene over the entire range of composition
[52].

(b) In that case, polarity arises from H but also G molecules. Because
of AE4 # AEp (AE; # 0) there is an intrinsic polarity at X = 0.
Moreover, the non-zero difference between E y and Epy (AE4 # 0)
enhances the selectivity for 'up’ vs 'down’, leading to a mazimum of po-
larity for X > 0. This case corresponds to molecules exhibiting moder-
ately strong —A - - - D— interactions, i.e. AE4 and AEp are sufficiently
small to give rise to polarity, but AF, is sufficiently high to give selec-
tivity in the mixed interactions, (remind that AE4 = Eqy — Epy is
responsible of polarity induced by G molecules).
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(c) There is a miscibility gap, because of two different structures for H(s)
and G(s). At both ends of the horizontal axis polarity increases due
to the effect of AE; and AE4. Preliminary results for 4-cyano-4’-
ethynyl-stilbene (H) and 4,4’-dicyano-stilbene (G) showed such kind of
behavior.

(d) This is the case of special interest, because polarity is effected only by G
molecules. The curve starts at both sides with zero polarity and passes
through a maximum, just because of the effect of Eqn vs Epy (AE 4 #
0). This case is typical either for strong —A--- D— interactions, or
for molecules presenting no significant difference between —A--- A—
and —D---D—. In the first case, a highly negative E4p prevents the
formation of any kind of defects between dipolar molecules, (so that
Xnes is zero at X = 0), but provides a high selectivity for H molecules
effected by G entities with respect to 'up’ vs '"down’. In the second case,
no polarity may arise at X = 0 because of AE; = 0.

The influence of the strength of a —A--- D— interaction on polarity forma-
tion in solid solutions is summarized in Table 2.1: For a symmetrical molecule
of type A—m— A, (assuming that the interactions —A--- A—and —D--- D—
are weak), tuning of polarity in solid solutions is possible just by modifying
the interaction strength —A---D—. Indeed, this interaction is responsible
for AE4 = Eaxn — Epy, and therefore responsible for a modification of po-
larity by symmetrical molecules G. It has to be noted that the same kind of
results can be obtained for G molecules of the type —D--- D—.

In the next sections we illustrate basic phenomena for case d) by use of Monte
Carlo simulations and an analytical stochastic theory.

2.4 Monte Carlo Simulations

For Monte Carlo simulations [66] we consider the following model: Starting
from a substrate layer, the growth of crystals is described by the attach-
ment of entire layers of molecules one after another. Each layer consists of
a square lattice with lattice sites being occupied either by a H molecule,
oriented ’down’ or 'up’ (with respect to the growth direction), or by a sym-
metrical molecule G. Therefore, a site can be in one of three possible states
(down, up, neutral), while empty sites are not allowed. The molecules of the
uppermost layer are subjected to thermal relaxation with respect to (i) the
orientation of the dipole in case of the H molecules, (ii) an exchange of a H
molecule with a G molecule and vice versa. Thermalization of molecules at
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Table 2.1: Influence of the strength of an —A - - - D— interaction on the resulting polarity
(Xpet) for solid solutions between a dipolar molecule H (A — 7 — D) and a symmetrical
molecule G of the type A—7m— A. The first two lines refer to conditions for having X, ¢ # 0
at X = 0. The fourth line indicates selectivity effected by G molecules between up’ and
"down’. The last line refers to representative cases shown in Fig. 2.1.

—A---D— moderate
interaction weak moderate strong to strong
AEy = AEs — AEp AEf #0 AEf #0 AEf #0 AEf =0
Creation high moderate low moderate
of defects Eap X Eaa,Epp | Eap < Eaa,Epp | Eap < Eas,Epp to low
Polarity
at X — 0 yes yes almost no no
Selectivity effected no yes yes yes
by G molecules Epn ® Ean Epn < Ean Epn < Ean
Corresponding 2.1a 2.1b 2.1d
Figure dilution maximum polarity by dilution

defined sites is effected by taking into account four nearest neighbor interac-
tions to molecules within the layer and the longitudinal interaction with the
corresponding molecule of the previous layer. As crystal growth is assumed
to take place near equilibrium (slow growth rate), the chemical potentials of
the two molecules are considered to be equal in the solid and in the gas phase,
Le pshd = 18 and pfd = u&°. The chemical potentials of the gas phase
are given by those of a mixture of two ideal gases with the molar fractions
1 — Xgas for the H molecules and X, for the G molecules, respectively, (see
[92] for further details). After equilibration, the state of the surface layer is
frozen and a subsequent layer is attached, defining the new surface layer for
undergoing thermalization. This process is repeated until a stationary state
(concerning polarity) is reached by a subsequent addition of layers.

For the thermalization of a layer, the following single molecule flip/exchange
was applied by using a modified Metropolis algorithm:

1. A lattice site is selected randomly.

2. Given the actual state of this site, a ¢rial state is defined by choosing
one of the two other possible states randomly (i.e. with equal proba-
bility of 0.5).

3. The acceptance ratio r between these two states is calculated:

Ap—FEtrial+Factual)/kBT
)

r= e( A,u = Mtrial — Mactual,
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where kg is the Boltzmann constant and 7' the temperature of the
system. Fiia and F,ua are the energies of the two states. Note
that the chemical potential of H molecules is the same for both dipole
orientations.

4. If r > 1, the trial state is accepted, otherwise it is taken with proba-
bility r.

5. Steps 1 - 4 are repeated until thermal equilibrium is reached.

As we are interested in the polar properties of as grown crystals and not in
details of the process itself, thermodynamical arguments are sufficient for the
simulation and therefore no kinetic aspects were included here.

In addition to Monte Carlo simulations, an analytical description for the
system has been undertaken in terms of a Markov mean-field process for the
three different states (down, up, neutral). For a detailed description of the
analytical theory and a thorough discussion comparing the two approaches,
see Ref. [92].

2.5 Results

For an illustration of the theoretical discussion given above we show the in-
fluence of (i) the longitudinal energy difference AE4 = AE), (see Fig. 2.2
and 2.3), and (ii) the lateral energy difference AE, (see Fig. 2.4 and 2.5) on
the formation of polarity (Xpet). All energies are given in kJ/mol. For the
entire analysis the following interaction energies were kept constant:
Esa=FEpp = FEay = Eny = =2,

E, =-2,

E,=-2E,=-3.

Note that the condition F44 = Fpp leads to zero polarity at X = 0 as ex-
plained above (AE; = 0). Sufficiently negative values for E,, and E,, ensure
formation of a solid solution at least for a small range of X.

In case (i), the series E4p = Epy = —10, —8, —6 was chosen with E, = —1,
leading to the following energy differences: AE4, = AEp = 8,6,4 and
AFE, =1 (Fig. 2.2,2.3).

In case (ii), the series E, = —1,0,1 was chosen with E4p = Epy = —10,
resulting in AF, =1,2,3 and AE4, = AEp = 8 (Fig. 2.4,2.5). The temper-
ature was set to 7' = 300 K.

Calculations were done with the Monte Carlo method (lattice size: 100 x 100;
single layer equilibration time: 1000 Monte Carlo steps per lattice site on av-
erage; growth equilibration time: 50 layers; measurement interval: one layer;
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measurement range: 200 layers; see [92] for details) and the Markov mean-
field model presented in [92].

The variation of X, with respect to the concentration X of symmetrical
molecules G is shown in Fig. 2.2 and 2.4. Starting by X, = 0 and X = 0,
polarity is formed by the inclusion of symmetrical molecules G, passing a
maximum within 0 < X < 1, decreasing and approaching a gradient of -1
in the limes X — 1. As expected, a larger value for the energy difference
AFE,4 = Esny — Epy enhances the selectivity between 'up’ and 'down’ states
for the polar molecules H and, therefore, leads to a higher maximum X,
(Fig. 2.2). On the other hand, larger values of AE, stabilize the centric ori-
entational state of the crystal (because E,, < E,) and consequently weaken
the effect of polarity formation (Fig. 2.4).

In both cases, Monte Carlo simulations and the analytical stochastic ap-
proach [92] are in very good agreement. As shown in Fig. 2.6, snapshots
of Monte Carlo simulations for three different values of Xg,s indicate that
symmetrical molecules G are randomly distributed within the layer, showing
virtually no tendency for clustering. Given this condition, the system can be
described satisfactorily by a mean-field approach.

Because chemical potentials were taken into account in both models (Monte
Carlo simulations and analytical theory), the fractions of H and G molecules
in the solid phase can differ from those in the gas phase. This effect is shown
in Fig. 2.3 and 2.5, which represent the distribution between the molar frac-
tions of the symmetrical molecules G in the two phases, (Xgas vs X). Further
insight to the systems can be gained by looking up supplementary material.

2.6 Conclusion

The effectiveness of the concept Growth and Design is made evident by Monte
Carlo simulations which show for the first time that polarity in solid solutions
can be tuned for a wide range of X,. These calculations are considered a
base for the search of real molecules. Fortunately, maximum net polarity
is obtained for a system with relatively low X as the limiting asymptote in
Fig. 2.1 features a negative derivative. This makes it much more probable
for finding real systems, because dipolar and symmetrical molecules do in
general not crystallize in isomorphous structures. Therefore, a miscibility
gap (Fig. 2.1¢) is likely to encounter. This may not work out to a problem if
X can be kept sufficiently low, as high X . values may be reached before a
miscibility gap is limiting further increase.

Calculations support the idea that in the case of polarity tuning by solid
solutions, the interaction F4p is most important (Table 2.1): Best molecules
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Figure 2.2: Polarity X, vs dilution X by symmetrical molecules G in the solid state.
Longitudinal energy differences AE4 = AEp: 8, 6, 4 [kJ/mol], a) - ¢). AE, = 1kJ/mol,
T = 300K. Points: Monte Carlo simulations. Lines: Markov mean-field model [92]. Error
bars for results of the Monte Carlo simulations are too small to be shown here. Dotted
line: Asymptotic limit for X, vs X.

feature low energies |Ea4|, |Epp| and a largest possible Exp < 0 (N =
A). Consequently, dipolar molecules which can undergo hydrogen bridging
are most interesting for being tested. Experiments along these lines are in
progress. Preliminary results for p-nitroaniline and other centrosymmetric
structures of H molecules support present theoretical findings.

16



1.0

0.8 _
0.6 <) _
X r i
04} b) .
i D ]
0.2 -
. ()
0 \ \ \ \
0 0.2 0.4 0.6 0.8 1.0

Molar fraction Xgas of symmetrical molecules G in the gas phase
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symmetrical molecules G in the gas phase. Longitudinal energy differences AE4 = AEp:
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distributed over the X axis. Dotted line: Distribution coeflicient of one.
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A4

Figure 2.6: Snapshots of Monte Carlo simulations for three different cases of Xgas (O,
0.53, 0.85) [92]. Energies [kJ/mol]: Eap = —10, Eaa = Epp = -2, E, = -1, Ep = -2,
E, = -3, E,;, = —2. Temperature: 300K. Blue: Polar molecules H in state ’down’. Red:
Polar molecules H in state *up’. Yellow: Symmetrical molecules G. Lattice size: 70 x 70.
Snapshots taken after 100 layers of growth.
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Chapter 3

Growth-Induced Polarity
Formation in Solid Solutions of
Organic Molecules:

Markov Mean-Field Model and
Monte Carlo Simulations

3.1 Abstract

A layer-by-layer growth model is presented for the theoretical investigation
of growth-induced polarity formation in solid solutions H;_xGx of polar (H)
and non-polar (G) molecules (X: molar fraction of G molecules in the solid,
0 < X < 1). The model is characterized by the assumption of thermal equi-
librium formation of adlayers, with respect to the up and down orientation
of the dipoles of H molecules and to an exchange of H and G molecules, while
previously attached layers are kept frozen. The model is analyzed by means
of a Markov mean-field description and Monte Carlo simulations. In solid
solutions, polarity results from a combined effect of orientational selectiv-
ity by H and G molecules with respect to the alignment of the dipoles of H
molecules and miscibility between the two components. Even though both
native structures (H,G) may be centrosymmetric, polarity can arise just from
the admixture of G molecules in the H crystal upon growth. An overview of
possible phenomena is given by random selection of molecular interaction en-
ergies within an assumed but realistic energy range. The analytical approach
describes sufficiently basic phenomena and is in good agreement with simu-
lations. High probabilities for significant vectorial alignment of H molecules
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are found for low (X < 0.2) and high (X > 0.8) fractions of G molecules,
respectively, as well as for ordered HG compounds (X = 0.5).

3.2 Introduction

Symmetry lowering at the surface of as grown sectors of molecular crystals
can cause the appearance of physical properties which may not be allowed
by the symmetry group of the bulk. In case these properties get kinetic
stabilization, growth-induced property formation is a true alternative to nu-
cleation.

In a series of theoretical and experimental papers we have investigated the
evolvement of a vectorial property (e.g. pyroelectricity) driven by a Markov
process of orientational alignment of polar molecules being attached to slowly
growing crystal faces (hkl) [40, 39, 5, 78]. Because of ergodicity, property
formation by a Markov process does not depend on the seeding state. In
that sense, growth-induced polarity formation is possible even for a seed be-
ing centrosymmetric.

In this work we investigate growth-induced polarity formation in two-com-
ponent crystals of organic molecules. Previous studies have demonstrated
experimentally the appearance or modification of physical properties due to
symmetry reduction by the admixture of guest molecules into a host crystal
upon growth (second-order nonlinear optical effects) [49, 86, 89, 90]. How-
ever, no formal and quantitative theoretical investigation on polarity forma-
tion in molecular solid solutions was ever published. We describe a growth
model showing that significant vectorial alignment can be obtained for a cen-
trosymmetric host lattice (h) of polar molecules (H) which undergoes solid
solution formation H; xGx by the inclusion of non-polar guest molecules
(G), crystallizing in a centrosymmetric structure (g), (X being the molar
fraction of G molecules in the solid solution, 0 < X < 1).

The model to be investigated is defined as follows: A two-component crys-
tal built up of polar (H) and non-polar (G) molecules is subjected to a slow
layer-by-layer growth. Among the possible processes which can occur during
the attachment of molecules on surface sites, only two are considered: (i)
The up or down orientation (|, 1) of the dipole moment of H molecules, and
(ii) the exchange of H and G molecules. Thermal equilibration with respect
to processes (i) and (ii) takes place only for the adlayer taking into account
longitudinal and lateral Ising-type nearest neighbor interactions, while the
substrate layer itself (i.e. the layer attached in the previous step) is kept
frozen. This is justified by the large energy of activation for dipole reversals
(H) or exchanges (H,G) in the bulk for molecular crystals considered here. In
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the limit of slow growth, it is assumed that thermodynamic arguments rea-
sonably well apply, i. e. kinetic effects are not required for polarity formation.
The evolution of the system is investigated by means of a Markov mean-field
description and Monte Carlo simulations, describing the orientational order
of vectors representing H molecules in the asymptotic limit of many attached
layers. In this model, polarity formation is analyzed along with solid solu-
tion formation, where novelty is focusing on a combined effect: Non-polar
molecules (G) can effect vectorial ordering of polar molecules (H) as a result
of growth. By random selection of molecular interaction energies constrained
within realistic intervals, an overview of possible phenomena is given which
may be or have been observed for real solid solutions H;_xGx [52].

In recognition of previous work on organic solid solutions and binary alloys,
the present analysis focusing on a quantitative prediction of polarity phe-
nomena has no precedent in literature [65, 93, 73, 87, 16, 64, 74, 63].

3.3 The Growth Model

The building blocks of the two-component system are organic molecules of
the following type: Host (H) molecules A — 7 — D, (A: electronic acceptor
terminal; D: electronic donor terminal; 7: delocalized m-electron system con-
necting A and D), carrying a dipole moment p,, pointing from A to D; guest
(G) molecules N — m — N, (N: functional group, either A or D), featuring
no dipole moment.

Crystal growth is considered from the gas phase at constant temperature T
and pressure P. For a sufficiently low pressure, the work for a change of
volume can be neglected, i.e. PAV =& 0. The molar fractions of the host (H)
and guest (G) components in the gas are given as 1 — Xga5 and Xy, respec-
tively (0 < Xgos < 1) and chemical potentials are specified by p%° and pg".
For a number of molecules in the surrounding gas being much larger than
in the growing crystal, the gas phase is considered a reservoir, leaving molar
fractions and chemical potentials unchanged (Xgas, %", % are constant).

It is assumed that the crystal grows layer-by-layer from any seeding state,
with molecules being arranged on a 2D square lattice. Empty or multiply
occupied sites are not allowed. For the particular type of molecules involved
(elongated principal axis), only one degree of freedom for the attachment of
admolecules on a surface site is taken into account: Polar molecules can be
attached either parallel (1) or anti-parallel (]) with respect to the projection
of their dipole moment onto the growth direction, pointing their donor (D)
or acceptor (A) terminal toward the nutrient, respectively. Macroscopic po-
larity formation originates from an unequal ratio of these two orientational
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states of H molecules. For non-polar molecules a sole attachment possibility
(]) is indicated by the molecular terminal (V). Consequently, the occupation
of a lattice site is uniquely characterized by one of the states {A, D, N}.
The growth model is based on the following main assumptions: (i) The
growth of the crystal proceeds layer-by-layer, i.e. a new layer is formed after
the preceding layer is completed. (ii) The surface layer is subjected to ther-
mal relaxation with respect to the orientational state (1,J) of H molecules
and to the exchange of H with G molecules and vice versa, i. e. in terms of the
three states {A, D, N}. Thermal relaxation of the surface layer takes place
after all the molecules are attached. (iii) Formerly grown layers are kept
frozen when a new layer is attached. This may be justified due to the high
activation energy for a 180° reorientation (H) or exchange (H,G) of molecules
in the bulk for elongated prolate-type molecules. (iv) Crystal growth takes
place near thermal equilibrium, i.e. the time for the growth of a layer is
larger than the surface layer relaxation time.

Thermal relaxation of an admolecule on a surface site is effected by taking
into account nearest neighbor interactions with molecules of the same layer
(lateral) and the interaction with the molecule in the previously attached
substrate layer on the corresponding site (longitudinal). The interaction en-
ergies depend on the type (H,G) and the directional state (H) of the two
molecules involved. Laterally, isotropic interactions are assumed. Consid-
ering H and G molecules with similar shapes and crystallizing in identical
crystal structures, one set of interaction energies is sufficient in this model
and defined as follows:

1. Interactions between H molecules:
Longitudinal: Exs (—A---A—), Epp (=D---D—),
Eup (A---D—,—D---A-).
Lateral: E, ({ ---1,7---1), Egp (} --- 1,1 --- 1), where p, ap stands
for parallel and anti-parallel, respectively.

2. Interactions between G molecules:
Longitudinal: Exy (=N ---N—).
Lateral: E, (|---|), with n denoting neutral.

3. Interactions between H and G molecules:
Longitudinal: Ex4 (-N---A—,—A---N—-),
Enxp (~N---D—,—D---N-).
Lateral: E,, ({ ---|,1---|), where m reads for mixed.

For an illustration of the growth model with corresponding interaction ener-
gies, see Fig. 3.1.
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Given the assumption of crystal growth taking place near thermal equilib-
rium, we are allowed to set pg = p5° and ug = pé°, where py and pg are
the chemical potentials of H and G molecules in the adlayer, respectively. The
chemical potential is the same for both orientations (1,J) of the H molecules
in the solid.

The chemical potentials of the two components in the gas phase are approx-
imated by those of a mixture of two ideal gases with molar fractions 1 — X,
(H) and Xg,s (G) [50]. Being interested in solid solutions of components with
a similar structural shape, we set my = mg = m, where my and mg are the
masses of H and G molecules, respectively. With these approximations it is

pr = i = po + kpT In(1 — Xgas) (3.1a)
and
pe = pEe = po + kT In Xy (3.1b)
where , 32
po = kgT'In (kBPT (QWTli’leBT) ) (3.1¢)

is a system parameter, kg is the Boltzmann constant and h is the Planck
constant.

In view of a growth-induced process, keeping the previously attached layers
frozen, we describe a state showing a minimal free energy F' only for the
surface layer, but not for the bulk. Therefore, the growth process leads to
a metastable bulk state, being justified only if re-orientational flips or ex-
changes of molecules are not taking place after the attachment of subsequent
layers. Moreover, as we assume that polarity formation in the solid solution
arises from the orientational states (1, ]) of H molecules only, thermodynam-
ical arguments are considered sufficient for describing the growth process and
no kinetic aspects are taken into account here.

The growth process has reached stationarity, if the molar fractions of sites be-
ing in states {A, D, N} become approximately the same for all subsequently
attached layers differing only within the range of thermal fluctuations. In
this work the main analysis is focusing on this regime. Two macroscopic
quantities are defined for this asymptotic state: (i) The molar fraction of G
molecules X in the solid (0 < X < 1). (ii) The net polarity X, given by the
difference between the molar fractions of H molecules, oriented downwards
() and upwards (1) (=1 < Xyt < 1). Physical quantities having their ori-
gin in polar properties of the molecules are proportional to Xy, (e.g. the
electrical polarization P; in a particular growth sector).
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Reservoir: Mixture of two ideal gases H;_x,,.Gx,,,

with chemical potentials p5°, p&®

Growth direction (q)

IR L
S R
S I T

Crystal face (hkl)

Figure 3.1: Schematic illustration of the layer-by-layer growth for solid solutions Hy_ x Gx
of polar (H) and non-polar (G) molecules (0 < X < 1). X, is the molar fraction of G
molecules in the gas. Arrows refer to projections of the dipole moments of H molecules
with respect to the growth direction (g). Adlayers are in thermal and diffusive contact
with the surrounding gas (reservoir), while previously attached layers are kept frozen.
Eup, Esa, Epp, Ena, Enp, Enn and E,, E,,, E,,, E,, correspond to nearest neighbor
molecular interaction energies between adjacent layers (longitudinal) and within layers
(lateral), respectively.

The layer-by-layer growth, the square lattice symmetry and the present set
of energies are sufficient for an investigation of the principal properties of
growth-induced polarity formation in solid solutions. However, crystal struc-
tures generally require a more detailed description in terms of lattice sym-
metries, interaction energies and growth process. For example, non-isotropic
interactions in connection with crystal growth along steps or kinks should
be considered. Furthermore, the contributions of different crystal faces (hkl)
must be taken into account separately for a quantitative prediction of macro-
scopic polarity. In this respect, the growth model presented along this work
attempts to work out fundamental phenomena based on a thorough reduc-
tion, however, being aware of the complexity of real systems [26].
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3.4 Mathematical Treatment

The present growth model for solid solutions is described in terms of a Markov
process. In that frame it is an extension of the Markov mean-field model
applied previously to single-component crystals [40]. Complementary to an
analytical theory, Monte Carlo simulations were performed.

3.4.1 Markov Mean-Field Description

Originally, the description of the layer-by-layer growth as a Markov process
was applied to investigate the evolution of polarity in channel-type inclusion
compounds [43, 31, 30], where H molecules form isolated 1D chains with-
out lateral influence on polarity formation. The successive attachment of
admolecules, where the attachment probabilities only depend on the longitu-
dinal interaction with the molecule on the corresponding site in the substrate
layer, represents a stochastic process fulfilling the criterion of a homogeneous
Markov chain with constant transition probabilities [13].

