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Abstract

In this work we study the problem of estimating excursions sets of expen-
sive to evaluate functions under a limited evaluation budget. We consider
a Bayesian approach and we use Gaussian process modelling. The posterior
distribution of the process induces a distribution on the excursion set, i.e. it
defines a random closed set. By summarizing the posterior distribution of
the random closed set we can provide set estimates and quantify their un-
certainty. The first contribution of this work provides a method to generate
quasi-realizations of the posterior field from a finite dimensional multivariate
Gaussian distribution. In particular the proposed technique generates opti-
mal quasi-realizations of the posterior excursion set. The method allowed
preliminary studies on a new uncertainty measure for the set estimate and
more in general it could facilitate the computation of empirical quantities re-
lated to the set. The other two major contributions are linked to the concept
of conservative estimates. In fact, current implementations of conservative
estimates require many evaluations of a high dimensional multivariate Gaus-
sian orthant probability. We propose an estimator for this quantity which
proved to be more efficient than current state-of-the-art methods on the
analysed test cases. The last contribution extends the Stepwise Uncertainty
Reduction framework to conservative estimates. We propose different strate-
gies to sequentially select the next evaluation(s) that optimally reduces the
uncertainty on conservative estimates. The methods proposed in this work
have been tested and benchmarked against analytical test functions and re-
liability engineering test cases.
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Chapter 1

Introduction

Set estimation is a problem found in many statistical, engineering and scien-
tific disciplines. In this work, we focus on the problem of estimating excursion
sets of expensive to evaluate functions.

We consider the setup where a deterministic function can only be evalu-
ated at few points and we are interested in recovering the set of inputs that
leads to a certain range of output values. This framework can be found both
in computer (Sacks et al., |1989) and physical experiments (see, e.g. Bayarri
et al.,; 2009). One typical example is found in reliability engineering, where
the safety of a system is often modelled with a numerical simulator that
takes as input a set of physical measurements and returns the safety level of
the system. In this setting, a quantity of interest is the set of all physical
parameters that leads to a safe level. These numerical codes are often very
expensive to evaluate and the computation of this value on a grid or on a
high resolution space filling design is often impractical, if not impossible.
Such numerical simulators are used in nuclear criticality (see, e.g., |Chevalier
et al., 2014a)), earth science (see, e.g., Rohmer and Idier, 2012; Bayarri et al.|
2009), cosmology (see, e.g., |[Seikel et al., 2012)), climate science (see, e.g.,
French and Sain, 2013) and many others. In those situation practitioners
often rely on surrogate models (Santner et al. [2003) that approximate the
response surface of interest.

In this work we consider a Bayesian approach and we assume that the
function is a realization of a Gaussian process (GP). We proceed then to
construct a Gaussian process model from the available function evaluations.
The GP model provides a posterior field and, by taking the excursion set
of this posterior field, we obtain a random set. It is then possible to pro-
vide estimates for the set of interest and to quantify the uncertainties on
these estimates by summarizing the posterior distribution of the random set.
Here we consider only closed excursion sets, therefore we can exploit the the-



2 CHAPTER 1. INTRODUCTION

ory of random closed sets (RACS). The random closed set set-up provides
several definitions of expectation. In this work we review the Vorob’ev ex-
pectation (see, e.g. [Vorob’ev, [1984; Molchanov, [2005), revisited in the GP
framework in |Chevalier et al.| (2013), we revise the distance average expec-
tation (Baddeley and Molchanov, [1998)) in the GP framework and we study
conservative estimates introduced in Bolin and Lindgren (2015). The latter
two estimates present computational challenges that could restrict their use
in practice. In this work we analyse these challenges and we provide algo-
rithms to reduce the computational cost of these techniques. The algorithms
introduced here make distance average expectation and its related notion of
distance average variability feasible at least for problems where the input
domain is small. We also introduce a new algorithm that allows to compute
conservative estimates in a general GP framework.

The remainder of this work is divided in 5 chapters. There is no strict
reading order for the remaining chapters, nonetheless we suggest to start with
Chapter [2] as it provides a brief introduction to the notions used throughout
the manuscript. Chapters [3] and Chapters present relatively indepen-
dent contributions. In particular, both Chapters 4| and [5| present results on
conservative estimates and could thus be read sequentially. A brief summary
of the contribution of each chapter closes this section.

e Chapter [2| contains a brief introduction to Gaussian process models
and links these models with Bayesian set estimation. In the first part
we mainly highlight the aspects of the literature on Gaussian processes
that are useful for our work. We also briefly touch some aspects that
are not directly related to this work, but that could provide future
extensions. In the second part of this chapter we briefly review the
theory of random closed sets with a specific focus on the concept of
expectation of a random closed set. This notion is, in fact, later used to
provide set estimates. Finally, the chapter introduces the link between
Gaussian process modelling and the theory of random closed sets in the
Bayesian set estimation framework. This chapter introduces the issues
tackled in the main contributions of this work.

e Chapter [3| introduces an approach for computing quasi-realizations of
the set from approximate realizations of the underlying field. Instead
of simulating the field over high resolution grids, the field is simulated
only at few simulation points optimally selected in order to obtain
quasi-realizations of the set that are as close as possible to the true
realizations. This method allows us to compute a new type of set es-
timate along with its uncertainty quantification. The method relies



on the distance average expectation, a concept introduced in the the-
ory of random closed sets in Baddeley and Molchanov]| (1998), see also
Molchanov, (2005, Chapter 2). These types of set estimates require re-
alizations of the random closed set discretized over a high resolution
designs. Therefore they can be computationally very expensive for high
resolutions. We show numerically that the quasi-realization technique
brings significant computational savings for estimating distance average
variability.

The simulation points technique can also be generally used when many
samples of a set are required on high resolution designs. We show that
this approach can also be adopted to obtain realizations of contour lines
for a set and to estimate the distribution of an excursion set’s volume.

Chapter [4] starts by describing the computational challenges of con-
servative estimates under Gaussian random field priors. In particular
we recall how these estimates are closely related with orthant proba-
bilities of high dimensional Gaussian vectors. The main contribution
of this chapter is an algorithm (GMC/GanMC) to approximate such
probabilities. The method relies on a decomposition of the probability
in an easy to compute biased part and in a remainder estimated with
Monte Carlo methods. Two Monte Carlo methods are presented for
this task: a standard MC estimator (GMC) and an asymmetric nested
MC (GanMC) method. The latter is a newly introduced technique that
exploits the simulations’ computational costs to obtain more efficient
estimators. In this chapter we introduce the anMC algorithm in a more
generic fashion and we prove that, if the cost functions satisfy certain
hypothesis, anMC achieves lower variance than MC for a fixed compu-
tational budget. Moreover we show that GMC/GanMC provides more
efficient estimates than state-of-the-art algorithms for the estimation of
high dimensional Gaussian orthant probabilities. Finally we close this
chapter by showing how the GanMC method allows to efficiently com-
pute conservative estimates of excursion sets under Gaussian process
models.

Chapter [5| focuses on sequential uncertainty reduction strategies for
conservative estimates. In this chapter, we focus on Stepwise Uncer-
tainty Reduction (SUR) strategies (Bect et al., 2012) which select func-
tion evaluations in order to minimize an uncertainty function. In par-
ticular, we introduce new uncertainty functions related to conservative
estimates and we develop criteria to select points that minimize the fu-
ture expected uncertainties. Three numerical test cases are presented
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where the criteria are compared with state-of-the-art methods.

Chapters[3] [4 and [f| are either reproductions or extensions of the following
papers:

e Azzimonti, D., Bect, J., Chevalier, C., and Ginsbourger, D. (2016).
Quantifying uncertainties on excursion sets under a Gaussian random
field prior. SIAM/ASA Journal on Uncertainty Quantification, 4(1):
850-874. DOI:10.1137/141000749.

e Azzimonti, D. and Ginsbourger, D. (2016). Estimating orthant proba-
bilities of high dimensional Gaussian vectors with an application to set
estimation. Under revision. Preprint available at hal-01289126.

e Azzimonti, D., Ginsbourger, D., Chevalier, C., Bect, J. and Richet, Y.
(2016). Adaptive design of experiments for conservative estimation of
excursion sets. Preprint available at hal-01379642.

In particular, the work on adaptive design of experiments for conservative
estimates follows the work presented at conferences |Azzimonti et al. (2015)
and |Azzimonti et al. (2016b).

The algorithms presented in Chapter |4 are implemented in the R package
ConservativeEstimates/ available on GitHub.


http://epubs.siam.org/doi/abs/10.1137/141000749
https://hal.archives-ouvertes.fr/hal-01289126
https://hal.archives-ouvertes.fr/hal-01379642
http://www.github.com/dazzimonti/ConservativeEstimates

Notation

In this work we use the following notation

(Q,5, P) is a complete probability space with o-algebra § and probability
measure P.

R denotes the real line and Bg denotes the Borel o-algebra on R.

E denotes the expectation with respect to the underlying probability mea-
sure.

Random variables are denoted with non bold capital letters, e.g. X ~
N(0,1).

R? is the d-dimensional Euclidean space and Bga denotes the Borel o-algebra
on R%.

N denotes the set of natural numbers not including zero.
Random vectors are denoted with bold capital letters, e.g. Z ~ Ny(m, X).
|M| denotes the determinant of a square matrix M.

Stochastic processes are denoted with non bold capital letter and an index
set, e.g. (Z)icr.

R* denotes the set of non-negative real values.

m is the mean function of a stochastic process, when it exists.

K denotes a covariance kernel.

X is often a locally compact Hausdorff second countable topological space.
F is the family of closed sets in X.

IC is the family of compact sets in X.

A% is the complement of the set A.

F is a Banach space with norm ||-||g.

i denotes a (usually o-finite) measure on X.

0 is a (pseudo-)distance between elements in F.
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14(+) is the indicator function of the set A.

X,, usually denotes a design of experiments containing n points from the
input space.

I' denotes a random closed set. In most of this work I' = {z € X : Z, € T'},
where Z is a real valued stochastic process defined on X and T' C R.

CE4(I") denotes the conservative estimate at level « of T

[ denotes the set of values in X for which a deterministic function f takes
values in 7" € R, where T and f are specified in each case.

A, is the o-algebra generated by the couples (X1, Zx,), ..., (X,, Zx, ), where
Xq,...,X, are random elements in X, the index space of the stochastic
process Z.

A, (X,,) is the o-algebra generated by the couples (1, Z;,),. .., (Tn, Zz,),
where X,, = {z1,...,2,} € X" is a fixed, deterministic design of ex-
periments.

E,, denotes a set of m points in the input space used as simulation points.

7(t) denotes the orthant probability P(X < (¢,...,t)), where X ~ Ny(m, X)
and (,...,t) € R



Chapter 2

Gaussian processes and the
theory of random closed sets

2.1 Context

The problem of estimating a set from a sample of points can be found in
many parts of the statistical literature. Non parametric set estimation tech-
niques, see, e.g., [Devroye and Wise (1980)); Baillo et al.| (2000) and references
therein, exploit assumptions on the set to provide consistent estimates. If
the set is a level set of a probability density function, a wealth of techniques
has been developed in the literature for its inference relying on realizations
sampled from this density, see, e.g., Hartigan| (1987)); Polonik| (1995); Cuevas
et al. (2006); |Gayraud and Rousseau (2007) and references therein. If the
probability density is replaced by a generic function and what is known are
the values of this function at the given points, a direct technique involves
the use of plug-in estimators (Molchanov, |1998; Cuevas et al., 2006). In this
work we focus on sets of excursion for deterministic, expensive to evaluate
functions. In this setup the points are locations in the input space where
the deterministic function is evaluated. The set of interest is a subset of
the input space that contains all locations that produce a particular range
of response values. In this framework a plug-in approach approximates the
function with an appropriate estimator and returns as set estimate the ex-
cursion set of the estimator (Ranjan et al., [2008). While this setup could be
effective for predictions in some situations, it does not provide a quantifica-
tion of the uncertainties introduced by the approximation. In this work we
take a Bayesian approach and we use Gaussian process techniques to approx-
imate the response function. From the posterior Gaussian process we derive
the posterior distribution of the excursion set. We then exploit random set
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techniques to summarize this distribution and quantify its variability.

In this chapter we review relationships between the theory of random
closed sets and the problem of excursion set estimation under Gaussian pro-
cesses priors. In Section we introduce the basic definitions in Gaussian
process modelling and we summarize how this technique provides efficient
tools to approximate deterministic functions from few evaluations. We con-
clude this section by recalling the links between Gaussian process modelling
and kriging and we briefly survey some useful extensions of the standard tech-
niques. In Section we present basic concepts from the theory of random
closed sets (RACS) with a specific focus on the different definitions of expec-
tation available for such objects. In this section we also review the concept of
conservative estimates from the RACS point of view. Finally in Section
we provide a short introduction to how these two concepts are linked in the
setup underlying the present work and we briefly recall some state-of-the-
art methods in sequential uncertainty reduction for Gaussian process based
excursion set estimation.

2.2 Gaussian processes: preliminaries

In this section we review the basic definitions and properties of Gaussian
processes and their use for Bayesian set estimation.

2.2.1 Basic definitions

In this work, for simplicity, we always consider a complete probability space
(2,5, P). Moreover we denote with Bg the Borel o-algebra on R.

A real-valued random variable is a measurable function Z : (Q,§) —
(R, Br) such that Z7'(B) € §, for each B € Bg. Most of the following
results still hold if we consider the field of complex numbers C with its Borel
o-algebra in place of the couple (R, Bg), however in what follows we mostly
consider real valued variables, vectors and processes.

Let us start by recalling the definition of Gaussian random variable.

Definition 1 (Gaussian random variable). A random variable Z : (Q,§) —
(R, Br) has a Gaussian distribution if and only if it has a characteristic
function of the form

2t2

o7(t) = E[e"?] = =27t € R (2.1)

for some m € R and o > 0.
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If Z is a Gaussian random variable then its moments E[|Z|"] exist and
are finite for all p € N. We denote the mean and variance with m = E[Z]
and 02 = Var(Z) and we say that Z ~ N(m, c?).

The cumulative distribution function (c.d.f.) of a Gaussian random vari-
able Z is denoted with ®(-;m, 0?). If 02 > 0, then Z has a probability density
function (p.d.f.) defined as

1 _(z=m)?

vV 2mo?

A Gaussian random variable has many important properties and numer-
ous characterizations, we refer here to the book [Patel and Read| (1996, Chap-
ter 4) for an extensive list. Here we only recall that a Gaussian distribution
is uniquely determined by its first two moments and thus also by its mean
m and variance o2. This is a direct consequence of Equation (2.1]).

The notion of random variables can be naturally generalized to vectors.
A random vector is a map Z : (€, F) — (R? Bga), where Bga is the Borel
o-algebra on R¢, d € N. We denote the vector as Z = (Zy,...,Z), where
Ziy 1 = 1,...,n are random variables. The moments of Z are defined by
extending the univariate definitions. In particular, if vector Z has finite first
and second moments, its expectation is defined as E[Z] := (E[Z1],...,E[Z4])
and its covariance matrix as X := [0y ;]; j=1,..a € R¥¢, where

o(z;m, 02) =

0,;=Cov(Z;, Z;) forall i,j =1,...,d.

A covariance matrix ¥ € R%9 is a positive semi-definite matrix, that is, it
satisfies the following

2"z > 0 for all z € R%.

Definition 2 (Gaussian vector). We say that a random vectorZ = (Zy, ..., Zq)
1s Gaussian if the linear combinations

a1 2y + -+ agZy,

have univariate Gaussian distributions for any choice of coefficients a; € R.

All moments of a Gaussian vector Z are finite, in particular we denote
with m € RY its expectation and with ¥ € R%? its covariance matrix.
We denote with ®4(-;m, ) the c.d.f. of a d-dimensional Gaussian vector
with mean m and covariance matrix ¥ and we say that Z ~ Ny(m,X).
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If the covariance matrix ¥ is positive definite, i.e. it is non-singular, then
Z ~ Ny(m,Y) possesses a p.d.f. with respect to the Lebesgue measure on
R? defined as

1

e—%(z—m)TE_l(z—m)7 = ]Rd7
(2m)4/2 |2

wa(z;m, ) =

where |X| denotes the determinant of the matrix ¥. We refer to the book
Tong (2012)) for a systematic exposition of Gaussian random vectors’ prop-
erties. Here we only recall that Z is characterized by its first two moments:
the mean m € R? and the covariance matrix ¥ € R%*?, see, e.g., Tong (2012,
Chapter 3).

Random vectors can be further generalized by taking infinite dimensional
sequences of random variables, denoted as stochastic processes.

A real valued stochastic process is a collection of random variables Z; :
(Q,8) — (R, Bg) with ¢ € I. Note that no assumptions are needed on I, the
index space. In most of the present work, however, we restrict ourselves to
I = D C RY, with D a compact subset. We say that a process is first order
marginally integrable if E[|Z;|] < oo for all 7 € I. In this case the process
defines a mean function

m: [ — R,

where for each i € I, m(i) := E[Z;]. If the process is also marginally square
integrable, i.e. E[Z?] < oo, for all ¢ € I, then it is possible to define the
covariance kernel of Z as the function

R:IxI—R,

such that, for each =,y € I, R(x,y) = E[(Z, — m(2))(Z, — m(y))].

No particular assumptions are required on the mean function, however
a function K is a covariance kernel of a stochastic process if and only if it
is a symmetric positive definite function, i.e. if for any n € N, for each

(ay,...,a,) € R™ and for each choice of points xy,...x, € I the following
inequality holds

Z Z aiajﬁ(xi, fﬂj) 2 0.

i=1 j=1

This is equivalent to the condition that all matrices ¥ = [R(z;, z;)]ij=1,.n
are positive semi-definite for any choice of points {z1,...,z,} C I.

First and second order properties are of key importance in the study of
stochastic processes and are fundamental for Gaussian processes.
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Definition 3 (Gaussian process). Consider a collection of real valued random
variables Z; : (2, F) — (R, Br) with i € I. We say that (Z;)icr is a Gaussian
process if any finite collection of those variables has a multivariate Gaussian
distribution, 1.e.

(Zi Zik) ~ Nk(mu E);

wherem = (]E[Z“], .. ,E[sz]) and > = [O-j,j’]j,j’:l,...,k; with 0j.4 = COV(ZZ'J., Zij/>;
for any k > 1 and for any finite subset (iy,...,ix) C I.

172

Gaussian processes (GPs) defined on subsets of R? with d > 2 are also
called Gaussian random fields (GRFs), a notation mainly used in spatial
statistics, see e.g. (Chiles and Delfiner (2012). In this work those terms will
be used interchangeably, with a preference for process when talking about
the object defined on a generic space and for random field when the object
is specifically defined on R%, d > 2.

From Definition [3] a Gaussian process is a stochastic process with all
finite moments. We denote a Gaussian process (Z;),e; with Z ~ GP(m, &)
as it is uniquely determined in distribution[] by its mean function m and
covariance kernel K. This can be shown by noticing that all finite dimensional
distributions of a Gaussian process are Gaussian and for every choice of
(41,...,1;) C I the mean and covariance kernel define a mean vector and a
covariance matrix, see, e.g., [Rasmussen and Williams| (2006, Chapter 2) and
Adler and Taylor| (2007, Chapter 1).

The covariance kernel K plays a crucial role in the definition of a Gaussian
process as it is closely linked with many of its properties. For example, in
the centred case, the regularity of the kernel defines both the mean square
regularity of the process and its path regularity, see e.g. /Adler and Taylor
(2007, Chapter 1) and |Scheuerer, (2009, Chapter 5) for more details. It
is also possible to link invariances of the covariance kernel with path-wise
invariances, see e.g. (Ginsbourger et al.| (2012, 2016 and references therein. In
Chapter 3| this aspect is briefly commented on when discussing the regularity
of Gaussian process quasi-realizations.

We close this section by reviewing the important notion of stationary
process.

Definition 4 (Stationarity). Consider a real valued random field (Z,),cra,
defined on R?. We say that the field Z is (strictly) stationary if

P(Z:cl S tla---aan S tn) = P(Zz1+h S t17~--aZJ:n+h S tn)

for any choice of {x1,...,2,} CR? {t1,...,t,} CR and h € RY,

lwith respect to the cylindrical o-algebra, see, e.g., Dudley (2002, Chapter 12) for a
proof in the general setup.
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Moreover consider a random field (Z,) cra such that E[Z?*] < +o0, for all
r € R?, and denote with R its covariance kernel. We say that Z is second
order stationary if

E[Z,] =m € R, for all v € R
Rz + h,x) = ¢(h),
for some function ¢ : R% — RT.

Remark 1. The definitions of strict stationarity and second order station-
arity are equivalent for a Gaussian process, see, e.q., |(Chiles and Delfiner

(2012, Chapter 1).

A first example of stationary process defined on R can be built with a
trigonometric polynomial with random amplitudes.

Example 1 (Trigonometric processes). Let us fix a frequency w € [0,7]
and consider two random variables A, B uncorrelated, with zero mean and
variance equal to X < +o0o. The process (Z;)ier defined as

Z; = Acos(wt) + Bsin(wt), t € R, (2.2)

is a trigonometric process. This process has covariance kernel K(t,t') =
Acos(w(t—1t")) and it is a second order stationary process. If A, B are Gaus-
sian then Z is a Gaussian process and it is also strictly stationary.

Consider now n frequencies wy € [0, 7] and n random variables Ay, By, un-
correlated, with zero mean with variances \g, for k =1,...,n. The straight-
forward extension of Equation is

n

Zy =Y (Aycos(wyt) + By, cos(wyt)) . (2.3)
k=1
This process has covariance kernel R(t,t") =", _ Ay cos(wy(t —t')) and it is
also stationary.

The covariance kernel of the trigonometric process in Equation ([2.3)) is a
function of h =t — t’ and can be represented as

A(t, ) Z A cos(wih) = <Z Ak €Xp w;Jz))

k=1

where J& denotes the real part of an complex number.

The representation above can be seen as a Fourier transform of a discrete
measure. This is actually a generic property of stationary fields. Bochner’s
theorem, stated below in the multivariate setting, makes this relationship ex-
plicit. See, e.g., Stein (1999, Chapter 2), Adler and Taylor| (2007, Chapter 5)
for a more detailed exposition.
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Theorem 1 (Bochner’s theorem). A continuous function k : R — R is
positive definite, i.e. it is a covariance kernel, if and only if there exists a
finite Borel measure \ such that

k(h) = / 2@\ (w),
R4
for all h € R,

The measure A is called spectral measure for k and we denote with
F(w) := X <Hf:1(—oo,wi]> for w = (wi,...,wq) € R? the spectral distri-
bution function. If F' is absolutely continuous with respect to the Lebesgue
measure then A has spectral density.

The following is an example of stationary covariance kernel that has a
spectral density.

Example 2 (Matérn family). The covariance kernels with spectral density

22F(V + 1/2)(2y)y 2_y 47T2w2 —(v+1/2)
T1/262T (1) 02 ’

with v,0,0 > 0 are the Matérn family of covariance kernels. This family

was introduced in|Matérn| (1960) (see also|Matérn|, |1986)), here we follow the

parametrization in | Rasmussen and Williams (20006). The covariance kernels
defined by this family can be written as

R(1,y) = &(r) = 0? ?(:) <\/297) K, (@) (2.4)

p(w) =

where r = |x — y| denotes the Fuclidean distance, v,0,0 € R*, T'(:) denotes
the Gamma function and K,(-) is the modified Bessel function of the second
kind of order v. The parameter v controls the field’s mean square reqularity
and its sample path reqularity. In fact, Z is k times mean square differentiable
if and only if v > k (Rasmussen and Williams, 2006). Moreover the sample
paths of a Gaussian process Z with Matérn covariance kernel have continuous
v — 17 order derivatives almost surely if v > "v — 1/27, where "7 is the
integer ceiling function (Handcock and Stein, (1995 |Stein, |1999; |Scheuerer,
2009). The parameter o € RT is the standard deviation of the process and 0
15 called range or scale parameter.

The choice v = p + %, where p 1S a non-negative integer, makes the
representation of the covariance kernel simpler. For v = % we recover the
exponential kernel,

ﬁ,,:%(x, y) = R(r) = o exp (—g) .
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This covariance kernel defines the Ornstein-Uhlenbeck process. A Gaussian
process Z with this covariance kernel is m.s. continuous but not differentiable;
moreover its sample paths are a.s. continuous, see, e.q., \Scheueren (2009,
Chapter 5).

For v — oo we recover the Gaussian (or squared exponential) kernel

80, P)os 10 = () = 0% exp (— (g)Q) ,

wherer = |z — y|. It is a stationary and isotropic kernel. A Gaussian process
Z with this covariance kernel is infinitely differentiable in a m.s. sense and
has a.s. infinitely differentiable paths, see, e.g., Scheuerer| (2009, Chapter 5).
In the following chapters we will often use Matérn covariance kernels with

5

v = % and v = 5. These covariance kernels have the following representation

R,_s(r) =o? (1 + g) exp (—@)

2

Vor B2 Vo5
5 — 2 — — — —
R,—3 (r)y=o0 (1 + 7 + g2 | &P 7

where r = |x —y| denotes the Euclidean distance and 0,0 € Rt. These
covariance structures are mostly used in machine learning and in the com-
puter experiments literature as they introduce smoothness assumptions met
i many practical examples.

In practice stationary processes are important for Gaussian process mod-
elling as we will see in Section however there exists also non-stationary
processes, below we report one notable example.

Example 3 (Wiener process). A Wiener process (W) >0 is a non-stationary
Gaussian process with mean m(zx) = E[W,] = 0, for each x € [0,+00), and
covariance kernel R(x,y) = Cov(W,, W) = min(x,y), z,y € [0, +00).

The previous examples of covariance kernels, introduced in R, can be
generalized to R?. The Matérn family, for example, can be defined on R?
by considering the multivariate Fuclidean distance r» and by replacing the
scalar products with vector products. This leads to an isotropic multivariate
covariance kernel. It is also possible to extend these definitions to fields
defined on R¢ with other techniques, see Rasmussen and Williams| (2006,
Chapter 4.1.2) and [Durrande| (2011, Chapter 2). The applications presented
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in following chapters make use of tensor product covariance kernels, where a
kernel in d dimensions is obtained from the univariate kernel f as

d

R (x,y) = [ [ Bi v0),

=1

where z,y € R? and x; is the i-th coordinate of z. In the following chapters
the superscript d is often removed when the dimension is obvious from the
context. Note that the results presented in the following chapters are not
restricted to this type of covariance kernels. In the applications we choose
tensor product covariance kernels as they are readily implemented in the
R package DiceKriging (Roustant et al., 2012). On the other hand, the
developed approaches would be applicable to all kind of stationary and non-
stationary covariance kernels.

2.2.2 Conditional expectations and distributions

The conditional expectation is a fundamental notion in probability and it
is at the basis of Gaussian process modelling. In fact, conditional expec-
tations provide a way of approximating the field knowing its value only at
few observations. In this section we review the notions of conditional ex-
pectation and conditional distribution for Gaussian vectors and we show the
straightforward extension to the case of Gaussian processes.

Proposition 1. Consider the random vector Z = (Z', Z?), where Z, Z*, Z*
are vectors of dimension d,dy,ds respectively, with di + do = d. Assume

m; i1 Y12
Z ~ N, 2t ’
() (5 52)

and that the matriz o o is invertible. For each zo € R the conditional dis-
tribution of Z' | Z* = 2y is a Gaussian vector with mean m;p and covariance
matriz Y2, where

-1

m;p = m; + 21,22272(22 —my)
1

Yopp =211 — 21220552001

Proof. Consider the following decomposition
Zy = Projgpan(z)(Z1) + R, (2.7)

where R 1= Z; — Projg,an(z,)(Z1) and Projy,.nz,)(Z1) is the projection of
Z; onto the linear subspace generated by Z, in the L*(Q,§, P) sense. The



16 CHAPTER 2. GPS AND THE THEORY OF RACS

projection can be developed as Proj,un(z,)(Z1) = my + S12555(Z; — my).
Moreover the projection theorem guarantees that Projy,.nz,)(Z1) and R are
orthogonal in L*(, §, P), i.e. uncorrelated. Observe that R is Gaussian, as
it is a linear combination of Gaussian vectors. We also have E[R] = 0 and

Var(R) = ¥y — E1,222_,522,1-

The projection has a Gaussian distribution and (Projg,anz,)(Z1), R) are also
jointly Gaussian, therefore we have that Projg,.,(z,)(Z1) and R are indepen-
dent. This also implies that R is independent from Z,. By fixing Zs = 25 in
Equation ([2.7) we obtain

Zl | ZQ = Zog ~ I + 217222_7%(22 — m2) + R,

which shows that Z; | Zs = z is Gaussian and its mean and covariance

matrix are described in Equation (2.5 and ([2.6)).
O

Consider now a Gaussian process (Z;).c; with mean m and covariance
kernel & and denote with X,, = {z1,...,2,} C I a set of n points in I and
with z, = (z1,...,2,) € R" a vector of real values. The conditional process
Z | Zx, = Zn, where Zx, = (Zy,, ..., Zs,)T, is a Gaussian process because
all finite dimensional distributions are Gaussian. Moreover, by exploiting
Equations and we can write the conditional mean at x € [ and

covariance kernel at x,2’ € I as

m,(z) = m(z) + Rz, X,)R(X,, X,) (2, — m(X,)) (2.8)
Rz, 2) = Rz, 2) — Rz, X)) R(X,, X,) TRX,, ), (2.9)

where R(z,X,) = (R(z,71),..., 8, 2,)), KX, z) = K(z,X,)T and
R(Xn, Xn) = [R(xi, ))]ij=1,..n-

Denote with A, (z) the vector of weights A, (z) = &(X,,,X,,)'R(X,, z).
The vector A,(z) is a function of x € I and depends on X,,. If we fix the
values of the field Zx, = z,, then Z,, | Zx,, the conditional field at a
point xg € I, is distributed as m(zg) + A, (2)(Zx, — m(X,,)). This notation
allows us to see that Z,, | Zx, is an unbiased estimator for Z,, and an affine
function of the field values at X,,. Finally the projection theorem tells us
that it is the linear unbiased predictor that minimizes the mean square error
E[(Z., — h(Zx,))?] among all affine functions of Zx,,.

