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Abstract

The origin of the asymmetry between matter and anti-matter is an interest-
ing but yet unresolved problem of modern physics. To realize a net production
of more baryons than anti-baryons a system has to depart from thermal equi-
librium. A first order electroweak phase transition in the evolution of the early
universe could account for a stage of non-equilibrium. This thesis is meant to
examine this transition within the Standard Model and its inert Higgs doublet
extension. The main parts of this thesis are chapters 2 and 3 which are based
on our papers [1] and [2] respectively.

Even though there is no electroweak phase transition within the Standard
Model, its thermodynamics across the crossover shows interesting features at
temperatures around T ∼ 160 GeV. Although the system does not leave thermal
equilibrium its dynamics deviate from ideal gas thermodynamics. The Standard
Model, lacking a first order phase transition, cannot account for the baryon
asymmetry of the universe but its background can still have an impact on non-
equilibrium physics taking place at temperatures around T ∼ 160 GeV. We
study the relevant thermodynamical functions across the electroweak crossover
in a perturbative three-loop computation and by making use of results from
lattice simulations based on a dimensionally reduced effective theory.

Many extensions of the Standard Model include an extended Higgs sector
where scalar couplings are faced with conflicting requirements. Small couplings
are needed to predict the measured dark matter relic abundance, whereas large
couplings strengthen a first order phase transition. Large couplings, however,
can compromise perturbative studies and spoil the high-temperature expansion
needed for dimensionally reduced lattice simulations. Within the Inert Doublet
Model we compute the resummed two-loop effective potential and we compare
physical parameters related to the electroweak phase transition, e.g. the latent
heat, the critical temperature and the discontinuity of the transition, with the
high-temperature expansion. We also provide master integral functions for a
model independent computation of a two-loop potential.
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Notations

In this thesis we use natural units where the speed of light c, the Boltzmann con-
stant kB as well as the reduced Planck constant h̵ are set to unity. Furthermore,
there are a couple of definitions and notations we list here.

For estimations of a certain scale we use a generic coupling constant

g2 ∈ {g21 , g22 , g23 , λ, h2t} ,
where the couplings g1, g2 and g3 are the gauge couplings of the gauge groups
U(1), SU(2) and SU(3) respectively. The Higgs scalar self coupling is λ and ht
is the top Yukawa coupling. We consider all other fermions to be massless.

We use the MS renormalization scheme at the scale µ̄ and dimensional reg-
ularization in D = d + 1 = 4 − 2ǫ dimensions. Integrals over four-dimensional
momentum space are depicted as

∫
K

≡ (eγE µ̄2

4π
)ǫ ∫ d4−2ǫk

(2π)4−2ǫ ,
where γE is the Euler-Mascheroni constant. At finite temperature, we introduce
Matsubara frequencies for the temporal component k0 of the momentum

K = (k0, k⃗) ⇒ K2 = k20 + k2 .
Therefore, an integration over (4−2ǫ)-dimensional momentum space is expressed
via the sum-integral

⨋
K

= T∑
k0

∫
k
, ∫

k
≡ (eγE µ̄2

4π
)ǫ ∫ d3−2ǫk

(2π)3−2ǫ .
Introducing the inverse temperature β = 1/T , the integration over space-time in
position space is

∫
X

=
β

∫
0

dτ ∫
x
, ∫

x
≡ (eγ µ̄2

4π
)−ǫ ∫ d3−2ǫx .

The Matsubara frequencies are sometimes denoted ωn corresponding to their
respective mode for bosons ωn = 2πnT or fermions ωn = (2n+ 1)πT , with n ∈ Z.
This should not be confused with the energy ωk

i = √k2 +m2
i . Propagators can

then equivalently be written as

1

K2 +m2
i

= 1

k20 + k2 +m2
i

= 1

ω2
n + (ωk

i )2 .



Chapter 1

Introduction

The universe and our physical description thereof is fascinating on all length
scales, ranging from cosmological large scale structures like galaxy clusters to
subatomic particles and their elementary constituents. In the very early uni-
verse, those scales were close to each other but through the expansion of the
universe they have diverged significantly. Objects at a cosmological scale are
described by the theory of general relativity, whereas the theory of subatomic
particles and their interactions is described by the Standard Model.

The Standard Model of particle physics (SM) is a gauge theory that incorpo-
rates the theory of electromagnetism as well as the weak and strong interactions.
The quantum field theory of electromagnetism is described by quantum electro-
dynamics (QED) through the gauge group U(1) and the gauge group of the weak
interactions is SU(2). The mediators of electroweak gauge group SU(2)×U(1)
are the massless photon and the massive W ± and Z bosons. Quantum chro-
modynamics (QCD) is the theory of strong interactions with symmetry group
SU(3) and its gauge fields are the gluons. The gauge group of the Standard
Model is then written as

GSM = SU(3) × SU(2) ×U(1) .
The three gauge groups all have different couplings which depend on the energy
scale. This dependence is also called the running of the couplings and it is
described by beta-functions in renormalization group equations.

If we run the couplings to a higher temperature scale, it is like going back-
ward in time to the early universe. And if the couplings were to meet in one
point, it could give rise to a unified description in a so called Grand Unified
Theory (GUT). Unfortunately, within the Standard Model this is not the case.
The introduction of supersymmetry potentially solves this unification but there
are also other models with different higher gauge groups claiming to explain
grand unification. The idea in all these models is a theory with more symme-
tries that are then broken through multiple steps to ultimately reproduce the
Standard Model symmetry group.

One such symmetry breaking pattern, or restoration if we consider going
from low to high temperatures, has been described a long time ago. The the-
ory of the unification of the electromagnetic and the weak force was originally
described by Glashow, Weinberg and Salam [3–5]. However, in this model, the
two couplings of the electromagnetic and the weak interactions do not combine

1
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into one single coupling at some high scale but are rather a different set of cou-
plings related through the Weinberg angle. As the plasma of the early universe
cooled down, the electroweak symmetry was spontaneously broken to give rise
to the weak and the electromagnetic forces. The theoretical description of the
breaking of this symmetry that is now called the Higgs mechanism, where the
Higgs field acquires a non-zero vacuum expectation value, has been around for
quite a while [6, 7].

The scale at which the transition from the symmetric phase to the broken
Higgs phase takes place is called the electroweak scale. The interest in physics
at this scale has been around for a long time and has not yet diminished. The
topic of this thesis is to study this transition within the Standard Model and
within a simple extension thereof.

