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Abstract 
 

Cortical neurons are often classified by current-frequency relationship. Such a 

static description is inadequate to interpret neuronal responses to time-varying 

stimuli. Theoretical studies suggested that single-cell dynamical response 

properties are necessary to interpret ensemble responses to fast input 

transients. Further, it was shown that input-noise linearizes and boosts the 

response bandwidth, and that the interplay between the barrage of noisy 

synaptic currents and the spike-initiation mechanisms determine the dynamical 

properties of the firing-rate. To test these model predictions, we estimated the 

linear response properties of layer 5 pyramidal cells by injecting a superposition 

of a small-amplitude sinusoidal wave and a background noise. We 

characterized the evoked firing probability across many stimulation trials and a 

range of oscillation frequencies (1-1000Hz), quantifying response amplitude and 

phase-shift while changing noise statistics. We found that neurons track 

unexpectedly fast transients, as their response amplitude has no attenuation up 

to 200Hz. This cut-off frequency is higher than the limits set by passive 

membrane properties (~50Hz) and average firing-rate (~20Hz) and is not 

affected by the rate of change of the input. Finally, above 200Hz, the response 

amplitude decays as a power-law with an exponent that is independent of 

voltage fluctuations induced by the background noise. 
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1 Introduction and background 

 

One of the main goals of neuroscience is to understand and explain behavior 

and complex functions of the brain in terms of the underlying activity of neurons 

and their complex networks. Can we infer the mechanisms of perception, 

memory, cognition and language from the structure and function of the (human) 

brain? The principle function of the central nervous system is to represent and 

transform information and thereby mediate appropriate decisions and 

behaviors. This concept of neural representation is central to neurophysiology. 

The cerebral cortex is one of the primary seats of this internal representations 

maintained and used in perception, memory, decision making, motor control, 

and subjective experience. The basic coding scheme by which this information 

is carried and transformed by neurons is however not yet fully understood. 

 

How do populations of neurons interact to enable the organism to perform 

complex tasks such as vision, decision making and movement? Are there 

common principles by which networks of neurons represent and compute? And 

how is information represented at the neural level with its complex structure and 

physiological properties? 

 

The discovery how macroscopic phenomena reduce to their microscopic 

constituents has led to major advances in science. Cajal discovered already at 

the end of the 19th century using the Golgi stain, based on findings of others, 

that neurons are the basic structural components of the brain. This was called 

the Neuron Doctrine by Waldeyer-Hartz, thereby coining the term neuron 

(Waldeyer 1891) and finally the acceptation of Schwann’s cell theory also in the 

nervous system (Schwann 1839). Of course, with today’s neurobiological 

perspective we can say that at that time intercellular communication by 

chemical synapses, action potentials or gap junctions, slow electrical potentials, 

action potentials initiated in dendrites, neuromodulatory effects, extrasynaptic 

release of neurotransmitters, and information flow between neurons and glia 

were still missing, even though all contribute to information processing. Today, 
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simple reflexes can be followed and analyzed in detail. Much is known about 

the relation of the stimulus/response properties of neurons in a variety of 

systems, but we are far away from having a detailed understanding of the 

correspondence between neural activity patterns and the information 

represented by these patterns. 

 

To gain insight into the emergence of brain functions on a macroscopic level it 

is therefore crucial to understand the intrinsic cellular properties, cells that are 

interconnected to form populations and networks and communicate with each 

other by electro-chemical signals. Each action potential (AP) generated by a 

neuron has a similar, stereotyped shape. AP’s are considered to be the 

elementary units of the neural code. Neurons are there for electrical signalling 

and the nature of these signals appears to have evolved very early – before 

multicellularity - and to have been well preserved ever since, right down to the 

molecules that make it happen. The question is: What kind of processing 

element is a real neuron and what does it compute? 

 

 

The following is an introduction to different topics not explicitly covered by our 

study (see Appendix). It is meant to help to understand and to get a general 

understanding of the field in science where this study is situated, introducing 

some of the necessary background with further literature. Chapter 2 introduces 

possible ways how any biological system can be seen and how to analyze it. 

Chapter 3 gives an overview of the neurons studied and their relationship to the 

rest of the central nervous system. In chapter 4 we can see the pro’s and con’s 

of different techniques used to analyze neurons in experiments. Chapter 5 

finally covers the topic of neural coding, describing different approaches and 

ideas how information in the brain, by single neurons or populations of neurons, 

is coded. Chapter 6 gives a small summary followed by the references of the 

introduction. In the Appendix you will find our study as published in the journal 

Cerebral Cortex. 
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2 System analysis 

 

One way of addressing the issue raised in the introduction is system analysis. A 

biological, open system, e.g. the brain or a neuron, can be seen as a process 

that results in the transformation of signals. Thus, this system has an input 

signal and an output signal which is related to the input signal through the 

system transformation. The objectives of system identification is to determine 

the systems transfer function F, which relates the stimulus x(t) with the 

response y(t) over time t. 

 

    y(t) = F[x(t)] 

 

By exciting a system with an appropriate input and observing the resulting 

response we obtain the system functional F. The input x can be seen as a 

vector representing for example a sensory stimulus. The output y is in this case 

a scalar representing neuronal activity. This might be spike counts (Jones et al. 

1987), membrane potential (Bringuier et al. 1999 Priebe et al. 2005), local field 

potential (Victor et al. 1994), or instantaneous firing rate (Theunissen et al. 

2001). 

Using such a ―black box‖ approach the system under study is defined by its 

transfer characteristics without specifying its complex and detailed internal 

mechanisms. It is replaced by a filter with the same transfer characteristics. The 

goal is to estimate the function that describes the way stimuli are mapped onto 

(neuronal) responses (see Figure I). 

 

 

 

Figure I: The system identification approach aims to estimate the stimulus-

response mapping function f(x) (Wu et al. 2006) 
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2.1 Response functions 

 

Neocortical neurons have been categorized according to various criteria such 

as their location, morphology (i.e. size, somatic shape and dendritic patterns), 

synaptic relationships - locally, with distant cortical or subcortical regions - and 

biochemical properties (i.e. neurotransmitters, enzymes). Nevertheless, in order 

to understand a particular neuron’s functional role within a circuit, it is not 

enough to know only these characteristics. Its ―electrical fingerprint‖, as 

determined by the intrinsic membrane properties, is also important. Neurons 

dynamically transform synaptic inputs into an output train of action potentials. 

 

Furthermore the activity of any neuron is not only dependent on its anatomical 

and physiological properties, but also on the spatial and temporal pattern of the 

inputs it receives. How the activity converging on a particular neuron affects its 

output is crucial. These inputs are filtered in two processes: the low-pass 

filtering induced by the synaptic dynamics and the filtering induced by the 

intrinsic dynamics of the neuron and its spiking mechanism. 

 

System analysis and identification aims to construct a quantitative model that 

describes how a neuron will respond to any potential stimulus. By the 

experimental and theoretical analysis of complex neurons it should be possible 

to achieve a complete (phenomenological) characterization of a neuron. 

Through this formalization of the computation done by the neuron, i.e. its 

response function, the neural response to arbitrary input stimuli could be 

predicted. But what is the best stimulus to use to characterize a neuron’s 

behaviour? 
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2.1.1 The current-frequency response function 

 

Physiology has a long tradition in the study of input-output relationships. An 

often mentioned example is the tuning curve of a neuron in response to a 

sensory stimulus, best known probably from the work of Hubel and Wiesel 

describing the receptive fields in V1 (Hubel et al. 1959).  

 

On the single cell level, the current-frequency response function is a classic way 

to describe and classify neocortical neurons, with regards to transformation of 

incoming synaptic inputs into an output spike train. In a kind of black box 

approach the cell is injected intracellularly with depolarising pulses (usually a 

DC square pulse) and its output membrane voltage is recorded. If the input 

passes a certain threshold, the cell starts to fire action potentials and the firing 

rate can be determined. Doing this for different values of the injected current, 

one ends up with a so called transfer function describing for any given stimulus 

the cell’s output. 

 

Studies of the input-output functions of neurons derive mainly from the studies 

of motoneurons by Granit et al. (Granit et al. 1963; Granit et al. 1966a; Granit et 

al. 1966b). They injected current steps into the soma and found that for steady-

state discharge there was a linear current-frequency relationship over a 

―primary‖ range of firing, which covered ~80% of the motoneuron’s operational 

range. In addition they were able to demonstrate that the currents add linearly 

and that synaptic and injected currents have the same effect on the firing rate. 

In the neocortex, this was done for the first time by McCormick and colleagues 

(McCormick et al. 1985) (see Figure II). 
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Figure II: Response characteristics of regular spiking (pyramidal) cells to 

depolarizing intracellular current injection (McCormick et al. 1985) 

 

 

2.1.2 Frequency response function 

 

A more complete analysis of the response function of a neuron is the frequency 

response function. Instead of probing the cell by using static inputs (i.e. square 

pulses), a frequency response is the output of a system to an input with varying 

frequency but constant amplitude. The frequency response is typically 

characterized by the magnitude and phase of the system's response versus the 

input frequency. It is so to say a dynamical transfer function. 
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Sinusoidal analysis has often been used to define the overall transfer function of 

dynamical systems. Sinusoidal waves are established as standard tools for 

dynamical systems, as represented by transfer functions and resonance 

analysis. From this data the response to any other input function can then be 

predicted – provided the system under study is linear. This holds when the two 

following statements are true: 1) Superposition: f(x+y) = f(x)+f(y). and 

2) Homogeneity: f(αx) = αf(x) for all α. 

 

In our study we extended this approach to the presence of a noisy background 

input, asking how temporal signals are transmitted by neurons in the presence 

of noise (see chapter 6). The reader may ask why not just using Gaussian white 

noise, which has a flat frequency spectrum? White noise stimulation combined 

with Wiener kernel analysis can in principle be used to characterize neurons 

with arbitrarily complex nonlinear response properties (Sakai 1992; Rieke et al. 

1997). However the practical benefits of this approach are limited because of 

the large data sets required. The choice of using sinusoid was simply a 

substantial improvement in the signal-to-noise ratio. Secondly, we wanted 

exactly to know the impact of additional noise on top of a modulated signal on 

the integration of the input. The input to neurons in a natural setting, such as 

sensory input from the environment is never simply structured. The external 

inputs to the cells are therefore likely to have a complex time dependence 

rather than the constant value considered so far. Animals also often receive 

natural sinusoidal-like inputs. For example, pure tone auditory inputs are 

sinusoidal waves and they are analyzed frequency-wise in auditory pathways 

(Gerstner et al. 1996). Electrosensory systems of weakly electric fish receive 

periodic inputs for communication (Heiligenberg 1991). Regular respiratory 

rhythm also affects dynamics and functions of olfactory systems (Fontanini et al. 

2003).
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3 The cerebral cortex and layer V pyramidal cells 

 

The cerebral cortex is the largest and most intricately connected part of the 

mammalian brain. The same basic laminar and tangential organization of the 

excitatory (pyramidal) and inhibitory (non pyramidal) neurons of the neocortex is 

evident wherever it has been sought. The notion of mammalian neocortex as a 

six-layered structure is widely accepted. From early on, this lamination has 

prompted thoughts about its function. The laminar structure comes through 

specific cell types and axonal projections for each layer depending on the 

cortical area (Rockland et al. 1979; Koralek et al. 1990; Thomson et al. 2003). 

The input arriving at any given layer therefore has a specific influence on the 

local cortical network. 

 

The uniformity of the mammalian neocortex (Hubel et al. 1974; Rockel et al. 

1980) has led to the proposition that there is a fundamental neuronal circuit 

(Creutzfeldt 1977; Szentagothai 1978) repeated many times in each cortical 

area. Already earlier cortical organization was commonly discussed in terms of 

columnar or modular architecture. Cajal showed that individual neurons have 

extraordinarily complex anatomical forms that are characteristic of a given 

neuronal cell type. The beauty of these cells makes the implicit promise that 

their structure has a meaning (Destexhe et al. 2004). 