The conditional field can be employed to approximate a response surface
from few values. Consider the case where the response is known at points
X,, C I with values z,, € R". If we assume that the response is a realization
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of a Gaussian process then we can predict the response at a new value xg €
I with the conditional expectation. In the next section we briefly review
the relationships between kriging and Gaussian processes models. This is
further discussed in Section [2.4] where the process is used as a tool to estimate
excursion sets of deterministic expensive to evaluate functions.

2.2.3 Kriging and Gaussian process modelling

In many scientific fields, such as geophysics, hydrology, climatology among
many others, some deterministic phenomena can be modelled as deterministic
functions

f:DcR!—=R

where f(x) is the response of a system given a set of inputs x € D. Here
we are interested in the setting where this function is known, or can be
evaluated, only at a finite number of points X,, = {x1,...,2,} C D and
we are interested in giving an approximation of the function f at any point
xeD.

Many methods have been proposed to approximate a function f starting
from the vector of evaluations f, = (f(z1),..., f(x,)) € R", see, e.g. [Simp-
son et al.| (2001); Wang and Shan| (2007) for extensive reviews. Here we re-
strict ourselves to Bayesian models with a Gaussian process prior (O’Hagan,
1978; |Sacks et al., [1989).

The methods used here were first explored in the geostatistics literature
(Krige, [1951; Matheron, [1963) with the technique currently known as kriging.
In this framework the unknown function f is usually a spatial field in low
dimensions observed only at few points. In second order geostatistics, the
function is assumed to be a realization of a square-integrable random field
(Z:)zep, not necessarily Gaussian, with mean m and covariance kernel R.
We denote with Zx, € R" the vector of field values at X,, and we predict
the field Z at a point z € R? with

Zy = Xa)" Zx,,

where A(z) is a vector of weights that depend on the point z € D. Since the
function f is assumed to be a realization of the field Z, the predictor ZEO is
a random variable as the values Zx, are random. For a point zp € D we
choose the weights A(zg) such that Z,, is an unbiased estimator of Z,, and

¢ = Var[(Zs, — Za, )] (2.10)

is minimized. The quantity € is called variance of the residual or kriging error
variance.
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We first assume that the mean of the field Z is a known function m
and we denote with K the covariance kernel of the field. In this setting the
minimization procedure leads to the Simple Kriging (SK) weights Agx(x) =
R(X,,X,)TR(X,, ) for each x € D, where we follow the notation intro-
duced in Equation for R(z,X,) and 8((X,,X,,)). If we fix the evalua-
tions of the function, i.e. Zx, = f,,, then the field 7 has mean and covariance
kernels given by the following kriging equations

my () = m(z) + Ngxe (@) (F, — m(X,))
Ro(z,2") = Rz, 7)) — N (2)R(X,, 7).

The kriging equations have many useful properties such as interpolation of
the observations and lead to an unbiased estimator, see |Chiles and Delfiner
(2012, Chapter 3) for more details. If the field Z is Gaussian then the simple
kriging equations are the conditional mean and covariance of 7 | Zx, = f,.

In many practical cases, however the mean of the field is not known and
needs to be estimated from the observations. A common assumption is that
the mean can be modelled as

m(z) = > Bg,().

where f1,..., 8, € R are unknown coefficients and gy, ..., g, are known ba-
sis functions. In this setting the minimization of € as introduced in Equa-
tion leads to the Universal Kriging (UK) equations, see |Chiles and
Delfiner| (2012, Chapter 3) for a detailed exposition on the subject.

In practice here we will often use universal kriging equations where an
unknown constant mean function is assumed. This setting is also called
Ordinary Kriging (OK), see, e.g. |Chiles and Delfiner| (2012, Chapter 3).

Recently, in the context of computer experiments, further forms of krig-
ing, such as blind kriging (see, e.g. Joseph et al., [2008)) or models including
qualitative factors (see, e.g. |Qian et al., 2008) were introduced.

The classic kriging procedures can be seen in a Bayesian way, see, e.g.
Handcock and Stein (1993); [Neal (1998)); |(Gramacy and Polson (2011) and
references therein. In a Bayesian framework we define an appropriate prior
distribution over the space of possible functions and we study the posterior
distribution given the function evaluations. The prior distribution encodes
the information on f known before any evaluation takes place, as for example
its regularity, symmetries or invariances. By selecting a Gaussian process as
prior distribution on functions it is possible to easily encode this information.

As it was briefly sketched in the previous sections, Gaussian processes
are particularly convenient because by choosing an appropriate covariance
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kernel K we obtain a prior that puts mass only on specific types of functions.
For example it is possible to select a prior that puts mass only on functions
with a certain regularity by appropriately choosing the kernel K. Often the
covariance kernel is chosen from a parametric family, such as the Matérn
family for example. A parametric family of kernels allows much flexibility on
the regularity of the prior function space, however it needs some procedure
to select the hyper-parameters. In a fully Bayesian framework (see, e.g.
Kennedy and O’Hagan| 2001; |Qian and Wul 2008, and references therein)
the hyper-parameters are not fixed but hyperprior distributions are fixed.
This often leads to full posterior distribution that do not have Gaussian
distribution and require Monte Carlo methods to be approximated. Good
treatments of this subject can be found in (Gibbs (1998); Neal (1998)) and
references therein.

In this work we mostly follow an “empirical Bayes” approach where an im-
proper uniform prior is selected for each trend coefficient and the covariance
parameters are estimated from the data with maximum likelihood estima-
tors. Given the evaluations f,, the conditional field represents a distribution
over the space of functions. Since, under these assumptions, the conditional
process is still Gaussian, it is possible to compute analytically its mean and
covariance kernel, see Equations and (2.9). We could summarize the
full posterior distribution with the posterior mean which gives an estimate
for f. In this work we focus on estimating excursion sets of f and on quanti-
fying the uncertainty on those estimates, thus the main object of interest is
the posterior distribution itself. In fact the posterior distribution naturally
defines a distribution on random closed sets. In Section [2.4] we explain this
concept in more details and we show how random closed set expectations can
be used to obtain estimates for the actual set of interest. First however let
us review the notion of random closed set and some of its properties in the
next section.

2.3 Random closed sets (RACS) and their
expectations

In probability and statistics the main theoretical framework where the prob-
lem of estimating sets is studied is the theory of random closed sets. In this
section we give a brief review of the concepts from this theory that are needed
in this work.

Let us start by introducing a formal definition for a random set. Consider
a space X which for our purposes will be a locally compact Hausdorff second
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countable topological spacdﬂ The definitions introduced in this section hold
in this general setting, however in the rest of this work we mostly choose
X = D C R?, where D is a compact subset. We denote with F the family of
closed sets in X and with (€2, §, P) a complete probability space.

Definition 5. We say that a map I' : Q2 — F is a random closed set if, for
any compact set K € K C F

{w:T(w)NK #0} €3, (2.11)
where IC is the family of compact sets in X.

The condition in Equation (2.11)) implies that I" is a measurable map
between the measurable space (€2, §) and the space of closed sets F endowed
with the o-algebra Br generated by sets of the form {I' N K # 0}, with
Kelk.

Example 4. Consider a random element Z defined on X, measurable with
respect to the Borel o-algebra on X, then the set I' = {Z} C X is a random
closed set. This set is called a singleton.

Example 5. Consider the random set I' C R defined as

o [O, 1] w €
L) = {{0,1} we,’

where P(2;) = P(Qy) = 1/2. T is a random closed set, in fact for each
compact set K C R we have the following: {T N K # 0} = Qy if K C (0,1),
{TNK # 0} = QUQ, if K contains a neighbourhood of 0 or 1, {TNK # (0} =
D if K={0} or K={1} and {TNK #£0} =0 if K C [0,1]° =R\ [0,1].

Example 6. Consider a real valued random process (Z,)zex with continuous
sample paths almost surely and the set

I'={zeX:Z, €T}, (2.12)

where T' C R is a closed set. Since the field Z is almost surely continuous, I’
15 almost surely closed as it is the preimage of a closed set under a continuous
function. Moreover, let us denote with ' = Q\Qq the set of events where the
paths of Z are continuous in D, then the set I : Q' — F is a properly defined
random closed set. In fact, {TNK # (0} = {3z € K : Z, € T} is measurable

2See Singer and Thorpe, (2015) for a good introduction to these concepts, in particular
Chapter 2 for the definition of this notion.
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as Z is a measurable stochastic process. In the following chapters the sets as
in Equation will implicitly be defined on ', unless otherwise noted.
Furthermore, we will focus mainly on the particular cases obtained for T =
Ty = (—oo,t] or T =T, = [t,+00), with t € R a fized threshold. In the first
case we have the set of excursion below or sojourn set I'y = {x € X: Z, < t}

while in the second case we have the excursion above or simply excursion set
,={reX:Z, >t}

2.3.1 Choquet theorem and distribution of a random
closed set

The probability distribution of a random closed set I' is determined by the
probabilities of the form P(I" € A), for all A € Bx. In general the o-algebra
Bx is too large to obtain a meaningful representation. However, as for ran-
dom variables, we can restrict to a particular family of generators. The
o-algebra Bz is generated by sets of the form {F N K # 0}, for K € K and
F € F, thus we can consider the probabilities P({I' N K # 0}).

Definition 6 (Capacity functional for RACS). The functional Ty : K — [0, 1]
defined as

Tp(K) = P(T N K # 0})

15 called capacity functional of the random closed set T'.

For a general random closed set I', the capacity functional Tt is not a
probability measure as it is subadditive and not additive, i.e.

TF(K1UK2) STF(K1)+TF(K2), Kl,KQ GIC.

If T is a singleton I' = {Z}, where Z is a random variable defined on X, then
Tr(K) = P(Z € K) is a probability measure. In fact this is a necessary and
sufficient condition, see Molchanov]| (2005, Chapter 1.1), for a proof of this
statement and more examples.

The concept of capacity functional is more general than Definition [0} In
fact, consider a real-valued functional 1" defined on IC, we say that T is a
capacity functional if

1. T(0) =0;
2. 0<T(K)<1,forall K € K;

3. T(K,) | T(K) if K, | K in K;
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4. Ag, ... A, T(K) <0, withn >1, Ky,..., K, € K, where

A, T(K)=T(K)-T(KUK;)  and

Ak, .. A, T(K)= Ak, ... A, T(K) — Ak, ... A, T(K UK,).

n 1

If a functional satisfies property 3 it is upper semi-continuous and if it satisfies
property 4 it is completely alternating.

A capacity functional defined on K satisfying the properties above uniquely
determines the distribution of a random closed set. This result is the Cho-
quet theorem, reported but not proven here. For more details and proofs
see Molchanov| (2005, Chapter 1.3).

Theorem 2 (Choquet). A capacity functional T : K — [0,1] such that
T(0) = 0 is the capacity functional of a unique random closed set on X if
and only if it s completely alternating and upper semi-continuous.

In the following chapters we will focus on random sets generated as excur-
sion sets of almost surely continuous stochastic processes or random fields.
In particular we will be interested in the sets introduced in Example [0}, i.e.
I'={x € X: Z, € T}, where (Z;)zex ~ GP(m,R) with a.s. contin-
uous paths and T C R is a closed set. This set has capacity functional
Tr(K)=PH{TNK#0})=PBxeK:Z,€T).

Particular cases of the set I' in Equation are obtained for T, =
(—oo,t] or T,, = [t,+00) with ¢ € R a fixed threshold. In the first case
the excursion below ¢, or “sojourn set”, has Choquet capacity Tr,(K) =
PHT, N K # 0}) = P(infyex Z, < t). In the second case we have the
excursion above t, or simply “excursion set”, which has Choquet capacity
T, (K) = PUT, N K # 0}) = Plsup,ey Zo > ¢).

2.3.2 Expectations of random closed sets

A random closed set I' defines a distribution over the space of closed sets,
which is uniquely described by its capacity functional. In this work we are
interested in estimating I' and quantifying uncertainties on this estimate,
thus we focus on ways to summarize this distribution. As for the case of
real-valued or vector-valued random elements we would like to make use of
the moments of the distribution. In particular here we focus on the expected
value, a rough but practical summary for a distribution. The definition of
this object however poses several problems. First of all we are interested
in averaging a random object which takes values in the space of closed sets
F. Since this space is not a vector space, the definition of an integral over
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F is not straightforward. Moreover, as recalled above, the capacity of a
random closed set is a probability measure if and only if the set is a singleton
(Molchanov,, [2005)). These properties make it hard to define an expectation in
the usual sense, however it is still possible to define expectations by resorting
to other properties of random sets.

The most commonly used set expectation in probability is the Aumann
expectation (Kudo| (1954; |Aumann, 1965; |Artstein and Vitale, [1975) which
is based on the concept of selections. We refer to Molchanov| (2005, Chap-
ter 2.1) for an extensive treatment of the subject. Here instead we focus on
different definitions of expectation coming from the linearisation approach
(Molchanov,, 2005, Chapter 2.2).

The idea behind linearisation is to transform the problem of expectation
in the space of closed sets F into a problem in a Banach space, where the
definition of expectation is more straightforward. Let us consider a Banach
space [P with a norm ||-||z and denote with

¢ F T

a functional that associates each closed set ' € F with a measurable element
¢r € F with respect to the Borel o-algebra generated by the topology of the
norm in F. In particular given a random closed set I" we associate &p which is a
measurable random element in [F. If the expectation of {1 is properly defined,
then E[¢r] = ¢ for some ¢ € F. This element, however does not necessarily
correspond to &p for some F' € F. We can nonetheless approximate the
expectation of I' with the set F' that has the “closest” functional {7 to (.
The notion of “closeness” is fixed by defining a distance 0 : F x F — R*,
that associates to each couple (£,() € F x F a non-negative value. Often 0
is only a pseudo-distance as 9(&, () = 0 also for some £ # (. In what follows
we refer to 0 as a distance and we specify when it is only a pseudo-distance.

The notion of “closeness” introduced by 0 is used to find an element
in {p, with F' € F, that achieves the minimum distance 3({r, E[¢r]). This
optimization problem is usually not easy as the search space F does not enjoy
convexity properties, therefore we need to restrict the search to a parametric
family of sets F, C F, for some p in a parameter space.

A linearisation approach is thus defined by the following elements

e a Banach space F with norm ||||;

a functional £ : F — F;

a pseudo-distance 0(&, () between elements in F;

a parametric family of sets F,.
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Given a random closed set I', then we define a candidate expectation for I'
as

E¢ro[l] € arg Fﬂél% A(E&r], ér),

where the minimizer E¢ g, ('] is either unique or chosen according to an ad
hoc criterion.

By properly selecting these four elements we obtain different definitions
of expectation for a random closed set.

The Vorob’ev expectation

A first application of the linearisation approach is the Vorob’ev expectation
(Vorob’ev,, 1984; [Stoyan and Stoyan, [1994; [Molchanov,, 2005). Throughout
this section we denote with p a o—finite measure defined on X; let us define
the functional £ that associates to each set its indicator function.

§rpi=1p.

In particular consider the random closed set I" and assume that E[u(I")] < occ.
Examples where this assumption is verified are when X = D is a compact
subset of R? with p the usual Lebesgue measure, or when X is a measurable
space with p a probability measure on X. The expectation of the indicator
function 1t defines

pr: X —[0,1],

where pr(z) := E[1p(z)] = P(x € T'). This function is called the coverage
function of I'. A random closed set I' is almost surely equal to a deterministic
closed set F' € F, if and only if the coverage function of I' is an indicator
function. This property shows that it is typically not possible to find F' € F
such that E[{r] = p. In order to find the “closest” indicator function to pr
we need to define a pseudo-distance. Consider the space L'(u) and &p, &g €
LY (), let us define the pseudo-distance

0(ér, &) = (2.13)

/X (e (2) — Eo(@))dulx)

/X (1r(z) — 1a(z))du(x)

In order to minimize 0 we restrict ourselves to the parametric family of sets
F,={Q,: p €]0,1]} where

Q, ={r e X:ppr(x) > p}. (2.14)



2.3. RACS AND THEIR EXPECTATIONS 25

The sets (), are closed because pr is upper semi-continuous (Molchanov),
2005). Consider now a random closed set I', we have that

arg min d(E[lr], 1) = arg min

/X (EfLr(2)] - Lr(2)) du(z)|

Since p is o—finite and 1p(z) is positive we can exchange expectation and
integral obtaining

in |[Eju(T)] — u(F)| = in |Eju(l')| — . 2.1
arg min [E{u()] — p(F)] = arg min [E{u()] = u(Q,)] (2.15)
Equation (2.15]) leads to the following definition (Vorob’ev, [1984)) of Vorob’ev
expectation.

Definition 7 (Vorob’ev expectation). The Vorob’ev expectation of a random
closed set I' is the set

EV[F] = E1(~),L1(p,),0 [F] = vaa

where py is either the unique minimizer of arg min,cpo 17 |E[u(I')] — n(@,)| or
the solution to

1(Qp) < E[u(D)] < pu(Qpy ), (2.16)
for all p > py.

The computation of the Vorob’ev expectation is greatly simplified in prac-
tice because the expected volume of I' is often simple to compute. In fact,
as a consequence of Robbins’ theorem (see, e.g. Robbins| (1945; [Molchanov,
2005)), it is possible to write the expected volume of I' as the integral of the
coverage function. Since pr > 0 we can exchange the order of integration
and we obtain

Bur)] = [ [ trof@)dua) P
- / E[1r(0)]du(z) = / pr(@)du(z).

In the following chapters we will extensively use the coverage function be-
cause it can be computed analytically for RACS I' coming from excursions
of Gaussian processes, as shown in Example 8]

The parametric sets (), as defined in Equation (2.14]) are also called
Vorob’ev quantiles. They are an important family for the problem of set
estimation under Gaussian priors because, due to existence of an analytic
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formula for pr, those sets are both conceptually simple and very fast to com-
pute.

Let us compute the Vorob’ev expectations for the random closed sets
introduced in examples [5] and [f] The second example in particular is central
for the remainder of this work.

Example 7. Consider the random closed set T defined as in Ezample [J,
consider a compact subset D in R such that [0,1] C D and define the measure
1 as the usual Lebesgue measure on R restricted to D. The coverage function
for T is

ifx=0o0rx=1

if x € (0,1)

if v €10,1] =D\ [0,1]

pr(z) =

O = =

Moreover we have that E[u(I")] = % The Vorob’ev quantile with the closest
volume is Q12 = {x € D : pr(z) > 1/2} = [0,1]. Thus py = 1/2 and the
Vorob’ev expectation of I' is Q,, = [0,1].

Example 8. Consider a real valued Gaussian process (Z;)zex ~ GP(m, K)
with almost surely continuous paths and assume that p(X) < co. For a fized
t € R denote with I the set

I={zeX:Zz, >t}
The coverage function of this set is
pr(z) = P(x €T) = P(Z, > t) = ® mx) —t)
R(z, x)

where ®(-) is the c.d.f. of a standard Gaussian distribution. This coverage
function is properly defined for all x € X and generates the following Vorob’ev

quantiles
B . m(x) —t
Q, = {l’ eX: <—§(x,x)> > p},

In this case the coverage function has a closed form expression, therefore
we can compute numerically the integral

EMWZLM@W@,

which is finite as u(X) < co. We can select the quantile py with a numerical
optimization procedure. Such quantile is either chosen such that p(Q,,) =
E[u(I")] or it is the smallest py that satisfies the inequality in Equation (2.16)).
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We now introduce a flexible notion of distance between two random closed
sets. While this concept is here introduced for random closed sets, it can
also be used to quantify the distance between a Vorob’ev quantile and the
corresponding random closed set.

Definition 8 (Expected distance in measure). Consider two random closed
sets I'1,I'ys C X. The expected distance in measure between I'y and I'y with
respect to the measure p is

dyu(l'1,Ta) = E[pu(T1AL)],

where FIAFQ == (Fl \ FQ) U (FQ \ F1>

This distance quantifies how far apart are two sets by measuring the non
overlapping parts. In particular if two sets I';,I's are equal almost surely
then d#<F1,F2) = 0. CODVGI'SGly if P(Fl N PQ = @) = 1 then d#(Fl,FQ) =
Elp(T1)] + E[p(T2)].

The expected distance in measure is useful in many set estimation prob-
lems. In Chapter[3it is used to quantify the distance between quasi-realizations
of I" and I itself under a Gaussian process model. However this distance can
also be used to measure the variability associated with an estimator of I". In
Chapter [l we show that the Vorob’ev quantiles achieve the minimum distance
with respect to I' among all sets of equal measure. This properties gives a
stronger justification for the use of this family when computing conservative
estimates, see Section [2.3.3] Moreover in Chapter [5] we use the variability
notion induced by the expected distance in measure to adaptively reduce the
uncertainty on conservative estimates.

The Vorob’ev expectation is a linearised expectation based on the metric
defined in Equation . Changing the metric gives different results, for
example, if we choose the uniform metric on the space of indicator functions
then the expectation becomes @, .., Where pyyi is chosen as

a in Ounir(E[1r], 1 =a in s -1 )
" i P Ellr] L) = i spr(r) 1, (2)

The minimum is achieved for p = 1/2, thus this procedure always selects the
“median” quantile @)y 5.

Other possible choices are the L'(u) or the L?(1) metric on the indicator
functions. With the L'(u) metric the Vorob’ev procedure selects a level p
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that minimizes the function

00 (E[1r], 1g,) = [[E[1r] — 14,

— (/ (1—pp(x))d,u(x)—|—/Qcp1“(x)d,“($))

= (E[u(F)] +/ (1- 2pr(x))du(fﬂ)> -

P

The L?(u) metric instead selects p, a minimizer of

020 (E[1r], 1g,) = ||E[1r] — 1, |,

- ( /X p2(x)du(z) + / (1—2pr(w>)du<fc>>-

p

When a minimum exists, the two procedures select the same minimizer

*

P

The distance average expectation

The linearisation approach is more general than the Vorob’ev expectation.
One generalization of this expectation is the distance average expectation
(Baddeley and Molchanov, |1998; |Molchanov, [2005). While the Vorob’ev ap-
proach selects the indicator function of a set as the functional &, the distance
average approach uses more general distance functions.

Let us denote with o a metric on the space X. Here we follow Baddeley
and Molchanov| (1998)) and we define a distance function as follows

Definition 9. Consider the space of closed non empty sets F' = F \ {0},
the distance function of a point x € X to a set F € F is defined as

d:Xx F — R,
such that d(x, F') := infyep o(x,y).

This type of distance function is also called metric distance function. In
particular if X = R? and p is the Euclidean metric we have the Euclidean
distance function. The properties introduced in this section can be extended
to more general distance functions, see Baddeley and Molchanov] (1998)) for
an extensive list. Since our contributions use only metric distance functions
we restrict ourselves to Definition [9l
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For each F' € F, we consider the functional £ : F — F defined as
ép=d:(F)eXxF =R,

where d(z, F') is the distance between a point € X and the set F' € F'.

Given a random set I" we have now that the distance function d(z,I") is
a random variable for each x € X. We can compute its expectation for each
x € X, which leads to the following definition.

Definition 10 (Mean distance function). Consider a distance function d and
a random closed set I'. The function

d: X —R",

defined as d(x) := E[d(x,T")] is called the mean distance function of I

The mean distance function in general is not a distance function of a
specific set. Moreover, it can be proven (Baddeley and Molchanov, [1998)
that for a given set I', d(z) = E[d(z,I')] is a distance function if and only if
I' is deterministic. The following examples show two cases where d is not a
distance function.

Example 9. (a) Consider a random set I' and the distance function lpc.
This is not a metric distance function, as in Definition [d, however it
can be defined as a distance function in a wider sense, see |Baddeley
and Molchanotf (1998). The mean distance function is equal to d(x) =
1 — pr(z), where pr is the coverage function. As seen in the previous
section this function is an indicator if and only if I' is deterministic.

(b) Consider the random set I' defined in Ezample [3 and the Euclidean
distance function on R. Its mean distance function is

—x ifx <0
Nk ifx €10,%)
"0y ety 210
z—1 ifr>1

which is not a distance function to a set.

Following the general linearisation approach we need to define a pseudo-
metric over the space of distance functions to compute the distance average
expectation.

Let us denote with 9 : F x F — R™ a pseudo-metric between two distance
functions. Here we will restrict ourselves to the case X = D C R?, where D
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is a compact subset and we review two choices for 0. The first is the uniform
metric on the space of continuous functions defined on a compact space

Ounit(d(+, F),d(-,G)) = ilég |d(z, F) — d(z, Q)] (2.18)

With the metric 04, then we select the space F as the space of continuous
functions on X.

The second choice is 972, the L? distance with the standard Lebesgue
measure on X:

e (d(-, F), (-, G)) = (/X(d(x, F) - d(z, G))%@) "

In this case the space F is L*(X). This is also the metric chosen in Chapter
where a new uncertainty quantification measure using the distance average
expectation is introduced.

For a generic distance function d and a metric 9, the distance average
expectation is defined as follows.

Definition 11 (Di_stance average expectation). Consider a random closed
set I', denote with d its mean distance function. Further consider the family
of sets

D,={reX:d(x) <u}, ueR.

The distance average expectation of I' is the set
Epall] = D.,, = {z € X:d(x) <upa}

where upy € arg min,eg 0(d, D,,) is either the unique minimizer or the infi-
mum of the minimizers.

Example 10. Consider the random closed set T' introduced in Ezample [3,
its mean distance function was computed in Equation (2.17)). Let us fiz d as
the Euclidean distance. The distance average expectation with respect to the

metric Vyni as defined in Equation (2.18) is equal to [—1—12, %] U [%, %]

By resorting on the distance functions it is possible to define a notion
of variability (see Baddeley and Molchanov, 1998)) for the distance average
expectation.

Definition 12 (Distance average variability). Consider a random closed set
I' and its distance average expectation Epa[l'] with respect to the distance
function d and the metric 0. The distance average variability of Epa[l'] is
equal to

DAV(T) =E [o(d,d(-,1))?] .
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Example 11. Consider the random closed set T defined in Example [3. In
Example we showed that the distance average expectation with respect to
the Euclidean distance d and the uniform metric 0y, is the set Epa[l'] =
[—L 1 U [2, %], The distance average variability is equal to

(sup de) — dx, r)|>2] |

reX

DAV<F) =E [aum’f(cz? d(? F))} =E

By using Equation for d and exploiting the fact that T' is a random set
we obtain DAV(T) = 4.

In Chapter |3| the distance average variability is used to define a new
way to quantify the uncertainty for excursion set estimation with Gaussian
process priors.

2.3.3 Other types of estimates: conservative approach

The random set expectations defined in the previous section provide a wide
class of set estimates. Moreover for each expectation there is a variability
notion that quantifies their uncertainties. However, they are not directly
equipped with probabilistic statements on the estimate. For example in
some situations we are interested in estimates that with a certain probability
are included in the random set I'. These types of problem are often found
in reliability engineering, where the quantity of interest might be a set of
safe configurations for a system. In this case we are not only interested in
estimating the set, but we would like to control in a probabilistic sense the
overestimation of the set, in order to select only safe configurations. The
Vorob’ev expectation and the distance average do not provide this type of
probabilistic statement. The concept of conservative estimates was developed
to address this issue. In this section we review this concept in the general
framework of random closed sets. This idea was developed for the particular
case of excursion sets of latent models in the papers by |Bolin and Lindgren
(2015) and |French and Sain| (2013]).

First of all let us introduce the notion of inclusion functional that allows
this type of probabilistic evaluations on the set.

Definition 13 (Inclusion functional). Consider a random closed set T and
denote with IC the family of compact sets in X. The inclusion functional of
I' is

Ir: K — [0, 1],
defined, for each K € KC, as Ip(K) := P(K CT).
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This functional is related to the Choquet capacity functional of the com-
plement of I' by the following equality

IM(EK) = 1 — Tre(K).

For the remainder of this section we denote with p a o—finite measure
on X. We can now define the notion of conservative estimate for I'.

Definition 14 (Conservative estimate). Consider the random compact set I’
and a family of compact sets €. The conservative estimate at level o of T' is

the set CE,(I"), defined as

CE4(I') € argmax{u(K) : Ir(K) 2 a}.

In general, the family € might not enjoy properties that guarantee a
unique solution CE,(T"). Often, the optimization procedure in Definition
is not feasible unless we parametrize the family €. One rather natural choice
is the family of Vorob’ev quantiles, which we recall are defined as Q, = {z €
X :pr(x) > p}, for p € [0, 1]. This family was also chosen in |French and Sain
(2013) and Bolin and Lindgren (2015) for estimates of excursion sets with
latent Gaussian models. In Chapter [4] we use this parametric family in the
application section and in Chapter [5| we provide elements for a justification
of this choice.