The ultimate goal of theoretical physics would of course be to also include
gravitational interactions into a theory of quantum field theory. Although at-
tempts are made to give a description of such a theory of quantum gravity or
Theory Of Everything, e.g. string theory, this holy grail of particle physics
remains to be found.

In this introductory chapter, we first take a look at baryogenesis in section
1.1, which is the reason we study the electroweak phase transition in the first
place. Such transitions and especially cosmological phase transitions are de-
scribed in section 1.2. We then provide a brief introduction into some relevant
features of thermal field theory in section 1.3.

The outline of this thesis is as follows. After the introduction, we study
in chapter 2 the thermodynamics across the electroweak crossover within the
Standard Model. In chapter 3 we extend the Standard Model by a second scalar
doublet and compare its two-loop effective potential with the high-temperature
expansion. We then conclude in chapter 4 and give a brief outlook into current
and future experiments. We provide derivations of vacuum integral functions
and a summary of the master integrals as well as their high-temperature ex-
pansions in Appendix A. For the Inert Doublet Model we list the results of all
diagrams contributing to the potential at two-loop order in Appendix B and
give the expressions for the counterterms and pole masses in Appendix C.

1.1 Baryogenesis

Physics and especially our mathematical description thereof is built on symme-
tries. The principle of reproducibility of an experiment states that physicists
all over the world or even in space can conduct the same experiments at any
time and should get the same results. This universality of physical laws is one
among many such symmetries.

As the universe was created in the big bang, matter, but also anti-matter,
was produced and in a world governed by symmetries one would expect this
creation to be symmetric. What we observe however, is that this symmetry is
broken in our universe and that a small part of baryonic matter survived up until
today which builds up all the planets, stars and galaxies. The creation of this
baryon asymmetry of the universe, i.e. the excess of baryons over anti-baryons,
is called baryogenesis.

The other possibility, the asymmetric case of the big bang where there is a net
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baryon number in the plasma of the very early universe, is spoiled by inflation.
The theory of inflation was developed in the early 1980s as a possible solution
to the horizon and flatness problems and as an explanation to homogeneity and
isotropy of our universe [8–10]. During inflation, a short period of time where
the expansion of the universe is exponentially fast, all initial irregularities, e.g. a
baryon excess, are diluted (for a review of inflation, see e.g. ref. [11]). Therefore,
we consider an initially matter anti-matter symmetric universe.

A particle will annihilate with its anti-particle and produce two photons in
the process. Therefore, a measurement of photons is needed to deduce the ratio
between photons and baryonic matter. The measurement of these photons,
i.e. the Cosmic Microwave Background (CMB), was carried out by Penzias and
Wilson in 1964 [12] for the first time and many times ever since, with the most
accurate data coming from the two satellites WMAP (Wilkinson Microwave
Anisotropy Probe) [13,14] and Planck [15,16].

Not only are the results from these two satellites for the fluctuations of the
cosmic microwave background extremely accurate and can resolve temperature
differences of 10−3K, but they also agree beautifully with Big Bang Nucleosyn-
thesis (BBN, see [17] and references therein). Big bang nucleosynthesis [18, 19]
tells us about the abundance of light elements created in the early universe and
thus gives the second ingredient for the aforementioned fraction of photons to
baryons. This ratio of baryons to photons is [15]

η = nB
nγ
= 6.05(7) × 10−10 . (1.1.1)

From this we learn that even though there is an enormous number of stars and
galaxies in our universe, the initial discrepancy between matter and anti-matter
was tiny.

On the other hand, one could also think of a universe with no net baryon
number where different regions are either dominated by matter or anti-matter.
However, on the surface where a matter-domain borders an anti-matter domain,
large amounts of photons would be produced through annihilation of matter and
anti-matter particles. There is good evidence that this is not the case [20].

A theory that wants to explain baryogenesis has to fulfill the three Sakharov
conditions [21]. These conditions are:

• Violation of baryon number. Obviously to evolve from a symmetric state
in the very early universe with ∆B = 0 to a state where ∆B ≠ 0 non-
conservation of baryon number is inevitable.

• Violation of charge conjugation C and simultaneous charge conjugation
and parity CP. Violation of C symmetry is needed because otherwise
an interaction which produces more baryons than anti-baryons would be
counterbalanced through its charge conjugate process. Similarly, CP sym-
metry has to be violated to prevent the production of the same amount
of left-handed baryons and right-handed anti-baryons and vice versa.

• Departure from thermal equilibrium. In thermal equilibrium and with
CPT symmetry in place, even CP violating interactions would be coun-
tered by the equal and opposite back-reaction. Thus the system has to be
out of equilibrium to produce a net baryon excess.
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The aim of this thesis is to address the third Sakharov condition. As we will
see in the next section, during a first order phase transition the system is not in
equilibrium and thus meets the third Sakharov condition. A first order phase
transition is therefore a good starting point for baryogenesis. If this transition is
the one at the electroweak scale we speak of electroweak baryogenesis for which
good reviews can be found in the literature, e.g. [22, 23].

There are, however, a lot of other scenarios addressing the issue of baryo-
genesis. As alluded to above, there might be more gauge symmetries at high
temperatures described in a grand unified theory. GUT baryogenesis then cor-
responds to the breaking of this symmetry through a first order phase transition
just like in the electroweak case.

By adding right-handed neutrinos to the Standard Model one could not
only provide neutrino masses through the see-saw mechanism [24], but also
spontaneously generate leptons from decays of these neutrinos. In this leptoge-
nesis model [25] the produced lepton asymmetry could then be converted into
a baryon asymmetry through electroweak sphalerons, which are introduced in
the next section.

The last model we want to mention here originates from the supersymmet-
ric extension of the Standard Model. It makes use of additional scalar fields in
supersymmetry which have a shallow potential. During the inflationary epoch,
a condensate can form along a so called flat direction and its non-zero vacuum
expectation value can spontaneously break C and CP. If this direction has in ad-
dition a non-zero baryon number, this asymmetry remains when the condensate
decays. This scenario is called the Affleck-Dine mechanism [22,26].

1.2 Phase Transitions

Phase transitions occur in a wide range of different physical systems. What
makes the study so interesting is the fact that these transitions are characterized
through a handful of parameters which are universal and thus allow us to use
one description for several apparently completely unrelated systems.