 

 

3.1 Layer V pyramidal cells 

 

Pyramidal cells constitute the largest and the most characteristic category of 

neocortical neurons (60-70%). They are not only the most numerous cellular 

elements in that structure, but also constitute its sole output system and its 

largest input system. Their sizes range from some of the smallest to the very 

largest cortical cells, and their somata can be found in layer II through VI. A 

generic pyramidal cell has a dendritic tree which is divided into apical and basal 
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compartments. The apical dendrite is oriented radially towards the cortical 

surface; both apical and basal dendrites bear spines, which are sites of synaptic 

transmission. Thalamic afferents and recurrent collaterals of pyramidal cells 

presumably exert an excitatory influence on these dendrites, whereas the 

axonal endings of the Martinotti cells and the horizontal cells may well exert an 

inhibitory influence on them. The axon gives off collaterals, which are excitatory, 

either to other pyramidal neurons or to inhibitory interneurons within the cortex. 

Pyramidal neurons in all areas of the cortex share these main features, despite 

different size. 

 

The layer V pyramidal neuron is the main cortical output neuron, and is 

therefore a key element in the cortical circuits. Pyramidal neurons situated in 

lamina V have been shown to project subcortically to the intralaminar and other 

―aspecific‖ thalamic nuclei, the striatum, the red nucleus, the tectum, the 

medulla oblongata and the spinal cord. The smallest and most superficially 

situated elements in this layer project to the striatum, while the largest and most 

deeply situated cells project to the spinal cord. 

 

During the last 50 years, physiological and morphological evidence has 

accumulated indicating that several parts of the neocortex of many different 

mammalian species are composed of radially oriented, column-like units or 

modules. The concept that column-like modules represent fundamental units of 

the mammalian neocortex has gained wide acceptance in the literature. This led 

to the proposition of a canonical circuitry (see Douglas 1990; Douglas et al. 

2004; Douglas et al. 2007 for a review) and significant progress has been made 

in constructing an intra-columnar flow diagram. The L5 pyramidal cell is the final 

stage of this information flow that adds up all the computation done by this 

polypotent microchip. The pyramidal cells of layer V drive subcortical structures 

involved in action (e.g. basal ganglia, colliculus, ventral spinal cord) and are 

also the origin of the feedback projections to the superficial layers of other 

cortical areas. In this way, they provide additional contextual information to the 

evolving interpretations occurring in the superficial layers of other cortical areas. 
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The L5 pyramidal neuron is unique in that it has dendrites in every layer so it is 

in a position to collect and integrate all information arriving in its column. These 

conspicuous processes are well placed to receive input from a variety of axonal 

pathways known to terminate within specific cortical layers. Small regions of 

cortex (so-called microcolumns with only a little more than 100 neurons each) 

are thought to be responsible for processing separate features of sensory input 

(Mountcastle 2003). The backbone of this circuitry is provided by pyramidal 

neurons. Layer 5 pyramidal neurons constitute the principal output neurons and 

therefore have the role of encapsulating the information of any given column. 

Their stereotypical morphology, with a tufted dendrite in upper layers and basal 

dendrites in lower layers, coupled with the presence of a second spike initiation 

zone situated within the distal dendritic arborization, provides an ideal 

biophysical and anatomical locus for long-range cortical associations. These 

structural and functional – if form follows function- properties could have 

computational consequences. This should be explored and possibly will lead to 

a form-function-relationship. For an overview of the development of these cells 

see Franceschetti et al. 1998). 
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4 In vitro recording and its problems 

 

The first intracellular recordings from individual neurons were achieved by Ling 

from spinal cord motoneurons in the frog (Ling et al. 1949) and a little later in 

the cat (Brock et al. 1953), and in lobster and cray fish (Eyzaguirre et al. 1955). 

During the 1950s and 1960s, intracellular recordings were also made from 

cortical pyramidal (Albe-Fessard et al. 1951; Phillips 1956) and thalamocortical 

neurons. Making slices of the neocortex was already attempted in the 1950 (Li 

et al. 1957; Yamamoto et al. 1966). In addition to the conventional use of sharp 

micropipettes, the whole-cell recording method was developed in vitro in the 

early 1980s (Neher et al. 1976; Hamill et al. 1981). This technique allowed 

current-clamp and voltage-clamp measurements with a very good signal-to-

noise-ratio. Much has been learned about the intrinsic properties and 

morphology of different populations of neurons, about connectivity between 

different cell types within or between brain regions, about the quantal nature of 

transmitter release, and about various forms of synaptic plasticity by this 

technique in slices. Other reduced preparations such as dissociated cells or 

partially dissociated slices are sometimes more useful for evaluating single-

channel and certain voltage-clamp data (for a detailed review of these 

techniques see the book by Walz et al. 2002)). 

 

The quantification of the above mentioned input/output relation (Chapter 2) is 

usually done in vitro. The approach of working on cell cultures or acute slices of 

brain tissue has great technical advantages compared to in vivo recordings. 

First of all, there are the relative mechanical stability, visibility and accessibility 

of targeted structures and the control over the extracellular fluid and the 

possibility to alter it. Furthermore, by blocking all synaptic transmission, it is 

possible to study single cell properties. Different compartments of a neuron can 

be simultaneously recorded. But there are also substantial drawbacks. Acute 

brain slices are relatively short-lived, which constrains the possibilities to record 

from cells for longer times, as for example possible with extracellular 

multielectrode arrays in vivo. The biological and physical reactions occurring in 
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the traumatized tissue due to the slicing procedure are not well understood and 

could alter response properties of the cell. Furthermore a lot of (cortico-cortical 

and thalamo-cortical) afferents and efferents from the rest of the brain are being 

cut in the slicing procedure, making the slice a rather two-dimensional structure 

compared to the three-dimensional cytoarchitecture found in vivo. 

 

Whereas the analysis of intrinsic electrophysiological cellular properties is best 

achieved in vitro, where synaptic transmission can be blocked, the properties of 

complex intracortical networks operating under the control of brainstem and 

other modulatory systems can only be performed in brains with intact 

connectivity, where complex physiological processes naturally arise from 

interconnections among many brain structures. There is now evidence that 

representation of external events is only part of the story, and that the firing 

pattern of neurons even in primary sensory cortices reflects not just the physical 

nature of a stimulus, but also internal factors (Kosslyn et al. 1995; Kreiman et al. 

2000; Zhou et al. 2000). Most of the activity in the brain is internally generated. 

This resulted in the saying that the cortex talks mostly to itself. 

 

 

4.1 The silent slice versus a high-conductance state in vivo 

 

One of the most striking differences between cerebral cortex networks in vivo 

and in vitro is that cortical neurons in vivo show a high degree of randomness in 

their activity. This can be seen by the broad interspike interval histograms (ISI) 

of cortical neurons, which are typically close to those generated by a Poisson 

process (Burns et al. 1976; Abeles 1991; Softky et al. 1993; Bair et al. 

1994).The membrane potential of cortical neurons shows fluctuating activity 

(see figure III), mostly of synaptic origin, which is consistent with the 

extraordinarily dense connectivity in the cortex (Braitenberg et al. 1998). 
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Figure III: Comparison of primary visual cortex cells from adult cats in slice and 

in vivo. A constant DC current injection in vitro elicits a regular spike train (left). 

The same current injected in vivo elicits an irregular spike train (middle) very 

similar to that obtained in response to a natural visual stimulation (taken from 

Holt et al. 1996). 

 

 

This constant barrage of synaptic potentials can influence the integrative and 

electrophysiological properties of neurons (Holmes et al. 1989; Destexhe et al. 

1999; Ho et al. 2000; Destexhe et al. 2001; Steriade 2001a; Chance et al. 2002; 

Fellous et al. 2003; Shu et al. 2003). Computational models predict that these 

high conductance states could lead to several computational advantages to 

cortical neurons (for a review see Destexhe et al. 2003). Pure increases in 

membrane conductance may shift the input-output relation of neurons to the 

right, requiring the injection of greater amounts of current to achieve the same 

firing rate (Holt et al. 1996; Chance et al. 2002). Increases in membrane 

potential variance may smooth the input-output relation. Through this, synaptic 

noise may boost the response to small synaptic inputs (Ho et al. 2000), in a 

similar way to stochastic resonance phenomena. Combining both, changes in 

membrane conductance and membrane potential variance, may result in a 

change of slope of the input-output relation, often called the gain of a neuron 

(Ho et al. 2000; Chance et al. 2002; Shu et al. 2003). Several studies suggest 

that these functional changes together may help neural networks to overcome 

the nonlinearities imposed by the action potential threshold (Anderson et al. 
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2000 ; Hansel et al. 2002; Troyer et al. 2002). Synaptic noise also sharpens 

temporal resolution, allowing cortical neurons to detect coincidences separated 

by a few milliseconds, and therefore to resolve precisely timed inputs (Softky 

1994). It obviously leads also to a high trial-to-trial variability in the response of 

cortical neurons. Taking this into account a probabilistic description can be used 

to sensible measure and characterize cortical neurons. 

 

 

4.2 Neocortical cell classes are flexible entities 

 

Since the work on neocortical cells in slices has started in the early 1980s, there 

has been the attempt to classify the neurons according to their 

electrophysiological firing patterns. Three different classes were identified 

correlating them with their morphological features (Connors et al. 1982; 

McCormick et al. 1985). These three neuronal types were called regular-spiking 

(RS), fast spiking (FS) and intrinsically bursting (IB). RS and IB were thought to 

be pyramidal or spiny stellate neurons, FS neurons were thought to be aspiny 

or sparsely spiny inhibitory interneurons (Connors et al. 1990; Gutnick et al. 

1995). Later on, in vivo studies under anaesthesia confirmed the presence of 

these three entities (Nunez et al. 1993). A fourth class was added characterized 

by their high frequency spike burst, giving them the name of fast rhythmic-

bursting (FRB) neurons (Steriade 1997), also called chattering neurons. 

 

A problem that arose with this classification is that a stereotyped stimulus can 

evoke different firing patterns depending on factors such as resting potential or 

neuromodulation. This issue was looked at by Steriade (Steriade 2001b; 

Steriade 2004). He addressed the issue of classifying neurons into classes or 

types based on their firing patterns, and argued that the (common) sharp 

division into neuronal classes might be too simplistic. Steriade showed that the 

firing patterns of the 4 main neocortical neuronal classes are dynamic: a small 

shift in the membrane potential may drive a neuron to change its 'firing pattern' 

and making it to be a member of each of the different neuronal types. Despite 
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today’s tendency to further divide neurons into subclasses, there seems to be a 

continuum of firing patterns, resulting from changes in membrane potential, 

which in turn depends on the behavioral state of the animal. The apparent 

flexibility of neuronal types suggests that, rather than thinking about the role of a 

neuron based on its location and 'type', we should shift our thinking to the 

dynamic nature of a neuron under different conditions (Steriade 2001b). 

 

 

4.3 Recreating in vivo-like activity in vitro 

 

How could one overcome the above mentioned drawbacks that result when 

working in vitro, namely in slices while keeping the advantages of good 

experimental control? The input received by cortical neurons consists of a large 

number of excitatory and inhibitory synaptic potentials arriving independently 

one from the other. The resulting input current can be well approximated by a 

(white) Gaussian noise, assuming that the spiking activity of the presynaptic 

neurons is statistically independent. White noise is used as a realistic model for 

the inputs received by neurons, even though it is not clear how the 

approximation of the input current by Gaussian noise generalizes to the non-

Gaussian noise found in the intact brain (Amit et al. 1992). 

