Sudden stops, social security, and lumpy investment with variable utilization

Three essays in macroeconomics

Andreas Bachmann

Department of Economics, University of Bern

Inauguraldissertation zur Erlangung der Würde eines

DOCTOR RERUM OECONOMICARUM

der Wirtschafts- und Sozialwissenschaftlichen Fakultät

der Universität Bern

Bern, September 2015

Die Fakultät hat diese Arbeit am 15. Oktober 2015 auf Antrag der beiden Gutachter Prof. Dr. Klaus Neusser und Prof. Dr. Pierpaolo Benigno als Dissertation angenommen, ohne damit zu den darin ausgesprochenen Auffassungen Stellung nehmen zu wollen.

Preface

This thesis is a collection of three separate papers. Although all essays consider current macroeconomic topics, they differ considerably in both content and methodology. The motivation for this variety was mostly educational. One of my personal goals of doing a PhD was to learn and apply various tools that are nowadays used at the research frontier in macroeconomics. Only by doing both empirical and theoretical research, I had the chance to achieve this goal. Moreover, while specialization in a field is undoubtedly important, the PhD appears to be a too early point in a researcher's career to focus only on a very narrow topic. For these reasons, I decided to write three chapters in different areas of macroeconomics and apply various current methods, including Bayesian estimation, Markov switching models, the sufficient statistics approach (in the sense of Chetty, 2009), heterogeneous agents models, and dynamic programming.

This thesis has greatly benefited from the support of several people. I am very grateful for their assistance in many respects. I would like to express my deepest gratitude to my advisor Klaus Neusser for his support, guidance and encouragement during my thesis. I would also like to thank my coadvisor, Pierpaolo Benigno, who has kindly agreed to take part in the thesis committee. Parts of this thesis have been written with co-authors. I would like to thank Stefan Leist and Kaspar Wüthrich for their excellent, fruitful collaboration in Chapter 2 and 3, respectively. I greatly enjoyed working and discussing with them. I am also grateful to the faculty at the Department of Economics of the University of Bern. In particular, I would like to thank Fabrice Collard, Harris Dellas, Klaus Neusser and Dirk Niepelt for helpful comments, valuable suggestions, and insightful discussions. This thesis also benefited from comments received at the Annual Congress of the European Economic Association, the INFINITI Conference on International Finance, the Annual Congress of the Swiss Society of Economics and Statistics, the Annual Conference of the Royal Economic Society, the Young Swiss Economists Meeting, the Brown Bag Seminar at the Study Center Gerzensee, and the PhD workshop at the University of Bern. Especially, I would like to mention Eduardo Cavallo, whose suggestions and comments regarding Chapter 2 I particularly appreciated. Chapter 4 uses data from the KOF Swiss Economic Institute. I am grateful for the opportunity to work with this excellent data set of firm-level panel data. Finally, I would like to thank my peers at the University of Bern and the Study Center Gerzensee for many fruitful discussions and helpful comments, their moral support and encouragement, and for the great time we have shared.

Bern, September 2015

Andreas Bachmann

Contents

List of figures xii				
Li	List of tables xiv			
1	Intr	oducti	ion	1
2	Sudden stops and output: an empirical Markov switching			
	ana	lysis		7
	2.1	Introd	uction	7
	2.2	Data		10
	2.3	Estima	ation methods	11
		2.3.1	Econometric framework for the analysis of sudden stops	12
		2.3.2	Markov switching VAR	14
		2.3.3	Structural identification	17
		2.3.4	Impulse responses	19
	2.4	Result	S	24
		2.4.1	Characterization of regimes and impact of regime switch	24
		2.4.2	Net capital inflows to GDP shock	30
		2.4.3	Analysis of observed output declines in historical sud-	
			den stop events	33
	2.5	Discus	sion and concluding remarks	38
	2.A	Appen	ndices to Chapter 2	43
		2.A.1	Data	43
		2.A.2	Derivation of the probability limit	44
		2.A.3	Figures	46