Example 12. Consider the random set I introduced in Example 5. Let us
compute the conservative estimate at level o for I' with the Vorob’ev quantiles
Q, as family € and with the Lebesque measure on D as p. Recall that the
coverage function of T' was computed in Example[7]. Then the family € only
contains the sets Qo = D, Q12 = [0,1] and Q1 = {0,1}. We have then

In(Qo) =P(DCT)=0 1(Qo) = p(D)
In(Qi2) = P([0,1] CT) =1/2 MQi2) =1
Ir(@1) = P{0,1} cT) =1 p(@1) = 0.

If we fix o = 0.95, then CE,(I") = @1 = {0, 1}.

If uniqueness is guaranteed, the set CE,(I") is the set of higher measure
among the ones that have probability of being inside I' at least equal to «.
For example, if « is chosen relatively high, e.g. o = 0.95,0.99, then CE,(T")
will result in a set that is highly likely to be inside the random set.
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A particular linearised expectation

The conservative estimate does not involve the notion of expectation and
therefore it is not in general a linearised expectation. The usual linearised ex-
pectation however can be modified to include the conservative notion. These
two approaches in general result in different estimates, however we show in
this section that in a particular case they are equivalent.

Let us first introduce the conservative linearised expectation. Consider a
random compact set I' and denote with

EK—TF

a functional that associates to each compact set K € K an element in a
Banach space F.

In the linearised expectation approach we choose a pseudo-metric 0 on [F
and a parametric family where the metric is optimized. Let us fix a generic
metric 0 and the parametric family

Kpa={K, e K:Ir(K,) > a}. (2.19)
In this framework the linearised expectation becomes the set K-, where

K, € arg Kmin ¥(E[¢r], k). (2.20)

pERpa

This estimate encodes the conservative aspect by restricting the search space
to the sets that have probability at least « of being contained in the random
set of interest.

If we choose £ = 1k, 0 as the metric introduced in Equation (2.13) we
obtain a modified version of the Vorob’ev expectation where the minimization
is conducted on the subset of sets such that Ir(K) > a.

A specific set of choices for the functional &, the metric 0 and the family
K, leads to an expectation K,- which is equivalent to the conservative
estimate CE,(I").

Lemma 1. Assume that K, is the unique minimizer of the linearised ex-

pectation defined in Equation (2.20)), with the following choices
L4 §K == 1K;.
e 0 is the pseudo-metric introduced in Equation (2.13));

o K, is the family defined in Equation (2.19), with K, the Vorob’ev
quantiles defined in Equation (2.14)).
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If « > py, where py is the Vorob’ev level from Definition[7, then CE, =
K

px-

Proof. First of all notice that o > py implies P(K,, CI') < a. In fact

P(K,, CT)=1-Trc(K,,)
<1—Tre({x}) = pr(x),

for any x € K,,, where the inequality comes from the monotonicity of the
capacity functional Trc. Moreover Definition [7limplies that there exists x* €
K,, such that pr(z*) = py. We then have P(K,, CI') <pp(z*) = py < .
This property implies that K ,,, ¢ IC, . Since the family of Vorob’ev quantiles

is nested we have K,- C K, . Finally the conditions

[E[p(T)] = p(Kp)| 2 [E[p(T)] = p(EKpy )|

and p(K,-) < pu(K,, ) imply that the minimizer of the distance 0(E[¢r], {x,)
is the maximizer of the measure p(K,) in the search space IC, . O

In Chapter |5 the notions introduced in this section, in particular the
concept of conservative estimates, are used to estimate excursion sets with
Gaussian process modelling. In that chapter we also introduce methods to
sequentially reduce the uncertainty on conservative estimates.

In the next section we close the current chapter by revisiting the random
set estimates in the framework of Gaussian process modelling and excursion
set estimation.

2.4 State of the art in Bayesian set estima-
tion with Gaussian Process priors

In this section we introduce the Bayesian set estimation procedures analysed
in this work. Let us consider a deterministic continuous function

f:DcRY=R

defined on D, a compact subset of R? and let us assume that the function
is known only at the points X,, = {z1,...,2,} C D where it takes values
£, = (f(x1),..., f(z,)). Let us fix a closed set T' C D, the main objective of
this work is to study estimation procedures for the preimage of 7" under f,
i.e. the set

I"={zxeD: f(x)eT}.
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A traditional set estimation approach to this problem is to consider the subset
of points {z;,,...,z; } C X, such that f(z;,) € T. In some settings, this
set of points can be regarded as a sample of points randomly selected in I'™*.
It is then possible to use traditional estimators such as the convex hull or
Devroye Wise type (Devroye and Wise, 1980) estimators. These methods
are well studied in the literature (see, e.g., Baillo et al., 2000, and references
therein), however, they usually require a quite large number of points in the
interior of the excursion to obtain reasonable estimates. In our framework
we often work with a very limited number of points and, while we can often
select the points X,,, we cannot control the subset {z;,,...,z; }, thus it is
not possible to make distributional assumptions on those points. These two
properties make traditional estimators not well suited for our problem.

The set of interest I'* is completely defined by the function f, thus it is
reasonable to exploit the information available on f to estimate I'*. In Sec-
tion [2.2.3| we reviewed a Bayesian approach to approximate functions from
few evaluations. Here we follow this framework and select a prior Gaussian
process (Z;)zep ~ GP(m,R). Since the function f is assumed continuous,
we select a prior distribution that puts mass only on functions that are con-
tinuous. As briefly introduced in Section the regularity can be controlled
with an appropriate choice of the covariance kernel. For example if d = 1,
we can choose a Matérn covariance kernel with v = p+1/2, p > 2 and we
obtain a prior Gaussian process with sample paths at least a.s. continuous.
Figure shows an example of Gaussian Process model. The function f is
evaluated at n = 8 points, the prior Gaussian process has a constant mean
and a Matérn covariance kernel with v = 3/2, # = 0.2 and 0 = 1. The
figure shows the posterior mean function m,,, the 95% point-wise posterior
prediction intervals m,(z) + 1.96\/R(z,x) for « € D and 20 realizations
of the posterior field. The prior Gaussian process naturally defines a prior
distribution on excursion sets, in fact the set

I'={zxeD:Z,eT}

is a random closed set, as shown in Example[6] In the example of Figure 2.1
the set of interest I'* is the excursion above ¢ = 0.5.

Let us consider now the process Z conditioned on the observations Zx, =
f,. Since the prior is Gaussian we have that posterior distribution of the
conditional field is GP(m,, &,), where m,, and K, are the conditional mean
and covariance kernel defined in Equations and .

A simple plug-in approach for estimating I'* uses the mean of the posterior
process m,, and approximates ['* with

Fplug-in = {l’ eD: mn(w) S T}
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Excursion set above 0.5 Excursion set above 0.5, Plug-in estimator

24 A observations 24 A observations
— mean I — mean
-~ 95% bands ---- 95% bands
-~ threshold o |- threshold
GP realizations Sl plug-in estimator

response
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o os 10 a0 o2 o
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(a) Gaussian process model with n = 8 (b) Gaussian process model and plug-in
observations and posterior GP realiza- estimator I'jjug-in.
tions.

Figure 2.1: Example of Gaussian process regression. The prior field has a
constant mean function and a Matérn covariance kernel, see Equation ([2.4)),

Section [2.2.1} with v =3/2,0 =02, 0 = 1.

Figure [2.1b| shows the plug-in estimator for I'* in the example introduced
previously. The estimator I'piug.in is straightforward to implement, however
it does not provide a reliable quantification of uncertainty.

Instead here we notice that the prior field Z induces a prior distribution
on sets, described by the random closed set

'={zxeD:Z T}, (2.21)

as shown in Example[f] By exploiting the Bayesian assumption we have then
that the posterior process induces a posterior distribution for I' given f,.
Under the previous assumptions on the prior process, the posterior field has
a.s. continuous paths. This implies that the posterior set is a properly defined
random closed set. We can now use the tools introduced in Sections 2.3.2]
and [2.3.3]to obtain estimates for I'*.

2.4.1 Vorob’ev quantiles and expectation for set esti-
mation
Let us start by reviewing the Vorob’ev quantiles and the related expectation

(Vorob’ev, (1984; Molchanov} 2005)) in the Gaussian process setting. The ar-
ticle Chevalier et al.| (2013) revised the Vorob’ev expectation in the Gaussian
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process setup. The Ph.D. thesis Chevalier (2013) also introduces this notion
in Chapter 4.2. The form of the posterior excursion set I in Equation
greatly simplifies the computations for this expectation.

The notion of coverage function in this setting becomes

pRn:Pn('IGF)

_P(Z €T) = / om0ttt (o) (), (2.92)
T

where ¢, ,2(s) is the Gaussian density with mean m and variance o2 and

P,(-) = P(- | Zx, = f,) is the posterior probability given the function
evaluations f,.
In particular if ' = (—o0, t], with ¢t € R the coverage function becomes

Zy —my(x) t—m,(x) t—m,(x)
—p, < —o | L) ) (993
<\/ﬁn<m,x> <\/ﬁn<x,x>) ( &(as,@) (223)

where ®(-) is the c.d.f. of the standard Gaussian distribution.

The representations of pr, in Equations and make the com-
putation of the Vorob’ev quantiles (),, defined in Equation (2.14]), numer-
ically very fast. In practice, the Vorob’ev quantiles are discretized over a
design G = {uy,...,u,} C D, with » much larger than n. The set of points
G can be chosen, for example, as a space filling design such as a Latin Hyper-
cube Sample (LHS), a low discrepancy sequence such as the Sobol” or Halton
sequences, a lattice or a grid, see, e.g. |Franco (2008); Pronzato and Miiller
(2012)) and references therein. Given a design G, we evaluate the posterior
mean m,, and the posterior kernel &, at G and, by evaluating the Gaussian
c.d.f., we can approximate (), on G with

sz{uéG:@(i%%#%>2p}. (2.24)

The definition of the Vorob’ev expectation requires a o—finite measure p
on the space D. Common choices are probability measures on the space D
or the usual Lebesgue measure, if the space D is compact. The first choice
is particularly common in reliability engineering, see, e.g. |Dubourg et al.
(2011); Bect et al.| (2012). In most of the examples in this work, the measure
1 is the Lebesgue measure on the compact subset D.

As introduced in Definition [7] the procedure to obtain the Vorob’ev ex-
pectation requires the computation of the posterior expected measure of I'
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Excursion set above 0.5, Vorob'ev expectation Excursion set above 0.5, Distance average
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(a) Vorob’ev expectation with pu (b) Distance average expectation with
Lebesgue measure on R. Euclidean distance function and L? met-
ric.

Figure 2.2: Example of set estimation with Gaussian process regression.
The posterior process defines a posterior distribution of excursion sets, here
summarized with two different expectations.

given f,,. Here we denote with E,[-] = E[- | Zx, = f,] and we notice that
the coverage function as defined in Equation (2.22) greatly simplifies the
computation of this quantity. In fact we have

E, [u(T)] = /D prn () dp(z).

This quantity can be approximated numerically with quadrature methods.
The numerical computation is efficient as the evaluation of the coverage func-
tion at one point relies on fast approximations of the Gaussian distribution
function. In the R computing language, for example, fast approximations of
the integrand are obtained with the function pnorm, which is based on an
efficient Fortran implementation, see |(Cody]| (1993).

The Vorob’ev expectation can then be computed with a simple optimiza-
tion over the parameter p € [0,1]. In R, the package KrigInv (Chevalier
et al.,[2014c)) implements this procedure with the function vorob_threshold.
Figure shows the Vorob’ev expectation computed with p as the Lebesgue
measure for the example introduced in Figure 2.1}
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2.4.2 Distance average expectation

In Section we reviewed the concept of distance average expectation for
random closed sets. This notion has been used in image analysis (Lewis et al.|
1999; |Jankowski and Stanberry, 2010} 2012), in medical (Ayala et al., 2005)
and environmental (Zhao et al., 2011)) applications among others. In [Zhang
et al| (2008)) this notion was introduced to predict spatial quantiles, using
techniques coming from spatial statistics community. To the best of our
knowledge, however, the notion of distance average expectation has not been
used for Bayesian set estimation under Gaussian process priors. In Chap-
ter |3] we introduce this concept and we propose a new uncertainty quan-
tification procedure exploiting the distance average variability, reviewed in
Definition [12]

Figure [2.2b| shows an example of distance average expectation on the
problem described in the previous section. As opposed to the Vorob’ev ex-
pectation, the distance average quantities are estimated from posterior real-
izations of the excursion set I" given the observations f,,. This procedure can
be very costly as it involves conditional simulations of a Gaussian process.
In Chapter [3| we present a faster method to obtain approximate realizations
of the process also called quasi-realizations. These quasi-realizations are op-
timal in the sense that they minimize the posterior expected distance in
measure with I". This contribution reduces the computational cost of sample
based methods for random sets in the Gaussian process framework.

2.4.3 Conservative estimates

In this work we consider the conservative estimates CE, as defined in Defini-
tion[14] This type of set estimates were introduced in the Bayesian excursion
set estimation framework in Bolin and Lindgren (2015)). In this paper € is
the family of Vorob’ev quantiles €, = {Q, : p € [0,1]}, where @, is the
posterior Vorob’ev quantile of I' at level p and the measure p is chosen as
the Lebesgue measure over D, thus leading to the conservative estimate that
selects the set with the largest volume such that Ir ,(Q,) = P,(Q, CT') > «a.

The computational procedure to obtain CE, implicit in Definition [14] re-
quires an optimization over p € [0, 1] where at each step we need to evaluate
P,(Q, C T'). Since the family of Vorob’ev quantiles is a nested family of
sets a dichotomy algorithm is guaranteed to converge in this setting. Fig-
ure shows the conservative estimate at 95% for the example introduced
in Figure [2.1]

In |Bolin and Lindgren| (2015) the computational costs are eased by the
assumption that the underlying process Z is a Gaussian Markov random
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Excursion set above 0.5 , 95% conservative estimate
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Figure 2.3: Conservative estimate at 95% for the excursion set above t = 0.5
with the Gaussian model introduced in Figure 2.1}

field. In our work the process Z does not necessarily satisfy this assumption,
thus a new method is developed to reduce the conservative estimate’s com-
putational burden. The main computational bottleneck of the procedure is
the evaluation of P,(Q), C I') for each candidate set (),. Consider now the
case where

I'={xeD:Z <t}

the set of excursion below t. In this framework we have

P,(Q,CT)=P,(Q, C{Z, <t}).

The Vorob’ev quantiles are usually discretized over fine designs, e.g. reg-
ular grids for small d, as described in Equation (2.24)). If we consider the
discretization G = {uy,...,u,} C D, we have

Pu(Qy C{Ze <)) = Pu(Zu, S ty.o., Zuy < 1), (2.25)

where {w;,,...,u;} is the subset of points in G belonging to K,. Equa-
tion (|2.25) shows the link between conservative estimates of excursion sets
and orthant probabilities for Gaussian vectors. In Chapter [4f we introduce a
new asymmetric nested Monte Carlo approach for the computation of such
probabilities. This algorithm was originally developed to compute the ex-
ceedance probability of the maximum of a Gaussian vector. The estimator
implements a technique that exploits the different computational costs at
stake, thus maximizing the efficiency of the Monte Carlo estimator.
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2.4.4 Sequential methods for set estimation

In the previous sections we have introduced the main methods used in this
work for excursion set estimation. The techniques are based on a Bayesian
model relying on n evaluations of f at the set of points X,,. This set of
points is also called design of experiments and plays an important role in
the modelling. In fact if the design selects points that are non informative
the resulting model might be very inaccurate. As an illustrative example, let
us fix |¢] < 1 and imagine that we are interested in I'*, the excursion above
t = L exp(—1/€) of a function f : [~1,1] — R defined as

f2) = {0 if o e[~ U(e1]

e M) i g e [—e, €]

If we choose a design X,, that selects only points in [—1, —€) U (e, 1], then a
Gaussian process posterior will not be able to estimate I'*.

In the community of computer experiments many methods for choosing
appropriate design of experiments have been proposed in the recent years,
see, e.g., the reviews Chen et al.| (2006)); [Franco| (2008)); [Pronzato and Miuller
(2012) and references therein. Experimental designs can be roughly divided
into two types: model-free and model-based designs. The former type con-
sists of designs that are not related to the chosen model and are often fixed
before any evaluation of the function. The most common designs of this type
are space filling, where the geometric properties of the function domain are
exploited to select points that cover the space in an optimal sense. Examples
are minimax or maximin distance designs (Johnson et al., [1990)), Latin hy-
percube samples (McKay et al., |1979) or low discrepancy sequences such as
the Halton sequence and the Sobol’ sequence (Bratley and Fox| |1988), see,
e.g. Pronzato and Miiller| (2012) for a review.

Another type of designs are model-based, where the information available
from the meta-model is exploited to select the next evaluations of the func-
tion. Model-based designs are often implemented sequentially: starting from
a small initial design X,,, chosen either ad hoc or with a space filling method,
new evaluations of the objective function are added by choosing points that
minimize a specific criterion. Two examples of model-based criteria were in-
troduced in [Sacks et al. (1989): the Integrated Mean Squared Error (IMSE)
and the Maximum Mean Squared Error (MMSE) criteria. These two crite-
ria add new evaluations at locations that minimize the prediction error of
the model. Model-based designs, proved to be particularly useful for global
optimization of a continuous functions f : D C RY — R under a limited
evaluation budget. A notable example is the Expected Improvement (EI)
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algorithm, introduced in [Mockus et al.| (1978) and popularized in |Jones et al.
(1998) under the Efficient Global Optimization (EGO) terminology. This ap-
proach exploits meta-models to surrogate the objective function f from few
evaluations and approximates the global optimum by sequentially updating
the meta-model. Each update consists of a new evaluation or a batch of new
evaluations of the function f at locations that maximize the “expected im-
provement” of the model. As an example consider the problem of finding the
global minimum of a function f. Here we assume that it is a realization of a
Gaussian process and, as in Section[2.2.3} we fix a prior (Z,),ep ~ GP(m, 8).
Let us denote the initial design with X,,, the respective evaluations of f with
the vector f, = (f(x1),..., f(z,)) and their current minimum with f,;,. The
meta-model can be updated with new evaluations of f at points maximizing
the expected improvement criterion

El(x) := E[max(fumin — Z2,0) | Zx, = f,.].

In the Gaussian case this criterion can be computed in closed form as detailed
in |Jones et al| (1998). Further, more recent works developed the expected
improvement criterion in the batch sequential case and allowed a fast compu-
tation of the criterion, see, e.g., Schonlau (1997); |Chevalier and Ginsbourger
(2014); Marmin et al.| (2016|) and references therein.

Sequential strategies have been also used in recent years for other pur-
poses, such as recovering contour lines (Ranjan et al., 2008), target regions
(Picheny et al., |2010) and excursion sets (Chevalier, 2013). These strategies
can be cast as Stepwise Uncertainty Reduction (SUR) strategies, introduced
in this framework by Bect et al| (2012)). The idea behind SUR strategies
is to select the next evaluation of the function f by minimizing an uncer-
tainty function. The specific definition of such uncertainties depend on the
problem at hand. For example, in Bect et al|(2012), the object of interest
is the probability of failure @ = u(I'™*), where p is a probability measure
defined on D and I'* = {z € D : f(z) > t}. An uncertainty function related
to this problem is the variance of the estimator & := [, 1z, >du(z) for .
Chapter 5| reviews the SUR strategies in the context of excursion set estima-
tion and introduces new strategies to reduce the uncertainty on conservative
estimates.



Chapter 3

Quantifying uncertainties on
excursion sets under a
Gaussian random field prior

This chapter reproduces the paper|Azzimonti et al. (20164d), co-authored with
Julien Bect, Clément Chevalier and David Ginsbourger published in SIAM/ASA
Journal on Uncertainty Quantification (DOI.10.1137/141000749).

3.1 Introduction

In a number of application fields where mathematical models are used to
predict the behavior of some parametric system of interest, practitioners not
only wish to get the response for a given set of inputs (forward problem) but
are interested in recovering the set of inputs values leading to a prescribed
value or range of values for the output (inverse problem). Such problems
are especially common in cases where the response is a scalar quantifying
the degree of danger or abnormality of a system, or equivalently is a score
measuring some performance or pay-off. Examples include applications in
reliability engineering, where the focus is often put on describing the set of
parameter configurations leading to an unsafe design (mechanical engineer-
ing Dubourg et al.| (2011)), Bect et al.| (2012), nuclear criticality Chevalier,
et al. (2014a)), etc.), but also in natural sciences, where conditions leading to
dangerous phenomena in climatological (French and Sain|, 2013) or geophys-
ical (Bayarri et al., 2009) settings are of crucial interest.

In this paper we consider a setup where the forward model is a function
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f:D c R?— R and we are interested in the inverse problem of reconstruct-
ing the set IT* = f~1(T) = {x € D : f(x) € T}, where T C R denotes the
range of values of interest for the output. Often the forward model f is costly
to evaluate and a systematic exploration of the input space D, e.g., on a fine
grid, is out of reach, even in small dimensions. Therefore reconstructions of
['* have to be performed based on a small number of evaluations, thereby
implying some uncertainty. Various methods are available to interpolate or
approximate an objective function relying on a sample of pointwise evalu-
ations, including polynomial approximations, splines, neural networks, and
more. Here we focus on the Gaussian random field (GRF) modelling ap-
proach (also known as Gaussian process modelling, Rasmussen and Williams
(2006)). GRF models have become very popular in engineering and further
application areas to approximate, or predict, expensive-to-evaluate functions
relying on a drastically limited number of observations (see, e.g.,|Jones et al.,
1998; Villemonteix et al., 2009; |[Ranjan et al., 2008; Bect et al., [2012; Rous-
tant et al |2012; [Binois et al [2015). In this framework we assume that f
is a realization of a random field Z = (Zyx)xep, which throughout the paper,
unless otherwise noted, is assumed to be Gaussian with continuous paths
almost surely. A major advantage of GRF models over deterministic approx-
imation models is that, given a few observations of the function f at the
points X,, = {x1,...,X,}, they deliver a posterior probability distribution
on functions, enabling not only predictions of the objective function at any
point but also a quantification of the associated uncertainties.

The mean of the posterior field Z gives a plug-in estimate of the set
[ (see, e.g., Ranjan et al. 2008, and references therein), however here we
focus on estimates based on conditional simulations. The idea of appeal-
ing to conditional simulation in the context of set estimation has already
been introduced in various contexts (see, e.g., |[Lantuéjoul, 2002; |Chiles and
Delfiner;, [2012; | Bolin and Lindgren, |2015)). Instead of having a single estimate
of the excursion set like in most set estimation approaches (see, e.g., |Cuevas
and Fraiman|, 2010; Hall and Molchanov, 2003; Reitzner et al., 2012), it is
possible to get a distribution of sets. For example, Figure [3.1] shows some
realizations of an excursion set obtained by simulating a GRF Z conditional
on few observations of the function f at locations X,, = {x1,...,x,} (n =6,
black triangles). A natural question arising in practice is how to summarize
this distribution by appealing to simple concepts, analogous to notions of ex-
pectation and variance (or location and scatter) in the framework of random
variables and vectors. For example the notions of Vorob’ev expectation and
Vorob’ev deviation have been recently revisited (Chevalier et al. 2013) in the
context of excursion set estimation and uncertainty quantification with GRF
models. In Sections [3.2 and we review another random set expectation,
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the distance average expectation (see, e.g., Baddeley and Molchanov, 1998)).
This expectation provides a different uncertainty quantification estimate in
the context of GRF modeling, the distance average variability. Since the dis-
tance average variability heavily relies on conditional simulations, to the best
of our knowledge, it has not been used before as an uncertainty quantification
technique.

One of the key contributions of the present paper is a method to approx-
imate conditional realizations of the random excursion set based on simula-
tions of the underlying GRF at few points. By contrast, in the literature,
Monte Carlo simulations of excursion sets are often obtained by simulating
the underlying field at space filling designs, as shown in Figure While
this approach is straightforward to implement, it might be too cumbersome
when fine designs are needed, especially in high dimensions. The proposed
approach reduces the simulation costs by choosing few appropriate points
E,. = {e1,...,en} where the field is simulated. The field’s values are then
approximated on the full design with a suitable affine predictor. We call a
quasi-realization of the excursion set the excursion region of a simulation of
the approximate field. Coming back to the example introduced in Figures|3.1
and shows quasi-realizations of the excursion set I' based on simulations
of the field at m = 30 points predicted at the fine design with the best lin-
ear unbiased predictor. Simulation points are chosen in an optimal way in
the sense that they minimize a specific distance between the reconstructed
random set and the true random set. With this method it is possible to
obtain arbitrarily fine approximations of the excursion set realizations while
retaining control of how close those approximations are to the true random
set distribution.

The paper is divided into six sections. In Section [3.2| we introduce the
framework and the fundamental definitions needed for our method. In Sec-
tion[3.3we give an explicit formula for the distance between the reconstructed
random excursion set and the true random excursion set. In this section we
also present a result on the consistency of the method when a dense sequence
points is considered as simulation points; the proofs are in Appendix[3.8] Sec-
tion explains the computational aspects and introduces two algorithms to
calculate the optimized points. In this section we also discuss the advantages
and limitations of these algorithms. Section presents the implementation
of the distance average variability as an uncertainty quantification measure.
We show that this uncertainty measure can be computed accurately with
the use of quasi-realizations. In Section we show how the simulation
method allows us to compute estimates of the level sets in a two-dimensional
test case from nuclear safety engineering. The proposed method to gener-
ate accurate quasi-realizations of the excursion set from few simulations of
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(a) True function, posterior GRF mean (b) 3 realizations of the conditional GRF
and true excursion set I'* = {x € [0,1] : and the associated excursion set (horizon-
f(z) >t} with ¢t = 0 (horizontal lines at tal lines at y = —3), obtained with simu-
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(black diamonds, shown at y = 1.7) and
predicting the field at the 1000 points de-
sign.

Figure 3.1: GRF model based on few evaluations of a deterministic function.
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the underlying field is pivotal in this test case as it allows us to operate on
high-resolution grids thus obtaining good linear approximations of the level
set curve. Another six-dimensional application is presented in Appendix [3.9]
where the distribution of the excursion volume is estimated with approximate
conditional simulations generated using the proposed simulation method.

3.2 Preliminaries

In this section we recall two concepts coming from the theory of random
closed sets. The first one gives us the distance between the reconstructed
set and the true random set, while the second one leads to the definition of
an uncertainty quantification measure for the excursion set estimate. See,
e.g., Molchanov| (2005, Chapter 2), for a detailed overview on the subject.

Throughout the paper f : D € R — R, d > 1, is considered an
unknown real-valued continuous objective function and D is a compact subset
of RY. We model f with Z = (Zy)xep, a GRF with continuous paths,
whose mean function and covariance kernel are denoted by m and K. The
range of critical responses and the corresponding excursion set are denoted
by T € B(R), a measurable element of the Borel o-algebra of R, and I'* =
fYT) = {x € D: f(x) € T}, respectively. In most applications, T is
a closed set of the form [¢t,00) for some ¢ € R. Here we solely need to
assume that 7" is closed in R; however, we restrict ourselves to T = [t, c0) for
simplicity. Generalizations to unions of intervals are straightforward. The
excursion set I'* is closed in D because it is the preimage of a closed set by
a continuous function. Similarly, I' = {x € D : Z(x) € T} defines a random
closed set.

3.2.1 Vorob’ev approach

A key element for the proposed simulation method is the notion of distance in
measure. Let p be a measure on the Borel o-algebra B(D) and Sy, .S € B(D).
Their distance in measure (with respect to u) is defined as u(S;ASs), where
S1ASy = (S1NSS) U (Se N SY) is the symmetrical difference between S; and
S,. Similarly, for two random closed sets I'; and I', one can define a distance
as follows.

Definition 15 (Expected distance in measure). The ezpected distance in
measure between two random closed sets I'y, 'y with respect to a Borel mea-
sure p is the function defined by

(T, T'2) = E[p(I'1 AT's)).
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(a) Excursion set realizations, cover-
age function (blue), selected a-level
(0.498, dashed blue), Vorob’ev expecta-
tion (red dashed line at y = 0, length=
0.257).
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(b) Distance function realizations, av-
erage distance function (blue) and dis-
tance average expectation (red dashed
line at y = 0, length= 0.264) obtained
with the Euclidean distance function.

Figure 3.2: Realizations I' obtained from the GRF presented in Figure
and two random set expectations for this excursion set.

Several notions of expectation have been proposed for random closed sets,
in particular, the Vorob’ev expectation is related to the expected distance
in measure. Consider the coverage function of a random closed set I', pr :
D — [0, 1] defined as pr(x) := P(x € I'). The Vorob’ev expectation @, of
[ is defined as the « level set of its coverage function, i.e. Q, = {x € D :
pr(x) > a} (Vorob’ev, |1984), where the level «v satisfies pu(Qg) < E[u(T)] <
1(Qq) for all > a. It is a well-known fact (Molchanov, [2005)) that, in the
particular case E[u(I")] = p(Qa), the Vorob’ev expectation minimizes the
distance in measure to I' among all measurable (deterministic) sets M such
that u(M) = E[u(T)]. Figure shows the Vorob’ev expectation computed
for the excursion set of the GRF in the example of Figure While the
Vorob’ev expectation is used for its conceptual simplicity and its tractability,
there exist other definitions of random closed set expectation and variability.
In the following we review another notion of expectation for a random closed
set: the distance average and its related notion of variability.