 

To recreate some of the above mentioned in vivo observations in vitro, it is 

possible, as opposed to the conventional DC stimulation, to inject a 

nondeterministic, Gauss-distributed current into the neurons. Each stimulus is 

generated as an independent realization of the Ornstein-Uhlenbeck stochastic 

process (Tuckwell 1988). It is characterized by a stationary Gaussian amplitude 

distribution fully specified by the mean m and variance s2 and an exponentially 

decaying autocorrelation function with time length  (see Figure IV B, upper 

panel). 
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Figure IV: Conventional DC-current injection (A) vs. non deterministic input 

current injection (B) in vitro (taken from Giugliano et al. 2004). Compare also 

with figure III. 

 

 

To this noisy current injection protocol neurons in vitro react with an in vivo-like 

activity (see Figure IV B, lower panel). 
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5 The neural code 

 

Up to today it is still not clear, how neural structures code signals, how 

organisms perceive and respond to their environment, and how these two 

processes are linked together. A neural code, in general, is a set of rules and 

mechanisms by which a signal carries information. Information in the brain is 

transmitted in a series of impulses (spikes) - a temporal sequence of all-or-none 

action potentials - in individual nerve cells or populations of nerve cells. 

Information about a stimulus can be encoded by changes in the neuronal firing 

rate and/or changes in the timing of individual action potentials (see Shadlen et 

al. 1998; Mazurek et al. 2002). To answer the question of neural coding, 

methods to compare different spike trains are needed (Rieke et al. 1997; Victor 

et al. 1997; Buracas et al. 1999; Paninski et al. 2003; Bhumbra et al. 2004; 

Nemenman et al. 2004). 

 

A first issue is how the neuronal output is represented, as a series of discrete 

pulses or as a continuous firing rate. This relates to the question of the code 

used by the nervous system to transmit information between cells. There is an 

ongoing debate which characteristics of individual neuronal spike trains serve 

as the coding signals that carry information (McClurkin et al. 1991; Tovee et al. 

1993; Golomb et al. 1994; Shadlen et al. 1995; Softky 1995; Theunissen et al. 

1995; Rieke et al. 1997; Shadlen et al. 1998). Two different views can be 

distinguished (deCharms et al. 2000): the rate-coding hypothesis holds that it is 

the mean firing rate—the average number of spikes per time bin—that carries 

the information, whereas the temporal-coding hypothesis posits that the precise 

timing of the spikes is also significant. It was Adrian who first noted the 

relationship between the neural firing rate and the stimulus intensity, which 

forms the basis of the rate code (Adrian et al. 1927). In recent years, however, 

an alternative temporal code has been proposed in which detailed spike timings 

are assumed to play an important role in information transmission: information 

is encoded in interspike intervals or in relative timings between firing times of 

spikes (Softky et al. 1993; Stevens et al. 1998). More and more experimental 
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data suggests that both rate and spike-time response modes coexist (Bialek et 

al. 1992; Thorpe et al. 1996; de Ruyter van Steveninck et al. 1997; Markram et 

al. 1997; Riehle et al. 1997; Prut et al. 1998; Reich et al. 1998; Reinagel et al. 

2000; Panzeri et al. 2001). 

 

A second issue is whether information is encoded in the activity of a single (or 

very few) neuron or that of a large number of neurons (population or ensemble 

code). The population rate-code model assumes that information is coded in the 

relative firing rates of ensemble neurons, and has been adopted in most of the 

theoretical analysis (Abbott et al. 1998). On the contrary, in the population 

temporal-code model, it is assumed that relative timings between spikes in 

ensemble neurons may be used as an encoding mechanism for perceptional 

processing (Hopfield 1995). 

 

 

5.1 Rate code 

 

In the rate coding scheme information sent along the axon is encoded in the 

number of spikes per observation time window (the firing rate), suggesting that 

the only important characteristic of a spike train is its mean rate. In most 

sensory systems, the firing rate increases, generally non-linearly, with 

increasing stimulus intensity (Kandel et al. 1991). Any information possibly 

encoded in the temporal structure of the spike train is ignored. Consequently, 

rate coding is inefficient but highly robust with respect to the interspike interval 

(ISI) fluctuations  

 

The English physiologist Edgar Douglas Adrian was one of the first scientists to 

use microelectrode recordings in the 1920s, showing for example that the 

stretch receptor in frog muscle increases its activity with increasing weight on 

the muscle (Adrian et al. 1927). In cortical neurons the synaptic inputs are 

integrated in the dendrites: the ratio of inhibition and excitation affects the 

overall probability of neuronal discharge, but precise spike timing is random. 
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This is a dramatic simplification because it implies that an entire spike train—a 

complex time-varying signal comprising a long list of times at which a neuron 

fired—can be replaced by a single number, the mean rate. According to this 

view, both encoding and decoding are straightforward. The stimulus is encoded 

by setting the firing rate proportional to the value of some stimulus parameter, 

and the neuronal response is decoded by counting the spikes. Rate models are 

often used to investigate the collective behavior of assemblies of cortical 

neurons. One early and seminal example was given by Knight (1972), who 

described the difference between the instantaneous firing rate of a neuron and 

the instantaneous rate of a homogeneous population of neurons in response to 

a time-varying input. The approach we took in Chapter 6 is very similar to that 

suggested by Knight. 

 

The rate-coding hypothesis has provided the foundation for our current 

understanding of the cortical code, but this does not mean that its assumption of 

simplicity is fully justified. Replacing the neural response function by the 

corresponding firing rate is a good approximation only when each network 

neuron has a large number of inputs. The replacement of the neural response 

function, which describes an actual spike train, with the trial-averaged firing rate 

is justified if the quantities of relevance for network dynamics are relatively 

insensitive to the trial-to-trial fluctuations in the spike sequences represented by 

the neural response function (deCharms et al. 2000). The question whether the 

temporal structure of ISIs is due to unavoidable fluctuations in spike generation 

or whether it represents an informative part of the neuronal signal is not yet fully 

resolved (Shadlen et al. 1994; Gerstner 2002) and leads to the idea of temporal 

coding. 
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5.2 Temporal Code 

 

It is well known that neurons can generate precisely timed spikes (e.g., Calvin 

et al. 1968; Mainen et al. 1995; Novak et al. 1997). The temporal-coding 

hypothesis says that the temporal structure of spike trains carries additional 

information beyond that signalled by the mean firing rate. There is little debate 

that the temporal structure of spike trains can carry information about the 

temporal structure in stimuli, such as modulations in stimulus intensity (Bair et 

al. 1994; Buracas et al. 1998; Mechler et al. 1998). The possibility of information 

transmission by changes in ISIs serial correlation has been reported in crayfish 

interneurons (Sugano et al. 1978). A more controversial suggestion is that the 

temporal structure of spike trains can carry information about stimulus 

characteristics other than stimulus temporal structure, such as spatial form. It 

has been suggested that a significant fraction of the information about stimulus 

spatial pattern is carried by temporal components other than the mean rate in 

several visual cortical areas from the primary visual cortex to the inferotemporal 

cortex (Optican et al. 1987; Richmond et al. 1990; McClurkin et al. 1991). 

 

Taking a closer look at this apparent distinction between rate and temporal 

code, it appears that it is just one of timescale rather than of category. The 

mean firing rate is defined as the average number of spikes over some time 

interval (Britten et al. 1992; Tovee et al. 1993). When the time bin is long 

compared with the length of time between spikes, the mean rate can be 

estimated reliably from a single spike train because many spikes occur in each 

bin. However, when the firing rate changes faster than a typical interspike 

interval, then the time bins required to capture these changes must be very 

small, so a typical bin will contain only one spike or no spikes. When using very 

small bins, one is effectively measuring the position of individual spikes in the 

bins rather than measuring large numbers of spikes in each bin, making it more 

a measure of spike timing than spike rate (Rieke et al. 1997). The difference 

between rate coding and temporal coding for an individual spike train is a 

principled but arbitrary distinction that is based upon the interval chosen for 
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counting the spikes. The choice of interval is often based upon timescales 

believed to be relevant to a particular circumstance, such as how quickly the 

stimulus changes, the integration time of a neural element, the mechanism of 

decoding, or the relevant behavioral timescale (deCharms et al. 2000). 

 

 

5.3 Single neuron vs. population coding 

 

It is well appreciated that cortical representations involve the activities of large 

numbers of neurons and that information is encoded in the brain by populations 

or clusters of cells, rather than by single cells. (Hebb 1949; Georgopoulos et al. 

1986; Knudsen et al. 1987; Zohary et al. 1994; Nicolelis et al. 1995; Deadwyler 

et al. 1997; deCharms 1998). Single cell encoding strategies lead to problems 

with noise, robustness and the sheer number of cells required (but see Quiroga 

et al. 2005). The brain must represent aspects of the world using more than just 

one cell, for reasons of robustness to noise and neuronal mortality. This 

encoding strategy is known as population coding. Population coding has a 

number of advantages, including reduction of uncertainty due to neuronal 

variability and the ability to represent a number of different stimulus attributes 

simultaneously. Individual neurons in such a population typically have different 

but overlapping selectivity, so that many neurons, but not necessarily all, 

respond to a given stimulus. Place cells in hippocampus, extraction of visual 

features like orientation, colour, direction or motion, depth; motor commands in 

the motor cortex, these are all examples of a common strategy to cope with 

information in the brain. 

 

The question now is if the cortex functions by pooling together large numbers of 

essentially independent neuronal signals, as in an election, or if the signal does 

come about through the coordination of its elements, as in a symphony (Perkel 

et al. 1967a; Perkel et al. 1967b; Abeles 1991; Arieli et al. 1996; Riehle et al. 

1997; deCharms 1998; deCharms et al. 2000)? 
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5.4 Noise 

 

There are many sources of noise in the nervous system, from the molecular to 

the behavioral level, contributing to trial-to-trial variability found in experiments. 

If neurons are driven with identical time-varying stimuli over repeated trials, the 

timing of the resultant action potentials (APs) varies across the trials (Bryant et 

al. 1976; Tolhurst et al. 1983; Mainen et al. 1995; Berry et al. 1997; de Ruyter 

van Steveninck et al. 1997; Harsch et al. 2000; Schreiber et al. 2004). To what 

extent this neuronal variability contributes to meaningful processing (as 

opposed to being meaningless noise) is one important question of neural 

coding. Neuronal activity might look random without actually being random 

(Faisal et al. 2008). Most of the variability in cortical circuits comes from activity 

generated with neural circuits themselves (Arieli et al. 1996). (See also chapter 

4.1 and for a review see Stein et al. 2005) or Faisal et al. 2008)) 

 

 

 

 

Figure V: A summary of noise sources contributing to the fluctuating membrane 

potential of cortical neurons (taken from Feng 2004)). 
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6 Summary 

Which of the issues raised in the previous chapters could and did we address in 

our study (see Appendix)? 