Phase transitions can either be of first or of second order and if no such
transition occurs when the system changes from one phase to another we speak
of a crossover. Latent heat is involved in a first order transition where the system
absorbs or releases energy without changing its temperature. In such a transition
both phases are present simultaneously in different parts of the system. This
is not the case in a second order transition which is also called a continuous
phase transition. In a phase diagram there is usually a first order transition
line eventually ending at a critical point where a second order transition takes
place. This leaves the rest of the parameter space open for a crossover from one
phase to another.

The most intuitive phase transitions to us are transitions between different
phases of matter, namely solids, liquids and gases. As an example of a first order
phase transition we consider boiling water in a pan where at one point we can
observe the creation of bubbles of water vapor at the bottom of the pan. These
bubbles then rise to the water surface where the vapor is released. During this
time of bubble nucleation there coexist both the liquid and the gaseous phase
inside the pan and the temperature does not rise above the boiling temperature
until all the water has evaporated. The amount of absorbed energy divided by
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φ

V(φ)

T = 0

T < Tc

T = Tc

T > Tc

Figure 1.1: Schematic temperature evolution of a generic potential with a phase
transition.

the mass of the water is exactly the latent heat.
However, we can also have a phase transition in a system that moves from

a symmetric to a broken phase or vice versa. Such a transformation is usually
attributed to a change in temperature such that broken symmetries are restored
at high temperatures. Figure 1.1 shows a temperature-dependent potential at
different temperatures where the symmetry is restored at high temperatures,
i.e. with φ = 0 being the global minimum for temperatures above some criti-
cal temperature Tc. This phenomenon is called symmetry restoration at high
temperatures and can give rise to phase transitions [27].

The critical temperature Tc is defined in the case of a first order phase
transition as the temperature where the two minima are degenerate. In a second
order transition it is the temperature at which the second derivative of the
potential vanishes at φ = 0, i.e. V ′′(0) = 0. The discontinuity in the entropy
during a first order phase transition results in energy that has to be released
which is done in the form of latent heat. Latent heat is thus a good measure
for the strength of the transition.

A phase transition like the electroweak transition is described through a
temperature-dependent potential as shown in figure 1.1, where going to high
temperatures corresponds to going to earlier times in the thermal evolution of
the universe. The QCD phase transition where the quark-gluon plasma goes into
the confined hadronic phase at T ∼ 100 MeV is another cosmological phase tran-
sition. The electroweak phase transition taking place at T ∼ 100 GeV originates
from the already mentioned spontaneous symmetry breaking of the Standard
Model Higgs field, where the scalar Higgs field acquires a vacuum expectation
value. The system goes from a symmetric phase to a “Higgs phase”, giving
non-thermal masses through the Higgs mechanism to all known massive par-
ticles. Fortunately for us and our theoretical models, energies of the orderO(100 GeV) are accessible with particle accelerators such as the Large Hadron
Collider (LHC) and thus these models can be tested.

Yang-Mills theories and especially the non-abelian SU(2) gauge theory have
an infinite number of degenerate vacua [28] which are distinguished by their
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Chern-Simons number [28–30]. A change in Chern-Simons number through a
sphaleron process is related to a change in baryon number [31]. A sphaleron is a
solution of the electroweak theory at the saddle point between two neighboring
vacuum states and its energy Esph corresponds to the height of the barrier. A
sphaleron process is the transition between two vacua which in case of a system
with energy E < Esph becomes a tunneling transition and the tunneling rate in
the broken phase is exponentially suppressed by a factor of exp[−Esph(T )/T ].

In order for the electroweak phase transition to be the origin of baryogenesis
one has to make sure that a created net baryon number is not washed out
again, e.g. through sphaleron processes. Constraints on the washout rate, such
that the measured baryon fraction remains, are also constraints for the ratio
Esph(Tc)/Tc. The lowest and most restrictive bound then translates to the well
known constraint for a first order phase transition [32]

φ(Tc)
Tc

≳ 1 . (1.2.1)

Thus, at the critical temperature Tc the two degenerate vacua of the scalar
potential have to be far enough apart to prevent a washout through sphaleron
processes. From the requirement of non-equilibrium it is not surprising that a
second order transition with φ(Tc) ≃ 0 could not generate a baryon asymmetry.
For the Standard Model to have a strong enough first order electroweak phase
transition, this constraint leads to a bound on the Higgs mass.

The constraint usually used φ(Tc)/Tc ≳ 1 for a first order phase transition
is gauge-dependent [33, 34]. This dependence originates from the truncation
of the perturbative series such that the critical temperature Tc gets gauge-
dependencies even though it is determined from stationary points where the
potential is gauge-independent. Nevertheless, applying Nielsen’s identity [35,36]
this problem can be circumvented and the critical temperature can be computed
in a gauge-independent way (see Appendix D of [34]).

In an idealized description of a phase transition we can write the corre-
sponding temperature dependent scalar potential, making use of the notation
of Quiros (p. 43 in ref. [37]), as

V (φ,T ) =D(T 2 − T 2
c )φ2 −ETφ3 + λ4φ4 . (1.2.2)

The three terms describe the three parts marked in figure 1.2. To strengthen
the transition, i.e. to increase the height of the barrier separating the two
minima and thus the distance of those two minima, new degrees of freedom
are needed. We will see later on in section 1.3.1 that only bosonic degrees of
freedom contribute to the part φ3.1

To study thermal phase transitions we need a quantum field theory at finite
temperatures. This theory is called thermal field theory.

1.3 Thermal Field Theory

In theoretical calculations of processes or decays for particle accelerators like the
LHC, computations are usually done at zero-temperature. There is of course

1It is not to say that fermionic particles have no impact on the potential. On the contrary,
it is the Yukawa coupling of the top quark which is mainly responsible for the shape of the
Higgs potential at large φ in the Standard Model.



1.3. THERMAL FIELD THEORY 7

φ

V(φ)

∼ φ2 ∼ φ3
∼ φ4

Figure 1.2: The form of the potential in eq. (1.2.2) at the critical temperature.

a good reason for that. We live at late times in the evolution of the universe,
meaning that even the cosmic background radiation has cooled down to 2.725 K
which is of the order of 10−4 eV. And even if energies in the TeV range are
accessed in particle accelerators, very accurate predictions can still be made
using techniques like parton distribution functions for the unknown internal
structure of, say, a proton.