By taking into account the influence of lateral interactions on the attachment
probabilities, the system does not correspond to a Markov process, since the
occupation of a site by an admolecule depends both, on the interaction with
the substrate molecule and on the interactions with the neighboring ad-
molecules. However, if we consider the lateral neighborhood of the substrate
layer, instead of that of the actual layer, the Markov property is met again.
This is justified because we account for lateral interactions only within a
mean-field approximation: Here it is assumed that in the limit of a large
number of attached layers, the fractions of sites being in states {A, D, N}
in two successive layers are the same within statistical deviations. Indeed,
the equivalence of these fractions is exactly the condition for the asymptotic
state of the system.

The Markov chain is defined by the sequence {S,} of admolecules being at-
tached on a given lattice site in successive layers ¢ = 1,2, ..., oo starting from
a seeding state (¢ = 0). S, takes values from the set {A, D, N}, referring
to the attachment of a H molecule oriented downwards ({), a H molecule
oriented upwards (1), or a G molecule, respectively. The probabilities for
S, = i with 4 € {A, D, N} in layer ¢ correspond to the molar fractions of
sites being in state {A, D, N} in this layer. They are denoted by X%, X},
and X7, respectively.

Given the particular geometrical conditions in the present model, (square
lattice, nearest lateral neighbors), two Markov chains have to be considered
for an adequate description: One for sites belonging to the sublattice ()
with x + y = even (z,y: lattice coordinates) and one for the sublattice (/1)
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with = + y = odd [40]. Separate Markov processes and molar fractions X;*?,
i € {A, D, N}, are necessary to account for the two sublattices g = I, 1.
The evolution of the two Markov chains (g = I, I]) is expressed by the matrix
equations

9,9+1 g g g 9,9
e _ (0 57 2 (b
9,9 _ )
XD - PAA PDA PNA XD ) (3-2)
xgr) \Phy Phy Phy) \XH

where (X%9 X% X%9) and (X%%", X% X%7") are the molar fractions
of sites { A, D, N} in the substrate layer (¢) and adlayer (¢ + 1), respectively
(g=0,1,2,...,00). For each ¢ > 0 holds

P is the transition probability that an admolecule, (specified by its molec-
ular terminal s € {D, A, N} oriented toward the substrate), will be attached
onto a molecule of the substrate layer, (specified by its molecular terminal
s' € {A, D, N} oriented toward the nutrient), belonging to a site of sublattice
g. This notation arises from the fact, that the probability is directly influ-
enced by the longitudinal interaction energy between the two terminals s and
s'. Based on the assumption of thermal equilibrium formation of an adlayer,
the transition probabilities P%, are given by normalized Gibbs factors

1
P = g, (3.4a)
with
{A,D,N}
Zy = Z P10 o€ {A,D,NY, (3.4b)

being the normalization factor, (8 = 1/kgT). us refers to the chemical
potential of a H molecule, if s € {A, D}, otherwise to that of a G molecule
(s = N). Note that transition probabilities P, depend on the molar fractions
X7 i € {A,D,N} in the substrate layer (¢) because of the energy terms
[, defined in Table 3.1.

Given the particular expressions for the chemical potentials, see Egs. (3.1),
Eq. (3.4) simplifies to .

P = Z,Ixse_ﬂff's, (3.5a)
with
{4,D,N}
=Y ze P, §e{A D N}, (3.5b)
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and z; = 1 — Xgs, if s € {A, D}, otherwise z; = Xgo5 (s = N).
In view of the Markov chain description, the condition that the growth pro-
cess has reached a stationary state, is expressed by

X3 Pip Php Prp\ (X3
X% = P,ZA PgA P]%A XgD ) (3-6)
X% Piv Phy Py \X%

i.e. equal molar fractions in the substrate layer and the adlayer, for the two
sublattices g = I, II separately. Eq. (3.6) sets up a system of coupled non-
linear equations for the stationary molar fractions X%, XiI XTI XL = XTI
X 1. For details on the numerical solution, including an efficient criterion in
order to find only physical solutions, see Appendix 3.8.

Given the molar fractions in the stationary state, the macroscopic quantities
X and X, are obtained as follows:

XI XII XI XII
X=1—(2at2a  Ap*Ap ) (3.7)
2 2
XL+ xi o XL 4 xi
Xpey = A4 -2 =—D (3.8)

2 2
The present analytical description reproduces the case of polarity formation
in single-component crystals, if Xg,5 = 0 [40].

3.4.2 Monte Carlo Simulations

The Monte Carlo procedure consists in a successive attachment and thermal
equilibration of adlayers, starting from a seed layer. Given that each lattice
site is in one of the states {A, D, N}, an adlayer can take up 3"t possible
configurations, where Ny, is the number of lattice sites in a layer. At thermal
equilibrium, the probability p, to find an adlayer in configuration v, with
Ny H molecules, N, — Ny G molecules and energy E,, is given by the Gibbs

factor
%eﬂ(NHuH-I—(NL—NH)HG—EV). (393)

Z is the grand canonical partition function

by =

Z = % Z eP (NHHH‘F(NL*NH)NG*E/\), (3.9b)

Npg=0 X

the second sum going over all configurations A with Ny kept constant. En-
ergies F, include nearest neighbor interactions within the adlayer and with
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Table 3.1: Interaction energies f¥_ for the attachment of an admolecule (specified by its
molecular terminal s oriented toward the substrate) onto a substrate molecule (specified
by its molecular terminal s’ oriented toward the nutrient) consisting of two parts: (i)
Longitudinal energy Ey, with s,s' € {4,D,N}, and (ii) lateral mean-field estimate,
depending on the sublattice g to which the molecules belong. The molar fractions X7,
refer to those of the substrate layer (¢). 2, is the coordination number, being 4 for a
square lattice.

Sublattice Terminal
Energy term f5_

~

g S S

I A D  Eap+ 2. (X{E,+ XJE,, + X{'E,,)
I A A  Eaa+2.(XYE, +XVE,+ X{E,)
I A N Exa+2(XYE,+XLE, +X{E,)
I D D Epp+z (X{E,+ X}E,, + XJE,)
I D A Eap+2z (XVE,+XJE, +XUE,)
I D N Exp+2z (XVE,+XLJE, +XIE,)
I N D  Exp+z2.(XYE,+ XJE,, + X{E,)
I N A Ena+z2 (XY{E,+XJE,+ X{E,)
I N Exy+z.(XYE,+XJE, + X{E,)

Sublattice Terminal
Energy term f5_

~

g S S

I A D Eap+zi(XLE,+ XLE, + XLEn)
IT A A  Esan+z(XLE,+ XLE,+ XNEn)
II A N  Eya+z2 (XLE,+XLE,+ XLE,)
II D D  Epp+z (XLE,+ XLE, + XLE,)
I D A  Eap+z2 (XLE,+ XLE, + XLE,)
II D N Exp+z2(X\E,+ XLE, + XLE,)
II N D  Exp+z2 (XYE,+ XLE,, + XLE,)
II N A  Ena+z2.(XiEyp+ XHE, + XLE,)
II N N  Exny+ 2 (XYE,+XLE, +XLE,)
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the substrate layer. Given Eqgs. (3.1) for the chemical potentials py and g,
Egs. (3.9) can be written as

1
Dv = 5(1 - XgaS)NHXgAz%_NHe_ﬂEV; (3.10a)
with
Ny
2= D (1= X)W X gt Nue 0P, (3.10b)
Ng=0 X

Thermal equilibration of adlayers is achieved by means of a Metropolis algo-
rithm, taking into account single molecule flips and exchanges [66, 58]. For
details, see Appendix 3.9.

3.5 Results

Two factors determine growth-induced polarity formation in solid solutions
Hi_xGx: (i) Orientational selectivity of H molecules with respect to a down-
ward (}) or upward (1) orientation and (ii) miscibility between H and G
molecules. For each factor, the characteristic behaviors were analyzed and
the driving forces in terms of interaction energies responsible for this behav-
ior were determined. Both, the Markov mean-field (MMF) description and
Monte Carlo simulations (MCS) were applied, so that a comparison between
the two approaches was possible.

Throughout the analysis we restrict ourselves to G molecules of the types
A—m—A(N=A)or D—7n—D (N = D), since many known examples
are of these types [26]. In order to reduce the number of independent inter-
action energies, the following assumptions are made concerning longitudinal
interaction energies involving G molecules:

Ena = Enn = Eaa, (3.11a)
Enxp = Eap, (3.11b)
for N = A and
ENA = EAD, (312&)
Enp = Eny = Epp, (3.12b)

for N = D. All energies were chosen within an assumed but realistic energy
range of —10...2 kJ/mol.

For the reason of clarity, the description made use of single energies so far.
However, given the particular mathematical form of the Markov mean-field
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model as well as the Monte Carlo procedure, the system is determined only by
differences among longitudinal energies and lateral energies, independently.
Therefore, without loss of generality, the following energy differences are
introduced:

AE, = Eqs — Eap, (3.13a)
AEp = Epp — Eap, (3.13b)
AE, = E, — E,,, (3.13c)
AE,, = Ey — Eqp, (3.13d)
AE, = E, — E,,. (3.13¢)

These five energy differences, temperature 7" and the value of X, define the
complete set of input parameters for the analysis. The longitudinal energy
differences AE, and AFp are restricted to positive values only, because
of a generally higher stability for —A--- D— interactions as compared to
—A---A— and —D - -- D— for the type of molecules considered here. Being
interested in formation of polarity (and not in diminution of polarity in polar
crystals), crystal growth is only considered for centrosymmetric packings of
H molecules, where AE, > 0 [40]. Note that energy differences in Egs. (3.13)
are subject to the constraint that single energies stay within the range of
—10...2 kJ/mol.

3.5.1 Orientational Selectivity

In single-component crystals of H molecules, polarity arises if there is a non-
zero difference between the attachment probabilities P4y (—A---A—) and
Ppp (—D - -- D—) [40]. In solid solutions H;_ xGx, additionally to this selec-
tivity of H molecules by H molecules, polarity may arise from the difference
of attachment probabilities Py4 (—N---A—) and Pyp (—N---D—) when
docking H molecules with the acceptor (A) or donor (D) terminals onto G
molecules, respectively. In terms of interaction energies, orientational selec-
tivity is determined as follows:

(i) Interactions between H and H molecules: AE,, AEp and AE,. Known
from studies on single-component crystals of H molecules, a necessary con-
dition for polarity formation upon growth of a centric face (AE, > 0) is
to have a non-zero energy difference between AE, and AEp, i.e. AE; =
AE, — AEp # 0 [40, 39, 43]. Oppositely, an increase of AE, tends to sta-
bilize the centric packing of H molecules and consequently lowers the effect
of polarity formation. Therefore, this energy difference is not considered a
driving force of polarity formation.

(ii) Interactions between H and G molecules: Fy4 — Exp. A non-zero value
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results in different attachment probabilities for H molecules being docked
with the acceptor (A) or donor (D) terminals onto G molecules (terminal
N), respectively, and therefore in the formation of polarity. With Egs. (3.11)
and (3.12) this energy difference corresponds to AE, in case of N = A and
—AFEp in case of N = D. Due to the relations concerning longitudinal en-
ergy differences imposed by Eqgs. (3.11) and (3.12), it follows that only one
type of G molecules (N = A, D) has to be considered, since the two cases are
equivalent (only differing in the sign of X, ) if the values of E44 and Epp
are interchanged. Here, exclusively N = A is chosen.

The energy differences AFE,, and AFE, have no direct influence on the ori-
entational state of H molecules. However, being the determining factors for
the miscibility between H and G molecules, they have a strong indirect im-
pact on polarity, which is discussed below. For the moment, these energy
differences are chosen so that solid solutions can form over the whole range
of 0 < X < 1.

According to the values of the two driving forces of polarity formation, AEy
and AFE,, i.e. (i) and (ii), respectively, three principally different situations
occur with respect to the relation X, vs X (for the variation of X, the value
of Xgas passes continously the range [0, 1], while all other input parameters
are kept constant):

(i) Dilution of intrinsic polarity: Selectivity by H molecules only, i.e.
AE, =~ 0and AE; < 0. Xpet(X = 0) < 0. The maximum of absolute
polarity is obtained at X = 0, i.e. for a single-component crystal of
H molecules. Insertion of G molecules in the solid solution H;_xGx
results just in a reduction of the total fraction 1 — X of H molecules
and therefore in a lowering of polarity. |X,e| decreases monotonically
to zero for X — 1 (see Fig. 3.2).

(i1) Coupled effect on polarity: Selectivity by H and G molecules, i.e.
AE,s > 0 and AE; # 0. Xpe(X = 0) # 0. G molecules increase
the effect of polarity formation in the solid solution H;_xGx. How-
ever, as X — 1, the available fraction 1 — X of H molecules is reduced
and consequently X, passes a maximum between 0 < X < 1. If
AE; < 0, inversion of polarity from negative to positive values takes
place between 0 < X < 1 (see Fig. 3.3).

(iii) Creation of polarity: Selectivity by G molecules only, i.e. AE4 > 0 and
AEf ~ 0. Xpe(X = 0) = 0. A single-component crystal of H molecules
features no polar properties. Only inclusion of G molecules in the solid
solution H; xGx results in polarity formation. Similarly to (ii), a max-
imum of X, is obtained between 0 < X < 1 (see Fig. 3.4). This case is
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of particular interest, since polarity formation, and therefore breaking
of the centric crystal symmetry, is effected only by centrosymmetric
molecules [91].

Clearly, for AE4 ~ 0 and AE[ & 0, no polarity results at all. In cases (ii) and
(iii), where orientational selectivity is effected by G molecules, X, always
passes a maximum value max X, > 0 within 0 < X < 1. This can be seen
by examining the derivatives of the curves at the boundaries of X: At X =1,
it holds —1 < dX,e/dX < 0, because insertion of polar molecules (H) into
a crystal of non-polar molecules (G) always increases |Xye|. As AE4 > 0,
H molecules are favorably attached onto G molecules with the acceptor (A)
terminal oriented toward the nutrient, i. e. X, increases in positive direction.
At X =0, dXyet/dX > 0, since G molecules favor donor (D) sites and, in
turn, cause H molecules to attach onto them, preferably with the acceptor
(A) terminal oriented toward the nutrient (AE4 > 0). These considerations
are only valid for AE, > 0, where the effect of orientational selectivity is
larger than that of dilution for small concentrations of G molecules.

For all situations, |Xye;| < 1 — X holds for any value of X.

3.5.2 Miscibility

The total extent of polarity in the solid solution H;_xGx scales with the
molar fraction (1 — X) of H molecules. Furthermore, the distribution of H
and G molecules on the lattice, i.e. their pattern in space, has an influence
on polarity formation, mainly with respect to the effect of the lateral energy
difference AE,. Therefore, miscibility between H and G molecules in the
solid has a large impact on polarity formation.

In the present model, miscibility is primarily determined by the lateral energy
differences AFE,, and AE, relative to AE,. Besides, it is also effected by
longitudinal energies, but as z; = 4, (while there exists only one neighbor per
molecule in longitudinal direction), they have a small influence on miscibility
compared to lateral energies.

Externally, the molar fractions in the solid (X)) can be influenced by changing
the available fractions of H and G molecules in the gas, i.e. Xga5. Xgps is
the only variable parameter effecting the value of X, without having another
impact on the system (contrary to the temperature 7"). Therefore, miscibility
and its consequence on polarity was investigated in dependence on X, for
given sets of interaction energies and constant 7. Four different cases were
identified:

(i) Full miscibility: Solid solution formation over the entire range of 0 <
X < 1. That is, principally any value of X can be obtained by varying
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Figure 3.2: Dilution of intrinsic polarity. Polarity Xyet vs molar fraction X of non-polar
(G) molecules in the solid solution H;_xGx. AE, =1, AE,, =0, AE, = —1 [kJ/mol],
T = 300 K. Lines: Markov mean-field model (a possible kink in the curves indicates a

phase transition, see text). Dots: Monte Carlo simulations (error bars are too small to be
shown here: all standard deviations ox,0x, ., < 0.003).
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Figure 3.3: Coupled effect on polarity. Polarity X,e¢ vs molar fraction X of non-polar
(G) molecules in the solid solution Hi_xGx. AE, =1, AE,, =0, AE, = —1 [kJ/mol],
T = 300 K. Lines: Markov mean-field model (a possible kink in the curves indicates a
phase transition, see text). Dots: Monte Carlo simulations (error bars are too small to be
shown here: all standard deviations ox,0x, ., < 0.003).
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Figure 3.4: Creation of polarity. Polarity X, vs molar fraction X of non-polar (G)
molecules in the solid solution H;_xGx. AE, = 1, AE,, = 0, AE, = —1 [kJ/mol],
T = 300 K. Lines: Markov mean-field model. Dots: Monte Carlo simulations (error bars
are too small to be shown here: all standard deviations ox,0x,,, < 0.003). Dotted line:
Asymptotic limit for X,e; vs X, no curve can pass this line.
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(i)

(iv)

Xgas correspondingly, though X vs X, curves may deviate consider-
ably from that of an ideal solid solution. Values of AE,, AFE,, and
AF, must be balanced to each other and are consequently relatively
small. Concerning polarity, any situation discussed above may occur.
See images (h) and (i) in Table 3.2.

Partial miscibility: At least one forbidden region (miscibility gap) ex-
ists in the range of 0 < X < 1 for which no solid solution H,_xGx is
formed. Mostly, insertion of G molecules in H crystals and vice versa
takes place up to certain percentage (see images (j) - (n) in Table 3.2).
Miscibility gaps appear for a wide range of combinations between lat-
eral interaction energies, therefore no clear tendency was seen. Gener-
ally, solid solutions with a very large max |X,e| at small X are only
partial miscible due to a high orientational selectivity by G molecules.
For the tuning of polarity, situations are of special interest, where X,
depends linearly on X, i.e. Xpoe & X (0< X <0.5) or Xpet &1 — X
(0.5 < X < 1), see images (k) and (1) in Table 3.2, respectively.

No miscibility: No solid solution formation for any value of 0 < X, <
1. Apart from a small percentage of impurities, H and G molecules form
just single-component crystals. Nearly pure H crystals are obtained if
AFE,, > 0 and AFE, > 0. Polarity arises mainly due to orientational
selectivity by H molecules (see images (a) - (e) in Table 3.2). G crystals
(with Xpe & 0) are obtained if AE,, < 0 and AE,, < 0 (see image (f)
in Table 3.2).

Intermediate compound: Formation of an ordered structure of H and G
molecules with constant X and X,.; values for the entire range of 0 <
Xgas < 1. Due to symmetry constraints (square lattice with isotropic
lateral nearest neighbor interactions), a checkerboard-like pattern of H
and G molecules with X = 0.5 and —0.5 < X, < 0.5 is the only
kind of intermediate compound which can arise in the present model.
Necessary condition is AFE,, < 0 (see image (g) in Table 3.2). Large
| Xnet| values may be obtained even for relatively large AE,, since H
molecules are almost entirely surrounded by G molecules within a layer.

Typical examples of X vs Xg,s curves for the cases (i), (ii) and (iv), re-
spectively, are shown in Fig. 3.5. For comparison, a curve for an ideal solid
solution is given by setting all energies equal to zero.

It has to be emphasized that the purpose of the present model is to describe
polarity formation in solid solutions H;_xGx. Herein, miscibility between
H and G molecules plays an important role. In this respect, cases (i) - (iv)
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Figure 3.5: Miscibility in solid solutions H; _ x Gx. Molar fraction X in the solid vs molar
fraction Xy in the gas of non-polar (G) molecules. 0 < X, < 1, uniformly distributed.
AE4 =4, AEp =2, AE, =1 [kJ/mol], T = 300 K. B Full solid solution. ¢ Intermediate
compound. A Partial solid solution. Non-filled symbols: Markov mean-field model. Filled
symbols: Monte Carlo simulations (error bars are too small to be shown here: all standard
deviations ox < 0.009).

above show qualitative behaviors of miscibility influencing polarity. However,
in consideration of the limitations of the model (e.g. the same packing for
H and G molecules with a minimal set of interaction energies) as well as the
formation of a metastable bulk state, it is not intended to give an accurate
measure of miscibility in solid solutions here.

3.5.3 Overview of Phenomena in (X, X,.;) Space

Accurate values of molecular interaction energies are principally accessible
by means of quantum chemical or classical force-field methods [82]. For a
quantitative analysis of polarity formation in a specific system these calcu-
lations are prerequisite [26, 83].

However, in order to provide a qualitative insight of possible evolutions of
polarity formation in arbitrary systems of H and G molecules, (underlying
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the conditions of the present growth model), the following probabilistic ap-
proach was applied: 50000 sets of interaction energies were picked out ran-
domly within the range of —10...2 kJ/mol. For each set a Markov mean-
field calculation and a complete Monte Carlo simulation were performed with
T =300 K and Xg,s = 0.25. The obtained (X, Xpe;) values were represented
in 2D histogram plots, see Fig. 3.6 (upper). The histograms show the density
distribution of (X, Xy ) results for the given energy range. From a statistical
point of view, these plots allow to make predictions on polarity formation
for any system, even though real energies are not known. Furthermore, they
show the interplay between orientational selectivity by H and G molecules
and miscibility between the two components, and provide a general compar-
ison between the MMF description and MCS.

Since N = A, the majority of (X, X,e) values lay on the positive half plane
(Xnet > 0). High densities occur for X values around 0, 0.5 and 1, respec-
tively (see below). On the positive half plane, the density distribution is
enclosed by the requirement X, < 1 — X, while the border line on the
negative half plane resembles the dilution cases of Fig. 3.2. Higher densities
are observed below the diagonal X, = X than above it (X, > 0), because
for the majority of situations the centrosymmetric packing of H molecules
is retained (strong influence of AE, > 0) and polarity arises only due to
inclusion of G molecules occupying preferably D-sites (see cases (k) and (n)
in Table 3.2). In these cases, it holds Xt < X.

About 18 % of (X, Xpet) values have a net polarity |Xpet| > 0.2, about 40 %
of that percentage belongs to intermediate compounds (0.49 < X < 0.51).
Only 1.5% of the energy sets have led to situations with |X,e| > 0.5. The
reason for these relatively small percentages is the strong lowering effect of
AFE,. Nevertheless, for X < 0.2 and X > 0.8 high densities are observed
featuring considerable polarity formation (0 < X,y < 0.2). Therefore, in or-
der to obtain polarity, there is no need for finding systems undergoing solid
solution formation over the entire range of X.

Fig. 3.6 (lower) shows the distribution of AE,, and AE, values (from the
above energy sets) corresponding mainly to (A) H crystals with little inclu-
sions of G, (B) and (D) solid solutions, (C) intermediate compounds, (E) G
crystals with little inclusions of H. In (AE,,, AE,) space these characteristic
cases of miscibility between H and G molecules are manifested by separated
regions with little overlap. The regions (B) and (D), where solid solutions
may be formed, appear as relatively small strips compared to (A), (C) and
(E). This explains the high densities in (X, X,e) space for X values around
0, 0.5 and 1, respectively. Additionally, total percentages of (X, X,e) values
in these regions are given. The lower percentage of single-component crystals
of G molecules than that of H molecules arises mainly due to AE4 > 0. With
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the given energy range (—10...2 kJ/mol) solid solutions may form for about
35% of the situations.

MMTF calculations using the same energy sets and temperature but Xg,s val-
ues of 0.5 and 0.75 have shown no significant differences, neither for (X, X,e)
density distributions nor for regions (A) - (E) in (AE,,, AE,) space. That is,
systems are mainly determined by interaction energies, while the influence
of Xgas (and chemical potentials) is marginal here.