It can be said that we found a complete characterization of the electrical 

properties of layer V pyramidal cells in the somatosensory cortex of the rat, 

though neglecting its intricate geometry above mentioned. It is now possible to 

predict the output of these cells to any given input. This actually means that we 

know with which firing rate these pyramidal cells will react given any arbitrary 

stimulus. With our model we can predict the output firing rates of a population of 

cells, the actual spike times are being neglected. We tried to overcome the 

drawbacks of the in-vitro approach by injection of noisy currents, trying to re-

embed the in-vitro cell into an in-vivo like atmosphere. Through repetitive 

stimulation of one single cell it was possible to simulate a homogeneous 

population of neurons. We were able to show that the population is capable of 

responding to inputs much faster than a single cell is. The single cell is 

restricted in its response by the membrane time constant and has a limited 

maximal spiking frequency. A population of neurons, embedded in a noisy 

environment, has the advantage that a lot of cells will be close to their spiking 

threshold and ready to respond, even to a very fast signal without being delayed 

for up to very high frequencies. 
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8 Appendix 

 

The cover illustrates the finding that cortical neurons respond to fast-varying fluctuating currents 

(e.g. blue waveform), encoding input modulations into their instantaneous firing rate (spike 

trains in the background). Mimicking in vivo-like irregular background activity in slice recordings, 

we studied the dynamics of neuronal response to sinusoidal inputs and found that pyramidal 

cells relay them without significant attenuation up to 200 Hz, 10 times faster than cells own 

mean firing rate (i.e. 20 Hz).The dynamical response properties of neocortical neurons to 

temporally modulated noisy inputs in vitro. 
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8.1 The dynamical response properties of neocortical neurons to temporally 

modulated noisy inputs in vitro1 
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8.2 Abstract 

 

Cortical neurons are often classified by current-frequency relationship. Such 

a static description is inadequate to interpret neuronal responses to time-

varying stimuli. Theoretical studies suggested that single-cell dynamical 

response properties are necessary to interpret ensemble responses to fast input 

transients. Further, it was shown that input-noise linearizes and boosts the 

response bandwidth, and that the interplay between the barrage of noisy 

synaptic currents and the spike-initiation mechanisms determine the dynamical 

properties of the firing-rate. To test these model predictions, we estimated the 

linear response properties of layer 5 pyramidal cells by injecting a superposition 

of a small-amplitude sinusoidal wave and a background noise. We 

characterized the evoked firing probability across many stimulation trials and a 

range of oscillation frequencies (1-1000Hz), quantifying response amplitude and 

phase-shift while changing noise statistics. We found that neurons track 

unexpectedly fast transients, as their response amplitude has no attenuation up 

                                            

1
 Cerebral Cortex 18: 2086-2097 (2008). 
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to 200Hz. This cut-off frequency is higher than the limits set by passive 

membrane properties (~50Hz) and average firing-rate (~20Hz) and is not 

affected by the rate of change of the input. Finally, above 200Hz, the response 

amplitude decays as a power-law with an exponent that is independent of 

voltage fluctuations induced by the background noise.  

 

Key words: frequency response; noise; dynamics; pyramidal cell; 
somatosensory cortex; oscillations. 
 
 

8.3 Introduction 

 

The response of a single neuron to a changing input is limited by the 

neuron’s maximal spike frequency. Inputs which vary faster can only be 

encoded in the collective activity of a population. This can be observed in 

cortical rhythms when individual cells fire irregularly and at much lower spiking 

rate than the population rhythm revealed through local field potentials (Buzsaki 

and Draguhn, 2004). Individual cells tend to fire more often at the peak of the 

oscillation but cannot emit a spike for every cycle. However, while one cell is in 

the refractory period another one may fire during the next cycle, so that the 

population can globally sustain fast rhythms. It is therefore of central importance 

to investigate how neurons respond to time-varying inputs and to identify the 

impact of synaptic background noise (Steriade, 2001; Paré et al., 1998; Shadlen 

and Newsome, 1998). 

Previous theoretical studies (Gerstner, 2000; Knight, 1972a) extensively 

addressed these issues in models of spiking neurons. They emphasized the 

role of background noise in simplifying the neuronal response dynamics and 

allowing arbitrarily fast time-varying inputs to be encoded undistorted. Brunel 

and collaborators (2001) confirmed these theoretical findings for a more realistic 

mathematical description of synaptic background noise and quantitatively linked 

the temporal correlations of the background inputs (i.e. the synaptic filtering) to 

the response dynamics. However, by a more accurate description of the spike-

initiation mechanisms in non-linear integrate-and-fire neurons and conductance-
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based models, it was predicted that the linear response of a neuron is always 

dominated by a low-pass behavior, whose cut-off frequency is independent of 

the background noise as well as the rate of change of the input (Fourcaud-

Trocmé et al., 2003; Fourcaud-Trocmé and Brunel, 2005; Naundorf et al., 

2005). 

By investigating how the instantaneous firing rate is modulated by a noisy 

input with a small sinusoidal component, we experimentally estimated the linear 

response properties of layer 5 pyramidal cells of the rat somatosensory cortex, 

over a wide frequency range of input oscillations (i.e.1-1000Hz). We evaluated 

the extent of response linearity, tested the ability of cells to track temporally 

varying inputs, and investigated the impact of background noise. In the limit of 

small input amplitude, this allows one to predict the spiking activity of a 

population of weakly interacting neurons, on the basis of the single-cell 

responses to elementary sinusoidally modulated currents. This also allows to 

study how neurons take part in collective rhythms, inferring the preferred global 

frequency in recurrent networks (Fuhrmann et al., 2002; Brunel and Wang 

2003, Wang 2003; Geisler et al. 2005) where each cell responds to a correlated 

foreground rhythm (i.e. the signal) while experiencing a distinct synaptic 

background activity.  

While the response properties of cortical neurons to stationary fluctuating 

inputs have been previously characterized (Chance et al., 2002; Rauch et al., 

2003; Giugliano et al., 2004; La Camera et al., 2006; Higgs et al., 2006; Arsiero 

et al., 2007), this is the first time that the response of cortical neurons to 

temporally-modulated inputs is investigated over a wide range of input 

frequencies and through analysis of the background noise. 
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 Figure 1: In vivo-like stimulation protocol and the stability of in vitro 
recording conditions.  In vivo irregular background synaptic inputs were 

emulated in vitro by injection of noisy currents under current-clamp. Specifically, 
Gaussian currents characterized by mean I0, standard deviation s and 

correlation time , were injected into the soma of layer 5 pyramidal cells. A 
deterministic sinusoidally oscillating waveform of amplitude I1 and modulation 
frequency f was then superimposed to the background noise (A - lower trace), 
and the stimulation trials were interleaved by a recovery interval Trec. The initial 
segments of each stimulus (i.e. lasting T1, T2, and T3) were used to monitor the 
stability of the recording conditions on a trial-by-trial basis. Panel B shows a 

typical experimental session, plotting over time the whole-cell resistance Rin 
(estimated during T2  - B - upper panel), the resting membrane potential Em 
(averaged during T1 - B - middle panel), as well as the reproducibility of the cell 
discharge rate rfix, evaluated  in response to a stationary noise, characterized by 

fixed statistics (s, )fix (during T3). Continuous lines in (B) represent average 

values of each observable across the whole experiment, while the gray shading 
in (B - lower panel) indicates a confidence level of approximately 68%, which 

describes the variance allowed for the data. The middle panel shows a layer V 
pyramidal cell of the somatosensory cortex of the rat stained with Biocytin. 

 
 
 

8.4 Materials and methods 

8.4.1 Experimental preparation and recordings 

 

Tissue preparation was as described in Rauch et al., (2003). Briefly, neocortical 

slices (sagittal, 300m thick) were prepared from 14- to 52-days-old Wistar 

rats. Large layer 5 (L5), regular-spiking pyramidal cells (McCormick et al., 1985) 
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of the somatosensory cortex with a thick apical dendrite were visualized by 

differential interference contrast microscopy. Some neurons were filled with 

biocytin and stained (Hsu et al., 1981), to check that the entire neuronal apical 

dendrite was indeed in the plane of the slice, which was always the case. 

Whole-cell patch-clamp recordings were made at 32o C from the soma (10-20 

M access resistance) with extracellular solution containing (in mM): 125 NaCl, 

25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 25 glucose, bubbled 

with 95% O2, 5% CO2, perfused at a minimal rate of 1 ml/min. Electrode 

resistance and capacitance were 6.97  0.18 M and 23.73  1.11 pF, 

respectively, when filled with an intracellular solution containing (in mM): 115 K-

gluconate, 20 KCl, 10 HEPES, 4 ATP-Mg, 0.3 Na2-GTP, 10 Na2-

Phosphocreatine, pH adjusted to 7.3 with KOH. All the chemicals were from 

Sigma or Merck (Switzerland). Other pipette solutions were reported not to alter 

significantly the response properties of the cells under very similar experimental 

conditions (Rauch et al., 2003). A BVC-700A bridge amplifier (Dagan, USA) 

was used in current-clamp mode and bridge balance and capacitance 

neutralization were routinely applied. Hyperpolarizing current steps and linear 

swept sine waves (ZAP) were injected to obtain estimates of the passive 

properties of patched neurons, such as the total membrane capacitance Cm and 

apparent input resistance Rin (Iansek and Redman, 1973), as well as the 

membrane impedance amplitude profile (Hutcheon et al., 1996). Signals were 

low-pass filtered at 2.5 kHz, sampled at 5-15 kHz, and captured on the 

computer.  

Finally, care was taken to ensure that the neuronal response was consistent 

and reproducible throughout the whole recording session (see Figure 1B). The 

total whole-cell resistance Rin and the resting membrane voltage Em were 

continuously monitored (during T2 and T1, respectively, located as in Figure 1). 

Data collection began after these observables attained stable values and the 

experiment was stopped in case of any drift. 

The results reported here represent data from L5 pyramidal cells (n = 67) of 

the somatosensory cortex. The average resting membrane potential was Em =   

-66  4.4 mV, the apparent input resistance (Rin) was 45  2.6 M, the 
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membrane time-constant (m) was 18.32  0.8 msec.  The total capacitance Cm 

was estimated as 448  19 pF. Liquid junction potentials were left uncorrected. 

 

 
 
Figure 2: Analyzing the discharge response to the oscillatory input 

signal over a background of irregular synaptic inputs. Irregular spike trains 

were evoked in the same neuron by sinusoidally modulated noisy current 
injections. The time of occurrence of each action potential (A, B) was referred to 

its peak and represented by a thick vertical mark. Lower panels show the spike 
raster-plots collected for different input modulation frequencies, f = 10 Hz and f 
= 250 Hz. The instantaneous firing rate r(t) (C, D - upper panels) reveals a 
sinusoidal modulation in time. This was estimated by the peristimulus time 
histograms (PSTHs) (bars) across repeated trials and successive input cycles, 
and quantified by the best-fit sinusoid with frequency f (black thick line). For 
the sake of comparison, the sinusoidal component of I(t) (C, D - lower panels) 
was plotted in red and superimposed to the actual injected waveform. While the 

mean firing rate r0 remains constant, its modulation r1 and phase-shift  depend 
on the input-frequency f. 
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8.4.2 Injection of sinusoidal noisy currents 

 

To probe the response dynamics of pyramidal cells under in vivo-like 

conditions, independent realizations of a noisy current were computer-

synthesized and injected somatically in current-clamp configuration (see Figure 

1A). Each experiment consisted of the repeated injection of current stimuli I(t), 

lasting T = 10–30 seconds each, interleaved by a recovery Trec of 30 sec. A 

deterministic sinusoidally oscillating current with frequency f was superimposed 

to the noisy current component and injected (Figure 2C-D), so that 

 

   )()(2sin=)( 10 tItfIItI noise  . (1) 

 

Inoise(t) was generated as a realization of an Ornstein-Uhlenbeck stochastic 

process with zero-mean and variance s2 (Rauch et al., 2003), and 

independently synthesized for each repetition by iterating the equation 

 

   tnoisenoise dtsdttIdttI   /2/1)(=)( , (2) 

 

where t represents a random variable from a normal distribution (Press et al., 

1992), and it was updated at every time step dt (i.e. 5–15 kHz). Inoise(t) is then 

an exponentially filtered white-noise and it aims at mimicking in vitro the barrage 

of a large numbers of balanced background excitatory and inhibitory synaptic 

inputs at the soma (Destexhe et al., 2003; Destexhe et al., 2001; Rauch et al., 

2003; Arsiero et al., 2007). Inoise(t) is characterized by a steady-state Gaussian 

amplitude-distribution with zero-mean and variance s2, and by a steady-state 

autocorrelation function exponentially decaying with time-constant . The value 

of  corresponds to the decay time-constants of individual synaptic currents and 

it was varied in the range 5-100 msec, thereby referring to fast (AMPA– and 

GABAA– mediated) as well as slow (NMDA– and GABAB– mediated) synaptic 

currents (Tuckwell, 1988; Rauch et al., 2003). The choice of s2 was aimed at 

mimicking the membrane voltage fluctuations observed in cortical recordings in 
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vivo, which are around 3–5 mV (Paré et al., 1998), and it is also effectively 

representative of non-zero cross-correlations of background inputs (Rudolph 

and Destexhe, 2004). 