3.2.2 Distance average approach

The distance function of a point x to a set S is defined as the function
d: D x F' — R that returns the distance between x € D and S € F,
where F’ is the space of all nonempty closed sets in D (see Molchanov,
2005, pp. 179-180 for details). In general, such distance functions can take



3.2. PRELIMINARIES 49

any value in R (see Baddeley and Molchanov}, [1998; Molchanov| 2005, for
examples), however here we restrict ourselves to non-negative distances. In
what follows, we use the distance function d(x,S) = inf{p(x,y) : x € D,y €
S}, where p is the Euclidean distance in R

Consider S =I" and assume that d(x,I") has finite expectation for all x €
D, the mean distance function is d : D — R*, defined as d(x) := E[d(x,T)].
Recall that, after a restriction to D, it is possible to embed the space of
Euclidean distance functions in L?*(D). Let us further denote with ?(f, g)

the L? metric, defined as d(f, g) := ([, (f — 9)%du) Y2 The distance average
of I' (Molchanov, 2005) is defined as the set that has the closest distance
function to d with respect to the metric 0.

Definition 16 (Distance average and distance average variability). Let u be
the value of u € R that minimizes the d-distance 0(d(-, {d < u}),d) between
the distance function of {d < u} and the mean distance function of T. If
o(d(-, {d < u}),d) achieves its minimum in several points we assume U to be
their infimum. The set

Epa(l) = {x € D :d(x) < u}
is called the distance average of I' with respect to 0. In addition, we de-
fine the distance average variability of I' with respect to 0 as DAV(T) =

These notions will be at the heart of the application section, where
a method is proposed for estimating discrete counterparts of Epa(I') and
DAV(T) relying on approximate GRF simulations. In general, distance aver-
age and distance average variability can be estimated only with Monte Carlo
techniques, therefore we need to be able to generate realizations of I'. By
taking a standard matrix decomposition approach for GRF simulations, a
straightforward way to obtain realizations of I' is to simulate Z at a fine
design, e.g., a grid in moderate dimensions, G = {uy,...,u,} C D with
large » € N, and then to represent I' with its discrete approximation on the
design G, T'¢ = {u € G : Z, € T}. A drawback of this procedure, however,
is that it may become impractical for a high resolution r, as the covariance
matrix involved may rapidly become close to singular and also cumbersome
if not impossible to store. Figure [3.2b|shows the distance average computed
with Monte Carlo simulations for the excursion set of the example in Fig-
ure[3.1] In the example the distance average expectation has a slightly bigger
Lebesgue measure than the Vorob’ev expectation. In general the two ran-
dom set expectations yield different estimates, sometimes even resulting in a
different number of connected components, as in the example introduced in
Section 3.5
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3.3 Main results

In this section we assume that Z has been evaluated at locations X, =
{x1,...,x,} C D; thus we consider the GRF conditional on the values
Z(X,) = (Zxyy---,Zx,). Following the notation for the moments of Z
introduced in Section [3.2] we denote the mean and covariance kernel of Z
conditional on Z(X,,) := (Zx,,. ., Zx,) with m,, and K, respectively. The
proposed approach consists in replacing conditional GRF simulations at the
finer design G with approximate simulations that rely on a smaller simulation
design E,, = {ey,...,ey,}, with m < r. The quasi-realizations generated
with this method can be used as basis for quantifying uncertainties on I,
for example, with the distance average variability. Even though such an
approach might seem somehow heuristic at first, it is actually possible to
control the effect of the approximation on the end result, as we show in this
section.

3.3.1 A Monte Carlo approach with predicted condi-
tional simulations

We propose to replace Z by a simpler random field denoted by Z , whose
simulations at any design should remain at an affordable cost. In particular,
we aim at constructing Z in such a way that the associated I' is as close as
possible to I' in expected distance in measure.

Consider a set E,,, = {ey,...,e,} of m points in D, 1 < m < r, and
denote by Z(E,,) = (Ze,,...,Ze, )" the random vector of values of Z at
E,,. Conditional on Z(X,,), this vector is multivariate Gaussian with mean
m,(E,) = (m,(e)),...,m,(e,))’ and covariance matrix &,(E,,,E;) =
[R.(ei,€j)]ij=1,..m. The essence of the proposed approach is to appeal to
affine predictors of Z, i.e. to consider 7 of the form

Z(x) = a(x) + b (x)Z(E,,) (x € D), (3.1)

where a : D — R is a continuous trend function and b : D — R™
is a continuous vector-valued function of deterministic weights. Note that
usual kriging predictors are particular cases of Equation (3.1) with adequate
choices of the functions a and b; see, for example, Cressie, (1993)) for an
extensive review. Re-interpolating conditional simulations by kriging is an
idea that has already been proposed in different contexts, notably by |Oakley
(1999) in the context of Bayesian uncertainty analysis for complex computer
codes. However, while the problem of selecting the evaluation points X,, has
been addressed in many works (see,e.g., [Sacks et al., [1989; |Jones et al., 1998;
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Gramacy and Lee, 2009; Ranjan et al., 2008; Chevalier et al., |2014a, and
references therein), to the best of our knowledge the derivation of optimal
criteria for choosing the simulation points E,, has not been addressed until
now, be it for excursion set estimation or for further purposes. Computa-
tional savings for simulation procedures are hinted at by the computational
complexity of simulating the two fields. Simulating Z at a design with r
points with standard matrix decomposition approaches has a computational
complexity O(r?), while simulating Z has a complexity O(rm? +m3). Thus
if m < r simulating Z might bring substantial savings.

In Figure |3.3| we present an example of work flow that outputs a quan-
tification of uncertainty over the estimate I'" for I'* based on the proposed
approach. In the following sections we provide an equivalent formulation of
the expected distance in measure between I' and I' introduced in Deﬁnition
and we provide methods to select optimal simulation points E,,.

3.3.2 Expected distance in measure between [ and T

In the next proposition we show an alternative formulation of the expected

distance in measure between I' and I' that exploits the assumptions on the
field Z.

Proposition 2 (Distance in measure between I" and f) Under the previously

introduced assumptions (Z,Z) is a biwariate GRF and I and I' are random
closed sets.
a) Assume that D C R? and p is a finite Borel measure on D, then we have

dun(.T) = [ prnlo0ta) (3.2)
with
Prm(X) = Po(x € FAf)
= P(Z(x) > 1, Z(x) < t) + P,(Z(x) < t,Z(x) > 1).

where P, denotes the conditional probability P(- | Z(X,,)).
b) Moreover, using the notation introduced in Section we get

Pu(Z(x) > t, Z(x) < t) = By (cn(x, En), Sn(x, Enm)) | (3.3)

where ®o( -, X) is the c.d.f. of a centred bivariate Gaussian with covariance

Y, where
o my(x) -t
Ca (%, En) = ( t — a(x) — b(x)"m,(E,,) >
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Input:
e Prior Z ~ GRF(m, R);

e Data X, f(X,,) = Z(X,);

e Fine simulation design G.

Posterior GRF Z | Z(X,,)
with mean m,, and covariance kernel &,.

Approximation step

Obtain simulation points E,, with

e Algorithm A: see Section [3.4.1} or
e Algorithm B: see Section [3.4.2

Simulation step
Simulate Z | Z(X,,) at G, where
Z(x) = a(x) + bL (x)Z(Ep), x € G
(see Section
Obtain quasi-realizations of I' | Z(X,,)
F={xeG:Z(x)eT}

Output:

e Quasi-realizations of T' | Z(X,,);

e Uncertainty quantification on T' | Z(X,,)
(e.g. DAV(D), 1(AT), (),
Sections [3.513.6//3.9)).

Figure 3.3: Flow chart of proposed operations to quantify the posterior un-
certainty on I'.

and

_ [ fa(xx) —b(x)" R, (Epn, x)
(3, Bim) = ( —b(x)" & (Em, x)  b(x)" R0 (Em, Ep)b(x) ) '

¢) Particular case: if b(x) is chosen as the simple kriging weights b(x) =
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ﬁn(EmaEm)_lﬁn(Em,X), then

_ RH(X’ X) —Tn (X’ Em)
S (x, Byy) = < B e B ) (3.4)

where Y, (x, By ) = Var,[Z(x)] = £ (B, X)T & (B, B ) " 80 (Brn, X).

Proof. (of Proposition
a) Interchanging integral and expectation by Tonelli’s theorem, we get

du,n(ra f) =E, [/’J(F\f)] +E, [u(f\r)]
=K, [/ 1Z(X)2t12(x)<t/‘(dx) +/1Z(X)Ztlz(x)<t#(dx>:|

_ / PA(2(x) 2 1.2() < 1) + P(2(x) < 1. Z(x) > 1)] ()

b) Since the random field Z is assumed to be Gaussian, the vector-valued
random field (Z(x), Z(x)) is also Gaussian conditionally on Z(X,,), and prov-
ing the property boils down to calculating its conditional moments. Now

we directly get E,[Z(x)] = m,(x) and E,[Z(x)] = a(x) + b(x)"m,(E,,).

Similarly, Var,[Z(x)] = £,(x,x) and Var,[Z(x)] = b(x)T &,(E, E;,)b(x).
Finally, Cov,[Z(x), Z(x)] = b(x)T&,(E, x) and Equation follows by
Gaussianity.

¢) The expression in Equation follows immediately by substituting b(x)

into ¥, (x, E,). O

Remark 2. The Gaussian assumption on the random field Z in Proposition[
can be relaxed: in part a) it suffices that the excursion sets of the field Z are
random closed sets and in part b) it suffices that the field Z is Gaussian
conditionally on Z(X,,).

3.3.3 Convergence result

Let ey, e, ... be a given sequence of simulation points in D and set E,, =
{e1,...,e,} for all m. Assume that Z is, conditionally on Z(X,), a GRF

with conditional mean m,, and conditional covariance kernel &,,. Let Z(x) =
E, (Z(x) | Z(E,,)) be the best predictor of Z(x) given Z(X,) and Z(E,,). In



54 CHAPTER 3. UQ ON EXCURSION SETS UNDER A GRF PRIOR

particular, Z is affine in Z(E,,). Denote by sz () the conditional variance
of the prediction error at x:

52,.(x) = Var, (Z(x) . Z(x)) = Var, (Z(z) | Z(E,,))
= R, (x,%) — Ry (B, x)" Ry (B, Ep) 7' Ry (By, X))

Proposition 3 (Approximation consistency). Let f(Em) = {x e D:
Z(x) € T} be the random excursion set associated to Z. Then, as m — 0o,
dyn(T, T (Er)) — 0 if and only if s}, — 0 p-almost everywhere.

Corollary 1. Assume that the covariance function of Z is continuous. a)
If the sequence of simulation points is dense in D, then the approzimation
scheme is consistent (in the sense that d,, ,,(I',T'(E,,)) — 0 when m — o0).
b) Assuming further that the covariance function of Z has the NEB prop-
erty (Vazquez and Bect, 2010), the density condition is also necessary.

The proof of Proposition [3]is in Appendix

3.4 Practicalities

In this section we use the results established in Section to implement a
method that selects appropriate simulation points E,,, = {ey,...,e,,} C D,
for a fixed m > 1. The conditional field is simulated on E,,, and approximated
at the required design with ordinary kriging predictors. We present two algo-
rithms to find a set E,, that approximately minimizes the expected distance
in measure between I' and I'(E,,). The algorithms were implemented in R
using the packages KrigInv (Chevalier et al.,|2014c) and DiceKriging (Rous-
tant et al., [2012).

3.4.1 Algorithm A: minimizing d, ,(T,T)

The first proposed algorithm (Algorithm A) is a sequential minimization of

the expected distance in measure d,, ,(I',I'). We exploit the characterization
in Equation (3.2) and we assume that the underlying field Z is Gaussian.
Under these assumptions, an optimal set of simulation points is a minimizer
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of the problem,
minEirnize dujn(F,f) = /pmm(x)u(dx)
= /CI)Q (cn(x, Ep), X (%, Eyp)) p(dx)

+ /Cbg (—cn(x,Ep), X0 (x,Ep)) p(dx).  (3.5)

Several classic optimization techniques have already been employed to
solve similar problems for optimal designs, for example simulated anneal-
ing (Sacks and Schiller], [1988), genetic algorithms (Hamada et al., [2001]), or
treed optimization (Gramacy and Lee, 2009). In our case such global ap-
proaches lead to an m x d dimensional problem and, since we do not rely on
analytical gradients, the full optimization would be very slow. Instead we
follow a greedy heuristic approach as in Sacks et al.| (1989); |Chevalier et al.
(2014a)) and optimize the criterion sequentially: given Ef ; = {e},..., e’ ;}
points previously optimized, the ith point e; is chosen as the minimizer of
dun(T,TF), where I'f = I'(Ef; U {e;}). The points optimized in previous
iterations are fixed as parameters and are not modified by the current opti-
mization.

The parameters of the bivariate normal, ¢, (x, E;) and 3, (x, E;), depend
on the set E; and therefore need to be updated each time the optimizer re-
quires an evaluation of the criterion in a new point. Those functions rely on
the kriging equations, but recomputing each time the full kriging model is
numerically cumbersome. Instead we exploit the sequential nature of the al-
gorithm and use kriging update formulas (Chevalier et al., 2014b)) to compute
the new value of the criterion each time a new point is analysed.

Numerical evaluation of the expected distance in measure poses the issue
of approximating both the integral in R? and the bivariate normal distri-
bution in Equation (3.5). The numerical approximation of the bivariate
normal distribution is computed with the pbivnorm package which relies on
the fast Fortran implementation of the standard bivariate normal c.d.f. in-
troduced in Genz| (1992). The integral is approximated via a quasi-Monte
Carlo method: the integrand is evaluated using points from a space filling
sequence (Sobol’, Bratley and Fox (1988))) and then approximated with a
sample mean of the values.

The criterion is optimized with the function genoud (Mebane and Sekhon),
2011), a genetic algorithm with BFGS descents that finds the optimum by
evaluating the criterion over a population of points spread in the domain of
reference and by evolving the population in sequential generations to achieve
a better fitness. Here, the gradients are numerically approximated.
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3.4.2 Algorithm B: maximizing p,, ,(x)

The evaluation of the criterion in Equation can become computationally
expensive because it requires a high number of evaluations of the bivariate
normal c.d.f. in order to properly estimate the integral. This consideration
led us to develop an alternative procedure.

We follow closely the reasoning used in Sacks et al.| (1989) and Bect et al.
(2012) for the development of a heuristic method to obtain the minimizer of
the integrated mean squared error by maximizing the mean squared error.
The characterization of the expected distance in measure in Equation (3.2)) is
the integral of the sum of two probabilities. They are non-negative continuous
functions of x as the underlying Gaussian field is continuous. The integral,
therefore, is large if the integrand takes large values. Moreover, Z interpolates
Z in E hence the integrand is zero in the chosen simulation points. The two
previous considerations lead to a natural variation of Algorithm A where the
simulation points are chosen in order to maximize the integrand.

Algorithm B is based on a sequential maximization of the integrand.
Given Ef | = {e},..., el |} points previously optimized, the ith point e; is
the maximizer of the following problem:

maximize p ,_,(x) with
X I’

p;kz,i—l(x) - (1)2 (Cn(X7 E:—l)v En(xv E;-l)) + (I)Q <_Cn(x> E:—l)ﬂ En(X, E;-l)) )

for fixed, previously optimized E} | = {e],... el ;}.

The evaluation of the objective function in Algorithm B does not require
numerical integration in R? and thus it requires substantially less evaluations
of the bivariate normal c.d.f..

The maximization of the objective function is performed with the L-
BFGS-B algorithm (Byrd et al., |1995)) implemented in R with the function
optim. The choice of starting points for the optimization is crucial for gra-
dient descent algorithms. In our case the objective function to maximize is
strongly related with pr, the coverage function of I', in fact all points x,
where the function w(x) := pr(x)(1 — pr(x)) takes high values are reason-
able starting points because they are located in regions of high uncertainty
for the excursion set, thus simulations around their locations are meaningful.
Before starting the maximization, the function w(x) is evaluated at a fine
space filling design and, at each sequential maximization, the starting point
is drawn from a distribution proportional to the computed values of w.
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3.4.3 Comparison with non optimized simulation points

In order to quantify the importance of optimizing the simulation points and
to show the differences between the two algorithms we first present a two-
dimensional analytical example.

Consider the Branin-Hoo function (see Jones et al., [1998) multiplied by
a factor —1 and normalized so that its domain becomes D = [0,1]%. We
are interested in estimating the excursion set I'* = {x € D : f(x) > —10}
with n = 20 evaluations of f. We consider a GRF Z with constant mean
function m and covariance K chosen as a tensor product Matérn kernel
(v =3/2) (Stein, [1999). The covariance kernel parameters are estimated by
maximum likelihood with the package DiceKriging (Roustant et al., 2012)).
By following the GRF modelling approach we assume that f is a realization
of Z and we condition Z on n = 20 evaluations. The evaluation points are
chosen with a maximin Latin Hypercube Sample (LHS) design (Stein, [1987)
and the conditional mean and covariance are computed with ordinary kriging
equations.

Discrete quasi-realizations of the random set I' on a fine grid can be
obtained by selecting few optimized simulation points and by interpolating
the simulations at those locations on the fine grid. The expected distance in
measure is a good indicator of how close the reconstructed set realizations
are to the actual realizations. Here we compare the expected distance in
measure obtained with optimization algorithms A and B and with two space
filling designs, namely, a maximin LHS (Stein, 1987) and points from the
Sobol” sequence (Bratley and Fox, |1988)).

Figure [3.4] shows the expected distance in measure as a function of the
number of simulation points. The values were computed only in the dotted
points for algorithms A and B and in each integer for the space filling designs.
The optimized designs always achieve a smaller expected distance in measure,
but it is clear that the advantage of accurately optimizing the choice of points
decreases as the number of points increases, thus showing that the designs
tend to become equivalent as the space is filled with points. This effect,
linked to the low dimensionality of our example, reduces the advantage of
optimizing the points, however in higher dimensions a much larger number of
points is required to fill the space, and hence optimizing the points becomes
more advantageous, as shown in Appendix 3.9, Algorithms A and B show
almost identical results for more than 100 simulation points. Even though
this effect might be magnified by the low dimension of the example, it is
clear that in most situations Algorithm B is preferable to Algorithm A as it
achieves similar precision while remaining significantly less computationally
expensive, as shown later in Figure [3.6]
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Figure 3.4: Expected distance in measure for different choices of simulation
points

3.5 Application: a new variability measure
using the distance transform

In this section we deal with the notions of distance average and distance aver-
age variability introduced in Section and more specifically we present an
application where the interpolated simulations are used to efficiently compute
the distance average variability.

Let us recall that given I'y, ..., 'y realizations of the random closed set
I, we can compute the estimator for Epa (I")

Al ={xeD:d(x) <u},

where d*(x) = + SV d(x,T;) is the empirical distance function and @* is
the threshold level for d*, chosen in a similar fashion as @ in Definition [16}
see (Baddeley and Molchanov), [1998)) for more details. The variability of this
estimate is measured with the distance average variability DAV(I"), which,
in the empirical case, is defined as

DAV(T) = 5 S 0@ d(T) = 1 3 [ (dlx.T) = 8°(0)° dux)
- - (3.6)
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where d(-,-) is the L*(R?) distance.

The distance average variability is a measure of uncertainty for the ex-
cursion set under the postulated GRF model; this value is high when the dis-
tance functions associated with the realizations I'; are highly varying, which
implies that the distance average estimate of the excursion set is uncertain.
This uncertainty quantification method necessitates conditional simulations
of the field on a fine grid to obtain a point-wise estimate. Our simulation
method generates quasi-realizations in a rather inexpensive fashion even on
high-resolution grids, thus making the computation of this uncertainty mea-
sure possible.

We consider here the two-dimensional example presented in Section
and we show that by selecting few well-chosen simulation points E,, =
{e1,...,e,}, with m < r, and interpolating the results on G, it is possi-
ble to achieve very similar estimate to full design simulations. The design
considered for both the full simulations and the interpolated simulations is
a grid with » = ¢ x ¢ points, where ¢ = 50. The grid design allows us to
compute numerically the distance transform, the discrete approximation of
the distance average, with an adaptation for R of the fast distance trans-
form algorithm implemented in [Felzenszwalb and Huttenlocher| (2004)). The
precision of the estimate Ef, ,(I") is evaluated with the distance transform
variability, denoted here with DTV(I';r), an approximation on the grid of
the distance average variability, Equation (3.6).

The value of the distance transform variability is estimated with quasi-
realizations of I obtained from simulations at few points. The conditional
GRF is first simulated 10, 000 times at a design E,,, containing few optimized
points, namely, m =10, 20, 50, 75, 100, 120, 150, 175, and then the results
are interpolated on the ¢ x ¢ grid with the affine predictor Z. Three methods
to obtain simulation points are compared: Algorithms A and B presented in
the previous section and a maximin LHS design. The simulations obtained
with points from each of the three methods are interpolated on the grid
with the same technique. In particular, the ordinary kriging weights are first
computed in each point u € G and then used to obtain the value of the
interpolated field Z(u) from the simulated values Z(E,,). This procedure is
numerically fast as it only requires algebraic operations.

For comparison a benchmark estimate of DTV(L;r) is obtained from
realizations of I' stemming from 10,000 conditional Gaussian simulations on
the same grid of size r = 50 x 50.

Both experiments are reproduced 100 times, thus obtaining an empirical
distribution of DTV (I'; r), with r = 2500, and of DTV (I'; m) for each m. Fig-
ure shows a comparison of the distributions of DTV(I'; ) obtained with
full grid simulations and the distributions obtained with the interpolation
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Distributions of simulated distance transform variability
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Figure 3.5: Comparison of the distributions of the simulated DTV (I'; r) for
different methods (from left to right, Algorithm A, Algorithm B and maximin
LHS); the dashed horizontal line marks the median value of the benchmark
(m = 2500) distribution.

over the grid of few simulations.

The distributions of DTV(I;r) obtained from quasi-realizations all ap-
proximate well the benchmark distribution with as little as 100 simulation
points, independently of the way simulation points are selected. This ef-
fect might be enhanced by the low dimension of the example; nonetheless it
suggests substantial savings in simulation costs.

The optimized designs (Algorithms A and B) achieve better approxima-
tions with fewer points than the maximin LHS design. In particular the
maximin LHS design is affected by a high variability, while the optimized
points converge fast to a good approximation of the benchmark distribution.
Interpolation of simulations at m = 50 points optimized with Algorithm A
results in a relative error of the median estimate with respect to the bench-
mark of around 0.1%.

Algorithm B shows inferior precision compared with Algorithm A for very
small values of m. This behaviour could be influenced by the dependency of
the first simulation point on the starting point of the optimization procedure.
In general, the choice between Algorithm A and Algorithm B is a trade-off
between computational speed and precision. For low dimensional problems,
or more in general, if only a small number of simulation points is needed, then
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Figure 3.6: Total CPU time to obtain all realizations of I'. Full grid simu-
lations include only simulation time (dot-dashed horizontal line), while both
algorithms include simulation point optimization (dashed lines) and simula-
tion and interpolation times (solid lines).

Algorithm A could be employed at acceptable computational costs. However
as the dimensionality increases more points are needed to approximate cor-
rectly full designs simulations, then Algorithm B obtains similar results to
Algorithm A at a much lower computational cost. Both algorithms behave
similarly when estimating this variability measure with m > 75, thus con-
firming that the reconstructed sets obtained from simulations at points that
optimize either one of the criteria are very similar, as already hinted at by the
result on distance in measure shown in the previous section. In most practi-
cal situations Algorithm B yields the better trade-off between computational
speed and precision, provided that enough simulation points are chosen.

Figure |3.6| shows the total CPU time for all the simulations in the exper-
iment for Algorithm A, Algorithm B and the full grid simulations, computed
on the cluster of the University of Bern with Intel Xeon E5649 2.53-GHz
CPUs with 4 GB RAM. The CPU times for Algorithms A and B also include
the time required to optimize the simulation points. Both interpolation al-
gorithms require less total CPU time than full grid simulations to obtain
good approximations of the benchmark distribution (m > 100). If parallel
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computing is available wall clock time could be significantly reduced by par-
allelizing operations. In particular the full grid simulation can be parallelized
quite easily, while the optimization of the simulation points could be much
harder to parallelize.

3.6 Test case: Estimating length of critical
level set in nuclear safety application

In this section we focus on a nuclear safety test case and we show that our
method to generate quasi-realizations can be used to obtain estimates of the
level set on high-resolution grids.

The problem at hand is a nuclear criticality safety assessment. In a
system involving nuclear material it is important to control the chain re-
action that may be produced by neutrons, which are both the initiators
and the product of the reaction. An overproduction of neutrons in the
radioactive material is not safe for storage or transportation. Thus, the
criticality safety of a system is often evaluated with the neutron multipli-
cation factor (k-effective, or k-eff) which returns the number of neutrons
produced by a collision with one neutron. This number is usually esti-
mated using a costly simulator. If k-eff > 1 the chain reaction is unsta-
ble; otherwise it is safe. In our case we consider a storage facility of plu-
tonium powder, whose k-eff is modelled by two parameters: the mass of
plutonium (MassPu) and the logarithm of the concentration of plutonium
(logConcPu). The excursion set of interest is the set of safe input parame-
ters ' = {(MassPu, logConcPu) : k-eff(MassPu, logConcPu) < ¢}, where ¢
is safety threshold, fixed here at t = 0.95. This test case was also presented
in (Chevalier et al.| (2014a)) to illustrate batch-sequential SUR strategies. The
parameter space here is transformed into the unit square [0,1] x [0, 1].

The set of interest is

oI = {(MassPu, logConcPu) : k-eff(MassPu, logConcPu) = t},

with ¢ = 0.95, the level set of k-eff. We are interested in estimating this
one-dimensional curve in R%. Since we have only a few evaluations of the
function at points Xg = {xy,...,Xs}, shown in Figure , a direct estimate
of OI'* is not accurate. We rely instead on a random field model Z with prior
distribution Gaussian, constant mean and a tensor product Matérn (v = 3/2)
covariance kernel. The parameters of the covariance kernel are estimated by
maximum likelihood with the package DiceKriging, Roustant et al. (2012).
From the posterior distribution of Z, conditioned on evaluations of k-eff
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with full design simulations. The func- with simulations at m = 75 simulation
tion k-eff was evaluated at the points points (diamonds) and predicted at the
denoted by triangles. full design grid.

Figure 3.7: Realizations OI': full design simulations (a) and re-interpolated
simulations at 75 locations (b).

at Xg, it is possible to estimate OI'*. A plug-in estimate of OI'* could be
generated with the posterior mean m,; however, this procedure alone does
not provide a quantification of the uncertainties. Instead, from the poste-
rior field we generated several realizations of OI' = {(MassPu, logConcPu) :
Z(MassPu, logConcPu) | (Zx, = k-eff(Xs)) = 0.95}. This procedure re-
quires simulations of the posterior field at high-quality grids; however, even
in a two-dimensional parameter space, the procedure is computationally bur-
densome. In fact, while a discretization on a grid 50 x 50 delivers a low-quality
approximation, simulations of the field at such grids are already expensive
to compute. For this reason we choose to simulate the field at m appro-
priate simulation points and to predict the full simulations with the linear
interpolator Z introduced in Equation (3.1]).

Figure shows few realizations of JI' discretized on an 80 x 80 grid,
obtained with simulations of the field at all points of the design (Figure [3.7al)
and with simulations at 75 simulation points, chosen with Algorithm B (Fig-
ure . The two sets of curves seem to share similar properties. The
expected distance in measure between OI' and af, as introduced in Defi-
nition could be used here to quantify this similarity however, here we
propose to use the arc length of each curve, defined as follows, as it is easier
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Figure 3.8: Distributions of K.S statistic computed over 100 experiments for
Kolmogorov-Smirnov test with null hypothesis Hy : Ly = Ly,. Simulation
points chosen with Algorithm B or with maximin LHS design.

to interpret in our application.

Consider a regular grid G = {uy,...,u,}. For each realization, we select
the points Gogr = {u € G : Z, | (Zx, = k-eff(Xg)) € [0.95 — £,0.95 + €]},
where ¢ is small. Gyr contains all the points of the discrete design that have
response e—close to the target. We order the points in Ggr in such a way
that {u,,,...,u;,} are vertices of a piecewise linear curve approximating oI
We approximate the arc length of the curve with the sum of the segments’
lengths: [(0') = >y Wi,y — ug[|. By computing the length for each
realization we obtain a Monte Carlo estimate of the distribution of the arc
length. We can now compare the distributions of the arc length obtained from
reconstructed realizations simulated at few locations with the distribution
obtained from simulations at the full grid in order to select the number
of simulation points that leads to quasi-realizations for OI" whose length is
indistinguishable from the full grid realizations’ length.

Let us define the random variables Ly = Z(8F6400) and L,, = Z(@F m),
the arc lengths of the random set generated with full design simulations
(80 x 80 grid) and the length of the random set generated with simulations
at m points respectively. We compare the distributions of Lg,y and L,, with
Kolmogorov-Smirnov tests for several values of m. The null hypothesis is Hy :
L¢qy = L,,. The distributions are approximated with 10,000 simulations,
either at the full grid design or at the selected m points. For each m, 100
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repetitions of the experiment were computed, thus obtaining a distribution
for the Kolmogorov-Smirnov (KS) statistic. Figure|3.8/shows the value of the
K S statistic for each m, where the simulation points are obtained either with
Algorithm B or with a maximin LHS design. For m > 50 optimized points,
the K S statistic is below the critical value for at least 97% of the experiments,
and thus it is not possible to distinguish the two length distributions with a
significance level of 5%. If the simulation points are chosen with a maximin
LHS design instead, the K S statistic is below the critical value for at least
67% of the experiments with m = 100 simulation points, as also shown in
Figure [3.8] This result shows again the importance of choosing optimized
simulation points. The approximation of Lgy with L,, leads to substantial
computational time savings. The computational time for 10,000 simulations
of the field at the full grid design (6,400 points) is 466 seconds, while the
total time for finding 75 appropriate simulation points (with Algorithm B),
simulate the field at these locations and re-interpolate the field at the full
design is 48.7 seconds (average over 100 experiments).