Increasing the energy range (MMF calculations with ranges up to —50...10
kJ/mol were performed) has the effect that differences in the density dis-
tribution in (X, X,e) space become even larger, i.e. very high densities for
X values around 0, 0.5 and 1, respectively, and also along the diagonals
(Xnet = X and X, &~ 1 — X, respectively), but very low densities in be-
tween. However, while regions (A) - (E) in (AE,,, AEn) space expand with
increasing energy range, their separating lines stay unchanged. Therefore,
the subdivision in (AE,,, AE,) space represents a general property of the
present model and shows that solid solutions are only formed within a nar-
row band of AFE,, and AFE,, values.

Table 3.2 shows snapshots of grown layers from Monte Carlo simulations.
These images are considered representative because (i) selection is based on
Fig. 3.6, (ii) they cover most characteristic patterns arising in this model,
(iii) concerning Xt vs X relations, Monte Carlo simulations and Markov
mean-field description are in agreement for the chosen energy sets.

3.6 Discussion

3.6.1 Comparison between MMF Description
and Monte Carlo Simulations

For results of MCS in Fig. 3.2 - 3.6, the following simulation parameters were
used: 77, = 1000, 7¢ = 50, 75 = 200 and s;, = 32 x 32 (for definitions, see
Appendix 3.9).

In case of Fig. 3.2, 3.3, 3.4 and 3.5, simulations with longer equilibration
or sampling times as well as larger lattice sizes resulted in nearly the same
average values for X and X, differing only by smaller standard deviations.
That is, for these sets of interaction energies the chosen time scales are suffi-
cient, especially with respect to stationarity of the growth process, and finite
size effects are negligible.

In case of the 2D histogram (Fig. 3.6), proving validity of the simulation
parameters for each energy set was not feasible. However, for test runs with
500 energy sets using different simulation parameters, less than 7% of cor-
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Figure 3.6: Upper figures: 2D histograms showing density distributions of (X, Xpet) re-
sults for 50 000 randomly chosen sets of interaction energies in the range of —10...2 kJ/mol
(T =300 K, Xgas = 0.25). Resolution for both axis: 0.02. The number of energy sets is
considered sufficient for representative density distributions, because similar results were
obtained for smaller sets. For (a), centers of circles (with corresponding letters) locate the
14 representative MCS snapshots presented in Table 3.2. Lower figures: Distribution of
AE,, and AE,, values (from the same energy sets) corresponding to X values in the ranges:
(A) 0 < X <0.02, (B) 0.02 < X <049, (C) 0.49 < X < 0.51, (D) 0.51 < X < 0.98, (E)
0.98 < X <1, and total percentages of (X, X,,¢;) values in regions (A) - (E).
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Table 3.2: Representative snapshots of crystal layers from Monte Carlo simulations after
~ 250 growth steps (T' = 300 K, Xgas = 0.25, 77, = 5000, sp = 16 x 16). (a) - (e)
Single-component crystals of H molecules with minor inclusion of G molecules, X = 0. (f)
Single-component crystal of G molecules with minor inclusion of H molecules, X ~ 1. (g)
Intermediate compound, X = 0.5. (h), (i) Full range solid solutions, 0 < X < 1. (j) -
(n) Cases of partial miscibility. Black: H molecules with acceptor (A) terminal oriented
toward the nutrient (}). Gray: H molecules with donor (D) terminal oriented toward the
nutrient (1). White: G molecules (N = A). Numbers in parentheses: AE4, AEp, AE,,

AE,,, AE,, for corresponding cases [kJ/mol].

Centric packing of H; only few Almost random distribution of H and G;
(a) orientational defects; little selectivity by (h) selectivity by G; Xpet passes a
H, G; Xnet = 0; (3.2/0.3/4.3/2.6/5.1) maximum (> 0); (5.4/5.7/1.8/-0.8/-1.0)
Partial breaking of centric packing of H; ) . .
(b) many orientational defects; selectivity (1) Clu)s(ters s;sgé:;r:fxfsiﬁn(’gol;}" G;
. " net H
by H, G; Xne: > 0; (8.1/4.5/1.0/-0.5/-3.9)
(5.1/0.7/0.9/1.6/11.2)
. . Coexistence of different solid phases
Almost p.OI:M packing of H; strong . near a miscibility gap: Clusters of H
(c) selectivity by G; Xuet > 0; )] (centric packing) and G; Xoe; > 0;
9.3/1.6/0.4/0.5/4.8) g j Sopet = 05
(¢ (6.2/2.9/1.9/0.2/-2.9)
Partial breaking of centric packing of H; Centric packing of H with G occupying
(d) many orientational defects; selectivity (k) donor (D) sites; strong selectivity by G;
by H only; Xpet < 0; Xnet & X,0< X <0.5;
(1.1/5.6/0.9/2.0/3.9) (10.4/4.8/8.7/-0.2/1.2)
Almost polar packing of H; strong . . ~
(e) selectivity by H only; Xnet < 05 (1) S(c]rgn<g g?lictll.v‘(tg;/yl ’67}1)\’;7231/1_;8))(,
(1.4/9.2/0.4/2.6/4.2) . AT . . . .
Dilution case: Random distribution of
(f) Xnet # 0 (3.2/2.1/0.5/-6.5/-10.9) (m) G; selectivity by H only; Xnet < 0;
(0.8/5.4/0.6/0.0/2.3)
Checkerboard-like pattern of H and G; Clusters of H({)/H(1), H({)/G and
(g) selectivity by H, G; 0 < Xnet < 0.5; (n) H(1)/G (centric patterns); Xnet > 0;
(7.8/1.6/3.5/-6.2/-3.0) (2.2/1.8/4.5/-1.4/0.7)
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responding (X, X ) values deviated more than +0.02 from each other. For
a difference of +0.04 the percentage became less than 1%. In consideration
of the large differences in the density distribution (logarithmic scale), these
deviations are negligible for the purpose of an overview.

In Fig. 3.2, 3.3 and 3.4 the agreement between results from the MMF de-
scription and MCS is good. Generally, the analytical approach slightly over-
estimates | Xyet|. The reason for this tendency lays in the fact that the lateral
neighborhood of growing layers (especially AE,, which lowers the effect of
polarity formation) is only taken into account within a mean-field correction.
In situations where G molecules are not distributed homogeneously on the
lattice (vast majority), this can lead to an underestimate of the local impact
of AE, and therefore to too large |Xyet|-

For the description of miscibility, large deviations between results from the
MMF description and MCS may occur, if components H, G are partially mis-
cible (see Fig. 3.5). In general, the MMF model sharply separates regions
characterized by a miscibility gap. In contrast, different solid phases can
coexist in MCS by the formation of clusters (see case (j) in Table 3.2), and
therefore, measurements of X merely represent average values of molar frac-
tions of the different phases. Consequently, no clearly distinct regions in X
vs Xg,s curves may be expected in the case of simulations.

In X ¢ curves from MMF calculations a kink may be observed, e. g. Fig. 3.3 a)
and b). It indicates a continuous phase transition from a disordered to an an-
tiferromagnetic ordered distribution of H molecules, where the mean polariza-
tions of the two sublattices g = I, I] assume different values spontaneously.
It has been observed already in the growth model of single-component crys-
tals of polar molecules only [40, 5]. In the present system, this phase transi-
tion also becomes manifest with a variation of Xg,5. A singularity in X, is
not observed in MCS, however, the phase transition can be clearly identified
by the difference of sublattice polarizations or by fluctuation properties, e. g.
a sharp peak in the specific heat, see Chapter 6.

Comparing the histograms (Fig. 3.6 upper) of the MMF model and MCS,
generally similar density distributions are observed with high densities for X
values around 0, 0.5 and 1, respectively. However, for the MMF description,
regions with negative X, values arise (with increasing densities, the closer
X to 0.5) which are not manifest in case of MCS. This is an artifact of the
analytical approach, having its origin in the requirement that at the station-
ary state, molar fractions in the substrate layer and the adlayer must be the
same for each sublattice ¢ = I, I separately. This condition is not always
met, e. g. for situations, where G molecules shift continously between the two
sublattices upon growth (see Fig. 3.7a).

44
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Figure 3.7: (a) and (b): Cross sections of 50 layers grown from centric seeds of H
molecules and layers ¢ = 1,2, 3 from Monte Carlo simulations of solid solutions Hi_xGx
(T =300 K, Xgas = 0.5, 77, = 5000, s, = 16 x 16). Black: H molecules with acceptor (A)
terminal oriented toward the nutrient (}). Gray: H molecules with donor (D) terminal
oriented toward the nutrient (1). White: G molecules (N = A). (a) Continuing shift of
near checkerboard-like HG pattern on sublattices g = I, I for subsequent attached layers,
caused by the minimization of longitudinal energy contributions. As a consequence, H
molecules will always be oriented favorably downwards (i.e. Xnet > 0) in case of MCS.
Such an evolution can not be described by the MMF model. AE4 = 3.4, AEp = 6.6,
AE, =29, AE,, = —6.7, AE,, = 2.6 [kJ/mol]. (b) Graded inclusion of G molecules with
a high orientational selectivity can result in X, & 1. AE, =12, AEp =10, AE, =1,
AE,, =0, AE, =1 [kJ/mol]. Center: Favored attachment of molecules (H or G) and ori-
entational state (|, 7 in case of H) along single Markov chains for sites {N, A, D} without
taking into account lateral interactions. Upon growth, a change of preferred orientation
of H molecules from a D-site may occur so that H molecules will be mostly oriented
downwards ({) in the course of the growth process.
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3.6.2 Applicability to Real Systems

Since polar (H) and non-polar (G) molecules generally do not crystallize in
isomorphous structures, (thus likely not forming full range solid solutions),
practically, interest lays in solid solutions H; xGyx leading to large |Xpe]
values at low molar fractions X of G molecules. As shown in this study, this
may arise under the following conditions: (i) Large |AE,| or |[AEp| values
ensuring a high selectivity by G molecules, (ii) low AE, values, (iii) appro-
priate AE,, and AFE,, values allowing at least a small miscibility between the
two components (see Fig. 3.7b).

Besides, large negative values of AE,, (case (g) in Table 3.2) may yield large
values of | X,et|, due to an effect of shielding between H molecules in lateral
direction even for a relatively large AE,,.

The present model may provide a qualitative filter for selecting molecules
fulfilling the above requirements, given calculated molecular interaction en-
ergies from the literature [22, 23, 24].

A preliminary application of the present model to the system 4-chloro-4’-
nitrostilbene/4,4’-dinitrostilbene (CNS/DNS) has shown a qualitative agree-
ment with experiments, both, concerning polarity formation and miscibility
(full range solid solution showing dilution of polarity) [52]. However, due
to more complex conditions with respect to crystal structure and interac-
tion energies in real systems, quantitative prediction can not be expected.
For instance, in CNS/DNS the distinction between longitudinal and lateral
neighbors is not straightforward. For more accurate calculations of X, the
model may be adapted to each system individually.

3.7 Conclusion

The present model represents a sufficient formal description for studying
phenomena related to growth-induced polarity formation in solid solutions
H;_xGx of polar (H) and non-polar (G) molecules.

The Markov mean-field approach well describes basic features of the model
and is generally in good agreement with Monte Carlo simulations. However,
in cases of large local correlations as well as for a detailed insight to structural
properties of crystals, Monte Carlo simulations are necessary (see Fig. 3.7a).
In combination, the two methods provide an efficient predictive tool for a
qualitative estimate of X and X, and can serve as a filter for searching
interesting systems.

For the particular case of AE, > 0 considered here, longitudinal energies are
mainly inducing polarity, whereas lateral energies determine the structure of
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solid solutions or ordered compounds.

Fig. 3.6 (upper) and Table 3.2 make clear that in the present model signifi-
cant vectorial alignment of H molecules (i. e. large X ;) may be obtained for
(i) ordered structures HG (X = 0.5), and (ii) solid solutions with X < 0.2
or X > 0.8, respectively. Since many real systems H;_xGx represent cases
of limited miscibility, (ii) is of special importance showing the high potential
of two-component molecular crystals to feature growth-induced polar prop-
erties. Of particular interest are cases which can aquire nearly X, & 1, be-
cause of a graded inclusion of G molecules which effectively align H molecules
(see Fig. 3.7b).

With respect to real crystal structures, further developments of the growth
model may include different crystal packings, next-nearest neighbor interac-
tions (several attached layers taken into account) or more degrees of freedom
for H and G molecules. While these advancements could only be described
partially by means of an analytical theory, their realization is considered
straightforward in case of Monte Carlo simulations. In any case, such re-
finements may result in improvements concerning quantitative predictions of
X and X, for real systems. However, the analysis has demonstrated that
basic characteristics of growth-induced phenomena of polarity formation in
solid solutions can be described completely by the present model.

3.8 Appendix A: Numerical Procedure for
Markov Mean-Field Equations

Eq. (3.6) specifies a system of six coupled nonlinear equations for the vari-
ables X%, X}, and X%, with ¢ = I,II. Given the normalization condi-
tion, Eq. (3.3), the set reduces to four independent equations and variables,
e.g. X%, X7, which are required to be solved numerically. It must hold
0< X/ <1, withg=1I,II and i € {A, D, N}, for any solutions.

Two principal difficulties arise in the numerical treatment of the Markov
mean-field process at the stationary state for a given set of input parame-
ters: (i) The number of solutions is a priori unknown. (ii) Generally, only
one solution is physically reasonable in terms of a minimal free energy F'.
Therefore, the following procedure was applied:

1. A “pool” of initial guess vectors x;, ¢+ = 1 — 7, for the unknown vari-
ables {X%, X1 XL XL1 is specified, covering basic patterns of the
solution space: Polar cases: (0,0,0,0), (1,1,0,0), (0,0,1,1); centric
cases: (1,0,0,1), (1,0,0,0), (0,0,1,0); mixed case: (3,3,3,3)- The
set could be extended, however it turned out to be sufficient, since cal-
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culations with larger sets of starting vectors did not reveal additional
solutions of the system.

2. Eq. (3.6) is solved numerically with Newton’s method [80, 75], using
successively x;, 1 = 1 — 7, for an initial guess. Maximal 20 iterations
are performed for each trial vector.

3. From the set of obtained numerical solutions, i.e. trials which have
converged, an energy criterion is applied in order to find the physical
solution.

The energy criterion consists in (i) calculating the mean-field free energy
per molecule [50], ' = U — TS, and (ii) choosing the numerical solution
with lowest F. U and S are the internal energy (mean-field) and mixing
entropy per molecule, respectively. Due to similar molecular frames and a
given common crystal structure, single-component entropy terms for H and
G molecules are considered the same and therefore contributing only by an
additive constant to F. At the stationary state of the growth process, molar
fractions X%, XY, and X§, with g = I, I], in successive layers are the same.
Therefore, the mean internal energy UY per molecule belonging to a site of
sublattice g is given as

U9 = X9u% + X9, + X§u%, (3.14)
with (¢’ = I1 if g = I and vice versa)

ﬂgA = XI%EAD + X%EDD + X]‘%END + %(XZ,EP + X%’Eap + X]‘({;Em),

(3.15a)
) = X4Bas + X Epa + X4 Bxa+ 5-(X4 Bay + X5 By + X§ En),

(3.15b)
@S = X9 Ean + X3 Epy + X4 Exy + % (XY Eyp + X3 Ep + XUE,).

(3.15¢)

The mixing entropy SY per molecule belonging to a site of sublattice g is
given as

S9 = —kp(X9In X4 + X In X4 + X% In XY). (3.16)
Finally, the mean free energy per molecule is
F=l {g} {9 — TS5, (3.17)
2 g
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Generally, differences in F' between distinct numerical solutions are large
enough (relative to corresponding energy parameters), so that physical solu-
tions are determined unambiguously with this energy criterion.

The described procedure provides an efficient way to find physical solu-
tions for a wide range of interaction energies and temperatures as well as
0 < Xgas < 1. Furthermore, it allows for a self-running generation of plots
such as Fig. 3.6b. Nevertheless, it has to be noted, that there is neither
guarantee for finding the solution with lowest mean free energy F', nor any
one at all. However, from the 50000 randomly chosen interaction energies
for Fig. 3.6, the procedure did not find any solutions only for about 0.15 %.

3.9 Appendix B: The Monte Carlo Algorithm

The Monte Carlo algorithm has “single-spin-flip” dynamics with respect to
orientational flips of H molecules and exchanges of H and G molecules. It is
described by the following main steps:

1. A lattice site is selected randomly.

2. Given the actual state {A, D, N} of this site, a trial step is defined by
choosing one of the two other states randomly, with equal probabilities

of L.

2

3. The acceptance ratio r between these two adlayer configurations is
calculated by Eq. (3.18). The trial step is accepted, i. e. the actual state
of the chosen site is replaced by the trial state, if » > 1. Otherwise, it
is accepted with probability r. If rejected, the actual state is kept.

4. Steps 1 - 3 are repeated until thermal equilibrium is reached, i.e. the
adlayer has come to a stationary state, where physical quantities fluc-
tuating only around steady average values.

The acceptance ratio r is given by

r = Drrial _ e,B(Au—AE) (318)

3
Pactual

where pirial, Pactual denote the equilibrium probabilities of the trial and actual
adlayer configurations and Au, AE the chemical potential and energy dif-
ferences between them, respectively. Since the two configurations only differ
by the state of one lattice site, it follows that Ap = fgrial — Mactual, With figrial
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and fiactuar being the chemical potentials of the corresponding molecules on
this site, see Egs. (3.9). With Egs. (3.10), we obtain for 0 < Xg,s < 1 that

Xgas 1- Xgas

BAp
€ - 1 ) ’ )
1- Xgas Xgas

(3.19)

in case of a flip of a H molecule, an exchange of a H with a G molecule, or
an exchange of a G with a H molecule, respectively. For X,,s = 0, only flips
of H molecules are considered, because no G molecules are available in the
system.

For the measurement of observables (mainly X and X, ) at the stationary
state of the growth process, three characteristic time scales are introduced:
(i) The adlayer equilibration time, 77, measuring the time needed for an
adlayer to come to equilibrium (measured in Monte Carlo steps, on aver-
age, per lattice site). (ii) The growth equilibration time, 75, measuring the
time needed for the growth process to reach a stationary state (measured
in attached layers). (iii) The sampling time, g, specifying the number of
measurements after the growth process has reached stationarity. One mea-
surement is performed for each attached and equilibrated layer, i. e. 7 is also
measured in attached layers.

Adequate intervals were set to 7, = 1000 — 5000, 7¢ = 25 — 200 and
7 = 100 — 800, in order to obtain sufficiently accurate expectation val-
ues for measured quantities. The last interval was justified by examining the
time-displaced autocorrelation function between successively attached and
equilibrated layers [66]. As adlayers were initialized randomly, very small
correlation times < 2, measured in attached layers, resulted. Moreover, com-
parisons between results from identical and independent experiments sup-
ported the choice of intervals being sufficient in order to describe the main
features of the growth model as well as to verify the validity of the Markov
mean-field approach (see also Section 3.6.1).

Periodic boundary conditions were applied for the square lattice. For an in-
vestigation of finite size effects, simulations were performed for lattice sizes
sg in the range of 32 x 32 to 128 x 128. For uniformly distributed random
numbers of high quality, the random number generator ranlux was used in all
calculations [62].
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Chapter 4

Growth-Induced Polarity
Formation in Solid Solutions:
Supplementary Material

In the last two chapters a theoretical model for the investigation of growth-
induced polarity formation in solid solutions H;_xGx of polar host (H) and
non-polar guest (G) molecules was presented. This model was described ana-
lytically by means of a Markov mean-field (MMF) approximation and Monte
Carlo simulations (MCS) were carried out. Based on these two approaches
a thorough discussion on the phenomenology of polarity formation in solid
solutions was given.

Chapters 2 and 3 are reprints of [91] and [92], respectively, i.e. a restriction
to the most important material of the subject had to be made. In the present
chapter the statistical analysis of Section 3.5.3 is deepened.

4.1 Influence of X,,s, 7' and Energy Range on
(X, Xnet) Density Distributions

The effect of a variation of Xg,5 and temperature 7" as well as an extended
range of possible interaction energies on (X, X,e;) density distributions was
shortly discussed in Section 3.5.3. Here this issue is taken up again.

From an experimental point of view, X,,s and temperature 7" are the only
two parameters which can be varied, (although 7 only within a limited range
given by the growth process of the solid solution). Therefore, it is of interest
to study the general, i.e. in a statistical sense, influence of these two pa-
rameters on X and X, for the present model. Fig. 4.1, 4.2 and 4.3 show
density distributions of (X, X,e) pairs for Xg,s = 0.25, 0.5 and 0.75 and
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T = 300 and 450 K, respectively. The same 50000 sets of interaction ener-
gies as in Fig. 3.6 were used (energies were randomly chosen within the range
of —10...2 kJ/mol). Additionally, for each 2D histogram the distribution
of AE,, and AFE, values corresponding mainly to (A) H crystals with little
inclusions of G, (B) and (D) solid solutions, (C) intermediate compounds HG,
(E) G crystals with little inclusions of H, and total percentages of (X, Xet)
values in regions (A) - (E) are given.

Besides a slight shift of the (X, X,e;) densities towards larger X values (e. g.
noted in the percentages), the histograms as well as the distributions in
(AE,,, AFE,) space show no significant differences with a variation of X,
at constant temperature. This insensitivity to X, is due to the fact that
Xgas enters the molecular attachment probabilities only as a constant factor,
while the various interaction energies appear in the exponent of the exponen-
tials (see Egs. 3.5). The smallest differences with a change of X, (for both
temperatures) occur for region (C), i.e. intermediate compounds. Since an
ordered structure may only form if AF,, < 0, the Gibbs factors are mainly
determined by this energy difference and the relative influence of Xg,s be-
comes even smaller.

An increase of temperature from 300 to 450 K for constant Xg,5 has two ef-
fects: (i) |Xpet| decreases, due to higher thermal disorder (see especially the
upper left part and region (C) in the histograms). (ii) The energy ranges
in (AE,,, AE,) space for which solid solutions may form, i.e. regions (B)
and (D), become wider. Therefore, percentages for finding (X, X,;) values
in these regions increase also. As already mentioned in Section 3.5.2, a nec-
essary condition for the formation of solid solutions over a wide range of X
are AE,, AE,, and AE, values being balanced to one another, i. e. deviating
only little from each other and being generally small. Exactly this results, if
the temperature is increased.

Limiting the range of interaction energies to —10...2kJ/mol is only real-
istic for certain groups of molecules. In order to investigate the influence
of different energy ranges on the (X, X,e) density distribution, two addi-
tional calculations with the ranges —20...5kJ/mol and —50...10kJ/mol
were performed, each containing 50 000 energy sets (for constant 7' = 300 K
and Xg,s = 0.25). The results are shown in Fig. 4.4. It shows clearly, that
the larger the energy range, the more tend (X, X,e) values to the following
limiting cases:

(i) X ~0and 0 < |[X,et| <1 (AE, > 0), i.e. region (A),

(i) X =~ [Xpet| (AE, > 0, AE,, <0), i.e. region (B), but only the positive
diagonal,
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(iii) X = 1 — |Xnet| (AE, = 0, AE,, <0, AE, < 0), i.e. regions (B) and
(D), but only the negative diagonal,

(iv) X =~ 0.5 and 0 < | X,et| < 0.5 (AE,, < 0), i.e. region (C),
(v) X = 1and X,et 0 (AE, < 0), i.e. region (E).