However, there are cases, where it is inevitable to include thermal effects to
get an accurate picture of the physical processes. One such system is the point
of collision in a particle accelerator where very high energy densities and thus
temperatures are set free. These also include macroscopic cases of very high
densities, e.g. in white dwarfs or neutron stars. Furthermore, thermal phase
transitions like the one under study in this thesis are amongst them. Thus we
have to understand how to handle perturbative calculations in quantum field
theory at finite temperature, i.e. thermal field theory.

To understand some of the techniques and technicalities covered in this thesis
we want to give a brief introduction of thermal field theory. This introduction
does by no means claim to cover all the relevant topics of finite temperature field
theories but only the most relevant aspects for this thesis. For a more thorough
and complete introduction see [37–39].

Here we want to cover the basics of thermal sum-integrals, the emergence of
thermal mass terms and explain the concept and the necessity of resummation.

1.3.1 Thermal Integrals

Consider a scalar field φ(x⃗, t). We can write it in a Fourier representation

φ(x⃗, t) = T ∞∑
n=−∞

φ̃(x⃗, ωn)eiωnt , (1.3.1)

where we have introduced the Matsubara modes ωn = 2πnT , n ∈ Z [40]. The
Kubo-Martin-Schwinger relations [41, 42] imply periodic boundary conditions
on the Matsubara modes.

This then corresponds to compactifying the time, or rather temperature,
direction. Thus performing an integration over all of space-time is no longer just
a four dimensional integration but an integration over three spatial dimensions
and an infinite sum over all Matsubara modes. We express this with the sum-
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integral

⨋
K

= T∑
ωn

∫ d3k(2π)3 . (1.3.2)

We define the one-loop integral functions as

J(m,T ) = , I(m,T ) = 1

m

d

dm
J(m,T ) = , (1.3.3)

and we split them up into a zero-temperature and a finite-temperature part as

J(m,T ) = Jvac(m) + JT (m) , I(m,T ) = Ivac(m) + IT (m) . (1.3.4)

The function Jvac(m) corresponds to the well known one-loop Coleman-
Weinberg potential form

Jvac(m) = − m4

64π2
[1
ǫ
− ln m2

µ̄2
+ 3

2
+O(ǫ)] . (1.3.5)

Taking the derivative with respect to m as in eq. (1.3.3) gives us the function
A(m), given in Appendix A.1, which reads

Ivac(m) = A(m) = − m2

16π2
[1
ǫ
− ln m2

µ̄2
+ 1 +O(ǫ)] . (1.3.6)

The thermal parts of the functions J and I are

JT (m) = T 4

2π2

∞

∫
0

dx x2 ln [1 ± e−√x2+y2] , (1.3.7)

IT (m) = T 2

2π2

∞

∫
0

dx
x2√
x2 + y2

1

e
√

x2+y2 ± 1 , (1.3.8)

where the signs correspond to bosons (−) and fermions (+) respectively and
y = m/T . These integrals cannot be computed analytically, however, they can
be expressed as a sum over modified Bessel functions of the second kind Kα(z).
To do so we first change variables x = y sinh t ⇒ dx = y cosh t dt, such that

T 4

2π2

∞

∫
0

dx x2 ln [1 ± e−√x2+y2] = T 4

2π2

∞

∫
0

dt y3 sinh2 t cosh t ln [1 ± e−y cosh t] .
(1.3.9)

Now we have to distinguish between the bosonic and the fermionic case since
the logarithm can be written as

ln(1 − z) = − ∞∑
n=1

zn

n
, ln(1 + z) = ∞∑

n=1
(−1)n+1 zn

n
. (1.3.10)

However, we see that the difference between the bosonic and fermionic sum is
just a factor of (−1)n. We can then write

JT (m) = − T 4

2π2

∞

∫
0

dt y3 sinh2 t cosh t
∞∑
n=1
(±1)n e−yn cosh t

n
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= − T 4

2π2

∞

∫
0

dt
y3

2
sinh t sinh2t

∞∑
n=1
(±1)n e−yn cosh t

n
, (1.3.11)

where we have used the identity sinh2t = 2 sinh t cosh t and the signs now corre-
spond to bosons (+) and fermions (−) respectively. We then integrate by parts
using de−bf(a)/da = −bf ′(a)e−bf(a), where the boundary term vanishes. This is
true since sinh2t e− cosh t∣t=0 = sinh2t e− cosh t∣t=∞ = 0. We then get

JT (m) = −y2T 4

2π2

∞

∫
0

dt cosh 2t
∞∑
n=1
(±1)n e−yn cosh t

n2
. (1.3.12)

Interchanging the sum and the integral as well as using the integral representa-
tion of the modified Bessel function

Kα(z) = ∞

∫
0

dt e−z cosh t coshαt (1.3.13)

and inserting y =m/T we get

JT (m) = −m2T 2

2π2

∞∑
n=1

(±1)n
n2

K2 (nm
T
) , (1.3.14)

where the signs again correspond to bosons (+) and fermions (−). The compu-
tation of the sum-integrals of the functions J and I without the Bessel function
representation is presented in the next chapter in section 3.2.1 and the results
are summarized in Appendix A.2. However, we are often interested in evaluat-
ing these functions in the high-temperature limit, i.e. at small y =m/T . Taking
this limit allows us to have an analytical expression and furthermore we can
give physical meaning to different terms in the high-temperature expansion.

For the expansion of the bosonic I-function we split it up into two parts,
namely the zero-mode Matsubara contribution and the non-zero mode Mat-
subara contribution. Using the expression for a standard integral given in eq.
(A.0.5) we can immediately determine the zero-mode part

In=0(m) = T ∫
k

1

k2 +m2
= −mT

4π
+O(ǫ) . (1.3.15)

For the second part we first have to Taylor-expand before applying eq. (A.0.5).
We then use the alternating geometric series

∞∑
i=0

(−1)imi

Ai+1 = 1

A +m (1.3.16)

to get

In≠0(m) = T ∑
ωn≠0
∫
k

1

ω2
n + k2 +m2

= 2T ∞∑
n=1
∫
k

∞∑
ℓ=0
(−1)ℓ m2ℓ

[(2πnT )2 + k2]ℓ+1
= T 2−2ǫ

2π
1

2
+ǫ

∞∑
ℓ=0
(− m2

(2πT )2 )
ℓ
Γ (ℓ − 1

2
+ ǫ)