CONTENTS

3	Eva	luating	g pay-as-you-go social security systems	49
	3.1	Introd	$uction \dots \dots$	49
	3.2	Theor	y	53
		3.2.1	Demographics, preferences and technology	53
		3.2.2	Ramsey program	56
		3.2.3	Extensions	60
		3.2.4	Consumption equivalent impact on each generation $\ . \ .$	61
		3.2.5	Overall welfare effect	63
	3.3	Empir	ical implementation \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	65
		3.3.1	Methodology	66
		3.3.2	Data and aggregation	69
		3.3.3	Results	69
	3.4	Discus	ssion and concluding remarks	80
	3.A	Apper	ndices to Chapter 3	82
		3.A.1	Components of the overall welfare effect and relation	
			to dynamic inefficiency	82
		3.A.2	Extension I: consumption tax	83
		3.A.3	Extension II: retirement age	85
		3.A.4	Lump-sum redistribution authority	88
		3.A.5	Data and aggregation	89
4	Lur	npy in	vestment and variable capacity utilization: firm-	-
	leve	and a	macroeconomic implications	93
	4.1	Introd	uction \ldots	93
	4.2	Empir	ical analysis	99
	4.3	Theor	etical model	110
		4.3.1	Firms	111
		4.3.2	Households	114
		4.3.3	Recursive competitive equilibrium	115
		4.3.4	Simplified dynamic problem	117
		4.3.5	Specification and calibration	121
	4.4	Model	solution	126
	4.5	Result	js	131

CONTENTS

	4.5.1	Steady state	31
	4.5.2	Firm-level investment, utilization and labor decisions $\ . \ 1$	33
	4.5.3	Macroeconomic implications	41
4.6	Discus	sion and concluding remarks $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 1$	50
4.A	Appen	dices to Chapter 4 \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1	56
	4.A.1	Figures	56
	4.A.2	Tables	60
	4.A.3	Uniqueness of goods and labor market equilibrium 1	61
Bibliog	raphy	1	73

List of figures

2.1	Indonesia: Comparison of MSVAR mean posterior sudden	
	stop probability (black line) to alternative sudden stop dates	
	(gray line)	27
2.2	Mexico: Comparison of MSVAR mean posterior sudden stop	
	probability (black line) to alternative sudden stop dates (gray	
	line)	28
2.3	Median unconditional impulse responses to a switch to the	
	sudden stop regime. The dashed lines correspond to 90% and	
	95% confidence intervals	29
2.4	Indonesia: Median conditional impulse responses to net	
	capital inflows shock. The dashed lines correspond to 95%	
	confidence intervals	31
2.5	Indonesia: Median unconditional impulse responses to net	
	capital inflows shock. The dashed lines correspond to 95%	
	confidence intervals	32
2.6	Decomposition of observed GDP growth (black line) into the	
	"normal" regime's mean (dark gray bars), the regime change	
	in means and dynamics (white bars), and the remaining part	
	(light gray bars) consisting of the impact of initial values,	
	shocks and non-linear interaction effects	35
2.7	Comparison of observed GDP level (black solid line) with	
	counterfactual absent regime switch (black dashed line) and	
	counterfactual including regime switch (gray dashed line). All	
	series are normalized to a starting value of 100. \ldots \ldots \ldots	36