(Determining energy differences are specified in parenthesis.) Both, the high
densities on the diagonals as well as near the point (X = 0.5, X,,es = 0.5) are
a result of an increased probability for AE; > 0 and AE,4 > 0 and there-
fore, leading to a very high orientational selectivity by H and G molecules,
respectively.

Due to a lower probability of finding AE,, AE,, and AE,, values being close
to each other, the percentages of (X, X,e;) values in regions (B) and (D)
decrease with larger energy range. However, the widths as well as the place-
ments of the two strips defining regions (B) and (D) in (AE,,, AE,) space
remain unchanged compared with those in Fig. 4.1 - 4.3 (for 7" = 300K).
This underlines again the fact that, in the present model, formation of solid
solutions is mainly determined by AE,, and AFE, independent of other inter-
action energies, (i.e. the energy differences of | ---| and |---| with respect
to .- T)

All calculations for Fig. 4.1 - 4.4 were carried out within the Markov mean-
field approach. Even though the MMF approximation gives some erroneous
results for X ¢ values around X = 0.5 compared to Monte Carlo simulations
(see Section 3.6.1), it is not expected that significant differences would occur
for a similar MCS study. The conclusions made in this section refer mainly to
the distribution of X and the absolute value of X ;. Nevertheless, a compar-
ison with MCS results would have been of great interest. However, the MCS
results shown in Fig. 3.6 took approximately two weeks of computer time us-
ing four conventional PCs. This would correspond to 16 weeks for calculating
eight histograms as presented here and was not feasible, unfortunately.
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Figure 4.1: Upper figures: 2D histograms of the density distributions of (X, X,et) pairs
for 50000 randomly chosen sets of interaction energies in the range of —10...2 kJ/mol
calculated with the MMF model. Resolution for both axis: 0.02. Lower figures: Distri-
bution of AE,, and AE, values (from the same energy sets) corresponding to X values
in the ranges: (A) 0 < X < 0.02, (B) 0.02 < X < 049, (C) 049 < X < 0.51, (D)
0.51 < X <0.98, (E) 0.98 < X <1, and total percentages of (X, Xpe) values in regions

(A) - (B).
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Figure 4.2: Upper figures: 2D histograms of the density distributions of (X, Xpet) pairs
for 50000 randomly chosen sets of interaction energies in the range of —10...2 kJ/mol
calculated with the MMF model. Resolution for both axis: 0.02. Lower figures: Distri-
bution of AE,, and AE,, values (from the same energy sets) corresponding to X values
in the ranges: (A) 0 < X < 0.02, (B) 0.02 < X < 049, (C) 049 < X < 0.51, (D)
0.51 < X <0.98, (E) 098 < X < 1, and total percentages of (X, Xpet) values in regions
(A) - ().
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Figure 4.3: Upper figures: 2D histograms of the density distributions of (X, X,et) pairs
for 50000 randomly chosen sets of interaction energies in the range of —10...2 kJ/mol
calculated with the MMF model. Resolution for both axis: 0.02. Lower figures: Distri-
bution of AE,, and AE, values (from the same energy sets) corresponding to X values
in the ranges: (A) 0 < X < 0.02, (B) 0.02 < X < 049, (C) 049 < X < 0.51, (D)
0.51 < X <0.98, (E) 0.98 < X <1, and total percentages of (X, Xpe) values in regions

(A) - (B).
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Figure 4.4: Upper figures: 2D histograms of the density distributions of (X, Xpet) pairs
for 50000 randomly chosen sets of interaction energies for two different energy ranges
calculated with the MMF model (T = 300 K, Xgas = 0.25). Resolution for both axis:
0.02. Lower figures: Distribution of AE,, and AE, values (from the same energy sets)
corresponding to X values in the ranges: (A) 0 < X < 0.02, (B) 0.02 < X < 0.49, (C)
0.49 < X < 0.51, (D) 0.51 < X < 0.98, (E) 0.98 < X < 1, and total percentages of
(X, Xnet) values in regions (A) - (E). For comparison, sections of these distributions with
the same intervals as in Fig. 4.1 - 4.3 are given.
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Chapter 5

Growth-Induced Polarity
Formation in Solid Solutions of
Two Polar Components: A
Statistical Analysis

5.1 Introduction

In a logical continuation of the previous studies, in this chapter, growth-
induced polarity formation in solid solutions H;_xGx of two polar compo-
nents is investigated. That is, building blocks are host (H) molecules of the
type A — 1 — D, (A: electronic acceptor terminal; D: electronic donor ter-
minal; 7: delocalized 7m-electron system connecting A and D), with a dipole
moment pf, and guest (G) molecules of the type A’ —m — D', (A" electronic
acceptor terminal; D': electronic donor terminal; 7m: delocalized m-electron
system connecting A’ and D'), with a dipole moment uS. Unlike solid solu-
tions investigated in Chapters 2 and 3, in the present case, polarity originates
not only from H molecules, but also from G molecules.

Principally, the same growth model as in Section 3.3 is considered: Crystals
are subjected to slow layer-by-layer growth from the gas phase. Molecules are
arranged on a square lattice featuring two orientational states (up and down,
relative to the projection of the molecular dipoles onto the growth direction).
Adlayers relax to thermal equilibrium with respect to (i) the up and down
orientation of the dipole moment of H and G molecules, and (ii) an exchange
of H and G molecules. Using the notation of Section 3.3, the occupation of a
lattice site is uniquely denoted by one of the states {4, D, A’, D'}, referring to
the molecular terminal being oriented toward the nutrient. Previously grown
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layers are kept frozen. Ising-type nearest neighbor interactions are assumed.
Growth takes place near thermal equilibrium, i.e. chemical potentials of H
and G molecules are supposed to be the same in the solid and gas phase,
and independent of the orientational state of the molecule in the crystal. For
further details about the growth model, see Section 3.3.

Since, conceptually, an equivalent physical model is used, the present sys-
tem with two polar components is expected to show the same characteristics
as that with polar and non-polar molecules. In particular, the notions of
orientational selectivity (see Section 3.5.1) and miscibility (see Section 3.5.2)
apply also here. However, for the system with two polar molecules a minimal
set, of interaction energies comprises already 16 different values, see Table 5.1.
This makes it impossible to derive simple (and useful) relations between in-
teraction energies and specific behaviors of the system as it has been achieved
for solid solutions of polar and non-polar components.

Therefore, we restrict ourselves to a statistical analysis only. A large number
of energy sets is chosen randomly within a realistic range, allowing predictions
on polarity formation in a probabilistic sense, (see also Section 3.5.3). Two
points are addressed: (i) Comparison of (X, X, ) density distributions be-
tween solid solutions with non-polar and polar G molecules, respectively. (ii)
Comparison of X, distributions for the three systems, (a) single-component
crystals of polar (H) molecules only, (b) solid solutions of polar (H) and
non-polar (G) molecules, and (c¢) solid solutions of polar (H) and polar (G)
molecules. The overall yield of net polarity is calculated for each system.
From a statistical point of view, this gives a measure of the potentiality of a
system to provide polarity.

All results are obtained by means of Monte Carlo simulations, described in
detail in Section 3.9 and Chapter 7. Additionally, an outline of a possible
analytical description of growth-induced polarity formation in solid solutions
with two polar components is given.

5.2 Definitions and Symmetry Relations

First, relevant definitions are given concerning macroscopic quantities and
interaction energies. Some may have been stated already elsewhere, however,
for clarity reasons they are repeated here.

The following three systems are considered: (a) Single-component crystals
of polar (H) molecules only. (b) Solid solutions H;_xGx of polar (H) and
non-polar (G) molecules. (c) Solid solutions H; xGx of polar (H) and polar
(G) molecules. Molar fractions of H and G molecules in the solid, 0 < X; <
1,7 € {A,D,N, A", D'}, denoted by the corresponding molecular terminal
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oriented toward the nutrient, are defined as follows:

X4 @ polar H molecules, oriented downwards ({)
Xp @ polar H molecules, oriented upwards (1)
Xy @ non-polar G molecules, single orientation (|)
Xa @ polar G molecules oriented downwards ({})
Xp @ polar G molecules oriented upwards ()

(Orientations are with respect to the growth direction.)

The molar fraction of G molecules in the solid, 0 < X < 1, the net polarity,
—1 < X, < 1, and the normalization condition for molar fractions X;
i€ {A,D,N,A" D'}, are given as:

(a) Single-component crystals of polar (H) molecules:

X=0
Xnet = X4 — Xp (5.1)
XA+XD :1

(b) Solid solutions of polar (H) and non-polar (G) molecules:

X=1—-X,—Xp=Xuyn
Xoet = Xa—Xp (5.2)
Xa+Xp+Xy=1

(c) Solid solutions of polar (H) and polar (G) molecules:

X = X4 + X
Xnet = (X4 — Xp) + (Xa — Xp1) (5.3)
Xa+Xp+Xp+Xp =1

Any physical property having its origin in polar properties of the molecules
is assumed to be proportional to Xpe. For system (c), this is only valid
if u& = pH, (which is assumed for simplicity here). Otherwise, XE, and
X¢. | the separate net polarities for H and G components, respectively, have
to be weighted with the absolute values of the dipole moments of H and G
molecules.

Table 5.1 gives an overview of the different energy sets used in the three
systems (a), (b) and (c). They are sufficient for a basic physical description
with respect to the polar character of H (and G) molecules. However, they
are considered minimal, because only nearest neighbor isotropic interactions

for a simple square lattice are taken into account. Moreover, in case of
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the two-component systems it is required that H and G molecules are of
similar shape and crystallizing in isomorphous crystal structures (here square
lattice). Note that in case of system (b), it is not assumed anymore that
functional group terminals (V) of non-polar G molecules require that N = A
or D, as in Section 3.5. That is, in this chapter, longitudinal interactions
between H and G molecules as well as between G molecules only are considered
independently.

Based on these energy sets and the growth model, it is possible to identify
symmetry relations between interaction energies and X, X,. Indeed, an
exchange of acceptor/donor terminals (A, D, A', D') induces a change in X
and/or X, without modifying the actual set of interaction energies. For
systems (a), (b) and (c) the following symmetry relations arise:

(a) Single-component crystals of polar (H) molecules only (X = 0):

A — D
D — A

} = Xnet = —Xnet, (5.4)
i.e. the point X, = 0 specifies a center of symmetry on the X, -axis.

(b) Solid solutions of polar (H) and non-polar (G) molecules:

A — D

D — A } = (X’ Xnet) - (X7 _Xnet); (55)

i.e. the X-axis specifies a 2-fold axis of symmetry in (X, X,e) space.

(c) Solid solutions of polar (H) and polar (G) molecules:

A — A
D — D
A A = (X, Xpet) = (1 — X, Xpet), (5.6a)
D — D

i. e. the vertical axis through X = 0.5 specifies a 2-fold axis of symmetry
in (X, Xnet) Space.

A — D
D — A
A, — D/ = (X; Xnet) — (X, _Xnet)7 (56b)
D' — A
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i.e. the X-axis specifies a 2-fold axis of symmetry in (X, X,e) space.

A — D
D — A
A 5 D = (X, Xnet) = (1 — X, —Xpet), (5.6¢)
D — A

i.e. the point (X = 0.5, X, = 0) specifies a center of symmetry in
(X, Xnet) space.

These symmetry relations are taken into consideration for the calculations of
density distributions, see below.

5.3 Results and Discussion

5.3.1 (X, Xpet) Density Distributions

In order to obtain representative (X, X,e;) density distributions for systems
(b) and (c), independent Monte Carlo simulations were performed for a
large number of energy sets, randomly chosen within a realistic range of
—10...2 kJ/mol for both systems (T = 300 K). X,,s was set to 0.5, i.e.
chemical potentials of H and G molecules were the same, uy = pg. Since
we are interested only on the effect of polarity formation in centrosymmetric
crystal structures, interaction energies were subjected to the condition that
the antiparallel packing of molecules in lateral direction is in favor of the par-
allel packing for native polar H and G crystals, respectively, see the bottom
row in Table 5.1.

For system (b) calculations were done for 50000 energy sets. For each re-
sulting (X, Xyet) pair the symmetry operation, according to Eq. (5.5), was
applied in order to double the number of (X, X ) points. Correspondingly,
for system (c) simulations for 25000 energy sets were carried out, and sym-
metry operations applied, see Egs. (5.6), yielding four times the number of
(X, Xnet) points.

These additional (X, X,e;) pairs do not improve the statistical accuracy, how-
ever, a large amount of computer time could be saved by taking symmetry
relations into account. This was especially important in case of system (c),
where the adlayer equilibration time 7, was set to a high value in order to
account for the larger number of possible adlayer configurations, 4" and
77 = 5000, compared to system (b), 3"t and 77, = 1000. (Ng is the number
of lattice sites in a layer, see Section 3.9 for definitions.)

Results are shown in Fig. 5.1. Symmetries in the 2D histograms are clearly
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Table 5.1: Minimal sets of interaction energies for three different molecular systems with
at least one polar component. Polar host (H) molecules: A—m— D, (A: acceptor terminal;
D: donor terminal), two orientational states (1,J). Non-polar guest (G) molecules: N —
m— N, (N: functional group, often A or D), single orientational state (|). Polar guest (G)
molecules: A" — 7 — D', (A": acceptor terminal; D': donor terminal), two orientational
states (f},{). Energies are subdivided into longitudinal and lateral with respect to the
growth direction of the crystals and furthermore, into interactions between H molecules
only, G molecules only, and H and G molecules, respectively. Meaning of indices for lateral
interactions: p, parallel; ap, antiparallel; m, mixed; n, neutral. The total number of
energies and independent energy differences (in parenthesis) is given. The last row states
the conditions on lateral interaction energies for centrosymmetric native crystal structures.

Crystals Solid solutions Solid solutions
of polar (H) | of polar (H) and of polar (H)
molecules non-polar (G) and polar (G)
only molecules molecules
Longitudinal
Eap (—A---D-)
only H Eap (—A---A—
Epp (-D---D-)
Eup (—A'---D'—)
only G Eyy (-N---N—) | Egyp (—A"---A'—)
Epp (=D'---D'—)
Eaw (—A---A'—)
between Enya (=N---A—) | Epa (-D---A'—)
H and G Exp (-N---D—=) | Eap (—A---D'—)
Epp (=D ---D'—)
Lateral
only H Ep (T---1)
Eyp (1---1)
Ey (- 1)
only G E, (| ) E.y (fr--- )
between E™ (4 --- 14
H and G B (|- 1) EZ};ET...U;
Total 5 (3) 10 (8) 16 (14)
Centric E, > Eq
structures Ep > Fap Ep > Fap Ey > Euy
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apparent, i.e. a 2-fold axis of symmetry (X-axis) for system (b), and two
2-fold axis of symmetry (X-axis and perpendicular through X = 0.5) and a
center of symmetry (X = 0.5, X,y = 0) for system (c), respectively. Note
that these perfect symmetric density distributions in (X, X,e;) space are due
to the procedure described above. Nevertheless, it has to be emphasized
that symmetries are physical in the sense that, for an infinite large number
of chosen energy sets, similar ideal 2D histograms would arise, also without
applying any symmetry operations.

While for system (b) density distributions are constrained by the requirement
| Xnet| < 1—X, any (X, X,et) pair may be obtained in system (c), principally.
In both systems, the strong influence of lateral interactions on miscibility be-
tween H and G molecules manifests in high (X, X,e) densities for X values
around 0, 0.5 and 1, respectively, (four nearest neighbors within a layer and
only one between adjacent layers, see also Section 3.5.3).

For system (b) regions with relatively homogeneous (X, X,;) densities may
be located, e.g. the area with |X,e| < X or the vertical stripe through
X = 0.5. In system (c) the density distribution in (X, X,et) space is more
inhomogeneous, because of two reasons: (i) Polar G molecules introduce ad-
ditional orientational disorder. (ii) Longitudinal (Ea4, Epa, Fap, Eppr)
and lateral (EJ*, E7}) interactions between H and G molecules are selective
with respect to their dipole orientations. Oppositely, in system (b) only the
longitudinal energies Ey4 and Exp between the two components show ori-
entational selectivity, see Table 5.1. In system (c) large differences between
(X, Xnet) densities arise particularly along the vertical line through X = 0.5,
with high densities at |Xpe| &~ 0 and | X,e| & 1, respectively.

The influence of these energies (especially E)* and E}}) on Xy becomes
best visible in a comparison between systems (b) and (c) for particular crys-
tal structures. Fig. 5.2 shows the relative X distributions for H crystals
with little inclusions of G (Fig. 5.2(a)), solid solutions H,_xGx (Fig. 5.2(b)
and 5.2(d)), and intermediate compounds HG (Fig. 5.2(c)), respectively. For
nearly pure H crystals, X, distributions for systems (b) and (c) are almost
the same, because polarity is governed mainly by interactions between H
molecules only, see Fig. 5.2(a). This behavior changes completely as soon as
a certain fraction of G molecules is present in crystals, the most pronounced
effect being for intermediate compounds. In ordered structures HG of sys-
tems (b) and (c) the following situations occur, see Fig. 5.2(c):

System (b): H molecules are entirely surrounded by laterally non-selective
G molecules. Therefore, a relatively large fraction of these structures shows
high net polarity, 0 < |X,e| < 0.5, determined by Ex4 and Epp. Besides,
the X, distribution does not vary a lot in this range, since energies are
chosen uniformly.
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System (c): Although H molecules are also surrounded by G molecules, lat-
eral interactions between the two components may strongly influence the
polar properties of crystals. This is often the case, because lateral orien-
tational selectivity arises as soon as EJ* (1 --- 1) # Eg (1 --- ). Since
this selectivity is enhanced by the presence of four lateral neighbors, ordered
structures of the types H(})G(1) or H(1)G({}) with X, = 0 and H({)G({}) or
H(1)G(1}) with X, ~ 1, are most probable. The X, distribution decreases
rapidly for | X,e| > 0, passes a minimum, and increases again considerably
for | Xyet| = 1. Generally, large fluctuations are observed.

In case of solid solutions (Figs. 5.2(b) and 5.2(d)), Xpet distributions for sys-
tem (c) decrease slightly faster for |X,e;| — 0.5 than those for system (b).
For | X,et| > 0.5 behaviors are similar as in case of intermediate compounds,
Fig. 5.2(c). Because of the complex interplay between different lateral (and
longitudinal) interactions, a simple interpretation of X, distributions in
case of solid solutions can not be given here.

The observations of Fig. 5.1 and Fig. 5.2 allow the following conclusion: For
system (c) it is possible and also probable to obtain an almost complete par-
allel alignment of H and G molecules in the present model, i.e. |Xyet| & 1,
even though both native structures (H and G) favor centrosymmetric pack-
ings of molecules. This is only possible due to the large influence of lateral
interactions between H and G components. However, the same interactions
may diminish polarity, if the antiparallel packing of H and G molecules is pre-
ferred and X,y &~ 0. Therefore, in order to obtain polarity in real systems,
solid solution formation between two polar components is only reasonable,
if antiparallel bindings between the two species are weak. Otherwise, solid
solutions with one polar and a non-polar component might be more advan-
tageous.

5.3.2 X, Distributions for Systems (a), (b) and (c)

For many application purposes a large vectorial alignment of polar H (or G)
molecules is required. In this respect, formation of solid solutions Hi_xGx
is just a means to get net polarity (|Xyes|), especially in cases, where native
crystal structures of the two components are centrosymmetric. However, the
actual fraction of G molecules in the solid solutions (X), is not of particular
importance, provided that a large value of | X,| is obtained.

Therefore, in this section we focus only on the statistical distribution of X,
irrespective of X. Thereby, systems (b) and (c¢) are compared with system
(a), i.e. single-component crystals of polar (H) molecules only (X = 0). As
such, it is possible to investigate the potential benefit of solid solution forma-
tion with respect to the evolvement of polarity. Furthermore, this analysis
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Figure 5.1: 2D histograms showing density distributions of (X, Xpet) results for randomly
chosen sets of interaction energies in the range of —10...2 kJ/mol from Monte Carlo
simulations (MCS), T' = 300 K, Xgas = 0.5. Left: Solid solutions Hi_xGx of polar
(H) and non-polar (G) molecules. MCS were performed for 50000 energy sets and then
symmetry relations were applied (2-fold axis of symmetry, see Eq. (5.5)). MCS parameters:
sp, =32x32, 7, = 1000, 7¢ = 50, 75 = 200. Right: Solid solutions of polar (H) and polar
(G) molecules. MCS were performed for 25000 energy sets and then symmetry relations
were applied (two 2-fold axis of symmetry and a center of symmetry, see Egs. (5.6)). MCS
parameters: sy, = 32 x 32, 71, = 5000, 7¢ = 50, 7 = 200. Both figures contain the same
number of points in (X, X,e;) space, namely 100 000. Resolution for both axis: 0.02. The
same scale is applied in both figures. The number of energy sets is considered sufficient
for representative density distributions, because similar results were obtained for smaller
sets.
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Figure 5.2: X, distributions corresponding mainly to (A) H crystals with little inclu-
sions of G, (B) and (D) solid solutions, (C) intermediate compounds HG. Solid line with
circles: Solid solutions H;_x Gx of polar (H) and non-polar (G) molecules, i. e. system (b).
Dotted line with squares: Solid solutions of polar (H) and polar (G) molecules, i. e. system
(c). Data is from the same Monte Carlo simulations as for Fig. 5.1. Distributions are nor-
malized relative to the number of (X, Xyet) points in regions (a) - (d) for a given system.
Resolution for —1 < Xpet < 1: 0.01. Note that distributions are symmetric with respect
to the vertical line through Xye; = 0. Small deviations between the two points next to the
left and right of this 2-fold axis of symmetry arise, because the point X, = 0 belongs to
the right bin only. For system (b) Xpet distributions drop to zero for | Xpet| > 0.5 in case
of (C) and (D), due to the requirement |X,¢t| < 1— X. For system (c) X, distributions
are the same in case of (B) and (D), due to symmetry relations.
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allows to make statistical predictions on the possibility to form polarity for
these common types of molecular systems.

For system (a), Monte Carlo simulations were performed for 50 000 randomly
chosen energy sets in the same range as above (—10...2 kJ/mol) using the
equivalent two-layer system described in [5] and Section 6.5. As for sys-
tems (b) and (c), only centrosymmetric crystal structures were assumed, i. e.
E,, < E,, see Table 5.1. Assuming that systems are far away from a critical
region (phase transition) for most of the energy sets, the following simu-
lation parameters were considered to be sufficient for the present analysis:
4000 Monte Carlo trials per lattice site (on average) to equilibrate the two-
layer system (lattice size s, = 32 x 32), followed by 20000 measurements
(one after each sweep of the two layers). For each resulting X, value, the
negative counterpart (—X,e;) was also taken into account for the statistics,
see Eq. (5.4). For systems (b) and (c) the same Monte Carlo data was used
as for Fig. 5.1.