The number of repetitions for the same set of stimulation parameters (I0, I1, s, 

, f) was 5–20, approximately ensuring an accuracy of at least 10% on the 

estimate of the instantaneous firing rate, with a confidence of 68% (see Rauch 

et al., 2003). Waveforms were injected in a random order to minimize the effect 

of slow drifts in the recording conditions. While the explored range for f was 1–

1000 Hz, the effect of distinct values for  and for (I0, s) was also investigated 

(as in Figures 5–6). Stimulations by a single sinusoid at the time were preferred 

to probing simultaneously the entire frequency-domain, with the aim of 

shortening each stimulation epoch in favor of the stability of the recordings 

(Figure 1) and of the signal-to-noise ratio.  

 

 

8.4.3 Injection of noisy broad-band waveforms 

 

We also injected periodic broad-band waveforms instead of sinusoids, under 

background noise Inoise(t). In analogy to equation 1, the stimulation current is 

defined as  

 

  )()(=)( 0 tItiItI noise .  (3) 

 

Similar signals were preferred to a superposition of many sinusoids as they 

let us to compare our results to those of Mainen and Sejnowski (1995), who did 

not consider any background component in their stimulation protocol. A set of 

waveforms iT(t) of duration T = 100 msec was generated once and for all by 

iterating equation 2 offline, using  = 1 msec and s = I1. Thus, each iT(t) was a 

segment of a frozen colored noise, with zero-mean and significant spectral 

energy content approximately up to  -1 = 1 kHz. We could generate distinct 

waveforms by choosing different initialization seed 0 in equation 2. In order to 

allow a repeated stimulation by iT(t) and efficient data collection, i(t) was 
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constructed by ―gluing‖ together hundreds of identical and non-overlapping 

replicas of iT(t). 0 was selected to minimize the absolute difference |iT(0)-iT(T)| 

and thus reducing discontinuities at the boundaries between two successive 

replicas. 

 

 

8.4.4 Data analysis 

 

The membrane voltage was recorded in response to each noisy (independent) 

periodic stimulus realization (see Figure 2C-D, lower panels). Raw traces were 

off-line processed in Matlab (The Mathworks, Natick, MA, USA) to extract 

individual spike times {tk}, k = 1,2,3,…, after discarding an initial transient where 

spike-frequency adaptation and other voltage-dependent currents might not be 

at ―regime‖ (i.e. 1–3 sec out of T - see Figure 1). Most of the data analysis was 

devoted to quantitatively estimating the response rate r(t) evoked by the 

periodic noisy current stimulation I(t).  

The peristimulus time histogram (PSTH) of the spike times was constructed 

over all repetitions by aligning the evoked spike-trains according to successive 

cycles of the same stimulus I(t), for the sake of direct comparison with the 

analysis performed by Fourcaud-Trocmé et al. (2003). The bin size was chosen 

as one-thirtieth of the input period 1/f, so that the stimulus duration T 

corresponds to the same a priori statistical accuracy on the estimate of r(t), 

irrespectively of f. A sinusoid of frequency f was then fit to the PSTH by the 

Levenberg-Marquardt algorithm, in the least-squares sense (Press et al., 1992), 

obtaining estimates of the instantaneous firing rate amplitude r1(f) and the 

phase (f) and their confidence intervals. 

The analysis of the neuronal response to broad-band waveforms injections 

(equation 3) was performed by means of PSTH over 0.5 msec wide bins, and 

evoked spike-trains were aligned according to the corresponding successive 

cycles of iT(t). The spikes collected during an initial transient of each stimulation 

trial were discarded. By taking an average-window moving across successive 

stimulation cycles, the stationarity of the mean number of spikes emitted in each 
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cycle of duration T was monitored as a strict necessary condition for further 

data analysis and phenomenological model identification. This procedure 

allowed us to detect and remove the effect of brief transient fluctuations in the 

input resistance.  

 

 

8.4.5 Phenomenological Model 

 

Along the lines of phenomenological ―cascade‖ predictive models of neural 

response properties (French, 1976; Victor and Shapley, 1979c; Carandini et al., 

1996; Kim and Rieke, 2001; Slee et al., 2005; Powers et al., 2005), and in 

closer analogy to classic Fourier System Identification (Brogan, 1991), we 

considered an input-output relationship based on linear ordinary differential 

equations (i.e. a linear filter, equation 6), similarly to Powers et al., (2005). 

Unlike that approach, we focused on the transformation of the input signal 

component (i.e. sinusoids or iT(t)) into firing rates r(t). Thus, the identification of 

these transformations depended on the statistics of the background noise (i.e. 

I0, s and ). Instead of the time-domain, the linear filtering was operatively 

specified and identified in the frequency-domain (equation 7). This allowed us to 

consider a reduced number of free parameters.  

In the details, the input is first fed into a threshold-linear element H(x) (see 

Figure 7A):  

 

   ,

P)t(i0

P)t(iP)t(i

=)t(iH)t(H
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1T1T

T













  (5) 

 

where iT(t) is the input signal measured in nA.  
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Then H(iT(t)) is transformed into y(t) according to the following equation, 

 

             HbdtdHbdtHdbyadtdyadtyda mm

m

nn

n  0101 /.../=/.../  (6) 

 

 

where n > m (Brogan, 1991). The filter model alone as employed in Figures 5-6, 

can simply be obtained by setting H(x) = x in equation 6. Under periodic 

regimes, equation 6 is equivalent to the product )(ˆ)(ˆ=)(ˆ fHfXfy  , where 

)(ˆ fy  and )(ˆ fH  are the (discrete) Fourier transforms of y(t) and H(iT(t)), 

respectively, and )(ö fX  can be written as 
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where j = 1  and G0 is a real number that represents the low-frequency gain. 

{zi} and {i} are the roots of the polynomials with coefficients {bi} and {ai} and act 

as the lower or upper cut-off frequencies of elementary high-pass or low-pass 

filters, respectively, arranged in cascade and have the physical meaning of the 

inverse of intrinsic time-constants. The filter input-output gain and phase-shift 

across input modulation frequencies f are fully specified by G0 and by the 

number of distinct {zi} and {i} (i.e. m and n) and their values. For instance, 

equation 7 accounts for the high-frequency (f+) power-law  ffX )(ö  

observed in our experiments, with  = n – m, strictly integer. Identical input-

output relationships are commonly employed to describe electrical filters, 

composed of linear resistors, capacitors and inductors (Horowitz and Hill, 1989). 

Finally, a constant propagation delay t was further included, together with an 

output offset, so that 

 

)tt(y)t(r  + P2,       or equivalently    ,tf360)f(Xö)f(Xö    (8) 
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where the phase of )(ö fX  was indicated by  and expressed in degrees. 

 

In summary, equations 6-8 describe a linear transformation preceded by a 

static, or no-memory, threshold-linear stage (eq. 5). The cascade ordering 

―nonlinear-linear‖ was preferred to ―linear-nonlinear‖ for slightly better fit 

performances. All the parameters (i.e. P1, P2, G0, {zi},{i}, t) were adjusted to 

minimize the discrepancies between actual data and model predictions, 

employing Simulated Annealing techniques (Press et al., 1992). The chosen 

cost-function to minimize was represented by the 2 that quantified the mean 

quadratic discrepancy between actual data and model prediction, weighted by 

the confidence interval (Press et al., 1992). Large deviations are therefore 

weighted on the basis of the confidence on these data estimates. For the 

identification of the full cascade model in the time-domain, 
2 was 

complemented by first-derivative mean discrepancies. 

 

 

8.4.6 Statistics 

 

95% confidence accuracy intervals on the nonlinear least-square parameter 

estimates were determined for r0, r1(f) and (f) by the Levenberg-Marquardt fit 

algorithm, providing error bars in the plots of Figures 5-6 as in Fourcaud-

Trocmé et al. (2003). For Figures 1B (lower panel) and 6B, the gray shading 

represents the asymmetric 68% confidence accuracy interval (i.e. 

corresponding to one standard-deviation) for the mean firing rate rfix, as in 

Rauch et al. (2003).  

In the case of identification of the phenomenological filter models, the 2-test 

was used to evaluate the quality of the fits (Press et al., 1992), implicitly taking 

into account the number of free parameters.  

Kendall's Tau non-parametric (rank-order) test (Press et al., 1992) was finally 

employed to assess correlations among spike-shape features and stimulation 

parameters, providing a measure c of correlation together with its significance 
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level p, which represents the probability of obtaining the same value for c from 

statistically independent samples (i.e. false positive).  

 

 

 
 

Figure 3: Modulation depth (r1 / r0) and phase-shift  of the response 
to a noisy oscillatory input. The instantaneous firing rate r(t) evoked by small 

sinusoidal currents over a noisy background revealed sinusoidal oscillations 

with amplitude r1 and phase-shift , around a mean r0 (quantified as in Figure 
2C-D). Surprisingly, pyramidal neurons can relay fast input modulations, up to 
several hundred cycles per second. The high-frequency response behavior 

matches a power-law relationship (i.e. r1 ~ f  ) with a linear phase shift (i.e.  ~ 
f ). These plots were obtained for 67 cells, averaging across available 
repetitions and distinguishing between offset-currents I0 above (suprathreshold 
regime) and below (subthreshold regime) the DC rheobase of the 
corresponding cell (as in Figure 5). Data points corresponding to distinct input 
modulation frequencies were pooled together in non-overlapping bins with size 
0.1 – 10 Hz (low frequencies) and 100 – 200 Hz (high frequencies). Error bars 

represent the SE across the data points available (32 25) for each bin. 
Markers shape and color identify the suprathreshold or weak-noise regime 
(black) and the subthreshold or strong-noise regime (red), characterized by 
distinct values for I0 and s2, adapted to yield a similar mean rate r0 ~ 20 Hz (i.e. 

19.7  1.5 Hz). 
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8.5 Results 

 

8.5.1 The linear response to time-varying noisy inputs 

 

Due to irregular spontaneous activity and the high degree of convergence, 

cortical neurons receive a continuous barrage of excitatory and inhibitory 

potentials in the intact brain. At the same time cortical cells participate in a 

variety of oscillations, whose frequency spans several orders of magnitude (e.g. 

0.05 – 500 Hz) during distinct behavioral states (Buzsaki and Draguhn, 2004). 

What is the impact of the background activity on neuronal responsiveness and 

on collective oscillations? We approached these issues by studying the linear 

response properties of single neurons characterizing their instantaneous 

discharge rate r(t) in response to a noisy background current with a small 

sinusoidal component, hereafter referred to as the ―signal‖. This allowed us not 

only to investigate how cortical neurons participate in an oscillatory regime, but 

especially how cells track temporally varying inputs under distinct background 

conditions (Figure 1). We systematically varied the input oscillation frequency f, 

its amplitude I1 and offset I0, as well as the statistics (s, ) of the background 

noise (equations 1-2). Since no correlation between the shape of the action 

potentials and these stimulation parameters was found, we restricted our 

analysis to the timing of each spike. However, very small correlations c exist 

between (I0, I1, s) and the maximal upstroke velocity and spike duration ( 0.1|| c

; 310< p ), but they are consequence of non-ideal bridge-balancing. Weak 

correlations c  were instead found between the rat postnatal day and the spike 

upstroke velocity (c = 0.21; 1210< p ), downstroke velocity (c = -0.23; 1410< p ) 

and spike duration (c = -0.27; 1910< p ), as observed by many investigators. 