Γ(ℓ + 1) ζ(2ℓ − 1 + 2ǫ) +O(ǫ) , (1.3.17)
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where Γ(z) is the Euler gamma function and ζ(s) the Riemann zeta function.
The sum over ℓ lists the terms in the m2/T 2 expansion. We consider only the
first three terms ℓ = 0,1,2 and expand up to O(ǫ0) to get

In≠0(m) = T 2

12
− 2m2

(4π)2 [ 12ǫ + ln( µ̄e
γE

4πT
)]+ 2m4ζ(3)(4π)4T 2

+O (m6

T 6
)+O(ǫ) . (1.3.18)

To get the temperature-dependent part only, we subtract the vacuum con-
tribution Ivac(m) from eq. (1.3.6). The divergence, which is temperature-
independent and in a full computation will be canceled by a counterterm, as
well as the dependence on the renormalization scale µ̄ are thus subtracted.
Adding the contribution from the zero-mode and omitting higher-order terms,
the result reads

IT (m) = T 2

12
− mT

4π
− 2m2

(4π)2 [ln(me
γE

4πT
) − 1

2
] + 2m4ζ(3)(4π)4T 2

. (1.3.19)

We can now use the relation

I(m,T ) = 1

m

d

dm
J(m,T ) ⇒ J(m,T ) = ∫ dm mI(m,T ) (1.3.20)

to get the high-temperature expansion for the J-function. We again omit terms
of order O(ǫ) and O(m6/T 2) and get

JT (m) = −π2T 4

90
+ m2T 2

24
− m3T

12π
− m4

2(4π)2 ln(meγE

4πT
) . (1.3.21)

The fermionic counterpart can be calculated similarly and the resulting expan-
sion to the same order is

J fermion
T (m) = 7

8

π2T 4

90
− m2T 2

48
− m4

2(4π)2 ln(meγE

πT
) . (1.3.22)

Applying the relation (1.3.20) to the zero-mode contribution (1.3.15) we get

Jn=0(m) = −m3T

12π
+O(ǫ) . (1.3.23)

We see that the term ∼ m3T , related to the zero-mode contribution, is absent
in the fermionic expansion in eq. (1.3.22) as it should be, since there are no
fermionic zero-modes. This is true more generally for all terms of odd powers
of m. In higher-order perturbative calculations, these terms lead in the small
mass limit to 1/m divergences which have to be taken care of. The cure for this
infrared problem is resummation. This term in the expansion is the reason we
need bosonic degrees of freedom to strengthen a phase transition as alluded to
in section 1.2.

Before we tackle the problem of resummation, however, we take a look at the
term ∼ m2T 2 in the expansions (1.3.21) and (1.3.22) which can be interpreted
as a thermal mass term.
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Figure 1.3: Diagram contributing to the thermal mass at one-loop in the φ4

toy-model.

1.3.2 Thermal Masses

We have seen above that there is a term ∼ T 2 in the high-temperature expansions
of the J-function for bosons (1.3.21) and fermions (1.3.22). This term, i.e. the
leading term in the expansion, since the one ∼ T 4 is constant, or rather the
coefficient multiplying m2 can be interpreted as a thermal mass term. The
effective mass parameter of a particle then not only gets contributions from the
zero-temperature loop expansion but also from thermal loops.

To demonstrate how this works in a simple theory, we consider a scalar φ4

toy-model with the Lagrangian

Lφ4 = 1

2
∂µφ∂

µφ + m2
φ

2
φ2 + λ

4
φ4 . (1.3.24)

Writing the bare Lagrangian as LB = Lφ4 + δLφ4 , where δLφ4 contains the
vacuum counterterms, we can add and subtract a thermal mass term [43, 44].
The bare Lagrangian is then written as

LB = Lφ4 + δm2
T

2
φ2 + δLφ4 − δm2

T

2
φ2 . (1.3.25)

The term +δm2
T is then included in the calculation along with the vacuummasses

while the term −δm2
T is treated as an additional, i.e. thermal, counterterm.

We now want to compute the effective mass parameter which at tree-level is
m2

eff =m2
φ + 3λφ2. For the calculation of the thermal mass term we consider the

high-temperature regime and neglect external momenta. In this simple model,
there is only one contributing diagram, which is shown in figure 1.3. It can be
expressed in terms of the master integral function

I(0) = T 2

12
. (1.3.26)

The thermal mass contribution to the mass of the scalar is then

δm2
T = 3λI(0) = λT 2

4
, (1.3.27)

and the effective mass parameter becomes

m̃2
eff =m2

eff + δm2
T =m2

φ + 3λφ2 + δm2
T , (1.3.28)

where we have introduced the notation m̃ for masses including their thermal
mass terms.

We now turn to the issue of the infrared divergences mentioned at the end
of section 1.3.1. The solution to this problem is called resummation.
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Figure 1.4: Generic ring or daisy diagram. The dashed line is a zero-mode
propagator and solid lines are non-zero mode propagators.

1.3.3 Resummation

The problematic terms in the small mass limit of the perturbative expansion are
those from the Matsubara zero-mode. To get rid of the infrared divergences one
has to resum so called ring or daisy diagrams to all orders [45]. Ring diagrams as
shown in figure 1.4 consist of one zero-mode propagator dressed with N non-zero
mode loops, where then the sum over all N is taken.

To demonstrate how resummation is implemented we again consider the
simple φ4 toy-model Lagrangian given in eq. (1.3.24). The unresummed one-
loop potential only includes the vacuum blob

V
one-loop

φ4,unres
= = J(meff) . (1.3.29)

As we have mentioned at the end of section 1.3.1, it is necessary to resum the
Matsubara zero-modes to ensure infrared finiteness. We therefore subtract the
unresummed zero-mode contribution from the potential and add the resummed
expression which includes the thermal mass contribution. The resummed po-
tential is then written as

V
one-loop

φ4,res
= J(meff) − Jn=0(meff) + Jn=0(m̃eff) . (1.3.30)

Even though it is necessary to resum the zero-modes, to spare us from having
to implement three J-functions we choose to resum all modes instead. This is
an alternative resummation prescription with its own drawbacks as described
below. To emphasize the different resummation prescription we denote the
potential by Vres’. It takes the simple form

V
one-loop

φ4,res’
= J(m̃eff) . (1.3.31)

We now look at the divergent part of this potential which comes from the
zero-temperature part in eq. (1.3.5) and reads

V
one-loop

φ4,res’,1/ǫ = − m̃4
eff

64π2ǫ
= m4

φ + 9λ2φ4 + 6λm2
φφ

2 + 2δm2
T (m2

φ + 3λφ2) + (δm2
T )2

64π2ǫ
.