Xhet distributions are shown in Fig. 5.3. In all three systems a sharp peak
arises at Xpet = 0. This is a clear consequence of the strong influence of lateral
interactions which are in favor of antiparallel packings of H (and G) molecules
with respect to the orientations of their dipoles, see Table 5.1. However, the
slope of the X, distribution towards higher |X,e;| values (| Xpe| — 0.5)
is considerably steeper for system (a), compared to those for systems (b)
and (c), respectively. That is, from a statistical point of view, solid solution
formation is certainly advantageous to yield net polarity |Xue;| > 0 in com-
parison to single-component systems (a) as found by the present model.
For system (b) at |X,e| ~ 0.5 a fast drop in the X, distribution is ob-
served. This is a result of the fact that inclusion of non-polar (G) molecules
in a centrosymmetric H structure may increase the vectorial alignment of
polar (H) molecules, however, only at the expense of reducing the fraction of
the H component (dilution effect). As depicted in Fig. 5.1, a relatively high
density of (X, Xyet) points with |X,e| > 0 (and especially |Xpei| &~ 0.5) is
only observed at X = 0.5. Therefore, since |Xpet| < 1 — X, for |Xpe| > 0.5
the probability must decrease rapidly.

The X, distribution for system (c) passes a minimum at |X,e| &~ 0.75, and
increases again towards |Xpe| — 1 considerably.

Fig. 5.4 shows the total fraction of | X,| results being equal or greater than
a certain value (0 < |Xpe| < 1) for systems (a), (b) and (c), respectively.
Again, for system (a) the probability to reach net polarity |X,e| > 0 de-
creases much faster for low values of | Xyt in comparison to systems (b) and
(c), respectively. The two-component systems show approximately the same
behavior in the range 0 < | X,et| < 0.1. For larger | X,e¢| values the curve for
system (b) drops faster than that for system (c). Even more, the lowering
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Table 5.2: Overall yield of net polarity, (| Xnet|), (average of | Xyet| over all Xye values),
and percentages of cases with almost no net polarity (| Xnet| < 0.01), moderate net polarity
(| Xnet| > 0.2), and high net polarity (|Xnet| > 0.5), respectively. (a) Single-component
crystals of polar (H) molecules only. (b) Solid solutions of polar (H) and non-polar (G)
molecules. (c) Solid solutions of polar (H) and polar (G) molecules.

(| Xnes|) | | Xnet| < 0.01 (%) | [Xnet| > 0.2 (%) | |Xnet| > 0.5 (%)
(a) |  0.067 57.7 11.4 2.9
(b) | 0.106 35.0 20.2 2.3
() | 0.181 31.3 27.9 13.0

effect on polarity by dilution with non-polar (G) molecules becomes so large
that at | Xpe| & 0.45 the curve of system (b) crosses the one of system (a).
That is, the probability to get |Xpe| above this value is even slightly higher
for system (a) than for system (b).

Table 5.2 summarizes essential figures for the three systems, including the
overall yields of net polarity, (| Xyet|), i- . the averages of | Xyet| over all | X e
values for each system. For system (c¢) this measure is almost three times
larger than for system (a), illustrating clearly the high potential of solid
solutions with two polar components to form structures with large | X et |.

5.3.3 An Analytical Approach

Systems (a), (b) and (c) were investigated by means of Monte Carlo sim-
ulations only. This was considered sufficient (and reliable) for a statistical
analysis. However, following the derivations of Section 3.4.1, an analytical
description of system (c) in terms of a Markov mean-field approximation is
straightforward. Here, a short outline of this approach is given.

The layer-by-layer growth process has reached a stationary state, if molar
fractions X;, i € {A, D, A', D'}, of H and G molecules are the same in the
substrate layer and the adlayer. This can be expressed by the matrix equa-
tion (see also Eq. (3.6))

X3\ (Plo Pho Pin Phy) (X4
PO R o O S o I D
Al AD’ DD’ Al D! D'D’ Al
Xph)  \Piw Phy Phu Pha) \Xb

where the superscript g indicates that independent molar fractions must
be considered for two sublattices g = I,11. (The decomposition into two

70



I
o
]
Oo. <
oz
~ £
= o
© o
o
o
—~~
(]
N
. L -
b = b= =0
! 2] g g i
° S 8 g
o
Slod SO Jo uondely 8
A
-
3 8
® © g
o S =
[a R
: 5
S <
[} oz
=2 g )
~ ) 8
@ A
S K
[a
—
0 " . . I .
s &8 § & =
© 5] =3
IS
Ssjulod SO Jo uonoely
-
o
A
> -
= ]
s x
o2
= =
<
ay g
o a
o
— ;
[0
~—
=

bl a g
© S 8

0.00015

Sjlod SO Jo uondely

Figure 5.3: Two different representations (z,y-graphs and density bars) of X distri-
butions for randomly chosen sets of interaction energies in the range of —10...2 kJ/mol
from Monte Carlo simulations (MCS), T' = 300 K. (a) Single-component crystals of polar
(H) molecules only. MCS were performed for 50000 energy sets and then symmetry re-
lations were applied (center of symmetry, see Eq. (5.4)). Results were obtained by use of
the equivalent two-layer system, see Section 6.5 and [5], s = 32 x 32. (b) Solid solutions
H;_xGx of polar (H) and non-polar (G) molecules. (c) Solid solutions of polar (H) and
polar (G) molecules. For (b) and (c), data is from the same Monte Carlo simulations as
for Fig. 5.1, taking only X values into consideration (arbitrary X). The number of
points in the range —1 < X oy < 1 is the same (100000) for systems (a), (b) and (c). The
resolution for the range —1 < X, < 1 is 0.01 in both representations and a logarithmic
scaling is applied. Note that distributions are symmetric with respect to Xye; = 0. Small
deviations between the two points (or stripes) next to the left and right of this center of
symmetry arise, because the point X,e; = 0 belongs to the right (upper) bin only.
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Figure 5.4: Fraction of net polarity |Xnet| (0 < |Xnet| < 1) being equal or greater
than a certain value for randomly chosen sets of interaction energies in the range of
—10...2 kJ/mol and T = 300 K. (a) Single-component crystals of polar (H) molecules
only. (b) Solid solutions H; _xGx of polar (H) and non-polar (G) molecules. (c) Solid
solutions of polar (H) and polar (G) molecules. Data is from the same Monte Carlo sim-
ulations as for Fig. 5.1 in case of systems (b) and (c), and Fig. 5.3 in case of system
(a), respectively. The resolution for probabilities is 0.001. Note that at |Xpnet| = O the
probability is unity for all systems. For systems (a) and (b) a cross-over takes place at
| Xnet| = 0.45.
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sublattices is necessary to describe antiparallel packings.) P%_ is the tran-
sition probability that an admolecule, (specified by its molecular terminal
s € {D,A, D', A"} oriented toward the substrate), will be attached onto a
molecule of the substrate layer, (specified by its molecular terminal s’ €
{A,D, A’, D'} oriented toward the nutrient), belonging to a site of sublat-

tice g. Transition probabilities P, are given by normalized Gibbs factors

(5 = 1/kBT)

1 g
Pg/ — s *ﬁfs/s 58
s's Zs,x € ? ( a)
with
{A,D,A",D"}
Zy= Y et §e{ADA DY (5.8b)

S

x4 is the factor arising from chemical potentials gy, ug of H and G molecules,
respectively, (see Egs. (3.1)), and is

1 -Xgas  se{A D}

s _{ Xps = se{A, D}~ (59)
(Xgas is the molar fraction of G molecules in the gas phase, 0 < X5 < 1.)
The energy terms f¥, take into account longitudinal energies explicitly and
lateral energies within a mean-field correction. Since they can be derived
easily for system (c) from Table 3.1, they are not stated here. With the
normalization condition

X9+ X9+ X% + X9, =1, g=1I1I, (5.10)

Eq. (5.7) can be solved numerically for molar fractions X;, i € {A, D, A', D'},
using a similar procedure as described in Section 3.8.

For an increasing number of different interaction energies, local correlations
within an adlayer become more and more important, which can not be de-
scribed sufficiently by a mean-field approximation. Therefore, it is expected
that the agreement between Monte Carlo simulations and an analytical de-
scription (as presented above) decreases from system (a) to system (c). Nev-
ertheless, it could be an interesting subject, to investigate the influence of
these local effects on polarity formation for the three systems considered here.
A comparison between the two approaches with respect to predictions on the
overall yield of net polarity, (| Xues|), for a large number of energy sets (see
above), would be of particular interest.
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5.4 Conclusion

Applying the growth model introduced in Section 3.3, three different molec-
ular systems were investigated: (a) Single-component crystals of polar (H)
molecules, (b) solid solutions H;_xGx of polar (H) and non-polar (G) mole-
cules, and (c) solid solutions H;_xGyx of polar (H) and polar (G) molecules.
These systems were compared with one another in terms of a statistical anal-
ysis based on Monte Carlo simulations. This study was focused mainly on
differences in distributions of X, and (X, Xye;) pairs, respectively, between
systems (a), (b) and (c).

The fundamental difference between systems (b) and (c) is that in case of
non-polar G molecules, polarity formation is mainly determined by longitudi-
nal interaction energies only, while in case of polar G molecules, it is strongly
influenced by lateral interaction energies too. In both systems, significant net
polarity (| Xyet| > 0) may result for ordered structures HG (X = 0.5).

The probability to show no polarity at all is of the same order of magnitude
for all three systems and by far the most probable case (centrosymmetric
native crystal structures assumed). However, in systems (b) and (c) the de-
crease of X ¢ distributions is considerable smaller in comparison with system
(a) in the range 0 < [Xpnet| < 0.5. This shows, that solid solution formation
is a powerful way to obtain growth-induced polar properties. A high degree
of polarity (i.e. |Xpet| > 0.5) is only realistic for system (c), where H and G
components are polar.

The statistical analysis applied in this study has shown to give sufficient
information to derive essential differences between the systems investigated.
This approach is potentially useful, if even more complex systems are consid-
ered, e.g. crystal structures with a larger number of molecular interactions,
three (or multi-) component systems or anisotropic interactions.

From a methodical point of view, a comparison between Monte Carlo simula-
tions and the Markov mean-field approximation for the description of systems
(a), (b) and (c) could clarify the validity and limitations of such an analytical
theory.
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Chapter 6

Influence of the Growth
Mechanism on Macroscopic
Polarity Formation

6.1 Introduction

It has been shown that the appearance of polarity in molecular crystals with
centrosymmetric structure (as well as the reduction of polar properties for
crystals with polar symmetry) is caused by an orientational disorder up vs
down of the dipoles of molecules during their attachment on growing crystal
faces, see [43, 39, 40] (and the previous chapters about polarity formation in
two-component systems).

Theoretically, growth-induced polarity formation has been described by a
layer-by-layer growth model [40, 5]. Adlayers of polar molecules are at-
tached successively to the crystal surface (substrate), the uppermost layer
being allowed to relax to thermal equilibrium with respect to an up and
down orientation of molecular dipoles, taking Ising-type nearest neighbor in-
teractions into account, while formerly grown layers are kept frozen. After
many attached layers, net polarity may result, due to a certain fraction of
grown-in faulted orientations of molecular dipoles (orientational disorder).
In this model, growth-induced polarity formation is a phenomenon mainly
thermodynamic in its nature, since crystal growth takes place near thermal
equilibrium.

However, the assumption of a flat crystal surface during growth is only valid
for conditions of low temperature. At higher temperatures the surface be-
comes rough, see Fig. 6.1 [79]. Surface roughening gives rise to altered bind-
ings in the molecular neighborhood and consequently to different attachment
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Figure 6.1: Surface configuration of a crystal during growth. Above a certain tempera-
ture defects arise and the surface becomes rough. Molecules perform surface diffusion due
to weak bond connections. They may form clusters or slide along a step until they reach
a kink site and finally crystallize because molecular bindings with neighboring molecules
at this position are strong enough against thermal vibrations. The degree of surface
roughening influences the up and down orientation of dipoles during attachment of polar
molecules.

probabilities for the up and down orientations of molecular dipoles, in com-
parison to the layer-by-layer growth.

Moreover, thermal relaxation of a complete adlayer requires sufficient time
to equilibrate before newly attached molecules prevent reorientation of the
underlying molecules due to a high energy of activation for such events in
the bulk. That is, the growth rate must be much slower than characteristic
equilibration times of the surface layer. However, this implies a high mobility
of molecules on the surface, e. g. by surface diffusion or desorption-resorption
mechanisms. Therefore, the assumption of a layer-by-layer growth model is
valuable only for specific situations and the growth process as well as the
surface morphology may have a considerable influence on the evolution of
polarity.

The relationship between interface kinetics, i.e. deposition, evaporation and
surface diffusion processes, and the surface morphology as well as their influ-
ence on the growth rate have been extensively studied for a long time, both
analytically and with computer simulations, see e.g. [45, 28, 79, 60, 46, 47].
However, only a few studies have investigated the influence of the growth
mechanism on the evolvement of a macroscopic growth-induced crystal prop-
erty. (One example shows the interplay between phase ordering and rough-
ening for growing films of binary alloys, see [54, 56, 55] and [17, 18].)

In this chapter, we investigate the influence of the growth mechanism on
macroscopic polarity formation in single-component systems of polar mole-
cules. The attachment of molecules, and with that the final orientational
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state of their dipoles, occurs at characteristic positions on the crystal sur-
face, depending on the strengths of molecular bindings, the rates of kinetic
processes and geometrical constraints determined by the molecular packing.
Here, five growth schemes are considered. The layer-by-layer growth process
(0) is compared with four different growth models: (i) growth along steps,
(ii) growth along kink sites, (iii) cluster growth, and (iv) random deposition,
(for details, see below). These idealized growth processes reflect particularly
a reduced cooperativity between molecules during their attachment on surface
sites in real crystals. However, they still keep basic features of the original
growth model (0). That is, kinetic or structural causes leading to a specific
growth process are not investigated here, but solely its influence on the ther-
modynamic contribution to orientational order.

By means of Monte Carlo simulations, the evolution of polarity is investigated
for each growth model, especially in the asymptotic limit after many steps
of growth. Furthermore, growth models (i) - (iv) are analyzed with respect
to the appearance of a continuous phase transition, as it has been observed
for the layer-by-layer growth model (0) [40, 5]. By introducing an effective
lateral coordination number 2¢T for each growth model, results from an ana-
lytical description in terms of a Markov mean-field approximation (originally
describing the layer-by-layer growth model [40]) are compared with simula-
tions.

In Ref. [5] it was proven that the asymptotic statistics of the layer-by-layer
growth model, i. e. the distribution of up and down oriented molecular dipoles
after an arbitrary large number of attached layers, is equivalent to the canon-
ical distribution of a two-layer system with appropriate interactions. In a
second part of this chapter we investigate whether a similar approximative
relation holds also for the other growth models presented here. Therein, this
two-layer system is modified in such a way, that it accounts for a reduced lat-
eral neighborhood during equilibration of molecular dipoles according to the
corresponding growth models (i) - (iv). Even though an exact equivalence
between growth processes and corresponding two-layer systems has not been
found, a good agreement gives an indication of the thermodynamic nature of
growth-induced polarity in growth models (i) - (iv).
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6.2 The Growth Models and their Descrip-
tion by Monte Carlo Simulations

6.2.1 The Five Growth Models

All growth models considered here have the following rules and properties
in common: Building blocks are polar molecules of the type A — 7 — D (A:
electronic acceptor terminal; D: electronic donor terminal; 7: delocalized
m-electron system connecting A and D), carrying a dipole moment i, point-
ing from A to D. (In this chapter only single-component systems of polar
molecules are considered.)

Crystals grow in the positive z direction. In x and y direction growth is lim-
ited by the dimensions of a rectangular seeding state. Molecules are arranged
on the sites of a square lattice. The number of molecules in a completely
filled layer is denoted by N = ngn,, where usually n, = n,. For the particu-
lar type of molecules involved (elongated principal axis), only one degree of
freedom for their attachment on a surface site is taken into account: Either
upwards (1) or downwards (]) with respect to the projection of their dipole
moment onto the z direction, pointing their donor (D) or acceptor (A) ter-
minal toward the nutrient, respectively. That is, molecules feature simply
two directional states (s = £1).

Upon growth molecules are subjected to thermal relaxation with respect
to the orientational state of their dipoles, taking nearest neighbor interac-
tions among molecules within the same layer (lateral) and between adja-
cent layers (longitudinal) into account. Pair interaction energies depend on
the directional state of the two molecules involved (see definitions of in-
teraction energies between polar (H) molecules only in Table 5.1). Later-
ally, isotropic interactions are assumed. Basic parameters are the energy
differences AE, = E, — E,, (lateral) as well as AEy = E 4 — E4p and
AED = EDD - EAD (longltudlnal)

The five growth models are ranged according to a reduced cooperativity be-
tween neighboring molecules:

(0) Layer growth: The crystal grows layer-by-layer, i.e. complete adlay-
ers of molecules are attached to the surface, see Fig 6.2(a). Thermal
relaxation of an adlayer takes place after all molecules are attached.
Previously grown layers are kept frozen, i.e. 180° orientational flips of
molecular dipoles are not allowed in the bulk. Within a layer molecules
are surrounded by four nearest neighbor molecules (lateral coordina-
tion number z; = 4). This growth process assumes a slow growth rate,
where the time for the growth of a layer is much larger than the sur-
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(iii)

face layer relaxation time (high mobility of molecules on the surface).
Growth mechanism (0) was thoroughly discussed in [40, 5]. Here, it
represents the reference case.

Step growth: Crystal growth takes place along surface steps by the at-
tachment of complete columns of molecules, see Fig. 6.2(b). Molecules
at the edge of a step are subjected to thermal relaxation with respect to
their dipole orientations. Formerly attached molecules, i.e. in the in-
terior of the surface as well as in the bulk, are considered to be frozen.
Once the step has reached the border of the crystal, i.e. a complete
layer of molecules has been filled, a new step is formed and the process
starts over for a new adlayer. Here, z; = 3, but only two of the neigh-
boring molecules thermalize simultaneously (those being in the same
column). Growth model (i) is characterized by a fast equilibration for
molecules along the edge of a step, but a high energy of activation for
the whole surface layer, due to the reduced mobility of molecules being
completely surrounded by neighboring molecules.

Kink growth: Attachment takes place at kink sites, see Fig. 6.2(c).
By adding molecules, an initial kink position slides along a step until
it reaches the border of the crystal. A new kink site is formed and
molecules are attached, one after the other, along the edge of the step
in the same manner until the entire surface layer is filled. Afterwards,
the process is continued above the completed layer. Only molecules
at the kink position are allowed to thermalize, while any previously
attached molecules (surface layer and bulk) are kept frozen (z, = 2).

Cluster growth: Starting from a seed molecule on the flat crystal sur-
face, one of its neighboring sites is occupied randomly by another
molecule. Likewise, subsequently impinging molecules are attached
randomly at neighboring sites (the perimeter) of this growing cluster,
see Fig. 6.2(d). Once a molecule is thermalized within the cluster, it is
kept frozen thereafter. The process is continued until the cluster has
filled the whole surface, see also [19]. Upon completion of a layer, a new
seed molecule is attached randomly (and thermalized) on the surface
and a next cluster starts to grow (1 < z; < 4, for the seed molecule,
z) = 0). In this growth model molecules are highly mobile as long as
they do not encounter lateral interactions with molecules belonging to
the adlayer.

Deposition Growth: Molecules are randomly deposited on the crystal
surface, see Fig. 6.2(e). They thermalize and are frozen immediately
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substrate

(a) Layer growth (b) Step growth (c) Kink growth

(d) Cluster growth (e) Deposition growth

Figure 6.2: The five growth models. Molecules are represented as cubic building blocks.
Shaded units: Molecules, being allowed to thermalize simultaneously with respect to an
up and down orientation of their dipoles. White parts (adlayer and substrate) are kept
frozen. For details, see text.

after being attached to the surface (0 < z; < 4), see also [77]. Sites of
a new layer start to be occupied by molecules only, when the previous
layer has been completed. Except relaxation during the impingement
on the surface, molecules feature no mobility at all in this growth pro-
cess. Such a situation may occur for fast growth rates and surface
morphologies which do not show surface diffusion nor rapid desorption
from unfavorable positions.

Details of growth mechanisms (0) - (iv) in terms of Monte Carlo simulations
are discussed in Section 6.2.2; including the treatment of boundary condi-
tions.

All growth models describe a state of minimal free energy only for certain
units of the surface layer: (0) a complete adlayer, (i) a column of molecules,
(ii) - (iv) a single molecule. Therefore, growth processes lead to a metastable
bulk state, being justified only if re-orientational flips of molecules are not
taking place after crystallization is completed.

It is clear that neither does a real crystal grow exactly according to one of
the processes described above, nor do they cover the entire range of possi-
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ble growth schemes. (For instance, spiral growth is another typical process
which is not considered here [85]).

Nevertheless, these growth models represent a logical decomposition of com-
plexity given by real growing crystal surfaces, which is focusing on those pro-
cesses which may influence polarity formation. In real crystals, combinations
of these growth mechanisms can occur. Here, they are treated separately, in
order to analyze their individual influence on growth-induced polarity forma-
tion. As already mentioned above, kinetic or structural conditions leading
to a certain growth scheme are not studied here.

6.2.2 Monte Carlo Simulations

So far, general characteristics of the five growth mechanisms were described
as well as possible instances for their occurrence. Here, technical details of
implementation using Monte Carlo simulations are briefly discussed.

Each growth process starts off by the definition of the type of seeding state,
e.g. uniform 1 or |, random, or antiparallel. Ideally, in the asymptotic limit
of many grown layers (z — o00) macroscopic polarity does not depend on
this initial state. However, this issue needs a careful analysis for each growth
process in simulations.

For the thermalization of a unit (i.e. adlayer, column, or single molecule, re-
spectively), nearest neighbor couplings among molecules within the surface
layer (lateral) and longitudinal interactions with molecules on corresponding
sites of the previously grown frozen substrate layer (or, initially, the seeding
state) are taken into account. Laterally, periodic boundary conditions are
applied for all growth models. In order to fulfill periodicity in case of step
(i) and kink (ii) growth, respectively, the following rule is applied: For bor-
der molecules on the surface, if necessary nearest neighbor molecules do not
exist on the growing adlayer, lateral couplings to molecules of the substrate
layer (on corresponding sites of the opposite border) are take into account
instead. Defined as such, constant z, = 3 (i) and z; = 2 (ii) is provided
for all molecules in these growth models. In case of cluster (iii) and deposi-
tion (iv) growth, the appearance of variable lateral molecular neighborhoods
(0 < z; <4) is intended.

In the case of layer and step growth, adlayers (0) or columns (i) of molecules
are initialized randomly, and then, thermalized using the Metropolis algo-
rithm [66, 58]. The equilibration time 75 (measured in Monte Carlo steps,
on average, per molecule) is expected to be much smaller for step growth (i)
than for layer growth (0), since no critical slowing down is observed for 1D
columns of molecules. Here, the following orders of magnitude are considered
to be sufficient: 75 &~ N? for layer growth and 7 ~ n, or n, for step growth.
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In cases (ii) - (iv), where only one molecule is thermalized at the time, the
probabilities for the up and down dipole orientations, p(1) and p({), respec-
tively, are given by normalized Boltzmann factors. That is,

1

p(}) = 1 4+ e B(Er—Ey)’

(6.1)

where E| and F}; are the sums of interactions between a thermalizing molecule
(in down or up state, respectively) and its nearest neighbors and p(1) =
1—p(}), (6 =1/ksT).