2.8	Comparison of observed GDP level (black solid line) with
	three counterfactuals: The first (gray dashed line) is based
	on the MSVAR, the second (black dashed line) and the
	third (black dashed line with markers) are based on a time-
	invariant VAR model with a sudden stop dummy. For the
	second counterfactual, the dummy corresponds to the median
	sudden stop regime probability from the MSVAR. For the
	third counterfactual, the dummy is identified by the change
	in CAP/GDP falling below a specific threshold. All series are
	normalized to a starting value of 100
2.9	Conditional IRFs to a net capital inflows shock: sudden stop
	regime (gray lines) and "normal" regime (black lines). \ldots . 46
2.10	Unconditional IRFs to a net capital inflows shock: sudden
	stop regime (gray lines) and "normal" regime (black lines). $\ . \ 47$
3.1	Impulse response of hours worked and real wages (in percent)
	to a permanent increase in the payroll tax rate by one
	percentage point. \ldots \ldots \ldots \ldots $.$ 71
3.2	Impulse response of hours worked and real wages to a perma-
	nent increase in the payroll tax rate by one percentage point $\ 71$
3.3	Different scenarios for the future development of variables
	affecting the welfare change. The solid line represents the
	baseline, the dashed lines indicate the high and low scenarios. 79
4.1	The fraction of investing firms when capacity utilization is
	fixed (gray dashed line) or variable (black solid line). The
	estimation is based on column (4) in Table 4.2. $\ldots \ldots \ldots$
4.2	The fraction of firms with negative investment when capacity
	utilization is fixed (gray dashed line) or variable (black solid
	line). The estimation is based on column (4) in Table 4.3. $$ 109 $$
4.3	Difference in the predicted fraction of investing firms when
	utilization is variable or fixed. The difference is based on the
	GMM model (column (4) in Table 4.2). $\ldots \ldots \ldots$

LIST OF FIGURES

4.4	Difference in the predicted fraction of firms with negative
	investment when utilization is variable or fixed. The difference
	is based on the GMM model (column (4) in Table 4.3). \ldots 110
4.5	Steady state distribution of firm-level capital (bars, right axis)
	and probability of capital adjustment (dashed line, left axis). 132
4.6	The value of investment excluding fixed costs (black line) and
	the value of not investing (gray line)
4.7	The adjustment hazard of the VULIM at different levels of
	aggregate productivity: the lowest productivity state (dashed
	line), the medium state (solid line), and the highest state (solid
	line with markers)
4.8	The adjustment hazard of the VULIM (gray lines) and the
	SLIM (black lines) at different levels of aggregate productivity:
	the lowest productivity state (dashed lines), the medium state
	(solid lines), and the highest state (solid lines with markers). 135
4.9	Utilization of investing (gray line) and non-investing (black
	line) firms
4.10	Utilization of investing (gray lines) and non-investing (black
	lines) firms at different levels of aggregate productivity: the
	lowest productivity state (dashed lines), the medium state
	(solid lines), and the highest state (solid lines with markers) 137
4.11	Labor demand of the VULIM (gray lines) and the SLIM (black
	line). The dashed line indicates investing firms, solid lines
	depict non-investing firms. In the SLIM, the labor demand of
	both types of firms coincides. $\ldots \ldots 138$
4.12	Impulse responses to a one percent positive technology shock
	occurring at $t = 1$ for various models: VULIM (gray solid
	lines), SLIM (black solid lines), VUFM (gray dashed lines),
	and SFM (black dashed lines). $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 147$
4.13	Responsiveness index $RI_{t,X}$ for different variables X (target
	capital, investment, output, and employment) and various
	models: VULIM (gray solid lines), SLIM (black solid lines),
	VUFM (gray dashed lines), and SFM (black dashed lines). $\ . \ . \ 151$