(1.3.32)
The temperature-independent parts get canceled by the vacuum countert-

erms of lower order as usual (δLφ4 in eq. (1.3.25)). However, the temperature-
dependent parts only get canceled by terms of higher order. The term ∼ δm2

T
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(a) (b)

Figure 1.5: Topologies canceling the temperature-dependent divergences of the
one-loop potential. The cross denotes a contribution from an insertion of δm2

T .

gets canceled by a contribution from the diagram (a) in figure 1.5 which is part
of the two-loop potential. The last term ∼ δm4

T is canceled by a one-loop topol-
ogy with two thermal mass insertions as shown in diagram (b) in figure 1.5
which is counted as of three-loop order.

The fact that ultraviolet divergences do not cancel order by order is the prize
to pay for the simplicity of the alternative resummation prescription introduced
in eq. (1.3.31). In practice, computations are only performed up to a certain
order in perturbation theory and thus some temperature-dependent divergences
remain uncanceled. In our calculations we remove these divergences, that are
formally of higher order, by hand.





Chapter 2

Phase Transition in the

Standard Model

The Standard Model of particle physics has proven to be very accurate and data
from the Large Hadron Collider suggest that it represents a precise description of
nature up to energy scales of several hundred GeV. However, since the discovery
of the Higgs boson at the LHC [46,47] we know that its mass ofmh = 125.09±0.24
GeV [48] is too high to meet the bounds mentioned in section 1.2. The line of
first order transitions has a second order transition endpoint atmh ∼mW [49–52]
and for heavier Higgs masses the transition is a crossover.

Therefore, within the Standard Model the spontaneous symmetry breaking
at the electroweak scale did not occur through a phase transition, but was a
smooth crossover [49, 53–57]. This means that as the universe cooled down
to temperatures below this crossover, the plasma did not depart from thermal
equilibrium. Since the third Sakharov condition is not met, the Standard Model
cannot explain baryogenesis at the electroweak scale.

Nevertheless, even without a thermal phase transition at the electroweak
scale there is still some interesting physics going on at temperatures around
T ∼ 160 GeV. These SM background effects could potentially have an imprint on
some Beyond the Standard Model non-equilibrium physics. Even small features
in the equation of state could have an impact on dark matter decoupling in
this temperature range [58] or some B + L violating rate that is switched off
rapidly [59, 60]. The Standard Model background could then determine the
fraction of a given lepton number produced around this scale, that is converted
into baryons [61].

To describe this background we need to study the SM equation of state
around the crossover. We do this through a perturbative three-loop computa-
tion where we use existing data within a dimensionally reduced effective theory
on the lattice. We then integrate across the crossover and calculate different
thermodynamic functions. The anticipated order is O(g5) where g is some
generic coupling constant.

We start off by deriving a master equation for the pressure, or rather its
logarithmic temperature derivative, in section 2.1. We then treat each of the
three terms arising in the master equation individually in sections 2.2, 2.3 and
2.4 before presenting our results in section 2.5. The possible implications of

15
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these results are described in section 2.6.

2.1 Master Equation

The first step in our study is to derive a master equation whose parts we then
compute individually. We consider the Standard Model with the scalar part of
the Euclidean Lagrangian

δLE = −ν2Bφ†φ + λB(φ†φ)2 . (2.1.1)

The renormalized parameters corresponding to the bare ones ν2B and λB are
denoted by ν2 and λ. In our study we are considering the temperature range

T 2 ≳ ν2
g2

, (2.1.2)

where g2 is some generic coupling constant g2 ∈ {λ,h2t , g21 , g22 , g23}. Looking at the
lower edge of this range, the effective Higgs mass parameter of the dimensionally
reduced theory, m̄3 [62] satisfies

∣m̄2
3∣ ∼ ∣ − ν2 + g2T 2∣ ≲ g3T 2

π
. (2.1.3)

If the sign is negative we are in a Higgs phase where the Higgs field has an
expectation value v2 ∼ −m̄3/λ > 0. This expectation value is small (v ≲√gT ) in
our parameter range since λ ∼ g2 for a Higgs mass mh ≃ 125 GeV.

The dynamics of the system is non-perturbative if momenta in the range∣m̄2
3∣ ∼ (g2T /π)2 are considered [63, 64] and thus they have to be treated with

lattice simulations. However, the non-perturbative nature is associated with
particular modes and can thus be described by a dimensionally reduced effective
theory [65,66]. Such a theory is constructed perturbatively but nevertheless the
accuracy is expected to be at the percent level. This estimate is based on the
analysis of higher-order operators that are truncated in this theory [62], and on
a comparison of lattice results in the dimensionally reduced theory with a full
4-dimensional simulation [52,67].

The basic observable we are considering is the thermodynamic pressure
pB(T ) which only depends on one thermodynamic variable, namely the temper-
ature, since we set chemical potentials associated with conserved charges such
as B −L or the hypercharge magnetic flux to zero.

Following [68, 69], where the parameter ranges m̄3 ∼ g2T and m̄3 ∼ g3T /π
respectively have already been considered, we rewrite the pressure as

pB(T ) = pE(T ) + pM(T ) + pG(T ) . (2.1.4)

The three parts collect contributions from different momentum scales. While
the hard scales k ∼ πT contribute to pE , the soft scales k ∼ gT contribute to pM
and the ultrasoft scales k ∼ g2T /π to pG. We use the terminology from QCD
where the effective theory contributing to pM is called the Electrostatic Standard
Model (ESM) while the one contributing to pG Magnetostatic Standard Model
(MSM).

We do not present here the full three-loop calculation performed for the
different contributions of the thermodynamic pressure. The explicit result in
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Figure 2.1: Vacuum three-loop topologies.

terms of master integral functions of all the contributing diagrams or family of
diagrams can be found in [68] with typos and corrections listed in the Appendix
of [1]. We only want to show the relevant topologies and the corresponding
master integrals.