The expected distance in measure introduced in Section could also
be used here to quantify how far the quasi-realizations are from the full grid
realizations.

3.7 Conclusions

In the context of excursion set estimation, simulating a conditional random
field to obtain realizations of a related excursion set can be useful in many
practical situations. Often, however, the random field needs to be simulated
at a fine design to obtain meaningful realizations of the excursion set. Even in
moderate dimensions it is often impractical to simulate at such fine designs,
thus rendering good approximations hard to achieve.

In this paper we introduced a new method to simulate quasi-realizations
of a conditional GRF that mitigates this problem. While the approach of pre-
dicting realizations of the field from simulations at few locations has already
been introduced in the literature, this is the first attempt to define optimal
simulation points based on a specific distance between random closed sets:
the expected distance in measure. We showed in several examples that the
quasi-realizations method reduces the computational cost due to conditional
simulations of the field, however it does so relying on an approximation.
In particular the random set quasi-realizations optimality with respect to
the expected distance in measure does not necessarily guarantee that other
properties of the set are correctly reproduced.

The quasi-realizations approach allowed us to study an uncertainty mea-
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sure that, to the best of our knowledge, was not previously used in practice:
the distance average variability. The estimation of the distance average vari-
ability is appealing when realizations of the excursion set on fine grids are
computationally cheap. We showed on a two-dimensional test function that
it is possible to reduce computational costs by at least one order of magni-
tude, thus making this technique practical. In general the quasi-realizations
approach could improve the speed of distance average based methods as,
for example, |Jankowski and Stanberry| (2010) and |Jankowski and Stanberry
(2012]).

We presented a test case in safety engineering where we estimated the
arc length’s distribution of a level set in a two-dimensional parameter space.
The level set was approximated by piecewise linear curve, the resolution of
which depends on the simulation design. A Monte Carlo technique based
on realizations of the excursion set obtained with full design simulations is
computationally too expensive at high resolutions. Reconstructed simula-
tions from simulations of the field at few well-chosen points re-interpolated
on a fine design made this application possible. In particular we showed
that the distribution of the arc length obtained with a full design simulation
at a rough design, an 80 x 80 grid, was not significantly different than the
distribution obtained from reconstructed sets with simulations at m = 50
well-chosen points, thus opening the way for estimates on higher resolution
grids.

Conditional realizations of the excursion set can also be used to estimate
the volume of excursion; in the appendix we show how to handle this problem
with Monte Carlo simulations at fine designs.

We presented two algorithms to compute optimal simulation points. While
the heuristic Algorithm B is appealing for its computational cost and preci-
sion, there are a number of extensions that could lead to even more savings in
computational time. For example, the optimization of the points in this work
was carried out with generic black box optimizers, but it would be possible
to achieve appreciable reductions in optimization time with methods based
on analytical gradients.

3.8 Appendix A: sketch of proof for Proposi-
tion [3]

Here we present a sketch of proof based on a contradiction argument. For
a more detailed and constructive proof see Azzimonti et al. (2016a)), Ap-
pendix A.
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Let us first assume that si’m — 0 p-almost everywhere. The expected dis-
tance in measure can be rewritten, according to Equation (3.2)), as d,, ,,(I',T') =
[ Prm(x) p(dx). Since y is a finite measure on D and py, ,(x) < 1, it is suffi-
cient by the dominated convergence theorem to prove that p,, ,,, = 0 p-almost
everywhere.

Pick any x € D such that s2(x) > 0 and s, (x) = 0. Then, for any
w > 0,

Prm(x) < Pn(‘Z(x) - t| < w) + Pn(|Z(X) — Z(X)’ > w)

2w Snm(X)
< +—
\/2ms2(x) w
With w = /$,.m(x), it follows that

24/ 8pm (%)

e Smm(x) = 0, (3.7)

Pn,m (X) <

Since s7,, — 0 p-almost everywhere and p, n,(x) = 0 wherever s2(x) = 0,
Equation proves the sufficiency part of Proposition

Conversely, let us assume by contradiction that s, ,,(x) — ¢(x) > 0 for
all x in aset C' C D with u(C) > 0. Moreover, there exists a set B C C, with
p(B) > 0 such that ¢(x) > ¢, for some ¢q > 0. Without loss of generality in
what follows we restrict ourselves to B. Consider an arbitrary xg € B then

Prnm(Xo0) = P, (Z(xo) > t, Z(XO) < t) + P, (Z(xo) < t, Z(XO) > t)

> P, (Z(XO) > t, Z(x) < t> = P, (Z(x0) > t, Z(x0) <t + €nm(xX0))

=P, (t < Z(x0) <t+ €nm(x0)),

where €, ,,(x0) = Z(x0) — Z(x¢). Moreover we have
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The function k(xp) is strictly positive for xo € B, moreover notice that for
any u > 0

t —m,(xo)

<N <
Sn(XO) -

Pn(t < Z(xo) < t—i—c(xo)u) > P, ( t —m,(xo) n CoU )

Sn(Xo) $n(Xo)

where N is a standard Normal random variable. Since m,, and s,, are contin-
uous, we can lower bound this probability with a positive value independent

of xq, by selecting the smallest interval farther away from zero. In particular,
consider (; = infp 5™ and (; = supp, 5. Fix ( equal to the value ¢; with

n

the largest absolute value. We have then

K(x0) > %/Ooo P, (M <N < EEmlX) | cou > o(u)du

Sn(X0) sn(Xo) Sn(X0)

CoU
inf[) Sn

1 oo
— P, <N
> /O <§ <(+

5 ) o(u)du = kg > 0

With this ko we have then,
p (A% ) 0, for m — +oo  where A% = {x € D : ppn(x) > Ko},

which contradicts the sufficient condition.

3.9 Appendix B: estimating the distribution
of a volume of excursion in six dimensions

In this section we show how it is possible to estimate the conditional distri-
bution of the volume of excursion under a GRF prior by simulating at few
well-chosen points and predicting over fine designs.

In the framework developed in section [3.2] the random closed set ' nat-
urally defines a distribution for the excursion set, thus p(I") can be regarded
as a random variable. In the specific case of a Gaussian prior, the expected
volume of excursion can be computed analytically by integrating the cover-
age function, however here we use Monte Carlo simulations to work out the
posterior distribution of this volume (see|Vazquez and Martinez, 2006; |Adler,
2000). In practice, a good estimation of the volume requires a discretization
of the random closed set on a fine design. However, already in moderate di-
mensions (2 < d < 10), a discretization of the domain fine enough to achieve
good approximations of the volume might require simulating at a prohibitive
number of points. Here we show how the proposed approach mitigates this
problem on a six-dimensional example.
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We consider the analytical test function h(x) = — log(— Hartmang(x)),
where Hartmang is the six-dimensional Hartman function (see |Jones et al.,
1998) defined on D = [0,1]® and we are interested in estimating the volume
distribution of the excursion set I'* = {x € D : h(x) > t}, t = 6. The
threshold ¢ = 6 is chosen to obtain a true volume of excursion of around 3%,
thus rendering the excursion region a moderately small set.

A GRF model is built with a Gaussian prior Z with a tensor product
Matérn covariance kernel (v = 5/2). The parameters of the covariance kernel
are estimated by maximum likelihood from n = 60 observations of h; the
same observations are used to compute the conditional random field. We
consider the discretization G = {uy,...,u,.} C D with » = 10,000 and
uy,...,u, Sobol’ points in [0, 1]®. The conditional field Z is simulated 10,000
times on G and consequently N = 10,000 realizations of the trace of I' over
G are obtained.

The distribution of the volume of excursion can be estimated by comput-
ing for each realization the proportion of points where the field takes values
above the threshold. While this procedure is acceptable for realizations com-
ing from full design simulations, it introduces a bias when it is applied to
quasi-realizations of the excursion set. In fact, the paths of the predicted
field are always smoother than the paths of full design simulations due to the
linear nature of the predictor (Scheuerer, 2009). This introduces a system-
atic bias on the volume of excursion for each realization because subsets of
the excursion sets induced by small rougher variations of the true Gaussian
field may not be intercepted by Z. The effect changes the mean of the dis-
tribution, but it does not seem to influence the variance of the distribution.
In the present setting we observed that the mean volume of excursion was
consistently underestimated. A modification of the classic estimate of the
distribution of the volume is here considered. Given a discretization design
G, of size r, the distribution of the volume of excursion is obtained with the
following steps: first the mean volume of excursion is estimated by integrat-
ing the coverage function of I" over G; second the distribution is obtained by
computing the volume of excursion for each quasi-realization of the excursion
set; finally the distribution is centered in the mean value obtained with the
first step. Figure shows the absolute error on the mean between the full
design simulation and the approximate simulations with and without bias
correction. The optimal simulation points are computed with Algorithm B
because for a large number of points it achieves results very similar to Al-
gorithm A but at the same time the optimized points are much cheaper to
compute, as shown in the previous sections.

Denote with Vi, = pu(F(Ey0000)) the random variable representing the
volume of the excursion set obtained with full design simulations and V,,, =
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Figure 3.9: Analysis of volume distributions.
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p(C(E,,)) the recentered random variable representing the volume of the re-
constructed set obtained from simulations at m points. We compare the dis-
tribution of Vy,y; and V,, for different values of m with two-sample Kolmogorov-
Smirnov tests. Figure |3.9b| shows the values of the Kolmogorov-Smirnov
statistic for testing the null hypothesis Hy : V,;, = Vo, for m = 50,75, 100,
125,150. V,, is computed both with simulation points optimized with Algo-
rithm B and with points from a space filling Sobol’ sequence. The horizontal
line is the rejection value at level 0.05. With confidence level 0.05, the distri-
bution of V,, is not distinguishable from the distribution of Vi, if m > 125
with optimized points and if m > 150 with Sobol’ points.

The estimate of the distribution of the volume of excursion is much faster
with quasi-realizations from simulations at few optimal locations. In fact, the
computational costs are significantly reduced by interpolating simulations:
the CPU time needed to simulate on the full 10,000 points design is 60, 293
seconds while the total time for the optimization of m = 150 points, the
simulation on those points and the prediction over the full design is 575
seconds. Both times were computed on the cluster at the University of Bern
with Intel Xeon E5649 2.53-GHz CPUs with 4 GB RAM.
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Chapter 4

Estimating orthant
probabilities of high
dimensional (Gaussian vectors
with an application to set
estimation

This chapter is based on the article|Azzimonti and Ginsbourger| (2016), cur-
rently under revision. A preprint is available at hal-01289126.

4.1 Introduction

Conservative estimates are a technique to estimate excursion sets of expen-
sive to evaluate functions that aims at controlling the error of the estimate
with a probabilistic condition. In chapter [2| we revisited this concept in a
general framework for random closed sets, see, e.g. Definition [14] section [2.3]
In Section we specialized this concept to excursion set estimation with
Gaussian random field (GRF) priors. In this chapter we focus on the com-
putational challenges brought forward by this estimate and we introduce an
algorithm to efficiently compute the orthant probability central to the esti-
mation procedure. Let us briefly recall the framework. We are interested in
estimating the set

M ={zreD: f(z) <t}

where t € R, D € R? and f : D — R is a continuous function which is
expensive-to-evaluate. We consider the situation where only n > 1 evalua-
tions of the function f are given at points X,, = {z1,...,2,} and we denote
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them with £, = (f(x1),..., f(z,)) € R™
In a Bayesian framework we consider f as one realization of a GRF
(Z4)zep with prior mean function m and covariance kernel 8. As detailed in
Section [2.4] a prior distribution of the excursion set is obtained by thresh-
olding 7, obtaining
'={zxeD:Z <t}

Letting Zx, denote the random vector (Z,,, ..., Z,, ), we can then condition
Z on the observations f,, and obtain a posterior distribution for the field Z, |
Zx, = f,. This gives rise to a posterior distribution for I'. As in Section
we define as conservative estimate for I'*, a solution of the optimization
problem

CE.(T') € arg %neacx{u([() P (K CT) > a}, (4.1)

where (4 is a finite measure on D, P,(-) = P(- | Zx, = f,) and €, is a
parametric family of sets where the optimization procedure is conducted.
Conservative estimates were introduced in [Bolin and Lindgren (2015) for
Gaussian Markov random fields however for general Gaussian process models
they lead to two major computational issues.

First of all we need to select a family of sets to use for the optimization
procedure in Equation . Here we follow Bolin and Lindgren| (2015)
and we select the Vorob’ev quantiles @),,p € [0,1] as family of sets. See
also Section [2.4] and Section for details on this parametric family and
Chapter 5] for a more detailed study on this choice. Among the advantages
of the Vorob’ev family the fact that it is parametrized by one real number p
makes the optimization straightforward. The conservative estimate is then
the result of the optimization procedure in Equation . In order to solve
this maximization we propose in Section [4.4] a dichotomy algorithm.

The second computational issue is central to this chapter. In fact, for each
candidate @) we need to evaluate P = Pn(Q C {Z, < t}), the probability
that @ is inside the excursion. This quantity can be approximated with a
high dimensional Gaussian orthant probability. If the set () is discretized
over the points cy, ..., c,., then

PQ C{Z <) = Pu(Zey <ty 2o < 1). (4.2)

In this chapter we introduce an algorithm to estimate the probability in
Equation efficiently, especially when r is high, e.g. r > 500.

The problem of estimating Gaussian orthant probabilities is more general
than the setup just presented. In the remainder of the chapter we consider
the random vector X = (X7,..., X,;) and we assume that its distribution is
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Gaussian, X ~ Ny(m, ), d > 1. We are interested in estimating, for any
fixed t € R, the following probability

7(t) = PX < (t,...,1)). (4.3)

The general problem of evaluating m(¢), which, for a full rank matrix ¥, is
the integral of the multivariate normal density ¢(-; m, X) over the one-sided
d-dimensional rectangle (—oo,t]?, has been extensively studied in moderate
dimensions with many different methods. In low dimensions tables are avail-
able (see, e.g., |(Owen (1956)) for d = 2). Furthermore, when the dimension is
smaller than 20, there exist methods (see, e.g., Abrahamson| (1964)), Moran
(1984) and Miwa et al.| (2003])) exploiting the specific orthant structure of
the probability in Equation . Currently, however, most of the litera-
ture uses numerical integration techniques to approximate the quantity. In
moderate dimensions fast reliable methods are established to approximate
7(t) (see, e.g. |Cox and Wermuth (1991))) and more recently the methods
introduced in Schervish| (1984); Genz (1992) and Hajivassiliou et al. (1996)
(see also (Genz and Bretz| (2002), Ridgway| (2016)), Botevi (2017) and the
book |Genz and Bretz (2009) for a broader overview) provide state-of-the-
art algorithms when d < 100. Those techniques rely on fast quasi Monte
Carlo (@MC) methods and are very accurate for moderate dimensions. Re-
cently, the introduction of component-by-component randomly shifted lattice
rules decreased the rate of convergence qMC based methods, see, e.g., Dick
et al.| (2013); |[Kuo and Sloan (2005); Nichols and Kuo| (2014]) and references
therein. However, when d is larger than 1000 the current implementations of
such methods are not computationally efficient or become intractable. Com-
monly used alternative methods are standard Monte Carlo (MC) techniques
(see Tong (2012), Chapter 8 for an extensive review), for which getting ac-
curate estimates can be computationally prohibitive.

We propose here a two step method that exploits the power of qMC
quadratures and the flexibility of stochastic simulation. We rely on the fol-
lowing equivalent formulation.

7(t) =1— P(max X > t),

where max X denotes max;—; 4 X;. In the following we fix ¢, we denote
p=P(maxX >t)and F = {1,...,d}.

The central idea here is using a moderate dimensional subvector of X to
approximate p and then correcting bias by Monte Carlo integration. Let us
fix ¢ < d and define the active dimensions as E, = {i,...,i,} C E. Let
us further denote with X9 the ¢ dimensional vector X9 = (X; X;,) and
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with X~ the (d — ¢) dimensional vector X9 = (X;),cp\g,- Then,

p = PmaxX >t) =p; + (1 — pg) Ry, (4.4)
Py = P(max X7 > 1),
R, = P(maxX™? >t | max X7 < t).

The quantity p, is always smaller or equal than p as £, C {1,...,d}. Select-
ing a non-degenerate vector X9, we propose to estimate p, with the QRSVN
algorithm (Genz et al. 2012) which is efficient as we choose a number of
active dimensions ¢ much smaller than d.

In |Chevalier (2013)), Chapter 6, the similar problem of approximating the
non-exceedance probability of the maximum of a GRF Z based on a few well-
selected points is presented. In that setting each component of X stands for
the value of Z at one point of a discretization of the index set. Active dimen-
sions (i.e. the well-selected points) were chosen by numerically maximizing
Dq, and the remainder was not accounted for. Here a full optimization of the
active dimensions is not required as we, instead, exploit the decomposition in
Equation to correct the bias introduced by p,. Nonetheless the number
of active dimensions and the dimensions themselves play an important role
in the algorithm as explained in Section [4.2.1] In order to correct the bias
of p, we propose to estimate the reminder R, with a standard MC technique
or with a novel asymmetric nested Monte Carlo (anMC) algorithm. The
anMC technique draws samples by taking into account the computational
cost, resulting in a more efficient estimator.

In the remainder of the chapter, we propose an unbiased estimator for
p and we compute its variance in Section In Section [4£.3] we introduce
the anMC algorithm in the more general setting of estimating expectations
depending on two vectors with different simulation costs. It is then explic-
itly applied to efficiently estimate R,. Finally, in Section .4, we show an
implementation of this method to compute conservative estimates of excur-
sion sets for expensive to evaluate functions under non-necessarily Markovian

GRF priors. All proofs are in Appendix

4.2 An unbiased estimator for p

Equation (4.4)) gives us a decomposition that can be exploited to obtain an
unbiased estimator for p. In the following proposition we define the estimator
and we compute its variance.

Proposition 4. Consider p, and I/%\q, independent unbiased estimators of p,
and R, respectively, then p = p, + (1 — p,) R, is an unbiased estimator for p.
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Moreover its variance 1s

Var(p) = (1 — Rq)QVar(ﬁq) +(1-— pq)QVar(fi\q) + Var(p,) Var(]/%\q). (4.5)

In what follows we present options for p, and 1/?; that form an efficient
computational strategy:.

4.2.1 Quasi Monte Carlo estimator for p,

The quantity p, can also be computed as
pqzl_P(qutQ)7

where ¢, denotes the ¢ dimensional vector (¢,...,¢). The approximation of
pq thus requires only an evaluation of the c.d.f. of X9. Since we assume that
g < d, then the dimension is low and we propose to estimate p, with the
estimator p, that uses the method QRSVN introduced in |Genz (1992)), Ha-
jivassiliou et al. (1996) and refined in |Genz and Bretz (2009). This method
computes a randomized quasi Monte Carlo integration of the normal den-
sity. In particular we consider here the implementation of QRSVN with the
variable reordering described in |Genz and Bretz| (2009, Section 4.1.3). The
estimate’s error is approximated with the variance of the randomized integra-
tion. The quantity @G obtained with this procedure is an unbiased estimator
of p,, see |Genz and Bretz| (2009)).

In order to compute @]G we need to choose ¢, the number of active di-
mensions, and then select the dimensions themselves. The decomposition of
p in Equation (4.4) does not require optimal choices for those parameters
as the remainder R, is estimated afterwards. Here we propose two heuristic
techniques to make these choices in practice. Let us recall that the decompo-
sition in Equation leads to computational savings if we can approximate
most of p with p, for a small g. On the other hand a large number of active
dimensions allows to intercept most of the probability mass in p. Here we
adopt a heuristic approach and we select ¢ by sequentially increasing the
number of active dimensions until the relative change of @JG is less than the
estimate’s error. We detail the procedure in Algorithm [I]

The choice of ¢ also influences the behaviour of the estimator for R,. This
aspect is discussed in more details in the next section. Let us now consider
q fixed and let us study how to select the active dimensions in Algorithm

The choice of active dimensions F, plays an important role in the ap-
proximation of p because it determines the error p, — p. Since this error
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Algorithm 1: Select ¢, active dimensions and compute pAqG.

Input : g, small initial ¢, e.g. go = 10, and gsep the increment of ¢
Output: ¢, ﬁ?

Compute p; and save err(py ) = 3,/ Var(pS) ;

initialize k = 0;
repeat
increment k =k + 1 ;
Qe = qo + Kstep ;
choose g, active dimensions, compute p¢ and err(pg ) ;

‘qu qu 1

) B ;
until A(pY) < err(

0);
q = qr and p," =S ;

compute A(pS

]

is always negative, we implement procedures to select E, that exploit this
property. Selecting E, such that P(max X9 > ¢) is numerically maximized,
as in (Chevalier (2013), optimally reduces the bias of p, as an estimator for p.
Here we are not interested in a fully fledged optimization of this quantity as
the residual bias is removed with the subsequent estimation of R,, therefore,
we exploit fast heuristics methods.

The basic tool used here is the excursion probability function:

pe(i) = P(X; > 1) = @ (rl\l/z;t) ,

where ® is the standard normal c.d.f. The function p; is widely used in spatial
statistics (see, e.g. |Bolin and Lindgren, 2015) and Bayesian optimization
(see, e.g. Kushner| [1964; Bect et al., [2012). In our setting it can be used to
identify the dimensions where we have a high probability of exceeding the
threshold. The indices that realize a high value for p, enable the identification
of dimensions that actively contribute to the maximum. We propose the
following methods.

Method A: sample ¢ indices with probability given by p;.

Method B: sample ¢ indices with probability given by p;(1 — p).

These methods require only one evaluation of the normal c.d.f. at each

mift

element of the vector ( —> , and are thus very fast. Both methods
i) 1,....d

were already introduced for sequeﬁtial evaluations of expensive to evaluate
functions, see, e.g., Chevalier et al.| (2014d]).
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Figure 4.1: Distribution of @G estimates obtained with different choices of
active dimensions.

Figure shows a comparison of the estimates p, obtained with different
methods to select E,. We consider 30 replications of an experiment where
ﬁqG is used to approximate p. The dimension of the vector X is d = 1000, the
threshold is fixed at ¢t = 11. The vector X is obtained from a discretization of
a six dimensional GRF on the first 1000 points of the Sobol” sequence (Bratley
and Fox| 1988). The GRF has a tensor product Matérn (v = 5/2) covari-
ance kernel and a non constant mean function m. The covariance kernel’s
hyperparameters are fixed as § = [0.5,0.5,1,1,0.5,0.5]7 and 02 = 8, see Ras-
mussen and Williams| (2006), Chapter 4, for details on the parametrization.
The two methods clearly outperform a random choice of active dimensions.

Methods A and B work well for selecting active dimensions when the mean
vector m and the diagonal of the covariance matrix are anisotropic. In this
situation both methods selects dimensions that are a good trade-off between
a high variance and mean close to t. These dimensions usually contribute
strongly to the total probability.

If the random vector X is a GRF discretized over a set of points Egpa; =
{e1,...,eq} C R’ then we can exploit this information when choosing E,.
Let us consider the sequence of vectors (8;);=1,. 4, defined for each j as

J
8; = [ [ dist(es, Bgpat) (G=1,....09)
k=1

where dist(e;, , Fspat) denotes the d-dimensional vector of Euclidean distances
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between e;, and each point in Eg,: and {e;,...,e; } are the points cor-
responding to the selected active dimensions F,. Methods A and B can
then be adjusted by sampling the jth active dimension with probabilities
given by ptugﬁ and p;(1— pt)”g—jH respectively, where the product is intended
component-wise.

In the example presented, the estimator @G gives an inexpensive approx-
imation of most of the probability mass with as few as 40 active dimensions,
however it is intrinsically biased as an estimator of p. The remainder R,
enables to correct the bias of this first step.

4.2.2 Monte Carlo estimator for R,

Debiasing @G as an estimator of p can be done at the price of estimating
Ry =P (maxX >t | maxX? <t).

There is no closed formula for R, so it is approximated here via MC. Since
X is Gaussian then so are X9, X% and X9 | X7 = 27, for any deterministic
vector z9 € RY.

In order to estimate R, = P (max X 1>t|X;, <t,... , X, < t), we

first generate n realizations x{,...,x% of X? such that X? < t,. Second,
we compute the mean and covariance matrix of X™¢ conditional on each
realization x}, [ =1,...,n with the following formulas

m-X — m¢ + Efq,q(zq)fl(le —mY), noald — g Efq,q(zq)flzqﬁq’

(4.6)
where m?, ¥7 and m~?, 277 are the mean vector and covariance matrix of X9
and X7 respectively, X797 is the cross-covariance between the dimensions

E\E, and E,;, X%~ % s the transpose of ¥~%%. Given the mean and covariance

matrix conditional on each sample x}, we can easily draw a realization y, ala

from X7 | X9 = x{. Once n couples (x}, yl_q|q),l =1,...,n are drawn from

the respective distributions, an estimator for R, is finally obtained as follows

n
TR o
q - E ; maxy;q|q>t'

The realizations of X9 truncated below ¢, are obtained with a crude re-
jection sampling algorithm. The cost of this step is driven by the number
of samples of X9 rejected and it can thus be very high for small acceptance
probabilities. The accepted samples satisfy the condition X? < ¢, thus we
have that the acceptance probability is P(X¢ < t,) = 1—p,. This shows that
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Figure 4.2: Estimate of p with p“M for different values of ¢. A full MC
estimation of the same quantity is shown for comparison

the choice of ¢ and of the active dimensions plays an important role. If p, is
much smaller than p, then the rejection sampler will have a high acceptance
probability, however the overall method will be less efficient as most of the
probability is estimated in the remainder. On the other hand a choice of ¢
and of active dimensions that leads to a value p, very close to p will also lead
to a slower rejection sampler as the acceptance probability would be small.

The second part of the procedure for ]/%;M , drawing samples from the
distribution of X7 | X9 = x7, is instead less dependent on ¢ and generally
less expensive than the fist step. The mean vector and covariance matrix
computations requires only linear algebra operations as described in Equa-
tion and realizations of X77 | X9 = x{ can be generated by sampling
from a multivariate normal distribution.

The difference in computational cost between the first step and the second
step of the MC procedure can be exploited to obtain more efficient estimators.
In Section we present a new MC procedure that at a fixed computational
cost reduces the variance of the estimate.

We conclude the section with a small numerical comparison. Let us de-
note with pM€ the unbiased estimator of p defined as

R R S L

Figure shows the box plots of 30 replications of an experiment where
p is approximated with p®MC for different choices of ¢q. The set-up is the
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same as in Figure [4.1] The core of the probability is approximated with

[);G and the active dimensions are chosen with Method 1. The residual R,

is estimated with EMC. The remainder allows to correct the bias of pAqG
even with a small number of active dimensions. As comparison the results
of the same experiment with a full MC estimator for p are also shown. For
all experiments and for each method the number of samples was chosen in
order to have approximately the same computational cost. The estimator

pUMC exploits an almost exact method to estimate the largest part of the

—~MC
probability p, therefore the MC estimator R,  has less variance than a full
MC procedure for a fixed computational cost.

4.3 Estimation of the residual with asymmet-
ric nested Monte Carlo

—~MC

In section , R, was estimated by R, . There exists many methods to
reduce the variance of such estimators, including antithetic variables (Ham-
mersley and Morton, [1956), importance sampling (Kahn, 1950; |Kahn and
Marshall, [1953) or conditional Monte Carlo (Hammersley, [1956) among many
others, see, Lemieux (2009), Chapter 4, and Robert and Casella (2013),
Chapter 4, for a broader overview. Here we propose a so-called asymmetric
nested Monte Carlo (anMC) estimator for R, that reduces the variance by a
parsimonious multiple use of conditioning data.