4.14	Responsiveness index $RI_{t,X}$ for different variables X (con-	
	sumption, utilization, and the fraction of adjusting firms) and	
	various models: VULIM (gray solid lines), SLIM (black solid	
	lines), VUFM (gray dashed lines), and SFM (black dashed	
	line)	52
4.15	The fraction of investing firms when capacity utilization is	
	fixed (gray dashed line) or variable (black solid line). The	
	estimation is based on column (2) in Table 4.2	56
4.16	The fraction of firms with negative investment when capacity	
	utilization is fixed (gray dashed line) or variable (black solid	
	line). The estimation is based on column (2) in Table 4.3. \therefore 1	56
4.17	Difference in the predicted fraction of investing firms when	
	utilization is variable or fixed. The difference is based on the	
	FE model (column (2) in Table 4.2). $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	57
4.18	Difference in the predicted fraction of firms with negative	
	investment when utilization is variable or fixed. The difference	
	is based on the FE model (column (2) in Table 4.3). \ldots 1	57
4.19	Utilization of the VULIM (gray lines) and the VUFM (black	
	line). Dashed lines indicate investing firms, the solid line non-	
	investing firms. In the VUFM, all firms invest	.58
4.20	Labor demand of the VULIM (gray lines) and the VUFM	
	(black line). Dashed lines indicate investing firms, the solid	
	line non-investing firms. In the VUFM, all firms invest 1	59
4.21	Labor demand of the SLIM (gray line) and the SFM (black	
	line). In the SLIM, the labor demand of investing and non-	
	investing firms is identical. In the SFM, all firms invest 1	59
4.22	Consumption and investment demand (black line) and pro-	
	duction (gray line) as a function of p in the steady state 1	.63
4.23	Labor demand (black line) and supply (gray line) as a function	
	of w (conditional on equilibrium p) in the steady state 1	64

List of tables

2.1	Regime-specific mean and standard deviation implied by the
	estimated MSVAR coefficients
2.2	Description of the data
3.1	Percentage retiree's consumption change with equivalent wel-
	fare effect as the policy change $\ldots \ldots \ldots$
3.2	Overall welfare effect (in 10000) according to (3.22) depending
	on the households' parameter γ and the planner's weights $\{\xi_t\}_{t=0}^{\infty}$ 74
3.3	Decomposition of the overall welfare effect (in 1000) by
	generations and channels, based on parameter values $\gamma = 1$
	and $\kappa = 0.95^{30}$
3.4	Overall welfare effect (in 10000) according to (3.22) for
	different scenarios, based on parameter values $\kappa = 0.95^{30}$ and
	$\gamma = 1. \dots \dots \dots \dots \dots \dots \dots \dots \dots $
3.5	Description of the data $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 90$
3.6	Aggregation of higher frequency data to OLG frequency of 30
	years
4.1	Descriptive statistics
4.2	Regression results for investment dummy
4.3	Regression results for disinvestment dummy
4.4	Calibration of model parameters
4.5	Steady state
4.6	Investment decisions as a function of aggregate productivity . 140

LIST OF TABLES

4.7	Moments of the investment rate distribution as a function of
	aggregate productivity $\ldots \ldots 141$
4.8	Mean of macroeconomic aggregates
4.9	Absolute and relative (to output) standard deviations of
	macroeconomic aggregates
4.10	Correlation of macroeconomic aggregates with output 145
4.11	First-order autocorrelation of macroeconomic aggregates $~$ 145
4.12	Target capital as a function of aggregate productivity 160
4.13	Mean investment rate as a function of aggregate productivity . 160

Chapter 1

Introduction

Current knowledge on macroeconomic issues results from both theoretical and empirical research. These methodological approaches complement each other: Empirical studies have established facts giving rise to new theories, and hypotheses from theoretical models have been validated Both approaches have their assets and drawbacks. empirically. Largescale theoretical models allow for an analysis of various research questions, including the economic impact of shocks, the role of frictions for economic behavior, or welfare evaluations of policy changes. However, these models require assumptions on functional forms and deep parameters characterizing technology and preferences, which are often hard to justify and to test in an empirically compelling manner. Empirical research, on the other hand, is useful to estimate statistical relationships, identify economic regularities, or test theoretical implications. However, the results may be of limited applicability because the estimates are usually inherently local (i.e., the effects are identified for certain countries or sets of policy variables only) and not policy-invariant. Moreover, welfare evaluation in general necessitates the use of a model. In the light of these advantages and disadvantages, economic questions are preferably analyzed both theoretically and empirically.