At one-loop there is only one diagram which is related to the J-function
given in the next chapter in section 3.2.1, that is

∼ J(m) . (2.1.5)

At two-loop we have contributions from the topologies

∼ I(m)2 , ∼H(m) , (2.1.6)

where the functions I(m) and H(m) are given in sections 3.2.1 and 3.2.2 in
the next chapter. The sum-integral functions in these sections refer to the full
theory. However, here we also need the three-dimensional integrations for the
contributions to pM and pG. An example of such a computation is given in
section 2.3. At three-loop there are six different topologies contributing which
are shown in figure 2.1.

The calculation of the pressure can then be carried out both in the full 4-
dimensional theory as well as in the dimensionally reduced effective theory. The
particle content in the reduced 3d-theory is different from the full theory. After
the first reduction step, i.e. in the ESM, there are no longer any fermions, since
they all have masses of the order ∼ πT and only Matsubara zero-modes remain.
Furthermore, we distinguish between the spatial and temporal parts of the gauge
bosons since the latter get a Debye screening mass contribution [68] of order
mE ∼ gT . The theory can then be viewed as a 3d-theory with a fundamental
scalar, i.e. the Higgs, and adjoint scalars, i.e. the temporal components of the
gauge fields. The next reduction step to the MSM leaves us with a 3d-theory
where the temporal parts of the gauge fields have been integrated out.

Using dimensional reduction gives us a new set of parameters, couplings
and masses, we can then relate to the ones of the full theory by matching
coefficients of Green’s functions in either theory. These parameters themselves
are then expressed in terms of physical parameters, like pole masses and the
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muon lifetime. This is presented in [62] and for the couplings used in the next
chapter the procedure is described in section 3.3.

The pressure in eq. (2.1.4) has to be renormalized and we do so by assuming
that it vanishes at T = 0. We then write

p(T ) = pB(T ) − pB(0) . (2.1.7)

Now rather than calculating the pressure itself we are interested in the di-
mensionless ratio p(T )/T 4. As alluded to above, we want to integrate the pres-
sure across the electroweak crossover. If, on either side, we are far from the
crossover, say T0 ≪ 160 GeV and T1 ≫ 160 GeV, we can determine the pressure
by a direct perturbative computation. The integration to be determined then
reads

p(T1)
T 4
1

− p(T0)
T 4
0

= T1

∫
T0

dT

T
T
d

dT
[p(T )
T 4
] . (2.1.8)

We need to compute the logarithmic temperature derivative of the dimen-
sionless ratio p/T 4. Since scale invariance is broken explicitly by the Higgs mass
term and by quantum corrections the result is non-zero. The integrand of (2.1.8)
can be expressed in terms of the energy density e(T ) as

∆(T ) = T d

dT
[p(T )
T 4
] = e(T ) − 3p(T )

T 4
. (2.1.9)

We again use a terminology known from QCD where ∆(T ) is referred to as the
trace anomaly. Now since in (2.1.7) all 1/ǫ divergences cancel we can replace
the bare pressure by the renormalized one, denoted by pR. Furthermore, for
dimensional reasons we may write the dimensionless ratio p̂ = p/T 4 as

p(T )
T 4

= p̂R ( µ̄
T
,
ν2(µ̄)
T 2

, g2(µ̄)) − p0R(µ̄, ν2(µ̄), g2(µ̄))
T 4

, (2.1.10)

where p0R is the renormalized pressure at zero-temperature.
The bare pressure can be written in terms of the grand canonical partition

function, which is defined through the thermodynamical limit

Z = lim
V→∞

exp [pB(T )V
T

] . (2.1.11)

The partition function relates to the Euclidean path integral as

Z = ∫ DADψDψ̄Dφ exp [−∫
X
LE] , (2.1.12)

where in our case the path integral includes integrations over all gauge fields
A, fermion and anti-fermion fields ψ and ψ̄ and the Higgs field φ.The integral

∫X = ∫ β

0
dτ ∫x is defined in the notations in the preface of this thesis. We can

then write the pressure as

pB(T ) = lim
V→∞

T

V
ln{∫ DADψDψ̄Dφ exp [−∫

X
LE]} . (2.1.13)

To calculate the trace anomaly we need to take the derivative with respect
to the Higgs mass parameter ν2(µ̄), or rather the dimensionless ratio ν2(µ̄)/T 2
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of p̂R. To do so, we first write ν2B = Zmν
2(µ̄), where Zm is the renormalization

factor which always appears in the combination Zm⟨φ†φ⟩, in the part of the
Lagrangian given in eq. (2.1.1). Even though they are not explicitly needed
here, we also replace the other bare couplings with the renormalized ones. The
derivative of the renormalized pressure, i.e. the renormalized expression of eq.
(2.1.13), is then

∂p̂R

∂(ν2/T 2) = 1

T 4

∂

∂(ν2/T 2) lim
V→∞

T

V
ln{∫ D[. . .] C exp [T 2 ∫

X

Zmν
2

T 2
φ†φ]}

= lim
V→∞

T

V

1

Z0T 4 ∫ D[. . .]e−SET 2 ∫
X
Zmφ

†φ

= lim
V→∞

T

V

1

T 2 ∫X Zm⟨φ†φ⟩ (2.1.14)

where D[. . .] is the path integration measure for all the fields, C includes all
ν2-independent terms in the action and Z0 = ∫ D[. . .]e−SE , where SE is the
Euclidean action. In the last step we have changed the order of the integration
and used the definition of the expectation value ⟨A⟩ = Z−10 ∫ D[. . .]Ae−SE . Since
the integration ∫X = V β = V /T , the factor T /V is canceled and the limit can be
taken. We can then write

∂p̂R

∂(ν2(µ̄)/T 2) = [Zm⟨φ†φ⟩]R
T 2

, (2.1.15)

where we have added the subscript R to indicate that renormalized quantities
are used.

We can now take the logarithmic temperature derivative of eq. (2.1.10) and
thus the trace anomaly can be written as

T
d

dT
[p(T )
T 4
] = T ∂(µ̄/T )

∂T

∂p̂R

∂(µ̄/T ) + T ∂(ν
2(µ̄)/T 2)
∂T

∂p̂R

∂(ν2(µ̄)/T 2) + T 4p0R
T 5

= − ∂p̂R

∂ ln[µ̄/T ] − 2ν2(µ̄)[Zm⟨φ†φ⟩]R
T 4

+ 4p0R
T 4

. (2.1.16)

This is our master equation whose three parts correspond to three different
contributions. The first term collects the explicit logarithms appearing in p̂R
which correspond to the breaking of scale invariance by quantum corrections.
The second part grasps the temperature evolution of the Higgs condensate where
the vacuum expectation value introduces an explicit breaking of scale invariance.
The last term is the vacuum renormalization. We want to study each of these
terms individually.