The idea is to use an asymmetric sampling scheme that assigns the avail-
able computational resources by taking into account also the actual cost of
simulating each component. This type of asymmetric sampling scheme was
introduced in the particular case of comparing the performance of stopping
times for a real-valued stochastic process in discrete times in [Dickmann and
Schweizer (2016)). Here we introduce this procedure in a general fashion and

—~MC

then we detail how to use it as variance reduction for R, . Consider two
random elements W € W and Y € ), defined on the same probability space
and not independent. We are interested in estimating

G=E[gW,Y)], (4.7)

where g : W x )Y — R is a measurable function, assumed integrable with
respect to (W, Y')’s probability measure. Let us also assume that it is possible
to draw realizations from the marginal distribution of W, Y and from the
conditional distribution of Y | W = wj, for each w; sample of W. We can then
obtain realizations (w;,y;), i = 1,...,n of (W,Y) by simulating w; from the
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distribution of W and then y; from the conditional distribution Y | W = w;,
leading to:

~ 1
- ;g( vi) (4.8)
This MC estimator can actually be seen as the result of a two step nested
MC procedure where, for each realization w;, one inner sample y; is drawn

from Y | W = w;. Note that the estimator EMC used in Section is
a particular case of Equation (4.8) with W = X7 | X9 < ¢, ¥V = X1
and ¢(z,y) = lmaxy>t- As noted in Section , drawing realizations of
X9 ] X? < t, has a higher computational cost than simulating X~ because
rejection sampling is required. More generally, if we denote with Cy (n) the
cost of n realizations of W and with Cyw(m;w;) the cost of drawing m
conditional simulations from Y | W = w;, then sampling several conditional
realizations for a given w; might bring savings if Cyy (1) is much higher than

Cy‘W(l; wl)

In the proposed asymmetric sampling scheme for each realization w; we
sample m realizations y; 1, . . ., Yim from Y | W = w;. Assume that we sample
with this scheme the couples (w;,v;;), i =1,...,n, j =1,...,m, then we

can write the following estimator for G

~ 1 &
G=— Wiy Yij)-
. ; ; 9(wi, Yi7)

For a fixed number of samples, the estimator G may have a higher variance
than G due to the dependency between pairs sharing the same replicate of W.
However, in many cases, it may be more relevant to focus on obtaining good
estimates within a fixed time. If we set the computational budget instead of
the number of samples and if Cy |y is smaller than Cy, then anMC may lead
to an overall variance reduction thanks to an increased number of simulated
pairs. We show in the remainder of this section that, in the case of an affine
cost function Cyy, there exists an optimal number of inner simulations m

diminishing the variance of G below that of G. Assume

Cw(n) = ¢y + cn and, for each sample w;

Cy|W(m; wi) = Cy‘W(m) =+ 5771,,

with ¢, ¢, a, 8 € RT dependent on the simulators chosen for W and Y | W.
The second equation entails that the cost of conditional simulations does not
depend on the conditioning value.

If W=X7|X9<t,Y =X"%as in Section[4.2] then Y | W is Gaussian
with mean and covariance matrix described in Equation . In this case
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the cost for sampling Y | W is affine, with « describing pre-calculation times
and 8 random number generation and algebraic operations.

Denote with Wy, ..., W, replications of W. For each W; we consider the
conditional distribution Y | W; and Yi,,...,Y,,; replications from it. We
study here the properties of G when the total simulation budget, denoted
Ciot(n, m) is fixed to Cg € RT. First observe that

Ciot(n,m) = co + n(c+ a+ pm).
Then we can derive the number of replications of W as a function of m:

Chx — Co

New(m) = T Bm

The following proposition shows a decomposition of Var(G) that is useful
to find the optimal number of simulations m* under a fixed simulation budget
Ciot (n7 m) = Cix.

Proposition 5. Consider n independent copies Wy, ..., W,, of W and, for
each Wi, m copies Y; ; =Y; | W, j =1,...,m, independent conditionally on
W;. Then,

m— 1

Var(G) = %Var(g(Wh Yi1)) —

E[Var(g(W1,Y11) | Wi)].  (4.9)

nm

Corollary 2. Under the same assumptions, G has minimal variance when

- (a+c¢)B
B(A=B)’

where A = Var(g(W1,Y1,1)) and B = E[Var(g(W1,Y11) | Wi)]. Moreover
denote with e = m — |m], then the optimal integer is m* = |m]| if

. (2m +1) —2 4(m)? +1 (4.10)

or m* = [m] otherwise.

Proposition 6. Under the same assumptions, if m* > Wﬁ% then

~ o~

Var(G) = Var(G) [1 — n], where n € (0,1).
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4.3.1 Algorithmic considerations

In order to compute m*, we need to know A = Var(g(W;,Y1,)) and B =
E[Var(g(Wl, Yi1) | Wl)} and the constants ¢, ¢, a and 5. A and B depend
on the specific problem at hand and are usually not known in advance. Part
of the total computational budget is then needed to estimate A and B. This
preliminary phase is also used to estimate the system dependent constants
o, ¢, @« and (. Algorithm [2| reports the pseudo-code for anMC.

4.3.2 Estimate p with p&asMC

The anMC algorithm can be used to reduce the variance compared to the MC
estimate proposed in Section . In fact, let us consider W = X? | X4 <'t,
and Y = X7%  We have that W is expensive to simulate as it requires
rejection sampling while, for a given sample w;, Y | W = w; is Gaussian with
mean and covariance matrix described in Equation . In many situations,
it is much cheaper to obtain samples from Y | W = w; than from W.
Moreover, as noted earlier, R, can be written in the form of Equation (4.7))
with g(z,y) = Lmaxy>t- We can then use Algorithm to calculate m*, sample
n* realizations wy, . . ., wy,~ of W and for each realization w; obtain m* samples
Yits-- s Yime of Y | W =w,;. Then we can estimate R, via

n* m*
—~anMC 1
Rq - nFm* § § ]-maxyi,j>t'

i=1 j=1

. . . —-anMC ~C . . .
Finally plugging in R, and p,~ in Equation (4.4), we obtain

- Y —~anMC
ﬁGanMC _ qu + (1 _ qu)Rq .

Figure shows a comparison of results using 30 replications of the
experiment presented in Section[4.2.2] Results obtained with a MC estimator
are shown for comparison.

While the simulations of all experiments were obtained under the con-
straint of a fixed computational cost, the actual time to obtain the simula-
tions was not exactly the same. In order to compare the methods in more
general settings we further rely on the notion of efficiency. For an estimator
P, we define the efficiency (Lemieux, 2009, Section 4.2) as

1
Var(p) time[p]’

where time[p] denotes the computational time of the estimator p.

Eff[p] =
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Algorithm 2: Asymmetric nested Monte Carlo.
Input : my, my, Yw, Yy, Ywy, g, Ciot
Output: G
Part 0: estimate cg,c, 5, « ;
initialize compute the conditional covariance Yy |y and initialize ng, mo;
Part 1: for ¢ < 1 to No do

estimate A, B simulate w; from the distribution of W;
compute the conditional mean my |y —y,;
draw mg simulations v; 1, ..., Yim, from the conditional
distribution Y | W = wy;
estimate E [g(W,Y) | W = w;] with E; = Zj L 9(Wi, Y j);
esNtimate Var (g(W,Y) | W = w;) with
Vi = o 210 (9(wiy yig) — B

a+c no \7 " .
compute m = ST Tz M asin Corollary [2| and
no 1 "O
n = NCﬁ ,
part 2: for i <— 1 to n* do
compute G if ¢ S no then

for j < 1 tom* do

if 7 < mg then

‘ use previously calculated EZ and XN/i;
else

simulate y; ; from the distribution Y | W = w;;
m*

j=1 g(wia yi,j);

compute F; = Wt*

end
end
else
simulate w; from the distribution of W ;
compute the conditional mean my- |y —,,;
for j + 1 to m* do
‘ simulate y; ; from the conditional distribution Y | W = w;;
end
compute E; = - 27:1 9(wi, Yij);
end

end

estimate I [g(W,Y)] with G = L S E;
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Figure [4.4| shows a comparison of the efficiency of pS™C and p&"MC€ with

a full Monte Carlo estimator. With as few as ¢ = 50 active dimensions
we obtain an increase in efficiency of around 10 times on average over the
30 replications of the experiment with the estimator pMC¢. The estimator

pYaMC ghows a higher median efficiency than the others for all ¢ > 20.

4.3.3 Numerical studies

In this section we study the efficiency of the anMC method compared with
a standard MC method for different choices of m. Here we do not select the
optimal m* defined in Corollary [2} but we study the efficiency as a function
of m. In many practical situations, even if part 1 of Algorithm [2] does not
render the optimal m*, the anMC algorithm is still more efficient than a
standard MC if the chosen m is close to m*.

We consider a similar setup to the experiment presented in Section [.2.1]
Here we start from a GRF with tensor product Matérn (v = 5/2) and a
non constant mean function m different from the example in Section [4.2.1]
The hyperparameters are fixed as § = [0.5,0.5,1,1,0.5,0.5]7 and o2 = 8.
The GRF is then discretized over the first d points of the Sobol sequence to
obtain the vector X. We are interested in 1 — p = P(X < t), with ¢t = 5.
We proceed by estimating p with pS™C¢ and p&anMC for different choices of
m. The initial part pAqG is kept fixed with a chosen ¢ and we compare the
efficiency in the estimation of Z/%;. The number of outer simulations in the
anMC algorithm is kept fixed to n = 10,000 and we only vary m.

Let us first look at this problem in the case d = 1000. The median
estimated value for p is p = 0.9644. Most of the probability is estimated
with p,, in fact §,% = 0.9636. Figure shows Eff[p] computed with the
overall variance of p. A choice of m = 10 leads to a median increase in
efficiency of 73% compared to the MC case. In this example, the probability
to be estimated is close to 1. The probability p, is also close to 1 and thus
the acceptance probability for I/%\q is low. In this situation the anMC method
is able to exploit the difference in computational costs to provide a more
efficient estimator for R,.

In order to study the effect of the acceptance probability on the method’s
efficiency we change the threshold in the previous example to ¢ = 7.5 by
keeping the remaining parameters fixed. The value of p is smaller, p =
0.1178. The number of active dimensions ¢, chosen with Algorithm [1] is
smaller (¢ = 90) as the probability mass is smaller. The value of p, (p, =
0.1172) is much smaller than in the previous case and this leads to a higher

acceptance probability for f%\q. Figure shows efficiency of the method
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Figure 4.5: Efficiency of p&*"MC estimator versus the number of inner simu-

lations m. For each m the experiment is reproduced 30 times.

as a function of m in this case. Here the anMC method does not bring
any gain over the MC method as the the ratio between the cost of rejection
sampling and the conditional simulations in R, is close to one. In this case the
estimated m* (1.91) is smaller than the minimum threshold of Proposition [6]
that guarantees a more efficient anMC algorithm.

4.3.4 Comparison with state of the art

In this section we compare the GMC and GanMC methods introduced here
with available state-of-the-art algorithms to estimate 7(¢). The two meth-
ods introduced in the previous section are implemented in the R package
ConservativeEstimates| currently available on GitHub. We compare this
implementation with:

QRSVN an implementation of Genz method (Genz and Bretz, 2009)) in the
R package mvtnorm, function pmvnorm;

GHK an implementation of GHK method (Geweke, |1991; Hajivassiliou and
McFadden) [1998) in the R package bayesm, function ghkvec;

MET R implementation of the minimax-exponentially-tilted (MET) method
(Botev,, 2017)) in the package TruncatedNormal, function mvNcdf;.


http://www.github.com/dazzimonti/ConservativeEstimates
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Figure 4.6: Efficiency of the probability estimator versus the dimension d.
For each d the experiment is reproduced 15 times.

We consider the example introduced in the previous section and we in-
crease the dimension of the problem d by considering finer discretizations of
the underlying GRF. For example the vector X of dimension d = 100 is ob-
tained from the 6-dimensional GRF discretized on the first 100 points of the
6-dimensional Sobol” sequence. As the dimension d increases the probability
7(t) changes, thus giving us the possibility of exploring different setups.

Figure presents a comparison of the estimator’s efficiency for the
problem of computing 7(t), with ¢ = 5. This is a low probability setup, as
the range of 7(t) varies between 0.66155 for d = 100 and 0.00124 for d =
7000. The most efficient algorithm is the QRSVN Genz method, however this
implementation does not scale to dimensions higher than 1000. The GMC
algorithm is the second most efficient in all dimensions except d = 2000 where
it is the most efficient. The GanMC algorithm is instead the most efficient
when d is greater than 2000. This effect is explained by the efficiency gains

brought by f{\qanMC when the rejection sampler is expensive. If d > 2000, the
probability P(X? < t,) is always smaller than 0.01, thus the rejection sampler
becomes much more expensive than the conditional sampler in the estimation
of the remainder R,. Algorithms GHK and MET allowed estimates until
dimension d = 5000 and d = 4000 respectively before running in memory
overflows. The GanMC algorithm is 45 times more efficient than the GHK
algorithm for d = 5000 and 3.8 times more efficient than MET for d = 4000.
It is also 5 times more efficient than GMC for d = 7000.
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Figure [4.6b] compares the estimators’ efficiency for the computation of
7(t) with ¢ = 7.5. As partially observed in the previous section this is a
high probability setup as the median estimate of m(t) ranges from 0.99685,
for d = 100, to 0.67436, for d = 7000. Also in this case the QRSVN is
the most efficient algorithm in low dimensions. The GMC and the GanMC
algorithms however are the most efficient for all dimensions higher than 2000.
The GanMC algorithm is 4 times more efficient than the MET for d =

3000 and 5 times more efficient than GHK for d = 5000. In this setup the
—~anMC
computational cost of the rejection sampler in R, is not much higher

than the conditional sampler. In fact, the acceptance probability of the
rejection sampler is always higher than 0.6. This is the main reason why the
GMC algorithm proves to be more efficient for most dimensions, in fact for
d = 5000 it is 5.9 times more efficient than GanMC and for d = 7000 the
ratio is 1.3. All computations were carried on the cluster of the University
of Bern on machines with Intel Xeon CPU 2.40GHz and 16 GB RAM.

4.4 Application: efficient computation of con-
servative estimates

In this section we show that the GanMC method is a key step for the com-
putation of conservative excursion set estimates relying on GRF models. We
consider the conservative setup introduced in Section [4.1] and we remind here
that a conservative estimate CE, (I") is a solution of the optimization problem
in Equation , recalled below for convenience.

CE,(I") € arg ?&X{M(K) P (K CT') > a}l.

As explained in Section we select the family of Vorob’ev quantiles @),
as €,. Algorithm |3 details the steps used to obtain a conservative estimate
in this framework.

At each iteration of the while loop in the algorithm we need to compute
Poext = P, (Q C {Z, < t}), the probability that @ is inside the excursion. As
shown in Equation , this quantity can be estimated as a r-dimensional
orthant probability, where r is the size of the discretization. The use of
pe*MC o approximate 1 — P,(Q, C {Z, < t}) allows discretizations of the
Vorob’ev quantiles at resolutions that seemed out of reach otherwise.

We apply Algorithm [3] to a two dimensional artificial test case. We con-
sider as function f a realization of a Gaussian field (Z,),ep, where D C R?
is the unit square. We consider two parametrizations for the prior covariance
kernel: a tensor product Matérn covariance kernel with v = 5/2, variance
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Algorithm 3: Conservative estimates algorithm.
Input

e my, &, conditional mean and covariance of Z | Z,, = fi;
e fine discretization design G;

Output: Conservative estimate for I'* at level «.

Part 0: sort the points in G in decreasing order of pr, with indices
Gs ={i1,. . im};
compute ig, i find the highest index i7 such that Hle pri(Gs)lij] > «;

find the highest index ip such that prx(Gs)[ig] > «;
evaluate mean and covariance matrix my(ig) and X

Part 1: initialize iL = ’iT, ’iR = iB )

Initialize dichotomy compute Pr = P(Q),, C{Z, <1}), Pr= Pu(Q),, C {Z; <t});
Part 22 while Pg < o and (ig —iz) > 2 do

optimization next evaluation 4next = %,
compute Pncxt = Pk(@pinext {Zx < t})v
if P,..; > o then
‘ iy, = inexta IR = ZR7
else

iBaiB7

‘ Z.L - iL, iR - inext;
end

end

0? = 0.5 and range parameters 6 = [0.4,0.2] and a Gaussian covariance ker-
nel with variance 02 = 0.5 and range parameters ¢ = [0.2,0.4]. In both cases
we assume a prior constant mean function. We are interested in the set I'*
with ¢ = 1. For both cases we consider n = 15 evaluations of f at the same
points chosen by Latin hypercube sampling. Figures and show the
conservative estimate at level 95% compared with the true excursion, the
Vorob’ev expectation and the 0.95-quantile for the Matérn and the Gaussian
kernel. In both cases we see that the 0.95-quantile does not guarantee that
the estimate is included in the true excursion with probability 0.95. The
conservative estimates instead are guaranteed to be inside the true excursion
with probability a = 0.95. They correspond to Vorob’ev quantiles at levels
0.998 and 0.993 for Matérn and Gaussian respectively. The conservative esti-
mates were obtained with a 100 x 100 discretization of the unit square. Such
high resolution grids lead to very high dimensional probability calculations.
In fact, the dichotomy algorithm required 11 computations of the probability
1 - Pu(Qy C {Z, < t}) for each case. The discretization’s size for (), varied
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Conservative estimate at 95% (Matern kernel) Conservative estimate at 95% (Gauss kernel)

@ Conservative estimate (95%) (] Conservative estimate (95%)
— 0.95-level set — 0.95-level set

- Vorob'ev expectation == Vorob'ev expectation
-—- True excursion -—-=- True excursion

(a) Realization obtained with a Matérn  (b) Realization obtained with Gaussian
kernel. kernel.

Figure 4.7: Conservative estimates at 95% (white region) for the excursion
below ¢ = 1. Both models are based on 15 evaluations of the function (black
triangles). The true excursion level is plotted in blue, the Vorob’ev expecta-
tion in green and the 0.95-level set in red.

between 1213 and 3201 points in the Matérn kernel case and between 1692
and 2462 points in the Gaussian case. Such high dimensional probabilities
cannot be computed with the current implementation of the algorithm by
Genz; however, they could also be computed with a standard Monte Carlo
at very high computational costs. Instead, with the proposed method, the
total computational time on a laptop with Intel Core i7 1.7GHz CPU and
8GB of RAM was equal to 365 and 390 seconds respectively for Matérn and
Gaussian kernel.

4.5 Discussion

In this chapter we introduced a new method to approximate high dimen-
sional orthant Gaussian probabilities. The procedure resulted in estimators
with greater efficiency than standard Monte Carlo, scalable on dimensions
larger than 1000. We proposed two methods to estimate the remainder R,
in the decomposition of Equation : standard Monte Carlo and asym-
metric nested Monte Carlo (anMC). Both methods showed higher efficiency
than other state-of-the-art methods for dimensions higher than 1000. The
proposed algorithms require a choice of the active dimensions in p,, the low



94 CHAPTER 4. HIGH DIMENSIONAL ORTHANT PROBABILITIES

dimensional part of the decomposition. In Section[f.2.1|we introduced heuris-
tic algorithm to choose ¢ and the active dimensions. This algorithm provides
good results in case of dense covariance matrix with anisotropic diagonal
and anisotropic mean vector. An alternative proposal is choosing the first
q dimensions ordered according to the inverse Genz variable reordering pro-
posed in (Genz and Bretz| (2009, Section 4.1.3). This ordering is similar to
our proposed approach but it requires a full Cholesky decomposition of the
covariance matrix, which could be prohibitive in very high dimensions.

The behaviour of the methods was analysed with numerical studies in
Section .3l The anMC method proved to be very efficient if the orthant
probability of interest has low to medium values. This method however
relies on an initial step where several constants and probabilistic quantities
are empirically estimated to choose the optimal m*, the number of inner
samples. In particular the cost parameters c, 5, the slopes of the linear costs,
might be hard to estimate if the constants cq, a are very large. In this case
Part 1 of Algorithm [2] might not choose the optimal m*. In Section we
studied the behaviour of the anMC algorithm for different choices of m and we
noticed that even if the chosen m is not optimal but it is close to optimal, the
efficiency gain is very close to the optimal efficiency gain. Another aspect
analysed in the numerical part is the behaviour of R, as a function of ¢
and of the chosen active dimensions. In Section [4.3.3 we observed that the

pEaMC estimator efficiency is mainly driven by the acceptance probability of
—~anMC
the rejection sampler in R, , which depends on p,. This highlights the

existence of a trade-off between @G and j%;. If the choice of ¢ and active
dimensions is not optimal, then the acceptance probability of the rejection
sampler becomes larger, making the estimation of R, easier. By the same

reasoning, if p, is closer to p the quantity Z/%\q becomes harder to estimate.
—~anMC
In the second setting, however, the estimator Rqan becomes more efficient

—~MC
compared to R,  as the ratio between the computational costs becomes
more favourable.

The efficiency of the overall method depends on the general structure of
the Gaussian vector and there are situations where it brings only moderate
improvements over a standard Monte Carlo approach. More in-depth studies
of the relationships between the covariance structure and the efficiency of the
method might be beneficial.

In the application section we showed that the estimator p&**MC made

possible the computation of conservative estimates of excursion sets with
general GRF priors. The R implementation of the algorithm is contained in
the package ConservativeEstimates currently available on GitHub.
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4.6 Appendix A: proofs

Proof of Proposition
Proof. We have that E[p,| = p, and E[f%;] = R,. Then we have

Var(p) = Var(,) + Var(1 - 5)R,) +2Cov(5,, (1 - p)R,) . (4.11)

~~
=N —=A

We can write the variance Bl and the covariance A as

W= Var((1 - @)f%\q) = (1 —p,)? Var(R ) 4+ R2 Var(p,) + Var(p,) Var(R ),
& = Covlp,, (1= ) R,] = = Var(7,) Ry,
respectively, by exploiting the independence of p, and ]/%\q. By plugging in

those expressions in Equation (4.11]) we obtain the result in Equation (4.5]).
O]

Proof of Proposition

Proof.
" n m 1 m
Var(G) = n2m2 (229 Wi, Y, ) = WVar (z; Q(Whyl,j))
i=1 j Jj=
= (9(W1,Y1;), (W1, Y1)
Jj=1j=1
1
=2 [m Var(g(Wh,Y1,1)) + m(m — 1) Cov(g(W1, Y1,1), g(Wh, Yi,z))}
1
= [m Var(g(W1,Y11)) + m(m —1)4]. (4.12)
where the first equality is a consequence of the independence of Wy, ..., W,

and the third equality is a consequence of the independence of Y;; and
Y; s conditionally on W;. Moreover the covariance denoted by 4 in Equa-
tion (4.12)) can be written as follows.

¢ =E[Cov(g(Wi,Y11),g(W1, Y1) | Wi)] + Cov (E[g(W1, Y1) | WAl E[g(W4, Y1) | WA)

J/

—0 Y1.1,Y1.2 independent conditionally on W, —Var(E[g(W1,Y1.1)[W1])
= Var (E[g(Wl,YM) | Wl]) = Var (g(Wl,YLl)) — E| Var (g(Wl,YLl) | Wl) )
(4.13)

Equations (4.12)) and (4.13) give the result in Equation (4.9).
O]



96 CHAPTER 4. HIGH DIMENSIONAL ORTHANT PROBABILITIES

Proof of Corollary

Proof. Denote with e = f(A—B), f = (a+c)(A—B)+8B, g = (c+a)B, h =
Ctot — Cp, then

Var(@)(m) = M Eg (4.14)

hm

Observe that the first and second derivatives of Var(G) with respect to m
are respectively

dVar(G) 1 [ g } ’ 9?Var(G)  2g

om h

om2  hm3

The second derivative is positive for all m > 0 then Var(G) is a convex func-
tion for m > 0 and the point of minimum is equal to the zero of 0 Var(G)/0m,

which is m = \/g/e = m.

Since Var(G) is convex in m, the integer that realizes the minimal variance
is either || or [m]. By plugging in m = m — e = y/g/e — ¢ and m =
m—e+1= \/g_/e — ¢+ 1 in Equation (4.14]), we obtain the condition in
Equation (4.10)). ]

m?2

Proof of Proposition [6]

Proof. First of all notice that the total cost of sampling G is Ciot = Co +
n(c + Cyw) = co + n(c+ a + B). By isolating n in the previous equation
we obtain n = St where Cyo; := Clop — ¢o for the sake of brevity, and, by

ct+a+3"’
computations similar to those in Proposition [5| we obtain

Var(G) = (H—_Oé——i_ﬁ\/ar(g(Wl,Yu)) = C—F_Oé—+BA

)
tot C’tot

where A = Var(g(W1,Y11)). In the following we will also denote B =
E [ Var(g(Wh, Y1) | Wi)] as in Corollary . Let us now substitute N¢, (m*
in Equation (4.9)), thus obtaining

(c+ a+ pm*)Am* — (m* — 1)(c+ a+ fm*)B

Var(G) = G
B ~ (m*)2B(A - B)+m*[(c+a)(A— B)+ BB]+ (c+ «a)B
= Var(G) A(c+ a+ B)m*
:Var(é)Z(oz+c)B+m*[(c+oz)(A—B)JrBB]7 (4.15)

Alc+ a+ f)m*
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where in Equation (4.15)) we substituted (m*)? from Corollary [2| By further

rearranging the terms, we obtain

~ |, (m"=2)(c+a)B+m"B(B - A)
Var(G) = Var(G) |1 Alc+ a+ B)m*

= Var(G) [1 — 7).

Since A — B, B, ¢, 3, « are always positive, then n < 1 for all m* > 0. More-
over n > 0 if
- 2(a+c)B

(o +¢)B+ B(A—B)
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Chapter 5

Adaptive design of experiments
for conservative excursion set
estimation

This chapter is partly based on a working paper, following up a mini-symposium,
talk at SIAM UQ 2016, co-authored with David Ginsbourger, Clément Cheva-
lier, Julien Bect and Yann Richet. A preprint is available at|hal-01379642.

In this chapter we review stepwise uncertainty reduction (SUR) strategies
for estimating excursion sets in the context of conservative estimates. See
Chapter 2, Section for a brief introduction to SUR strategies and Chap-
ter 2, Section for the basic definitions of conservative estimates. Let
us consider a continuous function f : X — Y, where X is a locally compact
Hausdorff topological space and Y = R¥, k > 1. Our objective is to estimate
the preimage of the closed subset 7' C Y under f, i.e. the set

I"={reX: f(zx)eT}.

In particular in this chapter we focus on the conservative estimate for I'*
under the random field model introduced in Chapter [2] Section [2.3.3] Con-
servative estimates, introduced in Section [2.4.3] proved to be useful in relia-
bility engineering (Azzimonti et al., 2015) and other fields (French and Sain,
2013; |Bolin and Lindgren) 2015). The methods introduced in Chapter 4| can
be used to compute the estimates given a static model where n evaluations
of f are available, under a Gaussian random field (GRF) model. Here we
focus on the sequential aspect and we study adaptive methods to reduce the
uncertainties on these estimates. These methods are first introduced in the
general framework where we assume that f is a realization of a GRF (Z,).ex,

99
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with finite second moments and with continuous paths. The formal defini-
tion of conservative estimates, their uncertainties and of stepwise uncertainty
reduction strategies does not require stronger assumptions. However in Sec-
tion we specialize the case where Z is a real valued Gaussian random
field defined on a subset of R? d > 1. In this particular case it is possible to
provide closed-form formulas for the sampling criteria.

5.1 Background on SUR strategies

The objective of sequential strategies for random field models is to select
a sequence of points X7, X»,..., X, that reduces the uncertainties on the
posterior distribution of some quantity of interest. In our case the object of
interest are conservative estimates for I'* defined as

CE,,, € arg %ag{u([() s P(K CT) > al, (5.1)
=

where p is a finite measure on X and P, is the posterior probability given
n evaluations. In this case the current state of the model is described by
X, € X" and Zx, € Y", with X,,, the locations where the function f was
evaluated and Zx, are the actual evaluations. Here we follow Ginsbourger
and Le Riche| (2010); Bect et al.| (2012)) and we define a strategy as a sequence
of measurable functions (s, ),en, where, for each n € N, the function s, :
(X xY)™ — X associates to the current state of the model (X,,, Zx, ) a point
ZTnt1 € X where to evaluate the function f next.

In particular, we focus on Stepwise Uncertainty Reduction (SUR) strate-
gies. A SUR strategy selects the next evaluation in order to reduce a particu-
lar uncertainty function. This notion was introduced by [Fleuret and Geman
(1999) in the field of image vision and it was later revised by Bect et al.
(2012) in the framework of Gaussian Process modelling with the objective of
estimating the probability of excursion p(I'™*). In|Chevalier et al. (2014a) the
criteria proposed in Bect et al.| (2012]) were computed in the batch-sequential
case and applied to the problem of identifying the set I'*. In the remainder
of this section we introduce the concepts of uncertainty function and SUR
criterion more formally.

Definition 17. Consider a model where n evaluations of f are given, we call
uncertainty of an estimate the map

H,: XxY)" =R,

that associates to each vector of couples (x;, Zy,)i=1,..n @ real value represent-
ing the uncertainty associated with the selected estimate.
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If the locations and the evaluations are known then the uncertainty is a
value associated with the current state of the model. However assume that
n > 1 evaluations are known and we are interested in the uncertainty at
n + g evaluations. In this case both the locations X, ;1,..., X, 1, and the
values Zx, ,,,..., Zx,,, are random. For example, the location X, o might
depend on the value Zx, . Then the quantity H,1,(X,1q, Zx,.,) is a ran-
dom variable. More specifically, denote with .4, the o-algebra generated by
the couples Xi, Zx,,...,X,, Zx,. We denote with H,, the A, , measur-
able random variable that returns the uncertainty associated with A,,,, the
o—algebra generated by (X;, Zx,)i=1,..n+q- In what follows we denote with
E.[-] = E[- | Zx, = f,.] the expectation conditioned on the event Zx, = f,,
where X,, is a fixed design of experiment and f, = f(X,) € Y".

Example 13 (Uncertainty of the excursion set measure). In Bect et al.
(2012), the object of interest is the probability of failure u(I') defined for the
excursion set of a real-valued field I' = {x € X : Z, > t}, with t € R, and
where 1 is a finite measure on X. An intuitive way to quantify the uncertainty

— 2
on this quantity is the quadratic loss H, = E, {(,u(lj)n —,u(F)) } where

m = E,[u(T)]. In this case, m is an unbiased estimator of u(I') and
H,, is equal to Var, (pu(I)).