Acknowledging the value of both theoretical and empirical research, this thesis aims at enhancing consistency between the two. It relaxes critical assumptions and analyzes whether existing knowledge withstands the test of using a more flexible approach. Different strategies are applied to improve on consistency between theory and empirics: Chapter 2 proposes an econometric framework that is in line with theoretical knowledge while Chapter 4 extends a theoretical model to be more consistent with empirical facts. Chapter 3 uses an approach that inherently links theoretical structural models and reduced-form estimation. The key idea of this *sufficient statistic approach* is to derive a model-based formula for a quantity of interest under few assumptions and to estimate the ingredients of this formula empirically.¹ A full specification and parameterization of the structural model can be avoided because the quantity of interest does in general not depend on all functions or parameters of the model.

While the chapters of this thesis all make an effort in enhancing consistency between theoretical and empirical research, they considerably differ with respect to the research field. The chapters contribute to three current, important areas of macroeconomics: Chapter 2 estimates the impact of sudden stops in capital flows on GDP, an issue that has recently received increasing attention in international economics. The chapter proposes an estimation strategy that is multivariate, non-linear and uses a novel way to identify sudden stops. The econometric framework is chosen consistently with theoretical work on sudden stops. In particular, the non-linear nature of sudden stops is accounted for. Chapter 3 proposes a method for welfare analysis of pay-as-you-go social security systems. In the light of the rising ratio of retirees to workers, reforms of the pension systems are an important and urgent domestic policy issue in many advanced economies. The chapter analyzes both the generation-specific and the overall welfare consequences of permanent changes in payroll taxes used to finance transfers in pay-as-yougo systems. The proposed method follows the sufficient statistic approach, which combines theory and empirics: A formula for the welfare effect is derived based on an overlapping generations model under few parametric assumptions. The formula is implemented empirically using impulse response functions and predicted growth rates. Chapter 4 analyzes firms' investment

¹See for example Chetty (2009) for a review.

behavior and its macroeconomic implications when capital adjustment is subject to fixed costs and utilization is variable. The macroeconomic relevance of capital adjustment frictions and the resulting microeconomic lumpy investment behavior has been subject to debate. The chapter extends a lumpy investment model by variable utilization. This extension substantially augments firms' incentives for lumpy investment due to reserve capacity building. The chapter numerically derives firms' optimal decision rules and analyzes the macroeconomic effects of the enhanced lumpiness. Allowing for variable utilization renders the theoretical model more consistent with empirical facts: Chapter 4 also presents empirical evidence for the importance of capacity utilization for firms' investment decisions.

The subsequent paragraphs summarize each chapter's motivation, research question, methodology and main findings.

Chapter 2.² Sudden stops in capital flows and their negative effects on GDP have recently received renewed attention because quantitative easing has led to considerable capital flows to emerging markets. These capital flows could suddenly stop or even reverse, for example when US monetary policy becomes more restrictive. Besides for emerging markets, the impact of sudden stops in capital flows is also relevant for other countries. Greece or Russia provide recent examples. Chapter 2 estimates the impact of sudden stops on GDP. We propose a multivariate, non-linear econometric framework and a novel strategy to identify sudden stops, thereby addressing potential shortcomings of previous, related empirical studies. Specifically, we employ a Markov switching vector autoregression with a latent variable indicating whether the economy is in a sudden stop regime. In addition, we identify a structural net capital inflows shock using the maximum fraction of forecast error variance approach. This framework allows to estimate both the impact of rare switches to the sudden stop regime and regime-dependent responses to net capital inflows shocks. We provide results for Mexico and Indonesia. The findings show that (i) sudden stops are associated with regime switches and have significantly negative and permanent effects on GDP, (ii) impulse

²This chapter was co-authored by Stefan Leist.

responses to net capital inflow shocks are regime-dependent with economies being more vulnerable to shocks during the sudden stop regime, and (iii) there were different main drivers of the output decline in historical sudden stop episodes.