In case of step growth (i), the first column of molecules is always attached
at the border of the crystal. Correspondingly, in case of kink growth (ii),
the first molecule is attached at a corner of the crystal. (Note that this does
not introduce any bias against the evolution of polarity.) Due to the fourfold
symmetry of the square lattice as well as the assumption of isotropic lateral
interactions, it is sufficient to consider step growth from one border and kink
growth from one corner of a crystal only. Besides, for growth model (i) and
(ii), the same directionality is kept during attachments of molecules on the
surface.

The growth equilibration time 7 measures the number of attached layers
until the growth process has lost its memory from the initial seeding state.
Generally, this takes place already after a few grown layers for all growth
models investigated here. Therefore, 50 < 75 < 1000 is considered as suffi-
cient.

Measurements of physical quantities are performed after an adlayer has been
completed. The sampling time 75 (measured in completed adlayers) denotes
the number of measurements (here, 103> < 75 < 10°). Measurements are
carried out after 7¢ growth steps.

6.3 Results

Throughout this study, growth models (0) - (iv) are analyzed for four different
longitudinal coupling parameters, AE; = AE4 — AEp, [kJ/mol]:

(1) AE,=15 AEp=10 (AE;=05)
(2) AEy= 5 AEp= 2 (AE;=23)
(3) AE,= 3, AEp= 1 (AE;=2)
(4) AEy= 2, AEp= 1 (AE;=1)

They are chosen as such in order to investigate the influence of decreasing
longitudinal couplings on the evolution of orientational order for the differ-
ent growth schemes. Growth models are analyzed for varying lateral energy
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differences AFE,. Temperature 7" = 300 K is kept constant in all Monte
Carlo simulations. For given parameters, tests have shown that simulation
results do not depend on the initial seeding state. However, in order to avoid
erroneous frozen configurations (anti-phase boundaries) in case of antiferro-
magnetic ordering within adlayers (AE, > 0), a centrosymmetric seeding
state has been selected.

6.3.1 Polarity Formation

Macroscopic net polarity, X,e, is defined as the difference between down-
wards ({) and upwards (1) oriented molecular dipoles in the asymptotic limit
of many attached layers (z — oc). In Monte Carlo simulations, X, corre-
sponds to the mean value from 7g layer polarizations, (which are denoted by
xnet)-

Figs. 6.3 - 6.6 show X, obtained from Monte Carlo simulations for growth
models (0) - (iv) as a function of the lateral energy difference (AE,). At
AE, = 0 kJ/mol, i.e. no lateral coupling, attachment of molecules is de-
scribed by isolated 1D chains and all growth models become equivalent.
Therefore, X, curves from growth models (0) - (iv) must cross each other
at this value. (This is a good test for the verification of algorithms for the
simulation of the different growth mechanisms.)

Step (i) and kink (ii) growth show principally the same behavior for X, in
comparison to the layer-by-layer growth model (0). Growing crystals tend to-
wards a completely antiferromagnetic (Xpe, = 0) or ferromagnetic (Xpey = 1)
ordering for AE, — +o00, respectively, see also Table 6.3. Further on, a
bump is observed in the slopes of X, curves for AE, > 0 in growth models
(0) - (ii), indicating a singularity (see below). However, for all longitudinal en-
ergy parameters (Figs. 6.3 - 6.6), the transition from ferromagnetic to antifer-
romagnetic ordering is smoother for step (i) and kink (ii) growth, compared to
the layer growth (0). That is, it holds X (layer) > Xyt (step) > Xpeq (kink)
for AE| < 0, and Xpe(layer) < Xper(step) < Xpes(kink) for AE, > 0.

For large longitudinal coupling parameters (relative to AE| ), cluster (iii)
and deposition (iv) growth show a very similar behavior in X, as kink (i)
growth, see Fig. 6.3. However, the smaller these longitudinal interactions,
the more deviate growth models (iii) and (iv) from growth schemes (0) - (ii).
For AE, <0, X, may even pass a maximum in case of cluster and deposi-
tion growth. Generally, in these two growth processes X, decreases slower
towards zero for AE, — oo.

For a discussion of these observations, see Section 6.6.
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6.3.2 Phase Transition

For the layer-by-layer growth model (0) a continuous phase transition from
a disordered to an antiferromagnetic ordered (AFO) state was found [5,
40]. Here, we investigate whether such a phase transition is preserved in
growth models (i) - (iv), despite a reduced cooperativity between neighbor-
ing molecules in these growth processes.

A suitable order parameter, ¢, to examine the existence of an AFO phase
transition by means of Monte Carlo simulations is given as

6= 5 {(ae(9) = Tnce (62)

where xn¢(g) (9 = I, 1I) denote the two sublattice polarizations (sublattice I,
xz+y = even; sublattice 1, x+y = odd). ()max means the value corresponding
to the maximum of the distribution.

Besides, the specific heat Cyy = 0U/0T at constant volume is measured (U
is the internal energy). A sharp peak in Cy indicates the appearance of a
phase transition, see e. g. [2] or [32, 66] for the Ising model. In Monte Carlo
simulations, the specific heat per molecule, ¢y, can be obtained from energy
fluctuations as (see [66])

v = 5807 () - (EY), (6.3

E is the energy sum of all lateral and longitudinal intermolecular couplings
of a completed adlayer.

In Figs. 6.7 - 6.10 and Figs. 6.11 - 6.14 results are given for ¢ and cy,
respectively, in dependence on AE| for growth models (0) - (iv). Note that
in curves with ¢, the positive range of AF, is shown only, since this order
parameter is always zero for AF, < 0.

For growth models (0) - (ii), the rapid increase of ¢ as well as the sharp peak
of ¢y (at corresponding critical AE, > 0) for any given longitudinal couplings
clearly indicate an AFO phase transition. Additionally, a diffuse transition
from a ferromagnetic ordered (AE, < 0) to a disordered (AE | = 0) state is
observed from curves of the specific heat cy .

Contrarily, in case of cluster (iii) and deposition (iv) growth, for medium
and small longitudinal coupling parameters (Figs. 6.8 - 6.10 and 6.12 - 6.14,
respectively), ¢ remains zero for any AFE, > 0 and ¢y shows only a minimum
at AE, =0 (all growth models must have the same ¢y at this point). That
is, neither an AFO phase transition, nor a diffuse transition is existent for
these growth schemes here. However, this changes for AE4 = 15 and AEp =
10 [kJ/mol] (Figs. 6.7 and 6.11), where also cluster and deposition growth
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show the characteristic behavior in ¢ and cy for the existence of an AFO
phase transition (corresponding curves resemble strongly those of kink (ii)
growth, compare also with Fig. 6.3).
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Figure 6.3: Net polarity (Xne;) vs lateral coupling difference (AE ) for growth models
(0) - (iv) from Monte Carlo simulations. AE4 = 15 and AEp = 10 [kJ/mol], T = 300 K.
s = 50x50; 7¢ = 200; 7 = 10000 (i), 200 000 (ii), 100 000 (iii) and (iv); centrosymmetric
seeding state. For layer-by-layer growth (0), results are obtained from the equivalent two-
layer system (7¢ = 20000, 75 = 100 000).
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Figure 6.5: Net polarity (Xnet) vs lateral coupling difference (AE, ) for growth models
(0) - (iv) from Monte Carlo simulations. AE4 = 3 and AEp =1 [kJ/mol], T = 300 K.
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Figure 6.6: Net polarity (Xyet) vs lateral coupling difference (AE, ) for growth models
(0) - (iv) from Monte Carlo simulations. AE4 = 2 and AEp =1 [kJ/mol], T = 300 K.
s, = 50x50; 7¢ = 200; 75 = 10000 (i), 200 000 (ii), 100000 (iii) and (iv); centrosymmetric
seeding state. For layer-by-layer growth (0), results are obtained from the equivalent two-
layer system (g = 20000, 75 = 100 000).
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Figure 6.8: Order parameter (¢) vs lateral coupling difference (AE ) for growth models
(0) - (iv) from Monte Carlo simulations. AE4 = 5 and AEp = 2 [kJ/mol], T = 300 K.
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Figure 6.12: Specific heat (cy) vs lateral coupling difference (AE ) for growth models
(0) - (iv) from Monte Carlo simulations. AE4 = 5 and AEp = 2 [kJ/mol], T = 300 K.
s, = 50x50; 7¢ = 200; 75 = 10000 (i), 200000 (ii), 100 000 (iii) and (iv); centrosymmetric
seeding state. For layer-by-layer growth (0), results are obtained from the equivalent two-
layer system (7¢ = 20000, 75 = 100000). Dotted lines are guidelines for the eyes only.
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6.4 Markov Mean-Field Approximation

A straightforward approach for the analytical description of growth models
(i) - (iv) is to apply the Markov mean-field approximation of the layer-by-
layer growth model (0), however introducing an effective lateral coordination
number 24 which accounts for a reduced cooperativity during thermaliza-
tion of molecules on surface sites, (2% = 4 for the layer-by-layer growth
model).

The analytical treatment of the layer-by-layer growth model (0) in terms of
a Markov mean-field approximation has been described in detail in Chap-
ter 3 (for two-component systems), [40] and [5]. Here, the equations (in a
compact form) for the calculation of X, are summarized, which result from
those in Chapter 3 for a single-component crystal of polar molecules only,

i.e. Xgas = 0.
X9 is the fraction of polar molecules with A-terminal oriented toward the
nutrient (s = —1) for sublattice ¢ = I,11. The fraction of molecules with

D-terminal oriented toward the nutrient (s = +1), X% is given by normal-
ization conditions X9 + X%, =1, g =1, I1. It follows

1+ ePlaa
1{1 = T I (6'4)
2 —+ eﬂfAA —+ eﬁfDD
1 1+ ePlia 6.5
424 ePlhh 4 BT (6:5)
with
fii=AE, + 2TAF, (1 - 2X1), (6.6a
fhp = AEp — 2FAFE, (1 —2X 1), (6.6b

= AEs+ 25"AE,|
bp=AEp —2TAE,

1—2X1%), (6.6¢
1—2X7%). (6.6d

P e

2% denotes the average number of occupied neighbor sites during thermal-
ization of molecules on the crystal surface for growth models (0) - (iv), see
Table 6.2. Eqs. (6.4) and (6.5) are solved numerically, see Appendix 3.8.
Finally, X, is given as

Xnet :X,{1+X,{{I_ L. (67)
Note that 25T is the only characteristic parameter distinguishing growth mod-

els (0) - (iv) in this approximation. That is, kink (ii), cluster (iii) and de-
position (iv) growth are equivalent within the present description, because
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they all have 25T = 2 (see Table 6.2). Furthermore, it has to be emphasized
that the mean-field estimate of the lateral couplings assumes thermalization
of molecules after an adlayer has been completely occupied by molecules.
However, this is not the case for growth models (i) - (iv). Therefore, it is
already clear that the present mean-field approach may only provide reason-
able results for homogeneous distributions of up and down oriented molecules
on the crystal surface.

Comparisons of X between growth models and corresponding two-layer
systems (see below) from Monte Carlo simulations as well as the present
Markov mean-field approximation are given in Section 6.5.3.

6.5 The Two-Layer Systems

For the layer growth model (0) it was proven that the asymptotic statistics of
the system consisting of the thermalized adlayer and the previously attached
substrate layer is equivalent to the canonical distribution of a two-layer sys-
tem with appropriate interactions, see Ref. [5]. In this section, we address
the question whether similar relations may hold for the other growth models
discussed here, at least within certain ranges of intermolecular couplings.

In order to provide a basis for the argumentation below, the case of the layer-
by-layer growth model is shortly reviewed (using the same notations as in

[5])-

6.5.1 The Equivalent Two-Layer System for the Layer
Growth Model (0)

In the layer growth model (0) the asymptotic distribution 7, denotes the
probability distribution that the thermalized uppermost layer (surface) is in
state o (0 = 1,...,2") after infinitely many growth steps (z — 00). A state
o is specified by the values of all dipole orientations, {s;,}, 2 =1,...,n,,y =
1,...,ny. The proof in [5] states that 7, is equal to the thermal equilibrium
distribution of one layer of a two-layer system with the following structure
and interactions:

e The system consists of two layers (L, L") of the same geometry (square
lattice) and size as the layers in the growth model. Each lattice site is
occupied by a polar molecule in state up or down (s = +1).

e Within a layer (L or L") the same lateral interactions hold as in the layer
growth model (periodic boundary conditions). That is, each molecule
interacts with its four nearest neighbors according to AFE .
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Table 6.1: Longitudinal energy differences for the layer growth model (GM) and the two-
layer system (LL). s’ and s denote corresponding sites on the substrate and adlayer (for
GM) as well as layers L' and L (for LL), respectively. < and — represent the down and
up dipole orientations of molecules, respectively.

s’ s Growth model (GM) Two-layer system (LL)
— — 0 —AFE,

— — AEx 0

— — AED 0

— — 0 —-AFEp

e Longitudinal interactions between the two layers are given in Table 6.1.
Note that an exchange of the two layers does not affect the total energy,
due to the symmetries in longitudinal interactions.

Furthermore, it was shown that even the distribution of layer pairs is the
same: [I6M = TIZ.. The first symbol refers to the growth process (GM;
z — oo) and denotes the probability of finding two consecutive layers in
given states o', 0. The second symbol denotes the two-layer system (LL) to
have its first and second layer in states ¢’ and o, respectively.

Besides being an interesting relation from a theoretical point of view, these
equivalences stated for the one- and two-layer statistics have the following
benefits:

e A non-equilibrium system (layer-by-layer growth model) is described
by an equilibrium system (two-layer system) and therefore, being ana-
lyzed in the frame of equilibrium statistical physics. In particular, the
investigation of phase transitions gets a well defined background.

e Any physical quantity (e. g. Xyet, ¢, U or ¢y ) of the layer growth process
in the asymptotic limit (2 — 0o) may be obtained from measurements
of the two-layer system in thermodynamic equilibrium. Note that for
the calculation of the internal energy U (and derived quantities) the
original longitudinal energies have to be taken into account.

e The reduction to a two-layer system allows a more detailed sampling
of the configuration space in Monte Carlo simulations (for the same
amount of computer time), and therefore, leading to more precise mea-
surements.
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6.5.2 The Two-Layer Systems for Growth Models (i) -
(iv)
Motivated by this result, it is interesting to investigate whether the asymp-
totic behavior of the other growth models presented here may also be repre-
sented approximatively by corresponding two-layer systems. The derivation
of these two-layer systems is based on the following considerations.
As described above, for the layer growth model (0), only longitudinal cou-
plings undergo a transformation in the two-layer system, while lateral cou-
plings within a layer remain unchanged. Moreover, the entire deduction in
[5] is independent of the detailed structure of the lateral molecular neigh-
borhoods (and couplings). That is, the equivalence presented above remains
valid even for different layer geometries, next nearest neighbor interactions
(lateral) or inhomogeneous molecular environments (such as open boundary
conditions) within a layer as long as corresponding modifications are taken
into account in the two-layer system as well. However, requirements for an
equivalence between growth model and two-layer system are that (1) each
attached layer has the same lateral structure, (2) only a single longitudinal
coupling to molecules of corresponding sites of the (previously grown) sub-
strate layer are taken into account, and (3) thermalization takes place after
all molecules of an adlayer are attached on the surface.
The corresponding two-layer systems for growth models (i) - (iv) are defined
as follows: The systems consist of two layers (L, L') of the same size than the
layers of the growth models. Lattice sites are occupied by polar molecules in
state up or down (s = +1). Between layers L and L' the same longitudinal
couplings as shown in Table 6.1 are taken into account. This is a logical con-
sequence of the fact that, for vanishing lateral interactions, growth models
(0) - (iv) become equivalent, and therefore, these transformed longitudinal
interactions must be valid for any two-layer system.
In order to represent the specific lateral molecular neighborhoods and cou-
plings during the attachment of molecules on the crystal surface for growth
models (i) - (iv), appropriate modifications are applied in the corresponding
two-layer systems:

(i) Only three of the four lateral intermolecular couplings within layers
L and L' are taken into account during thermalization of a molecule.
Always the same coupling is discarded (e.g. the interaction with the
right neighbor). Note that this two-layer system corresponds ezactly
to a layer-by-layer growth model where only three lateral neighbors are
taken into account.

(ii) Only two of the four lateral intermolecular couplings within layers L
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and L' are taken into account during thermalization of a molecule.
These two couplings must be perpendicular to each other. Always the
same two couplings are discarded (e.g. the interactions with the right
and upper neighbor). Note that this two-layer system corresponds ez-
actly to a layer-by-layer growth model where only two lateral neighbors
are taken into account.

(iii) The lateral neighborhood within layers L and L’ which is taken into ac-
count during thermalization of a molecule is chosen with a certain prob-
ability. Specifically, for each single molecule flip, a subset of the four
lateral intermolecular couplings is randomly selected in Monte Carlo
simulations according to the probability distribution for cluster growth,
see Table 6.2.

(iv) The same procedure is applied as in (iii), using the probability distri-
bution for deposition growth, see Table 6.2.

Probability distributions for cluster (iii) and deposition (iv) growth in Ta-
ble 6.2 are dependent on the size of the lattice. However, for the actual
lattice size, s, = 50 x 50, probabilities are already in the asymptotic limit of
infinite large lattices. Note that for Monte Carlo simulations of the two-layer
systems, 7g denotes the equilibration time of layers L and L' measured in
Monte Carlo trials, on average, per molecule. 75 describes the number of
measurements (one measurement is performed after 2 x n, x n, trials, i.e.
one sweep of the two-layer system). Within layers L and L' periodic bound-
ary conditions are applied in all two-layer systems. It has to be emphasized
that equilibration of two-layer systems takes place for entirely filled layers
only, unlike thermalization of molecules in growth models (i) - (iv).

An exact equivalence between the asymptotic distributions of growth models
(i) - (iv) and the equilibrium distributions of corresponding two-layer systems
(as for the layer-by-layer growth process) can not be expected. While for the
layer growth model (0) and its two-layer system the thermalizing unit is the
same (namely an entire layer), this is not the case anymore for growth models
(i) - (iv). For step (i) and kink (ii) growth, requirement (3) from above is
not fulfilled, and, for cluster (iii) and deposition (iv) growth, requirements
(1) and (3) are not satisfied anymore.

Nevertheless, the study of the agreement between the thermal equilibrium
two-layer systems described here and corresponding non-equilibrium growth
models (i) - (iv) is a good way to estimate the thermodynamic nature of
macroscopic polarity formation in these growth models.

96



Table 6.2: Probabilities describing the occurrence of different types of lateral neighbor-
hood configurations during thermalization of molecules on the crystal surface for growth
models (0) - (iv). A type of configuration is characterized by the number of occupied
neighbor sites. Grey: Thermalizing molecule. Black: Occupied neighbor site. White:
Empty neighbor site. In case of two occupied neighboring sites, two different types of
configurations exist. A dash denotes that corresponding configurations are not possible
for a certain growth model. In case of step and kink growth, only one of the four possible
configurations can occur (with probability one). In case of cluster and deposition growth,
probabilities represent averages over 100 000 completed adlayers (s, = 50x 50). Individual
configurations of a certain type occur with equal probability for growth models (iii) and
(iv), respectively. Random selection of the lateral neighborhood (intermolecular couplings)
in the two-layer systems for cluster and deposition growth is based on the corresponding
probability distributions presented here. The effective lateral coordination number (25f)
specifies the average number of occupied neighbor sites during thermalization of molecules
on surface sites. Note that z¢T is the same for kink, cluster and deposition growth.

Configuration Growth model
Layer | Step | Kink | Cluster | Deposition
[B] — — — 0.0004 0.2000
E ! — — — 0.4329 0.2000
! ! - - 1.0 0.2337 0.1333
% [I] — — — 0.0320 0.0667
I ! — 1.0 | — 0.1681 0.2000
+ 10 | — | = 0.1329 0.2000

2°f 4.0 | 3.0 | 20 2.0 2.0
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6.5.3 Comparisons of X,.. between Growth Models,
Two-Layer Systems and Analytical Description

Figs. 6.15 - 6.18 show X, in dependence on the lateral coupling difference
(AE)) obtained from Monte Carlo simulations for growth models (i) - (iv)
and corresponding two-layer systems as well as for the Markov mean-field
approximation (choosing the same four longitudinal coupling parameters as
in Section 6.3). A detailed comparison between Markov mean-field approx-
imation and Monte Carlo simulations for the layer-by-layer growth model
(0) is given in [40, 5], therefore, it is not considered anymore here. Remind
that kink (ii), cluster (iii) and deposition (iv) growth are indistinguishable
in terms of the mean-field approach, since all have 2¢f = 2. That is, corre-
sponding curves are the same in Figs. 6.15 - 6.18.

Generally, the agreement of X, between growth models (i) - (iv) on one
hand, and corresponding two-layer systems on the other hand, decreases to-
wards smaller longitudinal energy differences. This effect is most pronounced
for cluster (iii) and deposition (iv) growth. Nevertheless, in case of step (i)
and kink (ii) growth, the similarities with the corresponding two-layer sys-
tems are remarkable (for step growth even nearly identical). In case of cluster
(iii) and deposition (iv) growth, except for the maxima of X, for AE, < 0,
the correspondence with the two-layer systems is reasonable, in consideration
of the strong non-equilibrium character of these growth schemes.

In contrast, in addition to the expected large divergences for cluster (iii) and
deposition (iv) growth, results from the analytical approach show relatively
large deviations even for kink (ii) growth for small longitudinal coupling pa-
rameters. For step growth (i), the Markov mean-field approximation gives a
sufficient agreement compared with Monte Carlo simulations. Note that the
discontinuity in the slope of X, from the analytical description corresponds
to the AFO phase transition (see [40, 5]), which remains for any 2¢f # 0.
For a detailed discussion, see Section 6.6.
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Figure 6.15: Comparison of net polarity (X,e;) between growth models (i) - (iv) and
corresponding two-layer systems (from Monte Carlo simulations), and Markov mean-field
approximation. AE4 = 15 and AEp = 10 (AE; = 5) [kJ/mol], T = 300 K. Two-layer
systems: s, = 50 x 50, 7¢ = 20000, 75 = 100 000, centrosymmetric seeding state. Growth

models: Same data as for Fig. 6.3.
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Figure 6.16: Comparison of net polarity (X,e;) between growth models (i) - (iv) and
corresponding two-layer systems (from Monte Carlo simulations), and Markov mean-field
approximation. AE4 = 5 and AEp = 2 (AE; = 3) [kJ/mol], T = 300 K. Two-layer
systems: s, = 50 x 50, 7¢ = 20000, 7¢ = 100 000, centrosymmetric seeding state. Growth
models: Same data as for Fig. 6.4.
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Figure 6.17: Comparison of net polarity (X,e;) between growth models (i) - (iv) and
corresponding two-layer systems (from Monte Carlo simulations), and Markov mean-field
approximation. AE4 = 3 and AEp = 1 (AE; = 2) [kJ/mol], T = 300 K. Two-layer
systems: s, = 50 x 50, 7¢ = 20000, 7¢ = 100 000, centrosymmetric seeding state. Growth
models: Same data as for Fig. 6.5.
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Figure 6.18: Comparison of net polarity (Xne;) between growth models (i) - (iv) and
corresponding two-layer systems (from Monte Carlo simulations), and Markov mean-field
approximation. AE4 = 2 and AEp =1 (AE; = 1) [kJ/mol], T = 300 K. Two-layer
systems: s, = 50 x 50, 7¢ = 20000, 7¢ = 100 000, centrosymmetric seeding state. Growth
models: Same data as for Fig. 6.6.
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Table 6.3: Snapshots of completed adlayers from Monte Carlo simulations for growth
models (0) - (iv) and varying AE,. AE4 = 2, AEp = 1 [kJ/mol], T = 300 K. Lattice
size s;, = 16 x 16. In all cases, more than 1000 growth steps (completed adlayers) preceded
before snapshots have been taken.