In general, a SUR strategy aims at selecting locations X, ..., X, that
reduce the uncertainty on a given quantity by minimizing the expected future
uncertainty function given the current evaluations. Note that there are many
ways to proceed with this minimization. If we consider a total budget N > 0,
then an optimal finite horizon strategy is a sequence of random variables
Xy =(Xy,...,XpN) € X such that the expectation at time zero of the total
uncertainty, i.e. E[Hy], is minimized. As noted in |Mockus| (1989)) and later
in |Osborne et al.| (2009); Ginsbourger and Le Riche, (2010); [Bect et al.| (2012)
this strategy can be formally obtained by backward induction, however it is
not practical as for horizons larger than a few steps it suffers from the curse of
dimensionality. Several attempts have been proposed recently to relieve this
computational issue, see, e.g. Marchant Matus et al.| (2014); Gonzélez et al.
(2016) and references therein. Here we focus on sub-optimal strategies, also
called one-step lookahead strategies, that greedily select the next location as
the minimizer of the uncertainty at the next step.

Definition 18 (one-step lookahead criterion). We call one-step lookahead
sampling criterion a function J, : X — R that associates to each point
Tni1 € X the expected uncertainty at the next step assuming this point s
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added
Jn(anrl) = En[HnJrl ’ Xn+1 = anrl]a

where E,[-] = E[- | Zx,, = f,.] is the posterior expectation of the field after n
evaluations of the function.

A generalization of this definition is the batch sequential one-step looka-
head criterion where at each iteration we select a batch of ¢ points x(@ :=
(Tpt1s- - Tnyq) € X7 that minimizes the future uncertainty. The choice
of batch sequential criteria is often justified in practice because it is pos-
sible to run the evaluations of the function in parallel thus saving wall
clock time. The batch sequential one-step lookahead sampling criterion
is the function J, : (X)? — R that associates to each batch of ¢ points
x@ = (T,41,...,Tys,) € X? the expected uncertainty

Jn<X(q)) - ]En [an+q | Xn+1 = $n+1, N 7Xn+q - :L'n+q] .

Example 14 (SUR criterion for the excursion set measure). In |Bect et al.
(2012) the following criterion is proposed to minimize the uncertainty on

(L), the excursion set measure.

5(0) = B | () = ()" X = | = Var, (ut) | X0 =)

In|Chevalier et al.| (2014a) this sampling criterion is implemented to the batch
sequential case. In the same paper fast formulas for evaluating the criteria
are proposed under Gaussian process assumptions.

In the next section we revisit these concepts for the problem of computing
conservative estimates of an excursion set.

5.2 Contributions

In this section we introduce the proposed sequential strategies for conserva-
tive estimates. In the first subsection we review the conservative estimate in
a more concrete setting by specifying a family of subsets € where the opti-
mization in Equation becomes feasible. Moreover we introduce ways to
quantify uncertainties on the conservative estimate for a fixed design. In the
second subsection we focus on the sequential aspect and we introduce new
criteria for uncertainty reduction.
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5.2.1 Preliminary notions and results

The conservative estimate introduced in Definition [14] Chapter [2] and re-
called in Equation (5.1) above requires the specification of a family € where
to search for the optimal set CE,. In practice it is necessary to choose a
parametric family indexed by a parameter § € R*. Consider a nested family
¢y indexed by a real number 6 € [0, 1], i.e. for each 6; > 0,

091 - 092, (52)

for any Cy,,Cy, € €. Let us define Cy = X and assume that u(X) < oo.
This is often the case in our framework as X is either chosen as a compact
subset of R? with p the Lebesgue measure or u is a probability measure.

For each 6, we can define the function ¢, : [0, 1] — [0, +00) that associates
to 6 € [0, 1] the value ¢,(0) := pu(Cy), with Cy € €. It is a non increasing
function of # because the sets Cy are nested. We further define the function
Yr 1 [0,1] — [0, 1] that associates to each 6 the probability ¢r(0) := P(Cy C
I'). The function ¢r is non decreasing in ¢ due to the nested property in
Equation . In this set-up the computation of CE, is reduced to finding
the smallest § = 6* such that ¥r(0*) > «. The measure p(CE,) is then equal
to ¢, (6%).

The Vorob’ev quantiles introduced in Equation , Chapter [2| are a
family of nested closed sets that satisfy the property in Equation . More-
over they have the important property of being minimizers of the expected
distance in measure among sets with the same measure.

Proposition [7| below generalizes a well-known result (Molchanov] 2005,
Chapter 2) for the Vorob’ev expectation to all quantiles @),. The Vorob’ev
expectation result is also presented in Corollary

Proposition 7. Consider a measure p such that u(X) < oo. The Vorob’ev
quantile

Q,=1{r € X:pr(x) > p}

minimizes the expected distance in measure with I' among measurable sets M
such that (M) = p(Q,), i.e.

En(Q,AD)] < E[u(MAT)],

for each measurable set M such that p(M) = pu(Q,).

Proof. Let us consider a measurable set M such that p(M) = pu(Q,). For
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each w € (), we have

W(MAT(w)) — u(Q,AT(w)) = 2 (u(F(w) M@\ M) — u(T(w) A (M @p»)
(M) — u(Q,).

By applying the expectation on both sides we obtain

B|K(M/AT) - (A1) =

E 200 (Q\ M)~ (TN B0\ Q)|+ u01) - Q)
- 2/QP\M pr(u)dp(u) — Z/M\Qp pr(u)dp(u) + p(M) — w(Q,),

where the second equality is obtained by interchanging the expectation with
the integral by Tonelli’s theorem. Moreover, since pr(z) > p for z € Q, \ M
and pr(z) < p for x € M \ (), we have

| [ ) - / . pru)dn(w)] + k() - (@)

> 2p[u(Qp \ M) — (M \ Q)] + p(M) — p(Q,)
= (2p = D[(Q,) — p(M)] =0, (5.3)

where in the last equality we exploited p(Q,) = p(M). O

The Vorob’ev expectation, as defined in Definition [7 Chapter [2], is one
particular quantile and it enjoys the same property.

Corollary 3. The Vorob’ev expectation QQ,, minimizes the expected distance
in measure with T' among all measurable (deterministic) sets M such that
(M) = w(Q,,). Moreover if py > 3, then the Vorob’ev expectation also
minimizes the expected distance in measure with I' among all measurable sets
M that satisfy (M) = E[u(T)].

Proof. The first statement is a direct consequence of Proposition[7]for p = py .
For the second statement, by definition we have that either p(Q,,) =
E[p(D)] or u(Q,) < E[u(I)] < u(Q,, ) for each p > py. In the first case we
can directly apply Proposition [7} In the second case we can apply the same
reasoning as in the proof of Proposition |7 however in Equation ({5.3|) we need

to impose py > % for obtaining the result.
O
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Example 15 (Counterexample to Corollary [3). If E[u(T)] < n(Q,,) and
py < % then @, is no longer the minimizer of the expected distance in

measure with I' among all measurable deterministic sets M such that u(M) =
E[u(T).

Let T' take value F' with probability o or the empty set otherwise. Then
pr(u) = alp(u) and Q,, = F with py = «, while E[u(T)] = au(F). Fur-
thermore, E[u(TAF)] = (1 — a)u(F), while

E[u(TAM)] = ap(F \ M) + (1 - a)u(M)
— 2a(1 - Q)u(F)

for M C F. Thus, the inequality does not hold for a < %

The Vorob’ev quantiles are thus an optimal family for conservative esti-
mates with respect to the expected distance in measure. In general, however,
the Vorob’ev quantile chosen for CE, with this procedure is not the set S
with the largest measure p that has the property P(S C I') > « as shown in
the counterexample below.

Example 16. Consider a discrete set D = {x1,x9, 23,24}, a random field
(Zy)zep and assume that I' = {x € D : Z, > 0}. In this framework we show
the existence of a conservative set at level a = 0.5 larger than the largest
Vorob’ev quantile with the same conservative property.

Assume that for some p; € [0, 1]

P(Q, CT)=P(Z, >0,Z,, >0)=1/2,

where Q,, = {x1,x2} is a Vorob’ev quantile at level py, that is P(Z,, >
Note that in the case where Z,, 1. Z,,, the Vorob’ev level is automatically
determined as p1 = \/2/2 and if Z,, = Zy, a.s., then p; = 1/2. Let us assume
here that Zy, # Z,, which implies p1 € (1/2,4/2/2). Let us further denote
with Q0 the subset of Q0 such that for all w € Q min(Z,, (w), Z,,(w)) > 0
and define Qy = Q\ Q4.
We further fix the random variable Z,, as

YT 21 ifw e Qo

Then P(Z,, > 0) = P(min(Z,,, Z,,
Moreover P(min(Zy,, Zyy, Zzy) > 0)
vative property at level o = 0.5.

= 1/ i.e. {:Bl,xg,a:g} has the conser-
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Consider Q3 C 0y with P(Q3) = 1/3 and Q4 C Qo with P(Qy) = 1/3.

—1  otherwise.

We now have that P(min(Z,,, Zy,, Zyy) > 0) = P(min(Zy,, Zey, Zugs Zuy) >
0)=P(Qs) =1/3<1/2 and P(Z,, > 0) =1/3+1/3 > 1/2. Under this
construction, assuming w.l.o.g. that py > 2/3, the Vorob’ev quantiles are
Qp = {z1,22},Qpy, = {1, 22,24}, with po = 2/3, and Qo5 = D. The set
{x1, 9, 23} is the largest subset of D with the conservative property therefore
it is the unique conservative set at level « = 0.5. However {x1,xo,x3} is not
a Vorob’ev quantile.

In the remainder of this chapter we always consider € as the family of
Vorob’ev quantiles. Given an initial design X,, we can proceed as in Sec-
tion and compute the Vorob’ev quantiles ), ,. By exploiting the previ-
ously described optimization procedure we can obtain a conservative estimate
at level o for I'* denoted here with CE, ,. In the next subsection we intro-
duce different ways to quantify the uncertainties on this estimate, while in
Section we introduce sequential strategies to reduce this uncertainty by
adding new evaluations to the model.

5.2.2 Uncertainty quantification on CE,,

In this section we introduce several uncertainty functions for conservative
estimates. Here we always consider a static scenario where n evaluations of
f are available.

Our object of interest is the set of excursion, therefore we require un-
certainty functions that take into account the whole set. In (Chevalier et al.
(2013)); |Chevalier| (2013) the uncertainty on the Vorob’ev expectation is eval-
uated with the expected distance in measure between the current estimate
Qn.p, and the set I'. The following definition reviews this concept.

Definition 19 (Vorob’ev uncertainty). Consider a Vorob’ev quantile Q,, at
level p,, computed after n evaluations of the objective function f. We call
Vorob’ev uncertainty of the quantile @), the quantity

Hn(pn) = En[(TAQn )] (5.4)

In what follows this uncertainty quantification function is applied to the
Vorob’ev expectation, p, = py,, to the Vorob’ev median, p,, = 0.5, and to
the conservative estimate at level a, p, = p5.



5.2. CONTRIBUTIONS 107

Consider now the case of conservative estimates and fix the level a. Note
that, by definition, the symmetric difference can be written as

En[p(TAQn p2)] = En[1(@n,pg \ T)] + En[1(T'\ Q)] (5.5)

Let us denote with G4 = p(Qnpe \ I') the random variable associated

with the measure of the first set difference and with G2 = p(I'\ @n pa) the
random variable associated with the second one. Notice that for all w € Q
such that @, e« C I'(w), we have Gg)(w) = 0.

Remark 3. Consider the conservative estimate Qy po, then the ratio between

the error EH[GS)] and the measure (1(Qn pa) is bounded by 1 — o, the chosen
level for the conservative estimates.

Proof. By applying the law of total expectation we obtain the following.

En[Gnl)] = EH[GS) | Qn,pf{ - F]P<Qn,/)% C F)
+EL G | Qupg \T # 0](1 = P(Qupg CT))
<O+ EL[GY | Qupg \T # 0](1 — ) < pu(Qnpa)(1 - ).

In the conservative estimate case the two parts in Equation do not
contribute equally, therefore we can define a weighted Vorob’ev uncertainty
as follows.

Definition 20 (Weighted Vorob’ev uncertainty). Consider the Vorob’ev quan-
tile Q. pa corresponding to the conservative estimate at level o for I' and fix
B> 0. The weighted Vorb’ev uncertainty is the function HY defined as

Hy (03 B) = En[BGY) + G
= En[ﬁH(Qn,p% \ D)+ (I Qn,p%)] (5.6)

A conservative estimate is built to control the error E,, [Gg)]. By making
a broad use of the hypothesis testing lexicon, we denote with Type I error at
state n the quantity En[GS)] and with Type II error at state n the quantity
E, [Gg)]. This error defines the following uncertainty function for CE, .
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Definition 21 (Type II uncertainty). Consider the Vorob’ev quantile Qp, po
corresponding to the conservative estimate at level o for I'. The Type Il
uncertainty is the uncertainty function H>?* defined as

H2 (o) = EnlGiP] = Enlu(T\ Q)] (5.7)

Conservative estimates at high levels a tend to select regions inside I', by
definition. In particular if the number of function evaluations is high enough
to have a good approximation of the function f, the conservative estimates
with high « tend to be inside the true excursion set I'*. In these situations
the expected type I error is bounded by «, as shown in Remark [3| and thus
usually very small, while type II error could be rather large. Type II uncer-
tainty is thus a relevant quantity when evaluating conservative estimates. In
the test case studies we also compute the expected type I error to check that
it is consistently small.

The last uncertainty function introduced in this section is the measure
of @y pe multiplied by —1. In fact by definition the conservative estimate
has probability at least a of being inside the excursion. A large measure for
(n,po is then a good indicator that most of the target set is covered by the
conservative estimate.

Definition 22 (Uncertainty MEAS). We denote the uncertainty function re-
lated to the measure p with HYX"S, defined as

Hy () = —En[1(Qn.pa)] (5.8)

If u(X) < oo, then H)"™3(p%) is bounded from below by —p(X). While the
uncertainty functions are usually bounded from below by zero, this property
is not required to develop SUR strategies, see, e.g. Bect et al. (2016).

5.2.3 Sequential strategies for conservative estimates

In this section we consider a current design of experiments X,,, for some
n > 0. We introduce one-step lookahead SUR strategies that select the next
batch of ¢ > 0 locations X,,41,...,X,4+, € X in order to reduce the future
uncertainty H,4,. In particular, we introduce one-step lookahead strategies
associated with the uncertainties defined in Equation (5.4)), (5.6), and
)

The first is an adaptation of the Vorob’ev criterion introduced in | Chevalier
(2013) and based on the Vorob’ev deviation (Vorob’ev, |1984; Molchanov,
2005; (Chevalier et al., 2013)). We define it as follows.
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Jn(X(q)S szrq) =E, [Hn+q(/)z+q) | X1 = Tpgt, - - 7Xn+q = xn+q}

=E, [En-i-q [N(FAQnﬂ-qvﬂﬁﬂ) | Xnt1 = Tpgty oo s Xnpg = xn—i—q” )

for x(9 = (T,41,...,Tnsq) € X9, where qu,pgﬂ is the Vorob’ev quantile
obtained with n + ¢ evaluations of the function at level p;, the conserva-
tive level obtained with n + ¢ evaluations. In what follows for the sake of
brevity we denote with A, ,,(x?) the o-algebra generated by the couples
(Tns1s Zanr)s - s (Tnqs Znyy), Where (Tpgi, .., Tpgg) = X\,

An approach leading to different criteria involves splitting the measure
of the symmetric difference into two parts as in Equation . In the case
of conservative estimates with high level «, each term of Equation ([5.5)
does not contribute equally to the expected distance in measure, as observed
in Remark [3] It is thus reasonable to consider the following asymmetric
sampling criterion

J'r\zN(X(q)a pg—i-q? B) = En [sz—q(pzé—&-q) | X’ﬂ-‘rl = Tptiy--- >Xn+q = $”+Q:|

=E, [E [/BGS)(Qn—i—q,pﬁﬂ) + G1(12)(Qn+q,p§+q) | An—l—q(x(q))H )

for x(9 € X9, where 8 > 0 is a penalization constant. Of particular interest
is the criterion JgQ(X(Q);pﬁﬂ) = Jn(x(‘i’);pﬁﬂ,,@ = 0) where the criterion
selects the next evaluation at a location that minimizes the expected type II
error. In Section this criterion is derived for a generic level p,, € [0, 1],
under more restrictive assumptions on the field and on I'*.

The last criterion studied here for conservative estimates relies on the
uncertainty function H)**%. We can define the measure based criterion as

JUEAS ((0); p0) — [—E [M(Qn+q,pg+q) | An+q(x(q))H .

Since we are interested in minimizing this criterion we consider the equivalent
function to maximize
—~—MEAS
(x5 93) = En |E |i(Qurapn.,) | Antax)]]

Note that this criterion selects points that are meant to increase the measure
of the estimate and it is only reasonable for conservative estimates where the
conservative condition on @)« leads to sets with finite measure in expectation.

In practice, there is no closed form formula for the criteria presented
above with pf, . In the implementation part we replace this level with pf,
the last level computed.
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5.2.4 Implementation

In this section we detail the algorithmic aspects of the criteria.

The notions of an estimate uncertainty and of sequential criteria can be
defined in the generic setting introduced in Section [5.1} However, in order to
provide formulae to implement the criteria we need to restrict ourselves to
a more specific framework. In this section we fix X C R¢, a compact subset
of R?, and Y = R. These choices are common especially in engineering and
other scientific applications. We assume that Z is a Gaussian field with
constant prior mean m and covariance kernel K. While this assumption
might seem restrictive at first, the choice of an appropriate covariance kernel
R allows us to define prior distributions over a very large space of functions.
Moreover this choice gives us closed form formulae for the posterior mean
and covariance of the field thus making the implementation of the criteria
less computationally demanding. Note that such formulae could be extended
to the universal kriging (UK) case with a Gaussian improper prior on the
trend parameters. Here we restrict ourselves to the constant mean setting
for brevity. Finally we derive the previously introduced sampling criteria in
closed-form for the set I'* = {z € X : f(z) € T} with T' = [t, +00), where
t € R is a fixed threshold. It is straightforward to compute the criteria for
T = (—o0,t] and also to extend them for intersections of such intervals.

The formulas for the criteria introduced here all rely on the posterior
coverage probability function p, r which, in what follows, will be denoted as
prn if there is no ambiguity on the set I'. Recall that, under the previous
assumptions, for each n > 0, p,(x) = ® ((m,(z) —t)/sp(x)), with € X|
where @ is the c.d.f. of the univariate standard Normal distribution, m,, is
the posterior mean of the field and s, (z) = /&, (x,z) for all x € X is the
posterior standard deviation. Let us now fix the vector of new evaluations
x(@ € X9. Assuming that s, ,(z) > 0 for each z € X, the coverage function
Priq(x\?) can be written as

p,H_q(X(q))(:E) = (an—l—q(x) + b::+qY;1) ) (5'9>
where
~ omy(z) —t
@nJrq(w) - Sn+q($) ’
B Rﬂ(ﬁ’x(q))qul
bn+q($) - SnJrq(x) )

&(33', X(q)) = (ﬁ(l’, anrl)v s ,ﬁ(LC, anrq)),

K, is covariance matrix with elements [R,(%,1i, Tnij))ije1,.4 and Y, ~
N,(0, K,) is a ¢ dimensional normal random vector that represents the un-
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known centred response. In practice here we exploit the kriging update
formulas (Chevalier et al.| 2014b; Emery, 2009) for faster updates of the
posterior mean and covariance when new evaluations are added.

The first criterion introduced in Section [5.2.3]is based on the symmetric
difference between the set I" and the Vorob’ev quantile @, ,. In Chevalier
(2013), Chapter 4.2, the formula for this criterion in this framework was
derived for the Vorob’ev expectation, i.e. the quantile at level p = py. In
the following remark we first extend this result to any quantile p.

Remark 4 (Criterion J,,). Under the previously introduced assumptions the
criterion J, can be expanded in closed form as

Jn<x(q)§/0n) =E, [E [,u (FAan,pn) | An+q(x(q))”

=L (o) (500 500)
— pu(u) + @ (a"“f(“) - q)_l(p")) )du(u), (5.10)

Tn+q (u)

where ®o(+;X) is the bivariate centred Normal distribution with covariance
matriz > and ®1(u) denotes the quantile at level u of the standard Normal
distribution and

Ynrq(8) = /DTy (1) Kb ().

The proof of the previous remark is a simple adaptation of the proof in
Chevalier| (2013)), Chapter 4.2.

Proposition 8. The criterion JY (-;p2, B) can be expanded in closed form
as

IV D; 00, 8) = By [E [BC(Qnigpn) + G (Qnigpn) | Ansg(x'9)]]
= [ (gl ) (s’ )

Upiq(u) — 71
—mmm+ﬁ¢(*“> @>))mw» (5.11)
Tn+q (u)
Proof. The proof is a simple adaptation of the Remark 4] See, e.g.,|Chevalier
(2013). O

By taking JV(x(@; p2, ) with 8 = 0 we obtain a closed form for the Type
IT uncertainty criterion J'2(x(9; p2) as

2D ) = By [E[GP(Quigpn) | Ansg(x?)]] (5.12)
ol AT (P ey B i K
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MEAS
I

Proposition 9. The criterion can be expanded in closed form as

TS (x(@): o) — R, [R | (QW o) | Anig(x9)]]
anﬂ — O~ (Pn)
/X ( ’YnJrq( ) )du(U)‘ o

Proof. The indicator function of the set Q44,0 can be written as 1, . (z)>pa-
By Tonelli’'s theorem we exchange the expectation with the integral over X
and we obtain

B, [E [N(Qnﬂ,p%) | An-ﬂ-q(x(q))ﬂ - /XEn []lpmq(u)Zp%} dp(u)
:Lamwwzﬁmmu

By substituting the expression in Equation ([5.9) we obtain

Aammwzﬁmmwzéﬂ@mu+mﬂunz@mem>

(e

The sampling criteria, implemented above in Equation , ,
and , are used to select the next evaluations of the function
f as a part of a larger algorithm that provides conservative estimates for I'*.
In practice the estimation procedure often starts with a small initial design
X,, n > 1, where n is often chosen as a function of the input space dimen-
sion. In X = RY, as a rule of thumbs, the initial number of evaluations is
often n = 10d. In our framework, often, the initial design is chosen as space
filling, such as a Latin hypercube sample (LHS) design or points from a low
discrepancy sequence such as the Halton and the Sobol” sequence. In Algo-
rithm [4] we summarize the main steps for computing conservative estimates
and evaluating their uncertainties. The conservative level pf is computed
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with Algorithm [3] detailed in Chapter [4]

Algorithm 4: Sequential conservative excursion set estimation.

Input : N;,; maximum number of evaluations, n size of initial
design, q size of batches, function f, threshold ¢, criterion J,
uncertainty function H

Output: Q) Niot:%,., for I'* and the uncertainty value Hy

initial DoE select initial DoE X,,, e.g., with space filling design;
evaluate the function f at X, ;
compute the posterior model Z | A,, and the estimate @y, po ;

1="n;
while ¢ less than Ny, do
1=1+q;
update the model select x(9 by minimizing J;(z);

evaluate the function f at x(9;
update the posterior model Z | A; ;
compute the conservative estimate Q; yo ;

post-processing evaluate the uncertainty function H; on Q; s ;
end
optional post-processing on Qn,,, s ;
tot

A global approach to the optimization of the criteria in Equations ,
(6-10), and often leads to an expensive optimization prob-
lem. Instead here we rely on a greedy heuristic approach and optimize
the criterion sequentially. First we optimize the criterion with ¢ = 1, to
find x'*, the first point of the batch. We then find the jth point of the
batch by fixing ab* ..., 2775 and by optimizing the criterion at the vec-
tor x(j) = (2'*,..., 207" 2) as a function of the last component only.
This heuristic method has already been used in (Chevalier et al.| (2014a) and
in (Chevalier et al.| (2012)) to optimized the batch-sequential criteria intro-
duce there. Here we conducted the single optimizations with the function
genoud (Mebane and Sekhon|, 2011)), a genetic algortithm with BFGS de-
scents with numerical gradients.

5.3 Numerical experiments

In this section we apply the proposed sequential uncertainty reduction meth-
ods to different test cases. First we develop a benchmark study with Gaus-
sian process realizations to study the different behaviour of the proposed
strategies. Then, we apply the methods to two reliability engineering test
cases. The first is a coastal flood test case where the set of interest repre-
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Strategy number criterion parameters
Benchmark 1 IMSE
Benchmark 2 tIMSE target=t
A In ("5 pn) pn =05
B Jn (" pn) Pn = Pn, @ =0.95
C T35 pn) P = P, & =0.95
D ‘]22('; Pn) pn=10.5
E J2 (5 p2) a=0.95
F (hybrid strategy) | Ji2(+; p) + IMSE | 2 iterations IMSE,
1 iteration with E

Table 5.1: Adaptive strategies implemented.

sents the offshore conditions that do not lead the water level at the coast
to be larger than a critical threshold above which flood would occur. The
data was provided by Jérémy Rohmer and Déborah Idier from the French
geological survey (Bureau de Recherches Géologiques et Minieres, BRGM).
The second test case instead is a nuclear criticality safety problem where the
set of interest is the set of unsafe parameters for a nuclear storage facility.
The data was provided by Yann Richet from the French Institute of Nuclear
Safety (Institut de Radioprotection et de Streté Nucléaire, IRSN).

In all test cases we test the strategies detailed in Table [5.1] The strategy
JW (- p2, B) was also implemented and tested in those test cases for the values
£ =0.1 and 8 = 10. The results of those tests are not reported here as they
were either too similar to the result obtained with other strategies: J, for
B =10 or J*? for = 0.1.

All computations are carried out in the R programming language (R Core
Team), 2016|), with the packages DiceKriging (Roustant et al., 2012) and
DiceDesign (Franco et al.,|[2013)) for Gaussian modelling, KrigInv (Chevalier
et al,2014c) for already existing sampling criterion and ConservativeEstimates
(Azzimonti and Ginsbourger], 2016) to compute the conservative estimates.

5.3.1 Benchmark study: Gaussian processes

Let us start with a benchmark study for the different strategies introduced
in Section on Gaussian process realizations in two and five dimensions.
The following set-up is shared by both test cases. We consider the unit
hyper-cube X = [0,1]¢ € R?, d = 2,5 and we defined a Gaussian random
field (Z,).ex with prior constant mean m = 0 and a tensor product Matérn
covariance kernel 8 with v = 3/2. The parameters of the covariance kernel
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Test case | d covariance parameters Mdoe | Minit
GP |2 v =13/2,0=0.202T, 02 =1 10 | 3
GP |5|v=3/20= \/2[0.2, 0.2,0.2,0.2,0.2]7, 0> =1| 10 | 6

Costal | 2 v =>5/2, MLE for 0,02, 02 ;.. 10 | 10
Nuclear | 2 v =>5/2, MLE for 0,02, 02 ... 10 | 10

Table 5.2: Parameter choice for each test case.

are fixed as in Table [5.2] see Example [2] Chapter 2 for the kernel’s explicit
formula. The objective is to obtain a conservative estimate at level o = 0.95
for I'={x € X: Z, > 1}. We consider u as the Lebesgue measure on X.

We consider an initial design of experiments X,, ., obtained with the
function optimumLHS from the package 1hs. The field is simulated at X, ,,.
The size of the initial design of experiment is chosen small to highlight the
differences between the sequential strategies. We select the next evaluation
by minimizing each criteria detailed in Table [5.1] Each criterion is run for
n = 30 iterations, updating the model with ¢ = 1 new evaluations at each
step. For a fixed DoE we consider 10 different realizations of Zx, and we
reinitialize the value of the seed at the same value before selecting z,, . 11
For a given realization of Zx, ., each strategy is then run on a different
realization as each new evaluation is sampled from Z. The seed of the random
number generator is re-initialized at the same value in iteration nj,; + 1
for each strategy. We consider mge. different initial designs X,, .. of equal
size and we report the median value of the uncertainty functions over the
repetitions for each strategy at the last iteration.

Dimension 2

We evaluate the strategies by looking at the expected type I and type II errors
for Qpa, defined in Section , and by computing the measure (Q,a). For
each of these quantities we report the median result over the replications
obtained after n = 30 evaluations for each initial design.

Expected type I error does not vary much among the different strategies
as it is controlled by the probabilistic condition imposed on the estimate, as
shown in Section [5.2.1 The distributions of expected type I error and the
total time over the different initial DoEs are shown in Appendix [5.5

Figure[5.Ishows the distribution of expected type II error and the volume
(Qps, ), i.e. after 30 new evaluations are added. The strategies A, B,C, E, F
all provide better uncertainty reduction for conservative estimates than a
standard IMSE strategy or than a tIMSE strategy. In particular strategy
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(a) Median type II error for @ pa. (b) Measure 1(Qpa).

Figure 5.1: Median expected type II errors and measure of the estimate
across the different designs of experiments after n = 30 iterations of each
strategy. Test case in dimension 2.

E has the lowest expected type 2 error while at the same time providing
an estimate with the largest measure, thus yielding a conservative set with
large measure which is likely to be included in the actual excursion set. All
estimates obtained in this study are very conservative: the median ratio
between the expected type I error and the estimate’s volume is 0.03%, thus
much smaller than the upper bound 1 — a = 5% computed in Remark 3} On
the other hand the expected type II error is in median 178% bigger than the
estimate’s volume.

Dimension 5

In Figure we show the distribution of expected type II errors for Qe
and the estimate’s measure (Q,g,) obtained with different starting design
of experiments, for each strategy. The distributions of expected type I error
and the total time for those computations are shown in Appendix [5.5]

In this test case the differences between the strategies are less clear. The
IMSE strategy provides conservative estimates with small measure and with
slightly larger expected type II error. Strategies A, B,C, E provide a good
trade off between small expected type II error and large measure of the
estimate, however they are not clearly better than the other strategies in
this case. Also in this case the estimates provided by the method are very
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(a) Median type II error for Q. (b) Measure 1(Qpa).