The firing rate r(t) was estimated from the peristimulus time histograms (PSTHs) 

of the spike times over hundreds of cycles of the input current and over several 

stimulation trials. It was interpreted as the instantaneous discharge probability 

or, equivalently, as the firing rate of a cortical population composed of 

independent neurons. 
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In the limit of small-signal input amplitude I1, r(t) could be well approximated 

by a sine wave oscillating at the same frequency f  as the input current (Figures 

2C-D, upper panels): 

 

   )f(tf2sin)f(rr)t(r 10  . (9) 

 

r(t) is fully described in terms of mean firing rate r0, modulation amplitude r1(f), 

and phase-shift (f) relative to the input current, as in linear dynamical 

transformations. At the beginning of each experiment, the stimulation 

parameters were selected in a way that r0 was in the range 10–20 Hz, the 

membrane voltage fluctuations induced by the noise were 1–5 mV, and the 

discharge modulation amplitude r1 was 0 < r1 < r0. Figure 2 reports typical spike 

responses evoked by input modulations at f = 10 Hz and at f = 250 Hz, recorded 

in the same cell. Individual firing times across successive input cycles and trial 

repetitions showed high variability (Figures 2A and B, lower panels), as a 

consequence of the noise component uncorrelated with the sinusoidal signal 

oscillations. 

Scaling the input amplitude I1 in the range 20 pA – 200 pA while keeping I0, 

s, and f fixed resulted in a linear scaling of the output amplitude r1 (n = 3, not 

shown). However, for large input modulation depth (i.e. I1 > 0.3 I0), the 

amplitudes of output superimposed sinusoidal oscillations characterized by 

multiple frequencies of f (i.e. higher harmonic components) increased (n = 3), 

revealing the presence of input-output distortions as the limit of small input 

amplitude was exceeded. Thus, in most of the experiments we employed I1 

smaller than 30% of I0, to fulfill the validity of the linear approximation where 

higher harmonics in the output could be neglected. Although similar values of I1 

are not infinitesimal with respect to I0, this choice was confirmed to be 

reasonable by studying and predicting the neuronal discharge in response to 

more complex input signals across a wide range of firing rates, as discussed in 

the experiments of Figure 7. 

Consistent with the hypothesis of linearity, no significant difference between 

the sum of the responses to individual sinusoids and the response to the sum of 
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multiple sinusoids injected simultaneously was observed (Victor, 1979; 

Carandini et al., 1996; Movshon et al., 1978) (n = 20, not shown).  

 

 

8.5.2 Cortical neurons track fast inputs 

 

Our experimental characterization aimed at identifying the linear neuronal 

response properties and at studying the way background noise affects them 

(Fourcaud-Trocmé et al. 2003; Chichilnisky, 2001; Naundorf et al., 2005; 

Apfaltrer et al., 2006; Sakai, 1992). In the framework of classic Fourier 

decomposition of any input signal to a neuron, r1(f) and (f) give quantitative 

information on how the neuronal encoding differentially attenuates and delays 

each frequency component f of the input, in the limit of small signal amplitude. 

Figure 3 summarizes population data and reports the unexpectedly wide 

bandwidth of the output temporal modulation depth r1/r0 and output phase-shift 

. While r0 was unaffected by f, r1 decreased significantly only for f > 100 – 200 

Hz, regardless of the intensity and temporal correlations of the background 

noise. The profile of r1(f) across frequencies did not match the membrane 

impedance, which was dominated by voltage-dependent resonances in the low-

frequency range (i.e. 5–10 Hz – previously related to h-currents and M-currents) 

and by a low-pass behavior at high frequencies (not shown) with strong 

attenuation above 50 Hz (Gutfreund et al., 1995; Hutcheon et al., 1996). 

Above 200 Hz the output modulation depth decayed as a negative power-

law, which appears as a straight (dashed) line in the double-logarithmic plot of 

Figure 3. The power-law exponent estimated by linear regression through the 

population data of Figure 3 was close to 2 ( = -1.80) and it matched the value 

obtained by averaging the exponents estimated in single experiments ( = -1.81 

 0.31, n = 6 – see Figure 4a). A similar qualitative dependence, induced by 

system linearization, was anticipated by theoretical studies (Gerstner, 2000; 

Knight, 1972a) and could be replicated quantitatively in the case of integer 

power-law exponents through canonical phase oscillator models (Naundorf et 
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al., 2005), nonlinear integrate-and-fire models (Fourcaud-Trocmé et al. 2003) 

and conductance-based neuronal modeling (Fourcaud-Trocmé et al. 2003). 

Integer values of  also relate to the number of best-fit free parameters of the 

phenomenological band-pass filters used in Figures 5-7 (see the Methods – eq. 

7), introduced to fit the experimental data as discussed in the following sections.  

Even though the inspection of Figure 3 seems to indicate that the points at 

highest frequencies can be fitted by 1/f, Figure 4a support the conclusion that 

1/f2 is a more precise characterization. Nevertheless, numerical simulations 

showed that the high frequency asymptotic behavior might be reached at 

frequencies which are much higher than the cutoff frequency (Fourcaud-Trocmé 

et al. 2003), so that assessing the precise value of  might not be conclusive on 

the basis of our observations. 

As opposed to typical linear systems, the phase-shift at high frequencies did 

not saturate but decreased linearly with f (see Figure 4b). This is reminiscent of 

the presence of a constant time delay t between input and output. This delay 

was in the range 0.3 – 1.1 msec, sometimes much larger than the ―threshold-to-

peak voltage‖ lag sp during a spike. sp quantifies the rising phase of each 

action potential, upon conventional definition of ―threshold‖ as the membrane 

voltage corresponding to a rate of change of 10mV/ms, and it was in the range 

of 0.3 – 0.5 ms. As expected from the previous report (Fourcaud-Trocmé et al., 

2003), tmodel was always equal to sp in single-compartmental computer 

simulations (not shown). However, the mismatch between sp and t observed 

in some cells might be explained in terms of relevant additional axo-somatic and 

somato-axonic propagation latencies of about 0.2 ms each. This was measured 

directly by Palmer and Stuart (2006), who reported that cortical cells initiate 

action potentials at the distal end of the initial axon segment (see also Shu et 

al., 2007). 
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Figure 4: The high-frequency dynamical response properties of a 

typical cortical neuron, plotted in linear scale. The modulation amplitude (a) 
r1(f), elicited by noisy oscillatory inputs, shows a power-law behavior (see also 

Figure 3) captured by 1 / f  , with  ~ 2, while the phase  of the response (b) 

decreases linearly with increasing frequencies f (i.e.   tf360   ). 

Stimulation parameters (I0, I1, s) = (400, 150, 500) pA and  = 5 msec. 
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8.5.3 The background noise affects the neuronal dynamical response at 

intermediate frequencies 

 

In the absence of background fluctuations, a neuron discharges only when its 

input current surpasses a certain threshold (i.e. the rheobase current). When 

the input current is noisy and fluctuations are induced in the membrane voltage, 

the neuron can be brought to spiking even when its average input is below the 

threshold (i.e. ―subthreshold‖). Thus, the mean firing rate of the neuron 0r  is 

determined by both the mean current I0 and the standard deviation s of the 

noise. At the beginning of each experiment, I0 and s were tuned to obtain the 

same mean firing rate r0, chosen in the range 10 – 20 Hz. This allowed us to 

evoke two different discharge regimes, reflected in the degree of the irregular 

firing: the suprathreshold or weak-noise regime and the subthreshold or strong-

noise regime. In the weak-noise regime, the background input fluctuation 

amplitude s was set to 20-50 pA and its mean I0 was chosen above rheobase. 

Conversely, in the strong-noise regime, I0 was set below rheobase, and s was 

increased until r0 matched the value obtained in the suprathreshold regime. 

Figure 5 summarizes the results of these experiments, reporting the 

responses of four typical cells (see also Figure 3). It shows that the intensity s of 

the background noise, mimicking presynaptic firing as well as presynaptic 

background cross-correlations (Rudolph and Destexhe, 2004), differentially 

affects the neuronal response. This occurs especially at intermediate 

frequencies, flattening the response profile and smoothening resonances as 

predicted in theoretical studies (Knight, 1972a; Brunel et al., 2001; Fourcaud-

Trocmé et al., 2003; Richardson et al., 2003). The modulation of the neuronal 

discharge does not appear significantly attenuated at frequencies lower than 

100 – 300 Hz in both regimes (see also Figure 2), as for Figure 3 but plotted in 

linear instead of logarithmic scale for the vertical axis. At low input frequencies f 

(1–20 Hz), an increase in r1 and a phase-advance were always observed (see 

Figures 5-6). These effects are apparent when analyzing single cell responses 

rather than population averages (compare Figures 3 and 5). 

In general, uniform and dense sampling of the frequency axis was not 
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practicable, given the limited time window for stability and reproducibility of the 

neuronal response in typical recordings (see the Methods). This resulted in 

privileging high frequencies in some experiments (e.g. see Figure 4) while 

neglecting intermediate frequencies in others, and vice versa (e.g. Figure 6). 

This prompted us to test a posteriori whether data points collected 

simultaneously on the response magnitude r1 and phase were consistent with 

the hypothesis of linearity, while providing meaningful interpolations between 

samples (see Figure 5d). In fact, the mutual relationship between r1 and 

phase cannot be arbitrary in a linear system. Therefore, a filter model (eqs. 7-

8, see the Methods) was routinely employed to fit the data from each 

experiment. This model captured the neuronal response to the input signal 

component and its best-fit attenuation and phase-shift were plotted in Figures 5-

6 as thick continuous lines. As in electrical filters made of linear resistors, 

capacitors and inductors (Horowitz and Hill, 1989), the number and location of 

the model intrinsic time-constants account for integer power-law behavior and 

for low frequencies resonances and phase-advance, while matching the profiles 

of r1 and  simultaneously. Changing the background noise level (black and red 

colors in Figures 3, 5) resulted only in a shift in the best-fit values of the intrinsic 

time-constants of the model and required no modification of their number. This 

shift was smaller for faster time-constants (i.e. less than  30%, for time-

constants below ~3 msec – see Supplemental Table S1), indicating that the 

high-frequency response of the neuron was generally unaffected by the noise 

intensity. 
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Figure 5: The intensity of background fluctuations affects the 
dynamical  response of cortical neurons. The impact of the noise variance s2 

was examined across a wide range of input-frequencies f, in four distinct cells 
(a-d), under the same conditions of Figure 3. Strong background noise 
smoothes r1(f) at intermediate frequencies, as in a programmable equalizer. 
Linear instead of logarithmic scale has been employed here for the y-axis. Each 

subpanel (top to bottom) reports r1(f) and (f), identifying the suprathreshold or 
weak-noise regime (“supra” - black markers) and the subthreshold or strong-
noise regime (“sub” - red markers) by different marker shapes and colors. 

Each regime is characterized by distinct values for I0 and s2, adapted to yield a 
similar mean rate r0 ~ 20 Hz. 
Experimental data points (markers) have been plotted together with the best-fit 
predictions from a phenomenological filter model (continuous traces). For 

these cells, band-pass second-order filters (i.e. n = 2 – eq. 7) were found to 
describe the experimental data with high significance (see Supplemental Table 
S1). Error bars represent the 95% confidence intervals, obtained by the 
Levenberg-Marquardt fit algorithm. High-frequency error bars were large 
because of the poor signal-to-noise ration as well as for the ambiguity of the 

(periodic) estimates of (f). While I1 = 50 pA and  = 5 msec were fixed for all 
cells and both regimes, the remaining stimulation parameters were: 
(suprathreshold) (I0, s)a = (500, 50), (I0, s)b = (400, 20), (I0, s)c = (250, 25) and 
(I0, s)d = (350, 50) pA; (subthreshold) (I0, s)a = (300, 400), (I0, s)b = (150, 325), 
(I0, s)c = (100, 250) and (I0, s)d = (100, 450) pA. 
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8.5.4 Background temporal correlations do not speed up neuronal reaction 

times 

 

The timescale of background fluctuations (i.e. the ―color‖ of the noise) was 

systematically varied in our experiments (Figure 6). This is set by the correlation 

time  of the noise (equation 2) that mimics the decay time-constant of synaptic 

currents. In previous theoretical studies, the dependence of  on  was 

emphasized (Brunel et al., 2001), suggesting that synaptic noise might have an 

impact on the reaction times to fast input transients reducing the response 

phase lag to zero and removing amplitude attenuations (Gerstner, 2000; Knight, 

1972a). Here, we explored the effect of changing the values of  in the range 5–

100 msec, thereby mimicking the contribution of fast (AMPA– and GABAA–

mediated), slow (NMDA– and GABAB–mediated) synaptic currents. Both  and 

r1 showed sensitivity to  for intermediate frequencies, but not in the high-

frequency regime, as plotted in Figure 6 for four typical cells. This is consistent 

with the results of the simulations of a conductance-based model neuron (not 

shown), and with the predictions of Fourcaud-Trocmé et al. (2003). 