AE, -20 20

Layer

Step

Kink

Cluster

1

Deposition

6.6 Discussion

The equivalent principal behavior of step (i) and kink (ii) growth processes
compared to the layer-by-layer growth model (0), i.e. same limiting values
of Xnet for AE| — 400 (see Figs. 6.3 - 6.6) and existence of an AFO phase
transition (see Figs. 6.7 - 6.10 and Figs. 6.11 - 6.14, respectively), is the result
of an ordered fashion and constant directionality of molecules attachments
during growth. This is of particular importance in case of kink growth, where
molecules are frozen immediately after being attached and thermalized on
the surface. Due to a reduced cooperativity between neighboring molecules
during thermalization for step (z; = 3) and kink (2, = 2) growth, the
orientational disorder is correspondingly higher in these processes compared
to the layer-by-layer growth, see Table 6.3. Therefore, the transition from the
ferromagnetic to the antiferromagnetic ordered state with increasing AF is
less pronounced for growth schemes (i) and (ii).

Because the attachment of molecules proceeds in an ordered way, step (i)
and kink (ii) growth models show a good agreement with their correspond-
ing two-layer systems with respect to X, (see Figs. 6.15 - 6.18). That is,
despite a limited mobility of molecules within an adlayer (frozen states), evo-
lution of polarity in models (i) and (ii) is sufficiently described by thermal
equilibrium systems (taking into account a reduced number of lateral neigh-
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bors) and therefore, remains mainly a thermodynamically driven process.
As a consequence, even the Markov mean-field approximation yields gener-
ally comparable results for X, in case of step and kink growth. However,
for kink (i) growth, the weak cooperativity of molecules within an adlayer
can not be compensated always by longitudinal couplings upon growth and
therefore, the analytical approach may considerably deviate from simulation
results, see Fig. 6.18(b). A decreasing validity of mean-field estimates with a
reduction of the number of interacting particles is well known also for other
models [10].

Cluster (iii) and deposition (iv) growth processes as presented here are gen-
erally different from growth models (0) - (ii), because of two reasons: First,
molecules are allowed to attach randomly on the surface (for growth model
(iii) only along the perimeter of the cluster). Second, in case of cluster
growth, thermalization of the seed molecule (i.e. the first molecule being
attached on the flat crystal surface) is determined only by longitudinal cou-
plings and, in case of deposition growth, even a large number of molecules
thermalize without any influence of lateral interactions (z; = 0). That is,
for large |[AF |, the orientational states of these isolated molecules strongly
determine the dipole orientations of subsequently attached molecules, see Ta-
ble 6.3.

Indeed, in case of cluster growth and AE, — —o0, X, tends towards the
same value as for AF, = 0, since all molecules within an adlayer feature the
same orientational state as the seed molecule, which is thermalized without
the influence of any lateral coupling, see Table 6.4. Therefore, cluster growth
shows always a maximum in X, curves for —oo < AE; < 0. (Note that
|Tnet| still reaches unity for AE, — —o0).

In case of deposition growth, the effect of a single isolated molecule on
the orientational order of an entire adlayer is less pronounced, since sev-
eral molecules thermalize without any lateral coupling on the crystal surface
simultaneously, see Tables 6.3 and 6.4. Nevertheless, also here a maximum
in X, may be observed and, for AE|, — —00, |Xyet| and |xnet| can tend to
a constant value smaller than one.

For AE, > 0, cluster (iii) and deposition (iv) growth show for X, similar
behaviors as growth models (0) - (ii), because Xy &~ 0 can be obtained also
for a slightly randomly disordered antiferromagnetic state, see Table 6.3.
Except for one case (see Figs. 6.7 and 6.11), cluster and deposition growth
feature no AFO phase transition anymore, because of the two reasons men-
tioned above. The differences of orientational states of molecules between
subsequently grown layers, give rise to large energy fluctuations and there-
fore, increasing specific heat ¢y away from AE, = 0 in growth models (iii)
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Table 6.4: Snapshots of subsequently completed adlayers from Monte Carlo simulations
for cluster (iii) and deposition (iv) growth models. AE4 = 2, AEp =1 [kJ/mol], T =
300 K. Lattice size s, = 16 x 16. ¢ denotes an arbitrary start of the sequence (after more
than 1000 grown layers).

AEJ_ = -8 kJ/IIlOl

Adlayer 1 +1 +2 +3 +4 +5 +6 +7 +8
o MM ERSENR
i (8 (0 R i R B3 M) R
AE, = —20 kJ/mol

Adlayer 1 +1 +2 +3 +4 +5 +6 +7 48
oo [ N 8 I O O
sion ) (0 B o o I8 0 0 M
and (iv).

Taking into account the specific probability for the occurrence of a certain
lateral neighborhood with 0 < z, < 4, corresponding two-layer systems may
account to a certain extent for the strong local correlations and high orien-
tational disorder arising in cluster (iii) and deposition (iv) growth models,
see Figs. 6.15 - 6.18. However, a maximum in X, for —oo < AE, < 0,
as being observed for growth models (iii) and (iv), can not be reproduced
in corresponding two-layer systems, because all molecules are thermalized si-
multaneously in the two layers L and L'. This diminishes the strong influence
of single molecules being thermalized without any lateral coupling (z; = 0)
on the global orientational state of a layer.

Of particular interest are the cluster (iii) and deposition (iv) growth cases
with AE4 = 15 and AFEp = 10 [kJ/mol]. Both show similar values for X,
¢ and cy (i.e. also an AFO phase transition) as obtained for kink (i) growth,
see Fig. 6.3, 6.7 and 6.11.

In the different growth models, the influence of lateral couplings on the evo-
lution of polarity is determined by two factors: first, the number of lateral
neighbors to compete with the longitudinal one, and second, the detailed
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attachment process, being either of ordered or random character for models
(0) - (ii) and (iii), (iv), respectively. In case longitudinal interactions are
predominantly high, the second factor is less and less significant because the
orientational state of a thermalizing molecule is not determined anymore by
the history of previously attached molecules, but only by its local neighbor-
hood which is on average given by the effective lateral coordination number
2¢T. As a consequence, for sufficiently large longitudinal couplings, cluster
(iii) and deposition (iv) growth give similar results for X, than kink (ii)
growth, because all have 2¢T = 2 (see Table 6.2). (Logically, also a satis-
factory agreement with corresponding two-layer systems and the analytical
approach is obtained, see Fig. 6.15(c) and 6.15(d).)

For a confirmation of these considerations it would be interesting to investi-
gate a growth model with non-integer value for z¢f.

6.7 Conclusion

The present study has shown that the growth mechanism can have a signif-
icant influence on macroscopic polarity formation. However, as long as the
attachment of molecules proceeds in a ordered fashion and with constant di-
rectionality (step (i) and kink (ii) growth), the evolution of polarity remains
mainly a thermodynamically driven process, featuring principally the same
characteristics as the layer-by-layer growth model (0). Indeed, even though
thermalization within an adlayer is reduced to a column of molecules (step)
or even a single molecule (kink) only, in growth models (i) and (ii) the same
limiting values of X, for AE, — +o00 as well as an AFO phase transition
are manifest like for the layer-by-layer growth process. Furthermore, the
asymptotic statistics of growth models (i) and (ii) are in good agreement
with the equilibrium statistics of corresponding two-layer systems, confirm-
ing the thermodynamic nature of growth-induced polarity formation for step
and kink growth.

If the attachment of molecules proceeds randomly (cluster (iii) and deposi-
tion (iv) growth), principally different behaviors can appear (e.g. maximum
of Xpet) and non-thermodynamic effects may strongly influence macroscopic
polarity.

However, for all growth models (i) - (iv) and sufficiently strong longitudi-
nal intermolecular couplings, the influence of the lateral neighborhood on
growth-induced polarity formation is satisfactorily summarized by an effec-
tive lateral coordination number 2$f. This is especially remarkable in case
of cluster (iii) and deposition (iv) growth, where the random character of
molecules attachments results in highly inhomogeneous local environments.
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In real crystals, since polarity evolves differently for layer/step/kink growth,
formation of regions with different polarity may arise depending on the pre-
dominant growth mode in a crystal sector. This may result in even higher
orientational disorder, due to this combined effect.
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Chapter 7

The Program POLARITY

PoOLARITY is the program which has been developed in order to investigate
all the systems and models presented in this thesis by means of Monte Carlo
simulations. In particular, these are (i) a layer-by-layer growth model for
two-component systems of polar (H) and non-polar or polar (G) molecules,
(i) five different growth models (layer-by-layer, step, kink, cluster, depo-
sition) for single-component systems of polar (H) molecules only, and (iii)
corresponding two-layer systems for these five growth models.

The program is written in C/C++. Control and definition of parameters is
achieved via an input file. It is not the intention to give a thorough descrip-
tion of the algorithms and technical details of this program here. Neverthe-
less, in order to provide an overview of the possibilities of POLARITY, the
different parameters appearing in the input file are briefly explained and a
list of all physical quantities obtained from simulations is presented.

7.1 The Input File

In the input file of POLARITY, program and system parameters are distin-
guished, respectively. Program parameters specify the chemical system and
model to be investigated as well as lattice size, number of measurements and
others. These parameters are kept unchanged upon start of the program.
System parameters are the molar fraction of G molecules in the gas phase,
Xgas (0 < Xgas < 1, only relevant for two-component systems), the temper-
ature T [K], and the different longitudinal and lateral interaction energies
with nearest neighbor molecules [kJ/mol]. These parameters may vary dur-
ing execution of the program.

To assign a value (or values) to a parameter, its name must be given, fol-
lowed by the value(s). Only one parameter assignment per line is allowed.
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If a parameter is missing in the input file, a default value is assigned. Lines
beginning with # are treated as comments. In case of any invalid specifica-
tions, an error message is returned.

Here, a standard input file is presented and all parameters are shortly ex-
plained. Even though this input file is subdivided into program parameters
and system parameters, principally, no specific ordering of parameters has to
be kept.

HEFHAHH R AR H RS H RS HH S H RS R R R R

# #
# Polarity 1.0 - Input File #
# #

HEHHHHH R AR R R R R R R R

### Program Parameters ##################HHHHHHHHHHRARY

Header of the input file and beginning of the program parameters section.

### Chemical System ############44HHHHHHH S HH1HHY
# 0 = polar (H) molecules only

# 1 = polar (H) and non-polar (G) molecules

# 2 = polar (H) and polar (G) molecules

ChemicalSystem O

The chemical system: (0) Single-component system of polar (H) molecules
only. (1) Two-component system of polar (H) and non-polar (G) molecules.
(2) Two-component system of two polar (H, G) molecules.

### Model ##############H##HHHIHHRHHHARFHBAFHHAFHH AR HHES

# 0 = single adlayer on substrate (exact)
# 1 = single adlayer on substrate (MCS)

# 2 = growth (MCS)

# 3 = "two-layer system" for growth (MCS)
Model 2

The type of model: (0) Exact summation of the partition function for a
system consisting of a (frozen) substrate and a single adlayer; mainly used
for tests of the Monte Carlo algorithms for small lattice sizes only. Note
that for a two-component system of polar (H, G) molecules and a lattice size
sy = 5 x 5, the partition function already contains 4%° terms. (1) Monte
Carlo simulation (MCS) of the same model than for (0). (2) Monte Carlo
simulation of a growth model described in this thesis, and (3) corresponding
two-layer systems (see Chapter 6). Note that (3) is only valid for single-
component systems of polar (H) molecules only. In this thesis models (2)
and (3) were considered.

110



### Attachment Type ############HHHHHH##HEHEHHHHH1EH

# 0 = layer-by-layer
# 1 = step

# 2 = kink

# 3 = cluster

#

4 = deposition
Attachment O

Attachment types referring to the growth processes described in Chapter 6,
or corresponding two-layer systems. Note that in case of two-component
systems only the layer-by-layer growth model (0) is allowed so far.

### Layer Size X,Y (max 1024) ########H##E#HHESHBRERFHEL
SizeX 50
SizeY 50
### Initial States ####t####4444444 444444444440 SSH 1SS SEH ST

# H : polar molecules

# G : non-polar / polar molecules

# x : fraction of G molecules in the gas
# 0 = empty

# 1 = DOWN, H(1)

# 2 =TUP, H(1)

# 3 = random, H(1)

# 4 = ideal antiferro, H(1)

# b5 = random, H(1-x)G(x)

# 6 = random, G(1)

### Initial State of Substrate #i#t##t#t##itdtHidddtddH#d4Ht44
subInit 3

### Initial State of Adlayer/Step ###########4#H4##41##H
newlInit 3

Lattice sizes in = and y direction, n, and n,, respectively. In case of step
growth, the length of a column of molecules is given by n,. Initial seeding
state (substrate) as well as initial state for a growth unit, i.e. an adlayer
(layer-by-layer growth), or a column of molecules (step growth), before ther-
malization. For kink, cluster and deposition growth, only the value for the
initial seeding state is relevant.

### Equilibration Time for One Unit (sweeps/unit) ######
UnitSweeps 2500

The number of Monte Carlo trials per molecule, on average, for a thermalizing
unit, i.e. an adlayer (layer-by-layer growth), a column of molecules (step
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growth), or both, layers L and L' (two-layer systems). For kink, cluster and
deposition growth, this parameter is irrelevant.

### Equilibration Time for Growth (adlayers) #####i######
GrowthEquilibrationTime 200

The number of grown and completed adlayers before any measurements are
performed. This parameter is irrelevant for two-layer systems.

### Correlation Time (sweeps/unit or adlayers) #####i##4
CorrelationTime O

The correlation time 7 of a specific physical quantity (default X,;) for sub-
sequent measurements. For test runs, 7 is set to zero and an estimate is
obtained from the output (see below), which can be used for production runs
thereafter. A unit refers to layers L and L' (two-layer systems, model 3) or
a single adlayer (single adlayer on substrate, model 1). 7 is of relevance for
the calculation of statistical errors.

### Measurement Interval (sweeps/unit or adlayers) ##i###
MeasureInterval 1

The number of grown and completed adlayers (growth model 2), or the num-
ber of sweeps of a unit (models 3, 1) between subsequent measurements. A
unit refers to layers L and L' (two-layer systems, model 3) or a single adlayer
(single adlayer on substrate, model 1).

### Number of Measurements per Experiment ##############
nMeasurements 20000

### Number of Experiments #################HH#HHHH#HHES
nExperiments 1

The number of measurements in each experiment and the number of inde-
pendent experiments (an experiment is specified by a given set of system
parameters). Note that in case of growth models (2), measurements are
performed after an adlayer has been completed, irrespective of the specific
attachment type.

### Output Level ##############HHHHHEHE#EHHHHHEE #1384

# O = each measurement

# 1 = each experiment

# 2 = each system parameter set

# 3 = each system parameter set (with energies)

OutputLevel 2
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The output level denoting the frequency at which printing of physical quan-
tities takes place: (0) After each measurement (only those observables are
displayed, which can be directly measured, but no derived quantities and no
error estimates are given). (1) After each experiment (quantities and error
estimates are averaged for one experiment). (2) and (3) Once after a com-
pleted run for a given system parameter set (quantities and error estimates
are averaged for all experiments).

### Images Saving #############F#FFFFFHFEEHHRRBRBHFHHHHS

SaveImages [level, 0 = no image saving
1 = one image per parameter set
2 = one image per measurement ]
[cross-section x value]
[cross-section y value]
[cross-section x increment]
[cross-section y increment]

#
#
#
#
#
#
#
# [zoom-factor, 1 - 50]

Savelmages 0 1 0 0 1 1

##RSEHHHH AR HRR R N R R

Specifications for the sampling of snapshots of completed adlayers. Images
are stores in the PPM format.

### System Parameters ########HHH SRR R HHHHHHS
### Definitions #########H#H#HHHHHHHHHFHF RS HHHHFHBHS

# Format:
# [name] [start] [step] [number of steps] [levell]

# total number of steps per parameter = step + 1
# 0 <= level < 10
# parameters with the same level loop simultaneously

End of the program parameters section and beginning of the system param-
eters section. Each system parameter is characterized by a start value, an
increment value, the number of increments to be performed and an index
(level). Parameters with the same index increment simultaneously. Param-
eters with a higher index increment only if parameters with the next lower
index reached their specified number of increment steps (these parameters are
reset to their start values again). As such, it is possible to perform production
runs for any combinations of varying system parameters. Besides, system pa-
rameters (especially interactions energies) may be chosen randomly within
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certain ranges as being applied in (X, X,;) density plots, see e. g. Chapter 5.
For interaction energies, the orientational states of the reference molecule
and the neighbor molecule have to be specified, additionally. They are de-
noted as empty (an empty site, for completeness included), DOWN (H, |), UP
(H, 1), down (G, ), up (G, 1), neutral (G, |), see Table 5.1. Note that it is
possible to specify non-isotropic interactions in this program. Therefore, in
case of isotropic interactions, the two corresponding coupling energies must
be incremented always simultaneously and with the same increment (see the
specification below for E,).

### Fraction of G molecules in the Gas ######4#4H44H#44H#4#
Gx 0.0 0.0 0 O

### Temperature #############E#H#AHFHAHHHHRSHHARHHRRSHHH
Temperature 300.0 0.0 O O

### Longitudinal Interaction Energies ##################
# 1. index: reference molecule
# 2. index: neighbour molecule (on substrate)

# e : empty

# D : Donor (H)

# A : Acceptor (H)

# d : donor (G)

# a : acceptor (G)

# N : N-terminal (G)

Elong empty empty 0.0 0.0 O O # ee
Elong DOWN empty 0.0 0.0 O O # eD
Elong UP empty 0.0 0.0 0 O # eA
Elong down empty 0.0 0.0 0 O # ed
Elong wup empty 0.0 0.0 O O # ea
Elong neutral empty 0.0 0.0 O O # eN
Elong empty DOWN 0.0 0.0 0 O # Ae
Elong DOWN DOWN 0.0 0.0 0 O # AD
Elong UP DOWN 5.0 0.0 0 0 # AA
Elong down DOWN 0.0 0.0 0 O # Ad
Elong wup DOWN 0.0 0.0 0 O # Aa
Elong neutral DOWN 0.0 0.0 0 O # AN
Elong empty UP 0.0 0.0 0 O # De
Elong DOWN UP 2.0 0.0 0 0 # DD
Elong UP UpP 0.0 0.0 O O # DA
Elong down UpP 0.0 0.0 0 O # Dd
Elong up UP 0.0 0.0 0 O # Da
Elong neutral UP 0.0 0.0 0 O # DN
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Elong empty down 0.0 0.0 0 O # ae
Elong DOWN down 0.0 0.0 0 O # aD
Elong UP down 0.0 0.0 0 O # aA
Elong down down 0.0 0.0 0 O # ad
Elong wup down 0.0 0.0 0 O # aa
Elong neutral down 0.0 0.0 0 O # aN
Elong empty up 0.0 0.0 0 O # de
Elong DOWN up 0.0 0.0 0 O # dD
Elong UP up 0.0 0.0 0 O # dA
Elong down up 0.0 0.0 0 O # dd
Elong up up 0.0 0.0 O O # da
Elong neutral up 0.0 0.0 0 O # dN
Elong empty mneutral 0.0 0.0 0 O # Ne
Elong DOWN neutral 0.0 0.0 0 O # ND
Elong UP neutral 0.0 0.0 0 O # NA
Elong down neutral 0.0 0.0 0 O # Nd
Elong wup neutral 0.0 0.0 0 O # Na
Elong neutral neutral 0.0 0.0 0 O # NN

### Lateral Interaction Energies ##################H#H##Y
# 1. index: reference molecule
# 2. index: neighbour molecule (within adlayer)

# e : empty

# D : DOWN (H)

# U : UP (H)

# d : down (G)

# u: u (@

# n : neutral (G)

Elat empty empty 0.0 0.0 0 O # ee
Elat DOWN empty 0.0 0.0 0 O # De
Elat UP empty 0.0 0.0 0 O # Ue
Elat down empty 0.0 0.0 0 O # de
Elat up empty 0.0 0.0 0 O # ue
Elat neutral empty 0.0 0.0 0 O # ne
Elat empty DOWN 0.0 0.0 0 O # eD
Elat DOWN DOWN -5.0 0.1 100 1 # DD
Elat TUP DOWN 0.0 0.0 0 O # UD
Elat down DOWN 0.0 0.0 0 O # dD
Elat up DOWN 0.0 0.0 0 O # uD
Elat neutral DOWN 0.0 0.0 0 O # nD
Elat empty UP 0.0 0.0 0 O # eU
Elat DOWN UpP 0.0 0.0 0 O # DU
Elat TUP UP -5.0 0.1 100 1 # UU



Elat down UP 0.0 0.0 0 0 # dU
Elat wup UP 0.0 0.0 0 O # uU
Elat neutral UP 0.0 0.0 0 0 # nU
Elat empty down 0.0 0.0 0 O # ed
Elat DOWN down 0.0 0.0 0 0 # Dd
Elat UP down 0.0 0.0 0 0 # Ud
Elat down down 0.0 0.0 0 0 # dd
Elat up down 0.0 0.0 0 O # ud
Elat neutral down 0.0 0.0 0 0 # nd
Elat empty wup 0.0 0.0 0 O # eu
Elat DOWN up 0.0 0.0 0 O # Du
Elat TUP up 0.0 0.0 0 O # Uu
Elat down up 0.0 0.0 0 O # du
Elat up up 0.0 0.0 0 O # uu
Elat neutral up 0.0 0.0 0 O # nu
Elat empty mneutral 0.0 0.0 0 O # en
Elat DOWN neutral 0.0 0.0 0 0 # Dn
Elat UP neutral 0.0 0.0 0 0 # Un
Elat down neutral 0.0 0.0 0 0 # dn
Elat wup neutral 0.0 0.0 0 O # un
Elat neutral neutral 0.0 0.0 0 0 # nn

HEFHAHH R AR H S H RS HH S H RS R R R R R S

End of the system parameters section and end of the input file.
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7.2 The Output

The following physical quantities are obtained from POLARITY (along with
corresponding error estimates):

X net

|Xnet|
Xnet (I)

Xnet (I1)

Cy

Difference between downwards and upwards oriented molec-
ular dipoles (H and G molecules).

Absolute value of Xpe;.

Difference between downwards and upwards oriented molec-
ular dipoles (H molecules only), on sublattice I (x +y =
even).

Difference between downwards and upwards oriented molec-
ular dipoles (H molecules only), on sublattice I] (z +y =
odd).

Molar fraction of G molecules in the solid.

Two-point connected correlation function [66] given as

GEQ)(L 1) = <3w,y5w+1,y+1> - <5w,y><5w+1,y+1>a

where s;, (41) denotes the orientational state of a H
molecule at the position (z,y) and () is the average over
an entire adlayer.

Two-point connected correlation function given as

Internal energy per molecule.

Specific heat per molecule, see Eq. 6.3. (An error estimate
will be implemented later, using e. g. the bootstrap or jack-
knife method, respectively, see [66]).

Correlation time of a physical quantity (default X,e;) for
subsequent measurements. It is obtained by numerical in-
tegration of the time-displaced autocorrelation x(t) of the
corresponding quantity, see [66]. 7 gives a measure of the
statistical correlations between subsequent measurements.