Chapter 3.³ Many developed countries rely on pay-as-you-go systems for old-age provision. Because of demographic changes such as the growing fraction of retirees, reforms of these social security systems are increasingly discussed. Previous studies have typically analyzed the welfare effects of different policies using structural overlapping generations models. While this approach provides a flexible framework for welfare analysis, it requires parameterizing and calibrating the structure of the model, which involves many assumptions on functional forms and deep model parameters. Chapter 3 introduces a complementary method for welfare analysis of pay-as-yougo systems. Using an overlapping generations model, we derive a simple formula for the welfare consequences of a permanent marginal change in the payroll tax rate used to finance transfers to retirees. The formula is valid under weak assumptions about the deep structure of the economy. In particular, our approach requires neither a full specification of preferences and technology, nor knowledge of the individual savings behavior. We show that the formula can be implemented using reduced form estimates of a vector autoregression model and predictions for key quantities of the model. We apply our method to evaluate the current pay-as-you-go social security system in the United States. The results suggest that an increase in the payroll tax rate along with higher pension benefits leads to an overall welfare increase due to welfare gains of today's retirees, but it also induces a distributional conflict as today's workers and future generations are negatively affected. A decomposition reveals the predominant channels through which welfare is influenced: Besides the direct channel through different taxes and benefits, induced changes in factor prices (i.e., wage and interest rates) are important determinants of the welfare effect. In contrast, only minor welfare consequences result from adjustments in labor.

³This chapter was co-authored by Kaspar Wüthrich.

Chapter 4. The impact of microeconomic investment frictions and firm heterogeneity on macroeconomic dynamics are subject to ongoing research. Fixed capital adjustment costs incentivize firms to invest in a lumpy fashion, i.e., to reduce the frequency of capital adjustments and to increase their size. While there is extensive evidence for lumpy investment at the microeconomic level, its macroeconomic consequences are not evident: Some studies suggest that lumpy investment is basically irrelevant for macroeconomics while others find that it substantially alters the response of aggregate investment These previous studies, however, have to aggregate technology shocks. underestimated investment lumpiness. Their assumption of constant capital utilization reduces firms' incentives to undertake large investments as it prevents reserve capacity building. Chapter 4 considers an environment with variable utilization and fixed capital adjustment costs and analyzes firms' optimal decisions and the macroeconomic implications thereof. Specifically, I use a dynamic stochastic general equilibrium model with heterogeneous firms and aggregate technology shocks and I numerically compute firms' optimal decisions on investment, utilization and labor demand. Subsequently, I simulate the economy and analyze the resulting moments of macroeconomic aggregates and impulse response functions to technology shocks. The results show that if capacity utilization is allowed to vary, firms optimally undertake larger investments and leave parts of the new capital stock idle for some periods, thereby reducing the frequency of investment activities. Thus, there is reserve capacity building and additional investment lumpiness. Moreover, variability of utilization alters the cyclical properties of firms' optimal decisions. However, all these findings appear to be of minor macroeconomic relevance: Moments and impulse responses of macroeconomic quantities change similarly when variable utilization is introduced in a lumpy or in a frictionless model. Some of the theoretical findings are confirmed by new empirical evidence presented in Chapter 4. Using firm-level panel data, I estimate the impact of capacity utilization on firms' investment decisions. The findings show that higher utilization rates increase (decrease) the probability of positive (negative) capital adjustments. In addition, the results reveal significant interaction effects with GDP growth.

Selbständigkeitserklärung

Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen benutzt habe. Alle Koautorenschaften sowie alle Stellen, die wörtlich oder sinngemäss aus Quellen entnommen wurden, habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der Senat gemäss Artikel 36 Absatz 1 Buchstabe o des Gesetzes vom 5. September 1996 über die Universität zum Entzug des aufgrund dieser Arbeit verliehenen Titels berechtigt ist.

Bern, 23. September 2015

(Pachman

Andreas Bachmann