Figure 5.2: Median expected type II errors and measure of the estimate across
different designs of experiments after n = 30 iterations of each strategy. Test
case in dimension 5.

conservative. The median ratio over all DoEs and all replications between
expected type I error and volume is 0.33%, which is smaller than the upper
bound of 5% computed in Remark [3, The expected type II error is instead 3
orders of magnitude larger than the estimate’s volume. This indicates that
we have only recovered a small portion of the true set I'*, however, under the
model, the estimate is very conservative.

5.3.2 Coastal flood test case

In this section we test our strategies on a coastal flood test case introduced
in [Rohmer and Idier; (2012).We focus here on the problem of studying the
parameters that lead to floods on the coastlines. This study is often con-
ducted with full grid simulations, see, e.g. |Idier et al. (2013 and references
therein. This type of simulations require many hours of computational time
and render set estimation problems often infeasible. The use of meta-models,
recently revised in this field (see, e.g. Rohmer and Idier} |2012, and references
therein) eases this computational issue.

We consider a simplified coastal flood case as described in Rohmer and
Idier| (2012). The water level at the coast is modelled as a deterministic
function f : X ¢ RY — R, assuming steady offshore conditions, without
solving the flood itself inland. The input space X = [0.25,1.50] x [0.5,7]
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represents the variables storm surge magnitude S and significant wave height
H,. We are interested in recovering the set

D= {r e X: f(x) <t},

where ¢ = 2.15 is a fixed threshold representing the critical height of water
for inundations. The region I'* is the set of input parameters that leads to
a safe value. In order to evaluate the quality of the meta-model and of our
estimates we compare the results with a grid experiment of 30 x 30 runs
carried out in Rohmer and Idier| (2012).

Here we select a Gaussian process prior (Z,)zex ~ GP(m, &), with pa-
rameters chosen as described in Table 5.2l We assume that the function
evaluations are noisy with noise mean equal to zero and homogeneous vari-
ance o2 > 0, estimated from the data. We study the behaviour of sequential
strategies starting from mg.. = 10 initial DoEs, with equal size n = 10 but
with different points. The initial DoEs are chosen with a maximin LHS de-
sign X,, = {x1,...,2,} C X,n = 10 with the function optimumLHS from
the package lhs. We evaluate the function f at those points obtaining
fio = (f(z1),..., f(x1)) € R™. Figure shows the true function f we
are aiming at reconstructing, the critical level ¢ = 2.15 and one initial design
of experiments. The parameters of the covariance kernel are estimated with
maximum likelihood from the evaluations f;,.

We are interested in conservative set estimates for I'* at level a = 0.95,
as defined in Section [5.2.1} The measure p is the Lebesgue measure on X.

We proceed to add 20 evaluations with the strategies detailed in Ta-
ble 5.1} In most practical situations, the covariance hyper-parameters are
not known a priori and thus need to be estimated from the data. An initial
value for the hyper-parameters is usually obtained from the initial design X,,
with maximum likelihood estimators. If these values are considered accurate
enough, they can be fixed throughout the sequential procedure. Most often,
however, they are re-estimated at each step, i.e. the function is evaluated at
the selected points and the covariance hyper-parameters are estimated with
maximum likelihood. See Appendix for a brief study on the effect of
hyper-parameter estimation on the strategies. Here we estimate the hyper-
parameters with maximum likelihood for each initial design and we proceed
to update those estimates at each step. Figure [5.3b| shows an example of
conservative estimate obtained from one of the initial DoEs after 30 function
evaluations, where the locations are chosen with strategy FE.

Figure shows the computed volume of the estimate and the true type
IT error at the last iteration of each strategy, after 30 evaluations of the
function. The true type II error is computed by comparing the conservative
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blue, volume=77.56%) and one initial & = 0.95) after 30 function evaluations
DoE (black triangles). (Strategy E).

Figure 5.3: Coastal flood test case. True function (left) and conservative
estimate after 30 function evaluations (right).
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Figure 5.4: Coastal flood test case, randomized initial DoEs results. Values
of the uncertainties for each strategy at the last iteration.
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Figure 5.5: Coastal flood test case. Relative volume error as a function of
iteration number. Results plotted for strategies tIMSE, A, B, E.

estimate with an estimate of I'* obtained from evaluations of the function at
a 30 x 30 grid. Monte Carlo integration over this grid of evaluations leads to
a volume of I'* equal to 77.56%.

Strategies A, B, E' provide estimates with higher volume and lower type
IT error in median than IMSE and tIMSE. For all strategies the true type
I error is zero for almost all initial DoEs, thus indicating that all strategies
lead to conservative estimates.

Figure [5.5 shows the behaviour of relative volume error as a function of
the iteration number for Strategies tIMSE, A, B, E. The hyper-parameter re-
estimation causes the model to be overconfident at the initial iterations, thus
increasing the relative volume error. As the number of evaluations increases
the hyper-parameter estimates become more stable and each iteration the
relative error decreases as conservative estimates are better included in the
true set.

5.3.3 Nuclear criticality safety test case

In this section we apply the proposed strategies in a reliability engineering
test case from the French Institute of nuclear safety (IRSN).

The problem at hand concerns a nuclear storage facility and we are in-
terested in estimating the set of parameters that lead to a safe storage of
the material. The safety of such system is closely linked to the production
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of neutrons. In fact, since neutrons are both the product and the initiator
of nuclear reactions, an overproduction could lead to a chain reaction. For
this reason the safety of such systems is usually evaluated with the neutron
multiplication factor, here called k—effective or k-eff : X — [0, 1]. The input
space X = [0.2,5.2] x [0, 5] represents the fissile material density, PuO,, and
the water thickness, HyO. A value k-eff(PuO,, H,O) > 1 denotes a configu-
ration of parameters which is not safe. We are thus interested in recovering
the set of safe configurations

"= {(PUOQ, HQO) e X: k—eff(PuOQ, HQO) é 092},

where the threshold was chosen at 0.92 for safety reasons.

In general, the values of k-eff are computed with expensive computer ex-
periments thus our objective is to provide an estimate for I'* from few eval-
uations of k-eff and to quantify its uncertainty. As in the previous sections
here we study in particular adaptive methods to reduce the uncertainties on
the estimate.

The values for the function k-eff were obtained with a MCMC simulator
whose results have an heterogeneous noise variance. In Appendix we
consider the noise homogeneous and we estimate it from the data. Such
procedure, however, does not take into account the heterogeneous noise thus
leading to possibly wrong estimates. Moreover the criteria introduced are
not implemented to take into account an heterogeneous noise variance in the
choice of the optimal points. This could lead to the choice of sub-optimal
locations in cases where the noise variance is strongly heterogeneous. In order
to avoid such pitfalls we select a deterministic function by replacing the k-eff
values with a smoothed approximation. The approximation is computed from
a 50 x 50 grid of evaluations of k-eff in X. We assume that k-eff is a Gaussian
random field with mean zero, tensor product Matérn (v = 5/2) covariance
kernel and heterogeneous noise variance equal to the MCMC variance. We
then compute the kriging mean of this field given 2500 observations at the
50 x 50 grid and we use this function as the true function. In what follows
we denote with k-eff the smoothed function.

We consider the function k-eff as a realization of a Gaussian random
field and we fix a prior (Z),ex ~ GP(m, &) with constant mean function m
and tensor product Matérn covariance kernel with v = 5/2. We consider
Maoe = 10 different initial DoEs of size ng = 10. In particular we consider
LHS designs obtained with the function optimumLHS from the package 1hs
in R. We evaluate k-eff at each design obtaining the vector of evaluations
k-eﬁ(Xlo) = (k-eff(xl), e ,k-eﬁ($10)).

Figure [5.6a] shows the true values of the function, the set I'* and one
initial design of experiments. The initial evaluations are used to estimate
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(a) One initial design of experiments (b) Conservative estimate (shaded green,
(black triangles) for k-eff, set of interest a = 0.95) after 70 function evaluations
(shaded blue, volume=88.16%). (Strategy E).

Figure 5.6: Nuclear criticality safety test case. Smoothed function (left) and
conservative estimate (right) after 70 evaluations.

the covariance function’s hyper-parameters with maximum likelihood. The
starting model provides a conservative estimate for I'™* at level a = 0.95.
Here we choose the Lebesgue measure p on X.

We now test how to adaptively reduce the uncertainty on the estimate
with different strategies. We run n = 20 iteration of each strategy and at
each step we select a batch of ¢ = 3 new points where to evaluate k-eff. The
covariance hyper-parameters are re-estimated at each iteration by adding
the 3 new evaluations to the model. A brief study on the effect of hyper-
parameter estimation on the strategies is reported in Appendix

Figure shows a comparison of the conservative estimate’s volume and
its type II error at the last iteration, i.e. after 70 evaluations of the function,
for each initial DoE and each strategy. Also in this test case the strategies
A, B, E perform well both in terms of final volume and true type II error.
Strategy C' compares better to the other strategy than in the previous test
cases. In this example strategy C provides large volumes, however it also has
a larger type II error.

Figure shows the relative volume error as a function of the itera-
tion number for strategies tIMSE, A, B, C, E. The relative volume error is
computed by comparing the conservative estimate with an estimate of I'*
obtained from evaluations of k-eff on a grid 50 x 50. The volume of I'* com-
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Figure 5.8: Nuclear criticality safety test case. Relative volume error as a
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puted with Monte Carlo integration from this grid of evaluations is equal to
88.16%. All strategies presented show a strong decrease in relative volume
error in the first 6 iterations, i.e. until 28 evaluations of k-eff are added.
In particular strategies B,C, E show the strongest decline in error in the
first 3 iterations. Strategy A while also showing a strong decrease in relative
volume error, it returns estimates with higher errors at almost all iterations
except for the last one. Overall, as in the previous test cases, strategy F, the
minimization of the expected type II error, seem to provide the best uncer-
tainty reductions both in terms of relative volume error and in terms of type
IT error.

5.4 Discussion

In this chapter we introduced sequential uncertainty reduction strategies for
conservative estimates. This type of set estimates proved to be useful in re-
liability engineering, however they could be of interest in all situations when
overestimating the set has more important consequences than underestimat-
ing it. The conservative aspect however is strongly relying on the goodness of
the underlying random field model. In fact, since the estimator CE is based
on a global quantity, a model that approximates badly the true function will
not lead to reliable estimates. For a fixed model, this aspect might be tam-
pered by increasing the level of confidence . In the test cases presented here
we fixed o = 0.95, however in real life situations, testing different levels of «,
such as, e.g. a =0.99,0.995 , and comparing the results is a good practice.
The sequential strategies proposed here provide a way to reduce the un-
certainties on the estimate by adding new function evaluations. In particular
strategy E, i.e. the criterion J'?(-;p2), resulted among the best criteria in
terms of Type 2 uncertainty and relative volume error in all test cases. In
this work we mainly focused on showing the differences between the strategy
with a-posteriori measures of the uncertainties. Nonetheless the expected
type I and II errors could be used to provide stopping criteria for the sequen-
tial strategies. Further studies in this direction are needed to understand the
limit behaviour of these quantity as the number of evaluation increases.
The reliability engineering test cases gave a first glimpse on the practical
use for conservative SUR strategies. However these test cases also high-
lighted shortcomings of the current implementation and possible future im-
provements. In particular, the data provided for the nuclear criticality safety
test case was obtained with a noisy function. In this work we studied the
strategies on a smoothed approximation of this noisy function, thus avoiding
the heterogeneous case. In cases where the noise variance can be considered
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homogeneous, it should not strongly affect the uncertainty reduction strate-
gies in their current implementation. However, if the noise variance varies
widely, then the current implementation of the criteria might select sub-
optimal locations. More studies are required to implement and test criteria
that organically take into account heterogeneous noise variance.

The conservative SUR strategies proposed here focus on reducing the un-
certainties by adding evaluations points close to the boundary of I'. This
choice however does not necessarily lead to a better global model than space
filling strategies. Since conservative estimates are strongly dependent on the
underlying model the benefits of a well identified boundary might be over-
shadowed by a bad global model. On the other end, a strategy that explores
the space, such as IMSE, might lead to a good global model with less reliable
conservative estimates because the boundary is not well identified. Finally
in the test case section we only briefly touched the fundamental problem of
hyper-parameter estimation. The conservative SUR strategies were not im-
plemented to provide good hyper-parameter estimation. In both test cases
we obtained rather stable parameter estimations which did not lead to odd
behaviours of conservative estimates, however in general this might not be
the case. The sequential behaviour of hyper-parameters maximum likelihood
estimators under SUR strategies needs to be studied in more details. The
experimental results highlighted the need for strategies that are able to se-
lect locations that provide a good trade off between exploration of the space,
boundary identification and reliable hyper-parameter estimation.
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Figure 5.9: Two-dimensional Gaussian realizations test case. Type I error of
conservative estimate and elapsed time in the 2-dimensional test case.

5.5 Appendix: additional numerical results

5.5.1 Benchmark study on Gaussian processes

In this section we present more details about the test cases on Gaussian
process realizations described in Section

Dimension 2

Figure shows the type I error for each strategy in Table 5.1} Strategies
B,C and E show a lower type I error with respect to the other strategies,
however the all strategies present very low type I error compared to the total
expected volume of the set.

Figure shows the total time required to evaluate the criteria and to
compute at each step the conservative estimate. The computational time is
mainly driven by the size of the conservative estimate. In fact, for conser-
vative estimates with large volumes, the othant probabilities involved in its
computation are higher dimensional.

Dimension 5

Figure[5.10[shows the type I error and the total time required to evaluate the
criteria and to compute at each step the conservative estimate. In this case
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Figure 5.10: Five-dimensional Gaussian realizations test case. Type I error
for conservative estimate and elapsed time in the 5-dimensional test case.

strategies IMSE presents a lower type I error. This might be caused by the
better global approximation obtained with a model based on a space filling
design.

Figure shows the total time required to evaluate the criteria and to
compute at each step the conservative estimate.

5.5.2 Coastal flood test case: hyper-parameter estima-
tion

In this section we explore the behaviour of the strategies under different
scenarios for the covariance hyper-parameters:

1. fized initial hyper-parameters (FI): the covariance parameters are fixed
throughout the sequential procedure as the maximum likelihood esti-
mates obtained from the initial evaluations fjg;

2. re-estimated hyper-parameters (RE): at each step the hyper-parameter
estimates are updated with the new evaluations of the function;

We consider the same experimental setup of Section [5.3.2 we fix only one
initial DoE of n = 10 points chosen with the function 1hsDesign from the
package DiceDesign (Franco et al.; 2013). We run n = 20 iterations of each
strategy in Table where at each iteration we select one evaluation of f.
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Figure 5.11: Coastal flood test case. True type Il error and relative volume
error for (e, with no re-estimation of the covariance parameters.

Let us start with the case where we estimate the hyper-parameters only
using the evaluations of f at Xio. Figures show the type II error and
the relative total volume error. These errors are both computed comparing
the conservative estimate with the true set obtained with evaluations of f on
a fine grid. True type I error, not shown, is equal to zero for each strategy
at each iteration. Type II error decreases as a function of the evaluations
number for all strategies, in particular strategies B,tIMSE, C' and E provide
a good uncertainty reduction. In particular strategies B, C' and E provide a
faster uncertainty reduction in the first 10 iterations than the other strategies.
Strategy D focuses on reducing the type II error for the Vorob’ev median and
it is not well adapted to reduce uncertainties on conservative estimates.

In practice, the covariance parameters are often re-estimated after a new
evaluation is added to the model. While this technique should improve the
model it leads to better conservative estimates only if the hyper-parameter
estimation is stable and reliable. Conservative estimates are in fact based on
the coverage probability function and in particular on high quantiles of this
function.

Figure [5.12 shows the Type II and relative volume error computed com-
paring the conservative estimate to the true set in the case where covariance
parameters are re-estimated at each step. During the first 10 iterations, all
strategies except IMSE show a small (less than 1%) type I error, not shown,
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Figure 5.12: Coastal flood test case. True type II error and relative volume
error for Qe at each n, with re-estimation of the covariance parameters at
each step.

which becomes equal to zero for all strategies after iteration 10.

The strategies IMSE and D still show the worst behaviour among the
tested strategies both in terms of true type II error and of relative volume
error, however the remaining strategies do not show big differences. The
tIMSE show the best behaviour closely followed by Strategy E,C, A. The
differences between the final estimated set obtained with these four strate-
gies are small and they are mainly due to a difference in the hyper-parameter
estimation. The tIMSE strategy produces more stable hyper-parameter es-
timators than Strategy E, where the range parameters decrease in the last
steps. This change leads to smaller more conservative set estimates.

If the covariance hyper-parameters are kept fixed, Figure[5.1Tb|shows that
the true type II error tends to stabilize because the conservative estimate is
the best according to the current model. On the other hand the re-estimation
of the parameters leads to a more unstable type II error which also indicates
that the underlying model is adapting to the new observations.

The re-estimation of the covariance parameters at each steps might lead
to instabilities in the maximum likelihood estimators. In this test case the
parameter estimation is very stable, however further studies are required to
better understand the behaviour of maximum likelihood estimators under
these circumstances.
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Figure 5.13: Nuclear criticality safety test case, homogeneous noise. True
function (left) and conservative estimate (right)

5.5.3 Nuclear criticality safety test case: homogeneous
noise results

Here we report the results on the true function k-eff, under the assumption
of unknown homogeneous noise variance. The data provided by IRSN have
an heterogeneous noise variance, however the variability of such variance is
not very high, so in a first approximation it can be considered homogeneous.

As in Section [5.3.3] we assume that k-eff is realization of a Gaussian
random field and we fix a prior (Z);ex ~ GP(m, &) with constant mean
function m and tensor product Matérn covariance kernel with v = 5/2. We
consider the function evaluations noisy with homogeneous noise mean equal
to zero and variance 08 > 0, estimated from the data. We consider mg,. = 10
different initial DoEs of size ng = 10 chosen in the same manner.

Figure shows the true values of the function, the set I'* and one
initial design of experiments. The initial evaluations are used to estimate
the covariance function’s hyper-parameters with maximum likelihood. The
starting model provides a conservative estimate for I'* at level @ = 0.95. The
measure p is the Lebesgue measure on X.

We now test how to adaptively reduce the uncertainty on the estimate
with the strategies in Table We run n = 20 iteration of each strategy



5.5. APPENDIX: ADDITIONAL NUMERICAL RESULTS 131

Volume, last iteration True type 2 error , last iteration
hyper-parameters:Re-estimated hyper-parameters:Re-estimated

85
25

SETF T

20

Volume (%)
75
Volume (%)
15

70

10

65

e T

60

IMSE tMSE A B c D E F IMSE tMSE A B c D E F
Strategy Strategy
(a) Final volume of conservative esti- (b) True type II error at the final iter-
mate, ((Qpa), and true volume p(I'™) ation computed comparing the estimate
(dashed line, 87.92%). with T'™*.

Figure 5.14: Nuclear criticality safety test case, randomized initial DoEs
results. Values of the uncertainties for each strategy at the last iteration.

and at each step we select a batch of ¢ = 3 new points where to evaluate
k-eff. The covariance hyper-parameters are re-estimated at each iteration
by adding the 3 new evaluations to the model. Figure shows the
conservative estimate for I'™* computed after 70 function evaluations with
locations chosen with Strategy E.

Figure[5.14]shows a comparison of the conservative estimate’s volume and
its type II error at the last iteration, i.e. after 70 evaluations of the function,
for each initial DoE and each strategy. Also in this test case the strategies
A, B, E perform well both in terms of final volume and true type II error.
Strategy C also performs well in this test case, as opposed to the previous
examples. Figure [5.15] shows the relative volume error as a function of the
iteration number for strategies tIMSE, A, B, C, E. The relative volume error
is computed by comparing the conservative estimate with an estimate of I'*
obtained from MCMC mean value of k-eff on a grid 50 x 50. The volume of I'*
computed with Monte Carlo integration from this grid of evaluations is equal
to 87.92%. All strategies presented show a strong decrease in relative volume
error in the first 10 iteration, i.e. until 40 evaluations of k-eff are added. In
particular strategies B, C, EZ show the strongest decline in error in the first 5
iterations. In this test case strategy A shows a stronger decrease in median
relative error compared to the smoother test case presented in Section |5.3.3]
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Figure 5.15: Nuclear criticality safety test case, homogeneous noise. Relative
volume error for iteration number. Strategies tIMSE, A, B, C, E.

Overall, as in the previous test cases, strategy FE, the minimization of the
expected type II error, seem to provide the best uncertainty reductions both
in terms of relative volume error and in terms of type II error.

5.5.4 Nuclear criticality safety test case: hyper-parameter
estimation

As in the previous test case the re-estimation of the covariance parameters
could have an important effect on conservative estimates. In this section
we explore the behaviour of the strategies in the IRSN test case under the
scenarios for the hyper-parameters introduced in Section [5.5.2} fized initial
hyper-parameters (FI) and re-estimated hyper-parameters (RE).

We consider the same experimental setup as in Section [5.5.3] however
here we fix one initial design of experiment X5 = {x1,..., 215} C X chosen
with the function maximinESE_LHS from the package DiceDesign (Franco
et al., 2013) which implements an Enhanced Stochastic Evolutionary (ESE)
algorithm for LHS design. We evaluate k-eff at that design obtaining the
vector of evaluations k-eff (X;5) = (k-eff (z1), ..., k-eff (z15)).

Figure [5.16| shows the Type I, II error and the relative volume error
computed comparing the conservative estimate to the true set in the case
where the covariance parameters are kept fixed. Figure shows the
values of type II versus relative volume errors for the last 5 iterations, i.e.
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Figure 5.16: Nuclear criticality safety test case. True type II, relative volume
and type I errors for ), with no re-estimation of the covariance parameters.

the last 15 evaluations. The points do not lie all on the diagonal which implies
that type I errors are not zero. In fact, Figure shows an increase in
true type I error for all strategies as new evaluations are added. This effect,
while limited, might be caused by the initial model inaccuracy. Strategies
C, D and IMSE are the worst performers both in terms of true type II error
and in terms of relative volume error. The other strategies show a very
similar behaviour. The decrease of type II error is partially compensated by
an increase in type I error, however the overall relative error decreases.

In the more realistic scenario where the covariance parameters are re-
estimated at each step we obtain smaller, more conservative sets with each
strategy. For example, the estimate’s volume obtained at the final iteration,
after 75 function evaluations, with Strategy F' and re-estimation of the pa-
rameters is 4% smaller than the value obtained with fixed initial parameters.

Figure [5.17| shows the Type II versus relative volume errors and true
type I error computed comparing the true set with the conservative estimate
obtained with covariance parameters re-estimated at each step.

The re-estimation of the parameters leads to a more accurate global
model. This accuracy is reflected in a decrease of all errors as evaluations
are added. In this scenario the strategies F, F, A show a bigger uncertainty
reduction both in terms of type II error and in terms of relative volume error.
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Figure 5.17: Nuclear criticality safety test case. True type II, relative volume
and type I error for (),« with re-estimation of the covariance parameters at
each step.



Chapter 6

Conclusion and future works

In this manuscript we analysed the problem of estimating excursion sets of
expensive to evaluate functions with Bayesian methods relying on Gaussian
random field priors.

These methods are increasingly studied in the literature, both from theo-
retical and applied perspectives. In Chapter [2 we briefly revisited the state
of the art in Bayesian set estimation with Gaussian process priors and we
highlighted some of the links with the theory of random closed sets. One
of those links is exposed in Chapter [3, where we revisited the concept of
distance average expectation and its notion of variability in the framework
of excursion sets estimation. Distance average variability brings a new way
to quantify uncertainties on the excursion set. Its computation, however,
requires conditional simulations of the posterior field discretized on high res-
olution designs. We provided a technique to compute this quantity from
posterior field quasi-realizations. This method allows uncertainty quantifi-
cation on excursion sets, with the distance average variability, for a fraction
of the computational cost required to obtain the same assessment with full
posterior field realizations. The quasi-realization technique proved to be reli-
able also for studying contour lines and excursion sets volume distributions.
The quasi-realizations generated with this method, however, come from a
reconstructed process which is smoother than the original one. In fact, this
leads, in some cases, to excursion set estimates that are too smooth. In gen-
eral however, the quasi-realization technique could make the computation of
other empirical quantities related to excursion sets more affordable and it
could open the way for different excursion set estimators.

Another technique, recently introduced (Bolin and Lindgren, 2015) in the
literature of Bayesian set estimation, is conservative set estimation. Conser-
vative estimates give a probabilistic statement on the accuracy of the esti-
mate under the model. In particular, they are helpful in situations where the
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consequences of underestimating an excursion set are much less important
than overestimating it, such as in reliability engineering, climate science ap-
plications and geological studies. While the probabilistic statement given by
these estimates can be very useful, it makes them computationally difficult
to obtain as they require many successive evaluations of high dimensional
Gaussian orthant probabilities. In Chapter [l we introduced a method to
efficiently compute Gaussian orthant probabilities and we implemented it
in two algorithms: GMC and GanMC. Both algorithms were tested against
state-of-the-art techniques and they showed substantial efficiency increases
for high dimensional examples. Nevertheless, the behaviour of the method
underlying both algorithms in general settings requires further studies. For
example, a better understanding of the effect of different covariance struc-
tures could lead to better estimators. The main difference between the two
algorithms is that, while GMC uses a standard Monte Carlo method, GanMC
introduces a novel asymmetric nested Monte Carlo technique that exploits
a model of computational costs to provide a more efficient estimator. This
technique is used in our orthant probability algorithm to compute a specific
conditional probability. We show on numerical test cases how, depending
on the type of probability to be estimated, the efficiency gains brought by
anMC can be more or less substantial. Asymmetric nested Monte Carlo,
however, could bring more efficient MC estimators also in other applica-
tions. The anMC method is particularly well suited when the quantity to be
sampled is a function of two correlated random variables that have very dif-
ferent sampling costs. If the cost functions satisfy the assumptions outlined
in Chapter 4, an implementation of anMC could bring large computational
savings. The practical feasibility of such extensions however depends on the
availability of a good model for the cost functions.

Conservative estimates, as presented in the literature (Bolin and Lind-
gren) |2015) and in Chapter , are based on a fixed design of experiments.
In many practical situations, however, it is important to adaptively reduce
the uncertainty on these estimates by evaluating the expensive function at
meaningful locations. In fact, the choice of adaptive sequential designs is
a central topic in the field of computer experiments. Such adaptive meth-
ods have been successfully employed in Bayesian optimization where the
object of interest is the minimum of the function. In Bayesian set estima-
tion, similar methods have been proposed, see e.g. |Chevalier| (2013), where
a sequential method relying on the Vorob’ev variability is developed. In
Chapter [5, we presented new sequential strategies for conservative estimates.
We introduced them in the framework of Stepwise Uncertainty Reduction
(SUR) methods (Bect et al., [2012) and we presented three numerical studies
to compare the introduced criteria with state-of-the-art criteria. In the test
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cases presented, criteria adapted to conservative estimates provide better
uncertainty reduction when compared to generic criteria, such as the IMSE
criterion. In Chapter o] the strategies were introduced in an empirical Bayes
framework. This setup raises further questions on the behaviour of covari-
ance hyper-parameters when re-estimated from new evaluations. In fact,
while in the test cases presented the hyper-parameter estimation was very
stable, conservative estimates strategies are not necessarily well adapted to
hyper-parameter estimation. Further studies are needed to develop hybrid
or global criteria that simultaneously reduce uncertainties and provide con-
sistent hyper-parameter estimation. Moreover, the convergence of a class of
SUR criteria was proven very recently (Bect et al.,|2016). Further work might
involve the extension of such result to the criteria introduced in Chapter [f]
Finally, from an application point of view, conservative estimates allow to
control the overestimation of the set under the model, therefore they are well
suited for reliability engineering and safety applications. In such applica-
tions, however, it is of paramount importance to pair these strategies with
diagnostic tools such as visualizations and appropriate stopping criteria.

The methods proposed in this manuscript require a Gaussian process
(GP) model to surrogate the function. As such, their outcome strongly de-
pends on the quality of this underlying model. However, they are flexible on
the type of Gaussian process model. In fact, the introduced set estimation
techniques could be applied almost directly with sparse underlying GP model
(see, e.g., [Snelson and Ghahramani, 2006; Hensman et al., [2013, and refer-
ences therein) or low rank models (see, e.g. Banerjee et al.| 2008} [Katzfuss,
2016, and references therein). They could also be adapted to fully Bayesian
GP models and to other types of GP models in relatively straightforward
ways. Future work in this direction could lead to set estimation techniques
that better account for uncertainty or that are better adapted to industrial
scale problems.

Further theoretical studies of functionals related to random closed sets
could lead to the development of alternative set estimates. For example,
the study of differential properties of the coverage probability function of
an excursion set might help to summarize its distribution in a more effec-
tive way. Finally, much work is still needed to bridge the gap between the
probabilistic theory of random closed sets and the more applied Bayesian
set estimation world. This manuscript made a first, partial attempt in this
direction; however much work remains to be done.

The methods introduced in Chapter [4| of this thesis were developed in the
R package ConservativeEstimates in order to spread their use. The pack-
age implements the conservative estimates algorithm along with GMC and
GanMC algorithms for orthant probabilities and it is available on GitHub.


http://www.github.com/dazzimonti/ConservativeEstimates
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