As discussed in the previous section and shown in Figure 5, r1(f) and (f) 

could be simultaneously fit by the frequency-response of a linear filter model. A 

change of the noise time constant  shifted the best-fit parameters, but required 

no modification of their number. The shift was smaller for faster time-constants 

(i.e. less than  20%, for time-constants generally below ~3 msec – see 

Supplemental Table S2). 
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Figure 6: The timescale of background fluctuations affects the 

dynamical  response of cortical neurons. The effect of the timescale of 

fluctuations (i.e. correlation time ) was examined across a wide range of input-
frequencies f, in four cells (a-d). At high input frequencies pyramidal neurons 
are insensitive to the noise-color, in the sense that they do not speed up or slow 
down their fastest reaction time, for ―white‖ or ―colored‖ background noise. 
Linear instead of logarithmic scale has been employed here for the y-axis. The 

panels (top to bottom) report r1(f) and (f), with different marker shapes and 

colors referring to two stimulation regimes, indicated as slow (red markers) and 

fast (black markers). While fast was fixed to 5 msec and slow was (a-d) 45-50 
msec, in (d) the range 5-100 msec could be explored. As in Figure 5, 
experimental data points (markers) have been plotted together with the best-fit 
predictions from a phenomenological filter model (continuous and dashed 
traces). For these cells, band-pass third-order filters (i.e. n = 3 – eq. 7) were 
found to describe the data with high significance (see Supplemental Table S2). 
Error bars represent the 95% confidence intervals obtained by the Levenberg-
Marquardt fit algorithm. High-frequency error bars were large because of the 
poor signal-to-noise ration as well as for the ambiguity of the (periodic) 

estimates of (f). Stimulation parameters were: (I0, I1, s)a = (250, 50, 100),  (I0, 
I1, s)b = (300, 50, 100),  (I0, I1, s)c = (300, 50, 100), and (I0, I1, s)d = (300, 50, 75) 
pA. 
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8.5.5 Significance of the linear response properties to predict neuronal 

responses  

 

The good accuracy of the linear filter to fit the experimental data (Figures 5-6, 

continuous lines) prompted us to test the extent at which linear properties 

dominate the input-output response in pyramidal neurons. In fact, ideal linear 

systems process each Fourier-component of their input independently and 

distortion-free, so that the frequency-domain response of the system is 

sufficient to predict the corresponding output. 

We investigated the response r(t) to a broadband signal iT(t), instead of 

sinusoids (see the Methods). With the aim of approaching the conditions of the 

periodic regime studied in the previous sections, iT(t) was cyclically repeated 

with a period of T = 100 msec. With the additional background noise, these 

experiments generalize and extend those of Mainen and Sejnowski (1995), who 

looked at fast stimulus transients and neuronal response reliability. 

Furthermore, our approach allows one to study the response of a cortical 

population, where neurons experience uncorrelated background activity, weakly 

interacting with each other and receiving the same input signal. In Figure 7B, a 

sample waveform of the broadband input was plotted, together with the raster 

plots of the spikes evoked across hundreds of cycles and repetitions. In analogy 

to the analysis shown in Figure 2, the peristimulus time histograms (PSTHs) 

computed from the raster plot was used to estimate the instantaneous firing rate 

r(t). 

Although instantaneous input amplitudes were not small compared to I0, the 

phenomenological filter employed in Figures 5-6 could predict the time-varying 

neuronal response with satisfying accuracy over a wide range of output firing 

rates (Figure 7), tracking fast input transients. However, to account for large 

negative input amplitudes that occasionally occur, a minimal current-threshold 

was needed in cascade to the linear filter (eqs. 5, 7 and 8). Without it, the 

correct dynamical range of the response could not be replicated and the fitting 

procedure led to low prediction performances. The order ―nonlinear-linear‖, 

sketched in Figure 7A, was preferred to the ―linear-nonlinear‖ (Sakai, 1992) as it 
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systematically led to slightly superior fit performances, as well as on the basis of 

its possible interpretation as the neuronal rheobase.  

 

 

 

Figure 7: Prediction of the discharge response to a broad-band input 
signal over a background noise. We challenged the significance of the linear 

response properties, searching for best-fit parameters of a phenomenological 
cascade model to predict the instantaneous firing rate in response to a broad-
band input iT(t) (B - upper panel). Such a model, sketched in (A), has the 
structure of a classic Hammerstein model (Sakai, 1992), where a static, or no-
memory, threshold-linear element is followed by a linear system, as for the 
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band-pass filters of Figures 5-6 (see the Methods). In (B), only the broad-band 
current signal is shown (top), together with the corresponding spiking pattern 
elicited across different cycles and repetitions (middle). In the lower panel, the 
best-fit output r(t) of the model (red dots) was compared to the instantaneous 
firing probability (continuous blue line) obtained as a PSTH with a 68% 
confidence interval (gray shaded area), estimated over the corresponding 
raster plot (middle). The cascade model captures the input-output response 

properties of cortical neurons to fast inputs with acceptable accuracy (see 
Supplemental Table S3). 

 
 
 

8.6 Discussion 

 

In the present work we studied the basic questions of how neurons encode 

time-varying inputs into spike trains, how efficiently they achieve it and what is 

the impact of the background noise. This is of central importance to understand 

network activities like network-driven persistent oscillatory regimes, which 

depends on the single-cell dynamical response properties and on recurrent 

connectivity.  

Previous studies used deterministic oscillating inputs in invertebrate (Knight, 

1972b; French et al., 2001) and vertebrate neurons in hippocampus and 

entorhinal cortex (Schreiber et al., 2004), in thalamocortical neurons (Smith et 

al., 2000), in spinal interneurons and motoneurons (Baldissera et al., 1984), in 

the vestibular system (Ris et al., 2001; du Lac and Lisberger, 1995), in the 

auditory (Liu et al., 2006) and visual systems (Victor and Shapley, 1979a-b; 

Sakai, 1992; Carandini et al., 1996; Nowak et al., 1997), with emphasis on spike 

timing and reliability (Fellous et al., 2001; Schaette et al., 2005) and 

synchronization (Gutkin et al., 2005). Our results extend those studies in two 

ways: i) by examining the contribution of background fluctuations and ii) by 

systematically exploring the dynamical response properties up to the high-

frequency range (1 kHz).  

By the interpretation of the instantaneous firing rate as a population activity, 

our analysis suggests that cortical ensembles are extremely efficient in tracking 

transients that are much faster than the membrane time-constant (~20 msec – 

see the Methods) and than the average interspike interval (~ 1/r0  50 msec) of 
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individual cells. This finding was anticipated by many theoretical studies and it 

correlates with the previous observations that single cortical neurons (Mainen 

and Sejnowski, 1995) and hypoglossal motoneurons (Powers et al., 2005) may 

have phase-locked firing responses to fast-varying current inputs, as well as 

with the study of Bair and Koch (1996), who observed large cutoff frequencies 

in the power spectra of the responses of middle temporal cortical neurons to in 

vivo random visual stimulation. However, our results extend the previous 

studies to the case of high-frequency phase-locking of the population firing 

rates, under noisy background. While this is not unexpected (Knight, 1972a), 

our findings disprove that the noise and its temporal correlations make a 

neuronal population to respond instantaneously to an input (Knight, 1972a; 

Gerstner, 2000; Brunel et al., 2001; Silberberg et al., 2004). In fact, both noise 

intensity s and correlation time  modulate the neuronal response only at low 

and intermediate input frequencies and do not affect the low-pass filtering 

profile of the response, in agreement with Fourcaud-Trocmé et al., (2003) and 

with Naundorf et al., (2005). 

The location of the observed cut-off frequency was higher than the 

predictions from single-compartmental conductance based model neurons 

(Fourcaud-Trocmé et al., 2003). In those studies, the cut-off was of the order of 

r0 and increased with the increasing sharpness of the action potentials. 

Similarly, Naundorf et al. (2005) observed an increase in the neuronal response 

at input frequencies much higher than r0 (i.e. up to 200 Hz) for increasing action 

potential onset speed, while studying a phase-oscillator point neuron model. We 

then propose that the effective spike sharpness could be higher than what was 

previously modeled at the soma. We speculate that a multi-compartmental 

description that incorporates the details of axonic spike initiation (McCormick et 

al., 2007; Shu et al., 2007) might quantitatively support our experimental 

observations.  

We observed a phase-advance at low input frequencies that was previously 

interpreted mechanistically on the basis of ion currents responsible for spike-

frequency adaptation (Fleidervish et al., 1996; Ahmed et al., 1998; Fuhrmann et 

al., 2002; Compte et al., 2003; Paninski et al., 2003), as well as of resonances 
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of the membrane impedance (Richardson et al., 2003; Brunel et al., 2003). 

These hypotheses are consistent with the input frequency range ~1 – 10 Hz 

(i.e. (100 msec)-1 – (1000 msec)-1) of the phase-advance and with its sensitivity 

to the levels of the background noise we observed in our experiments.  

The use of current-clamp was a meaningful choice as an immediate 

comparison to the analytical and numerical studies of Fourcaud-Trocmé et al. 

(2003), Geisler et al. (2005) and many others. A more realistic somatic 

conductance-injection is expected to change quantitatively but not qualitatively 

our conclusions (see also Apfaltrer et al., 2006). Even when excitatory and 

inhibitory fluctuating conductances significantly alter the effective membrane 

time-constant m of the neuron (Destexhe et al., 2003), their additional temporal 

modulation will not affect further m, in the limit of small amplitude considered 

here. Previous theoretical studies directly showed that the location of the cut-off 

frequency as well as of the resonances due to sub-threshold resonances 

(Richardson et al., 2003) shift with distinct conductance-states of the neuron, 

but pointed out that the power-law exponent  and the sensitivity to the 

background noise remain unaffected (Fourcaud-Trocmé et al., 2003; Geisler et 

al., 2005). Nevertheless, in order to carefully extend the discussion of Rauch et 

al. (2003) (see also La Camera et al., 2004; Richardson and Gerstner, 2005) 

towards a mapping between the dynamical response properties induced by 

current-driven stimuli to those induced by conductance-driven stimuli, our 

results will require to be reevaluated under dynamic-clamp recordings 

(Destexhe et al., 2001; Robinson, 1994). 

The response amplitude r1(f) decays as a power-law in the high-frequency 

range and the exponent  of the power-law 1 / f a was approximately 2. This is 

in contrast to what is predicted for the Wang-Buzsaki model (Wang and Buzsaki 

1996) and for the exponential integrate-and-fire neuron (Fourcaud-Trocmé et 

al., 2003), but it is consistent with a polynomial V-I dependence of the spike-

initiating mechanisms (not shown). This steeper power-law is unlikely a 

measurement artifact. The glass pipette used to inject sinusoidal input currents 

has indeed low-pass filter properties in ―cascade‖ to the neuron. However, these 

filtering properties occur mainly between input-output voltages due to parallel 
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parasitic capacitances. Input-output currents are unlikely to be pre-filtered due 

to inductive electrical effects and viscosity in the movement of charge carriers in 

the pipette solutions, as these are negligible phenomena in the frequency range 

we investigated. 