Order parameter, see Eq. 6.2.
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7.3 Outlook

For the moment, POLARITY is considered to be still in a scientific develop-
ment phase, because of the following two reasons: (i) Some features of the
program are not yet accessible and controllable with the present input file
(i. e. specifications must be directly carried out in the program and therefore a
good knowledge of the code is required). (ii) Further extensions are planned,
see Chapter 8. However, later, it is intended to make POLARITY available
to the interested scientific community. Because of that, a real time graphi-
cal output along with a simple graphical user interface, based on OpenGL,
GLUT and GLUI}, (as being already implemented for the predecessor of the
present code, SIMULA), will be provided as well. This is particular useful for
rapid investigation of the development of a system in certain situations.

1OpenGL: www.opengl.org; GLUT: OpenGL Utility Toolkit; GLUI: GLUT-based C++
user interface library
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Chapter 8

Conclusion and Outlook

It has been shown that the concept of layer-by-layer growth (solid-on-solid
model) with thermal equilibrium formation of the surface layer (Ising model)
represents a valuable and sufficient theoretical description to account for
fundamental phenomena of growth-induced polarity formation in two-compo-
nent systems. The main adaptation compared to the growth model used for
analyzing single-component systems consisted in assuming thermal equilib-
rium with respect to the up and down orientation of the dipoles of H (and
G) molecules and to an exchange of H and G molecules. The investigation
mainly focused on the interplay between orientational ordering (ratio between
up and down) and miscibility of the two components in the solid, according
to different sets of interaction energies, assuming native structures (H, G) as
centrosymmetric.

Based on this model, the following main conclusions can be drawn: Macro-
scopic polarity may increase considerably in mixed crystals of polar (H) and
non-polar (G) molecules, due to orientational selectivity by G molecules as
well as a reduced influence of lateral interactions between H molecules dur-
ing the growth process. It was shown that longitudinal interactions are
mainly responsible for polarity formation while lateral interactions were driv-
ing the miscibility between the two compounds. The polar behavior of two-
component systems of polar (H) and non-polar (G) molecules could be clas-
sified in three types (dilution, coupled effect, creation of polarity), according
to the value of X, found for the corresponding single-component systems
of polar (H) molecules only and to the selectivity of non-polar (G) molecules
for the up and down orientation of H molecules. Probabilities to obtain
certain configurations with (X, X, ) within assumed but realistic ranges of
interaction energies and by considering only centric pure H structures, were
summarized in density plots. It could be shown that even small ratios of
non-polar (G) molecules in the crystal may strongly effect polarity, which
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is of particular interest when considering that many real systems represent
cases of limited miscibility. Besides, high polarity was observed for ordered
structures HG, where G molecules effect a shielding against the tendency of
H molecules to pack in a centrosymmetric fashion they would do alone.

In systems with two polar components, principally, notions of orientational
selectivity and miscibility still apply. However, the strong influence of longi-
tudinal and lateral interactions on the evolution of polarity results in more
pronounced effects and to inhomogeneous (X, X,e) density distributions. A
statistical analysis of the three systems (single-component systems of polar
(H) molecules only, two-component systems of polar (H) and non-polar (G)
molecules and two-component systems of two polar (H, G) molecules) has
shown that two-component systems are clearly favorable with respect to po-
larity formation in comparison with single-component systems.

Assuming a square lattice and isotropic interactions, the present model is
dedicated only to the investigation of general behaviors and qualitative pre-
dictions on growth-induced polarity formation in single- and two-component
systems. For more quantitative statements, the geometrical details of mole-
cules and crystal structure as well as precise strengths of molecular couplings
of a real system have to be taken into account. Implementation of other lat-
tice symmetries with inhomogeneous energetic environments or next-nearest
neighbor interactions is considered straightforward by means of Monte Carlo
simulations. However, such modifications are only reasonable in recognition
of a specific case. The combination of the present layer-by-layer growth model
with molecular modeling methods is a promising route for the understanding
and quantitative prediction of polarity formation in a specific system [26, 25].

Besides the above issues towards a closer description of reality with respect
to growth-induced polarity formation, kinetic effects as well as the specific
growth mechanism of different crystal faces must be considered. Here, for
the first time, the influence of different growth processes on the evolution of
polarity was investigated. Four distinct growth models were introduced and
compared with the layer-by-layer growth model, namely, growth along steps,
along kinks, cluster growth and random deposition. These growth processes
reflect particularly a reduced cooperativity between molecules during their
attachment on a crystal surface.

With respect to macroscopic polarity formation, growth along steps or kinks
shows principally the same behavior compared to the original layer-by-layer
growth model. That is, a continuous phase transition from a disordered to an
antiferromagnetic ordered state could be observed, as well as same limiting
values for infinite lateral couplings. Further on, the asymptotic statistics af-
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ter many steps of growth is in good agreement with the thermal equilibrium
distribution of the corresponding two-layer systems, showing that as long
as growth proceeds in an ordered fashion and with a constant directionality
(like for kink and step growth), polarity formation remains mainly a thermo-
dynamically driven process.

To the contrary, in case attachment of molecules proceeds in a random fash-
ion (cluster and deposition growth), a complete different behavior can be
observed, particularly in the asymptotic limit of very strong lateral polar
couplings (both systems may show a maximum of polarity in this region).
Due to strong local effects of ordering, these two growth models can be only
partially represented by the corresponding equilibrium two-layer systems.
Nevertheless, for any growth process (i.e. also for cluster and deposition
growth), the reduced lateral cooperativity between molecules during their
attachment on the crystal surface can be compensated by sufficiently strong
longitudinal interactions upon growth. In such cases, the local lateral en-
vironment can be represented by an effective lateral coordination number,
whatever the growth process.

Principally, an extension of the present analysis to two-component systems
is possible. However, here a careful treatment of chemical potentials is neces-
sary when considering the attachment of two types of molecules in different
growth models.

Besides, the introduction of different kinetic processes, such as deposition,
evaporation and surface diffusion along with the up and down orientation of
molecular dipoles is contemplated. The interplay of surface roughening and
orientational order as well as the existence of order/disorder phase transi-
tions in dependence of such processes would be of particular interest.
Finally, in consideration of the literature about two-layer Ising systems [3, 1,
7, 68, 81, 20, 61], the character of the AFO phase transition observed in two-
layer systems presented here (especially in case of reduced lateral couplings
and anisotropic longitudinal interactions) remains still an open issue. The
Monte Carlo renormalization group (MCRG) method [84, 10, 66, 58] could
be a promising route for the calculation of critical exponents and a thorough
understanding.

121



122



Bibliography

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

G. A. T. Allan. Critical temperatures of Ising lattice films. Phys. Rewv.
B, 1:352, 1970.

P. W. Atkins. Physical Chemistry. Oxford University Press, fifth edition,
1994.

L. E. Ballentine. Critical behaviour of a two-dimensional non-planar
Ising lattice. Physica, 30:1231, 1964.

H. Bebie and J. Hulliger. Thermal equilibrium polarization: a near-
surface effect in dipolar-based molecular crystals. Physica A, 278:327,
2000.

H. Bebie, J. Hulliger, S. Eugster, and M. Alaga-Bogdanovi¢. Ising model
of polarity formation in molecular crystals: From the growth model to
the asymptotic equilibrium state. Phys. Rev. F, 66:021605, 2002.

H. A. Bethe. Statistical theory of superlattices. Proc. Roy. Soc. London
A, 150:552, 1935.

K. Binder. Monte Carlo study of thin magnetic Ising films. Thin Solid
Films, 20:367, 1974.

K. Binder. Applications of Monte Carlo methods to statistical physics.
Rep. Prog. Phys., 60:487, 1997.

K. Binder and D. W. Heermann. Monte Carlo Simulation in Statisti-
cal Physics: An Introduction. Springer Series in Solid-State Sciences.
Springer, third edition, 1997.

J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman. The
Theory of Critical Phenomena: An Introduction to the Renormalization
Group. Oxford Science Publications. Clarendon Press, Oxford, 1992.

123



[11] W. L. Bragg and E. J. Williams. The effect of thermal agitation on
atomic arrangement in alloys. Proc. Roy. Soc. London A, 145:699, 1934.

[12] W. L. Bragg and E. J. Williams. The effect of thermal agitation on
atomic arrangement in alloys. II. Proc. Roy. Soc. London A, 151:540,
1935.

[13] P. Brémaud. Markov Chains, Gibbs Fields, Monte Carlo Simulation,
and Queues. Springer, 1999.

[14] W. F. Brinkman, D. E. Haggan, and W. W. Troutman. A history of the
invention of the transistor and where it will lead us. IEEE J. Solid-State
Cire., 32:1858, 1997.

[15] W. K. Burton, N. Cabrera, and F. C. Frank. The growth of crystals
and the equilibrium structure of their surfaces. Phil. Trans. Royal Soc.
London, 243:299, 1951.

[16] B. Drossel and M. Kardar. Model for growth of binary alloys with fast
surface equilibration. Phys. Rev. E, 55:5026, 1997.

[17] B. Drossel and M. Kardar. Phase ordering and roughening on growing
films. Phys. Rev. Lett., 85:614, 2000.

[18] B. Drossel and M. Kardar. Interplay between phase ordering and rough-
ening on growing films. Eur. Phys. J. B, 36:401, 2003.

[19] M. Eden. A two-dimensional growth process. In J. Neyman, editor,
Proc. 4th Berkeley Symposium on Mathematical Statistics and Probabil-
ity, Vol. IV, page 223. University of California, Berkeley, 1961.

[20] A. M. Ferrenberg and D. P. Landau. Monte Carlo study of phase tran-
sitions in ferromagnetic bilayers. J. Appl. Phys., 70:6215, 1991.

[21] U. Firgau. Zur Theorie des Ferromagnetismus und Antiferromag-
netismus. Ann. Phys. (Leibzig), 40:295, 1941.

[22] A. Gavezzotti. Structure and intermolecular potentials in molecular
crystals. Modelling Simul. Mater. Sci. Eng., 10:1, 2002.

[23] A. Gavezzotti. Towards a realistic model for the quantitative evaluation
of intermolecular potentials and for the rationalization of organic crystal
structures. part i. philosophy. CrystEngComm, 5:429, 2003.

124



[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

A. Gavezzotti. Towards a realistic model for the quantitative evaluation
of intermolecular potentials and for the rationalization of organic crystal
structures. part ii. crystal energy landscapes. CrystEngComm, 5:439,
2003.

C. Gervais, T. Wiist, N. R. Behrnd, G. Couderc, and J. Hulliger. Im-
pact of solid solution formation on polarity: Molecular modeling and
experimental investigation of the system (4-chloro-4’-nitrostilbene)
(4,4-dinitrostilbene) . In preparation.

1-z

C. Gervais, T. Wiist, N. R. Behrnd, M. Wiibbenhorst, and J. Hul-
liger. Prediction of growth-induced polarity in centrosymmetric molec-
ular crystals using force field methods. Chem. Mater., in press.

G. H. Gilmer and P. Bennema. Simulation of crystal growth with surface
diffusion. J. Appl. Phys., 43:1347, 1972.

G. H. Gilmer and K. A. Jackson. Computer simulation of crystal growth.
In E. Kaldis and H. J. Scheel, editors, Crystal growth and materials,
page 80. North-Holland, Amsterdam, 1977.

J. M. Haile. Molecular Dynamics Stmulation, Elementary Methods. John
Wiley & Sons, Inc., 1997.

K. D. M. Harris and P. E. Jupp. Mathematical analysis of the alignment
of guest molecules in solid one-dimensional inclusion compounds: the
design of materials for applications in non-linear optics. Chem. Phys.
Lett., 274:525, 1997.

K. D. M. Harris and P. E. Jupp. Stochastic models for guest-guest
interactions in one-dimensional inclusion compounds. Proc. Roy. Soc.
London A, 453:333, 1997.

K. Huang. Statistical Mechanics. John Wiley & Sons, Inc., second
edition, 1987.

J. Hulliger. On an intrinsic mechanism of surface defect formation
producing polar, multidomain real-structures in molecular crystals. Z.
Kristallogr., 213:441, 1998.

J. Hulliger. Orientational disorder at growing surfaces of molecular crys-

tals: general comments on polarity formation and on secondary defects.
7. Kristallogr., 214:9, 1999.

125



[35] J. Hulliger. New physical methods for a space resolved mapping of the
macroscopic polarisation in molecular crystals and a stochastic theory
for understanding. Chimia, 55:554, 2001.

[36] J. Hulliger. Markov-type evolution of materials into a polar state. Chem.
Eur. J., 8:4579, 2002.

[37] J. Hulliger. Connective tissue polarity unraveled by a Markov-chain
mechanism of collagen fibril segment self-assembly. Biophys. J., 84:3501,
2003.

[38] J. Hulliger. Encyclopedia of Supramolecular Chemistry, page 1120. Mar-
cel Dekker Inc., New York, 2004.

[39] J. Hulliger, M. Alaga-Bogdanovié¢, and H. Bebie. Growth-induced effects
of polarity in molecular crystals: Comparison of Schottky- and Markov-
type models with Monte Carlo simulations. J. Phys. Chem. B, 105:8504,
2001.

[40] J. Hulliger, H. Bebie, S. Kluge, and A. Quintel. Growth-induced evolu-
tion of polarity in organic crystals. Chem. Mater., 14:1523, 2002.

[41] J. Hulliger, O. K6nig, and R. Hoss. Polar inclusion-compounds of perhy-
drotriphenylene (PHTP) and efficient nonlinear-optical molecules. Adv.
Mater., 7:719, 1995.

[42] J. Hulliger, S. W. Roth, and A. Quintel. The prediction and production
of polarity in crystalline supramolecular materials. In D. Braga et al.,

editor, Crystal Engineering: From Molecules and Crystals to Materials,
page 349. Kluwer Academic Publishers, the Netherlands, 1999.

[43] J. Hulliger, S. W. Roth, A. Quintel, and H. Bebie. Polarity of organic
supramolecular materials: A tunable crystal property. J. Solid State
Chem., 152:49, 2000.

[44] E. Ising. Beitrag zur Theorie des Ferromagnetismus. Ztschr. f. Phys.,
31:253, 1925.

[45] K. A. Jackson. Mechanism of growth. In Liquid metals and solidification,
page 174. Am. Soc. Metals, 1958.

[46] K. A. Jackson. Computer modeling of atomic scale crystal growth pro-
cesses. J. Cryst. Growth, 198/199:1, 1999.

126



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

K. A. Jackson. The interface kinetics of crystal growth processes. In-
terface Sci., 10:159, 2002.

M. Kato, M. Kiguchi, N. Sugita, and Y. Taniguchi. Second-order nonlin-
earity of mixtures including p-nitroaniline derivatives. J. Phys. Chem.
B, 101:8856, 1997.

A. 1. Kitaigorodsky. Mized Crystals. Springer, 1984.
Ch. Kittel. Thermal Physics. John Wiley & Sons, Inc., 1969.

S. Kluge, F. Budde, 1. Dohnke, P. Rechsteiner, and J. Hulliger. Phase-
sensitive second-harmonic microscopy reveals polarity of topologically
centrosymmetric molecular crystals. Appl. Phys. Lett., 81:247, 2002.

S. Kluge, I. Dohnke, F. Budde, and J. Hulliger. Polarity formation
in solid solutions: (4,4’-dinitrostilbene),  —(4-chloro-4’-nitrostilbene)_,
1>x>0. CrystEngComm, 5:67, 2003.

W. Kossel. Zur Theorie des Kristallwachstums. Nachr. Ges. Wiss.
Gottingen, page 135, 1927.

M. Kotrla and M. Piedota. Interplay between kinetic roughening and
phase ordering. Europhys. Lett., 39:251, 1997.

M. Kotrla, M. Predota, and F. Slanina. Kinetic roughening and phase
ordering in the two-component growth model. Surf. Sci., 402-404:249,
1998.

M. Kotrla, F. Slanina, and M. Pfedota. Scaling in a two-component
surface-growth model. Phys. Rev. B, 58:10003, 1998.

D. P. Landau. Finite-size behavior of the Ising square lattice. Phys.
Rev. B, 13:2997, 1976.

D. P. Landau and K. Binder. A Guide to Monte Carlo Simulations in
Statistical Physics. Cambridge University Press, 2000.

A. R. Leach. Molecular Modelling, Principles and Applications. Prentice
Hall, second edition, 2001.

A. C. Levi and M. Kotrla. Theory and simulation of crystal growth. J.
Phys.: Condens. Matter, 9:299, 1997.

127



[61] Z. B. Li, Z. Shuai, Q. Wang, H. J. Luo, and L. Schiilke. Critical expo-
nents of the two-layer Ising model. J. Phys. A: Math. Gen., 34:6069,
2001.

[62] M. Liischer. A portable high-quality random number generator for lat-
tice field theory simulations. Comp. Phys. Comm., 79:100, 1994.

[63] A. Marbeuf, L1. Casas, E. Estop, and D. Mikailitchenko. From all-atom
vision to molecular pairwise-interactions: the mean-field approach in
molecular alloys. J. Phys. Chem. Solids, 64:827, 2003.

[64] A. Marbeuf, D. Mikailitchenko, A. Wiirger, H. A. J. Oonk, and M. A.
Cuevas-Diarte. Unified stability concept of mixed molecular lattices:
random alloys or complexes. Phys. Chem. Chem. Phys., 2:261, 2000.

[65] R. B. McLellan. Thermodynamics of solid solutions. Mater. Sci. Eng.,
9:121, 1972.

[66] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statis-
tical Physics. Clarendon Press, Oxford, 1999.

[67] J. F. Nye. Physical Properties of Crystals. Clarendon Press, Oxford,
1992.

[68] J. Oitmaa and I. G. Enting. Critical behaviour of a two-layer Ising
system. J. Phys. A: Math. Gen., 8:1097, 1975.

[69] L. Onsager. Crystal statistics. i. a two-dimensional model with an order-
disorder transition. Phys. Rev., 65:117, 1944.

[70] R. Peierls. On Ising’s model of ferromagnetism. Proc. Cambridge phil.
Soc., 32:477, 1936.

[71] R. Peierls. Statistical theory of adsorption with interaction between the
adsorbed atoms. Proc. Cambridge phil. Soc., 32:471, 1936.

[72] R. Peierls. Statistical theory of superlattices with unequal concentra-
tions of the components. Proc. Roy. Soc. London A, 154:207, 1936.

[73] V. Pereyra, P. Nielaba, and K. Binder. Spin-one-Ising model for
(CO);_¢(Ng), mixtures: a finite size scaling study of random-field-type
critical phenomena. Z. Phys. B, 97:179, 1995.

[74] M. Polak and L. Rubinovich. The interplay of surface segregation and
atomic order in alloys. Surf. Sci. Reports, 38:127, 2000.

128



[75] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C. Cambridge University Press, second edition,
1992.

[76] A. Quintel and J. Hulliger. A theoretical base for optimising intermolec-
ular interactions driving polarity formation in channel-type host-guest
materials. Chem. Phys. Lett., 312:567, 1999.

[77] D. Richardson. Random growth in a tessellation. Proc. Cambridge phil.
Soc., 74:515, 1973.

[78] S. W. Roth, P. J. Langley, A. Quintel, M. Wiibbenhorst, P. Rechsteiner,
P. Rogin, O. Ko6nig, and J. Hulliger. Statistically controlled self-assembly
of polar molecular crystals. Adv. Mater., 10:1543, 1998.

[79] Y. Saito. Statistical Physics of Crystal Growth. World Scientific, 1996.
[80] H. R. Schwarz. Numerische Mathematik. B. G. Teubner Stuttgart, 1993.

[81] L. Sneddon. Ising antiferromagnets in a magnetic field. J. Phys. C,
12:3051, 1979.

[82] A. J. Stone. The Theory of Intermolecular Forces. Clarendon Press,
Oxford, 1996.

[83] H.I. Siiss, T. Wiist, A. Sieber, R. Althaus, F. Budde, H. P. Liithi, G. D.
McManus, J. Rawson, and J. Hulliger. Alignment of radicals into chains

by a Markov mechanism for polarity formation. CrystEngComm, 4:432,
2002.

[84] R. H. Swendsen. Monte Carlo renormalization group. Phys. Rev. Lett.,
42:859, 1979.

[85] R. H. Swendsen, P. J. Kortman, D. P. Landau, and H. Muller-
Krumbhaar. Spiral growth of crystals: Simulations on a stochastic
model. J. Cryst. Growth, 35:73, 1976.

[86] M. Vaida, L. J. W. Shimon, Y. Weisinger-Lewin, F. Frolow, M. Lahav,
L. Leiserowitz, and R. K. McMullan. The structure and symmetry of
crystalline solid solutions: A general revision. Science, 241:1475, 1988.

[87] T. Watanabe and H. Hoshina. Monte Carlo simulation of structure
evolution in binary alloys. J. Japan Inst. Metals, 59:902, 1995.

129



[88]

[89]

[90]

[91]

[92]

(93]

J. D. Weeks and G. H. Gilmer. Dynamics of crystal growth. Adv. Chem.
Phys., 40:157, 1979.

I. Weissbuch, M. Lahav, and L. Leiserowitz. Centrosymmetric crystals as
host matrices for second-order optical nonlinear effects. Chem. Mater.,
1:114, 1989.

I. Weissbuch, R. Popovitz-Biro, M. Lahav, and L. Leiserowitz. Un-
derstanding and control of nucleation, growth, habit, dissolution and
structure of two- and three-dimensional crystals using 'tailor-made’ aux-
iliaries. Acta Crystallogr. Sec. B, 51:115, 1995.

T. Wiist, C. Gervais, and J. Hulliger. How symmetrical molecules can
induce polarity: On the paradox of dilution. Cryst. Growth Des., in
press.

T. Wiist and J. Hulliger. Growth-induced polarity formation in solid
solutions of organic molecules: Markov mean-field model and Monte
Carlo simulations. J. Chem. Phys., in press.

B. Xing and H. Umezawa. Mean-field solution for random mixtures
A,B;_, of an Ising site model. Phys. Rev. B, 46:14563, 1992.

130



Curriculum Vitae

Thomas Wiust

ADDRESS
Sulgenauweg 16

CH-3007 Bern, Switzerland
Email: thomas.wuest@iac.unibe.ch

PERSONAL DETAILS

Gender: Male

Date of birth: 15th of July, 1972
Place of birth: Locarno, Switzerland
Citizenship: Oberriet-Montlingen (St. Gallen), Switzerland

EDUCATION
07/2002 - 02/2005

04,2000 - 06/2002

10/1993 - 03/1999

1987 - 1992
1985 - 1987
1979 - 1985

PhD thesis at the University of Berne, Switzerland, Depart-
ment of Chemistry and Biochemistry. Subject: Theoretical
investigation of growth-induced polarity formation in molec-
ular crystals. Project leader and supervisor: Prof. Dr. J.
Hulliger.

PhD student at the Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland, Laboratory of Physical Chem-
istry. Work on computational quantum chemistry. Project
leader: Prof. Dr. J. Hulliger; supervisor: PD Dr. H. P. Liithi.

Study of physics at the Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland. Diploma thesis in Astronomy.
Title: Simulation of a convection zone. Dipl. Phys. ETH.

Kantonsschule Schaffhausen, Switzerland.
Secondary school in Schafthausen, Switzerland.

Primary school in Schaffhausen, Switzerland.

131