Finally, the local slope (i.e. gain) of the static f-I curve affects neuronal 

responses regardless of the input modulation frequencies (Fourcaud-Trocmé et 

al., 2003). Previously reported gain-modulations induced by background noise 

(Chance et al., 2002; Higgs et al., 2006) are qualitatively distinct than the effects 

shown in Figures 5-6, as they act by scaling the firing-rate output of the neurons 

across all the input frequency-bands. 

Our experimental results then suggest that the action potential is a major 

evolutionary breakthrough, not only for making possible long-distance 

propagation of signals, but more importantly because it represents a powerful 

large-bandwidth digital inter-cellular communication channel, through population 

coding. In fact, our work shows that population coding with spikes has no 

significant attenuation in the range 0–200 Hz, while it compensates the heavy 

drawbacks of the analog intra-cellular membrane properties, which filter out 

input frequencies faster than 50 Hz. 
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Figure 8: Comparison between the first-order kernels computed by 
reverse-correlation techniques and the best-fit frequency-response of the 
linear filter model of Figure 7. The modulation amplitude r1(f) (dashed line, 
identifying eq. 7) was compared to the fast Fourier transform (FFT) of the 
average input-current trajectory (ACT - markers). The last was evaluated 
correlating the signal component iT(t) with the timing of each action potential, in 
three experiments. As expected from interpreting the ACT as the first-order 
kernel, striking similarities are apparent. 

 
 
 

8.6.1 Relations to reverse correlation methods 

 

Neural coding and the dynamical characterization of the input-output 

transformation operated by neurons, have been previously addressed by using 

methods of stimulus reconstruction (Bialek et al., 1991; Rieke et al., 1995) or 

reverse correlation (de Boer and Kuyper, 1968; Gerstner and Kistler, 2002). The 

last identifies the typical input current preceding a spike. Such a procedure 

estimates the first-order Wiener kernel and thus the linear component of the 

system (Kroller, 1992) even though underlying nonlinearities might be present 

―in cascade‖ (Chichilnisky, 2001). The reverse correlation kernel is proportional 
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to the impulse response of the linear response of the neuron and it 

characterizes the ―meaning‖ of each spike (Kroller, 1992). The frequency-

domain characterization that we considered so far directly relates to such an 

impulse response upon Fourier transform, although here we focused only on 

the encoding of the input signal (and not of the overall waveform) into the 

output. We thus generalized the previous experimental investigations to include 

the effect of background noise. 

Consistently with the weak impact of background noise at high input 

frequencies that we reported, one might expect that similar cut-off frequencies 

(i.e. ~100-200 Hz) were quantitatively observed by previous investigators, 

although they might have not included any background noise. For instance, the 

―stimulus kernel‖ identified by Powers et al. (2005) in motoneurons by injecting 

stationary ―white‖-noise inputs, appears to be dominated by a single decay time-

constant in the order of 5 – 10 msec, indeed matching the 100 – 200 Hz cut off 

frequencies of our data. Similarly, the low-noise phase-advance properties we 

observed (e.g. Figure 2A) and the filter model intrinsic (high-pass) time-

constants identified in our experiments, quantitatively correlate with the ―feed-

back‖ kernel computed by the same authors after selecting short and long inter-

spike-intervals to unveil the effect of spike-frequency adaptation.  

Finally, with the aim of further exploring the relationship of our approach with 

the previous ones, we directly computed the average input-current trajectory 

(ACT) preceding each spike, in three experiments where a broadband signal 

iT(t) was injected. In Figure 8, we compare the Fourier-transform of the ACT to 

the frequency-response of the best-fit linear filter model optimized to match the 

instantaneous firing rate (as in Figure 7). As expected interpreting the ACT as 

the first-order kernel reveals striking similarities between the two approaches, 

especially for frequencies higher than 200 Hz. 
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8.6.2 The phenomenological filter model 

 

Linear response properties are relevant to predict the response to complex 

noisy waveforms, even though the hypothesis of small input amplitude was not 

strictly respected by iT(t). As discussed by Carandini et al. (1996), our 

experiments support the idea that in vivo membrane potential fluctuations 

linearize the response to stimulus-related input components (Masuda et al. 

2005). Consistently, the neuronal response r(t) could not be captured by 

employing a static nonlinearity alone (not shown), even though for stationary 

noisy stimuli a similar description is appropriate (Rauch et al., 2003; Giugliano 

et al., 2004; La Camera et al., 2006; Arsiero et al., 2007). The additional 

cascade threshold-linear element simply relates to the presence of a minimal 

input threshold. It is interesting to note that the piecewise-linear profile of such 

nonlinearity reflects the minor role played by distortions and harmonics in our 

experiments. 

Summarizing, a simple ―cascade‖  model could quantitatively capture the 

time course of the instantaneous discharge rate (see also Shelley et al., 2002; 

Schaette et al., 2005; Gutkin et al., 2005), although it neglected the precise 

firing times. On the other hand, these can be captured by spiking neuron 

models, as in Jolivet et al. (2006) and Paninski (2006), identifying the 

parameters of an exponential (or quadratic) integrate-and-fire including spike-

frequency adaptation as in Brette and Gerstner (2005).  

 

 

8.6.3 Cortical rhythms 

 

Slow inputs produced a phase-advance of the output response while fast 

inputs a phase-lag, relative to the input modulation (Fuhrmann et al., 2002). 

This has been proposed to have important consequences for emerging 

population dynamics in recurrent networks, as the signals propagation between 

pre- and postsynaptic spikes does not only depend on the synaptic delays but 

also on the (oscillation frequency-dependent) delay introduced by the 
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postsynaptic neuron itself. The fact that spike-timing depends on f is particularly 

relevant for the emergence of population rhythms  including fast ripples 

(Buzsaki et al., 1992; Csicsvari et al., 1999; Grenier et al., 2003; Buzsaki and 

Draguhn, 2004; Buzsaki et al., 2004). In fact, the spikes of a presynaptic 

neuron, which is engaged in network-driven oscillations, generate periodic 

synaptic currents. Then the postsynaptic neuron experiences the periodic 

maxima of these currents after a synaptic delay, and responds to such a current 

signal reaching the maximum of its firing rate with an additional delay (f) and 

attenuation r1/I1. If both presynaptic and postsynaptic neurons are participating 

in the same global rhythm, the overall delay between the pre- and postsynaptic 

spikes must be consistent with the period of the global oscillation and no strong 

attenuation should occur at that frequency, as shown in computer simulations 

by Fuhrmann et al. (2002), Brunel and Wang (2003) and Geisler et al. (2005). 

Therefore not every oscillation frequency f is compatible with a given recurrent 

network architecture, synaptic coupling and firing regime.  

We showed that the phase-shift and response amplitude of L5 pyramidal 

cells depends on the background fluctuations (Figures 5-6). This suggests that 

the frequency of emerging rhythms can be modulated by a background network 

embedding those neurons, as the phase of single-cell response is affected. 

More general, any network activity that relies on the timing of recurrent spikes is 

governed not only by the synaptic dynamics but is also controlled by the 

response properties ((f), r1) of single cells. 
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8.9 Supplemental Tables 

 

 

weak-noise or suprathreshold regime 

z1 [Hz] 1 [Hz] 2 [Hz] G0 t [ms] p()M p() 

              

1,95 20,14 278,56 0,95 1,1 0,003 0,001 

3,11 21,09 371,26 0,54 1,2 0,59 0,9 

1,62 14,75 337,41 0,77 1,1 0,46 0,56 

3,19  16,48  512,90 0,83 1,1 0,50 0,36 

3,44 11,69 462,85 0,80 1,2 0,0 0,0 

2,62 53,63 287,61 0,46 0,9 0,005 0,38 

7,83 23,97 455,51 0,56 0,8 0,66 0,56 

3,53 38,60 157,61 0,32 1,0 0,61 0,61 

 

 

strong-noise or subthreshold regime 

z1 [Hz] 1 [Hz] 2 [Hz] G0 t [ms] p()M p() 

              

43,22 95,73  379,25    1,34 0,9 0,26 0,38 

3,78 25,56  366,77     0,31 0,9 0,11 1e-5 

18,56  47,58   377,92     1,06 0,7 0,63 0,21 

10,89  16,62   364,34     1,52 0,7 0,13 0,16 

7,69  13,06  359,26     1,13 0,9 0,0 0,0 

8,37 1791,67  1820,65 0,03 1,75 0,36 0,01 

- - - - - - - 

0,05  167,87  361,90    0,001 0,9 5e-6 0,43 
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Table S1: Numerical parameters for the RLC-like band-pass filters of 

Figure 4. Typical values of the best-fit model parameters for 8 cells are 

provided for the different noisy-regimes investigated, including cells plotted in 

Figure 4. Equation 7, representing the canonical form of a linear filter, was 

found to fit simultaneously the gain r1 / I1 and phase-shift  of the neuronal 

response with satisfying 2-test performances. In particular, m = 1 and n = 2 

constrain the choice of second-order minimal-phase RLC-like band-bass filters. 

This implies that the response gain for high input frequencies decays as 1 / f 

and that the cut-off frequency is given by min{1 ; 2}. Switching from the mean-

dominated (weak-noise) to the noise-dominated (strong-noise) regime, we often 

observed a movement in the location for z1 and for the low-frequency cut-off of 

the filter towards higher frequencies. Such a noise-dependent displacement 

suggests that noise is equalizing neuronal responsiveness for an intermediate 

frequency-range (see also Figure 5). However, max{1 ; 2} moved much less 

keeping unchanged the high-frequency cut-off of the neuronal response. 
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5 ms 

z1 [Hz] 1 [Hz] 2 [Hz] 3 [Hz] G0 t [ms] p()M p() 

                

1,56 6,48 899,2 930,86 0,41 0,8 0,99 0,13 

2,39 4,65 373,35 396,9 1,09 0,8 0,94 0,48 

3,64 8,32 905,75 918,53 0,68 0,9 0,90 0,19 

        

45 ms 

                

2,11 9,26 1870,07 1936,04 0,47 1,1 0,93 0,05 

2,18 8,45 325 367,55 0,8 0,8 0,96 0,76 

6,73 24,18 1042,8 1095,58 0,68 1,1 0,77 0,01 

        

100 ms 

                

3,09 12,07 1931,14 2103,9 0,57 1,0 0,97 0,03 

 

Table S2: Numerical parameters for the RLC-like band-pass filters of 

Figure 5. Quantifying the results of Figure 5, typical values of the model 

parameters for 3 cells are provided for different values of the correlation time-

length  of the background noise. Equation 7, representing the canonical form of 

a linear filter, was found to fit simultaneously the gain r1 / I1 and phase-shift  of 

the neuronal response with satisfying 2-test performances. In particular, m = 1 

and n = 3 constrain the choice of third-order minimal-phase band-bass RLC-like 

filters. This implies that the response gain, for high input frequencies decays as 

1 / f 2 and that the cut-off frequency is given by min{1 ; 2 ; 3}. Increasing the 

value of  changes the location of z1 and the cut-off frequencies in such a way 

that its effect is restricted to an intermediate input-frequency range.  
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P1 [nA] P2 [Hz] z1 [Hz] 1 [Hz] 2 [Hz]  [Hz] G0 t [ms]
  

[Hz]

0,42 6,76 59 158 149 146 288 3,6 5,9 

0,20 4,15 60 155 151 119 322 3,9 4,3 

0,39 13,9 27 132 124 115 139 3,5 4,8 

0,28 12,0 94 188 187 188 245 3,1 8,1 

 

Table S3: Parameters for the phenomenological model. To quantify the 

results of Figure 6, best-fit values of the model parameters are provided 

together with the mean absolute error E quantifying the model performances 

over the output spiking range [0 ; 100] Hz. 

 