Although we checked and corrected (see Appendix of [1]) the calculation of
the pressure in both the full and the reduced effective theory, we do not want to
list all the various coefficients again here. They can be found in the Appendices
of [68] and can with minor changes in notation directly be used here.1

2.2 Scale violation by Quantum Corrections

There are two ways to collect the logarithms appearing in the loop corrections in
our perturbative study needed for evaluating the first term in the master equa-

1The changes are g′2 → g21 , g
2 → g22 , g

2
Y
→ h2

t
, Λ→ µ̄ and γ → γE .
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tion (2.1.16). One way is to read off the logarithmic contributions directly from
the explicit calculation of the various coefficients. The other way is presented
here, where we make use of the fact that the pressure as an observable is scale
invariant and thus the scale violation has to be compensated by the running of
the couplings.

The first thing to note is that the part p̂G in eq. (2.1.4) only contributes
at the order O(g6) and can thus be neglected for this part. Furthermore, the
running of the couplings is of the form [68]

g2(µ̄) = g2(µ̄0) + ηg4(µ̄) ln µ̄

µ̄0

+O(g6) , (2.2.1)

where η is a numerical constant and µ̄0 some reference scale. Since we take
the derivative of the pressure with respect to the renormalization scale µ̄ and
derivatives of the runnings are of the order µ̄dg2/dµ̄ ∼ g4, we only need the
pressure up to O(g3). Up to this order the pressure reads

p̂E+p̂M =
= αE1 + g21αEB + g22αEA + g23αEC + λαEλ + h2tαEY + ν2

T 2
αEν

+ ν4(4π)2T 4
(1
ǫ
+ αEνν) + 1

12πT 3
[(m2(0)

E1 ) 3

2 + 3(m2(0)
E2 ) 3

2 + 8(m2(0)
E3 ) 3

2 ] .
(2.2.2)

The leading order contributions of the Debye masses are

m
2(0)
E1 = (16 + 5nG

9
) g21T 2 , m

2(0)
E2 = (56 + nG3 ) g22T 2 , m

2(0)
E3 = (1 + nG3 ) g23T 2 .

(2.2.3)
With the exception of αEνν , all coefficients in eq. (2.2.2) are scale indepen-

dent. Our coefficient αEνν differs from [68], where they chose to renormalize the
pressure such that it vanishes in the symmetric phase at zero temperature. Our
renormalization condition requires the pressure to vanish at zero temperature
in the broken phase. In terms of the group theory factor dF = 2 of SU(2) and
the number of scalars nS = 1 this coefficient reads

αEνν = dFnS (ln µ̄

4πT
+ γE) . (2.2.4)

Using now that explicit logarithms must cancel against the running of the
couplings we write

[∂p̂E + p̂M ]R
∂ ln[µ̄/T ] = −αEBµ̄

dg21
dµ̄
− αEAµ̄

dg2s
dµ̄
− αEC µ̄

dg23
dµ̄
− αEλµ̄

dλ

dµ̄

− αEY µ̄
dh2t
dµ̄
− αEν

T 2
µ̄
dν2

dµ̄
+ ν4(4π)2T 4

µ̄
dαEνν

dµ̄

− 3∑
i=1

dim
(0)
Ei

8πT 3
µ̄
dm

2(0)
Ei

dµ̄
+O(g6) , (2.2.5)

where di are the degrees of freedom of the gauge bosons d1 = 1, d2 = 3 and
d3 = 8. Inserting the running of the couplings we arrive at

− [∂p̂E + p̂M ]R
∂ ln[µ̄/T ] =∆1(T ) , (2.2.6)
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with

∆1(T ) = 1(4π)2 [198 + 141nG − 20n
2
G

54
g43 + 266 + 163nG − 40n2G

288
g42

− 144 + 375nG + 1000n2G
7776

g41 − g21g2232
− h2t (7h2t32

− 5g23
6
− 15g22

64
− 85g21

576
)

− λ(λ + h2t
2
− g21 + 3g22

8
) + ν2

T 2
(h2t + 2λ − g21 + 3g224

) − 2ν2

T 4
]

− 1(4π)3 [32g53 (1 + nG3 )
3

2 (11
4
− nG

3
) + 12g52 (56 + nG3 )

3

2 (43
24
− nG

3
)

− 4g51 (16 + 5nG
9
) 3

2 ( 1

24
+ 5nG

9
)] +O(g6) . (2.2.7)

2.3 Higgs Condensate

As in eq. (2.1.4), we split the pressure into contributions from different momen-
tum scales and express the Higgs condensate as

Zm⟨φ†φ⟩ = ∂pE
∂ν2
+ ∂pM
∂ν2

+ ∂pG
∂ν2

. (2.3.1)

Since Zm⟨φ†φ⟩ is multiplied by ν2 in our master equation (2.1.16) and since we
assume ν2 ∼ g2T 2 we only need to determine Zm⟨φ†φ⟩ up to order O(g3).

The first term, collecting the contributions from the hard scales, can be
extracted directly from the perturbative expression for pE in ref. [68]. It reads

∂pE

∂ν2
= T 2 (αEν + g21αEBν + g22αEAν + λαEλν + h2tαEY ν(4π)2 )
+ 2ν2(4π)2 (1ǫ + αEνν) +O(g4) . (2.3.2)

Inserting the coefficients, some 1/ǫ divergences still remain and we have

∂pE

∂ν2
= T 2

6
− T 2

6(4π)2 [32(g21 + 3g22)(1ǫ + 3 ln µ̄

4πT
+ γE + 5

3
+ 2ζ ′(−1)

ζ(−1) )
+ 6h2t (ln µ̄

4πT
+ γE) + 12λ(ln µ̄

4πT
+ γE)]

+ 4ν2(4π)2 ( 12ǫ + ln µ̄

4πT
+ γE) +O(g4) . (2.3.3)

The contributions from the soft scales originate from the dependence of the
effective mass parameters on ν2:

∂pM

∂ν2
= ∑

i=1,2

∂m2
Ei

∂ν2
∂pM

∂m2
Ei

+ ∂m2
3

∂ν2
∂pM

∂m2
3

+O(g6) . (2.3.4)
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The first two terms can be calculated from the Debye mass parameters

m2
E1 = g21 (T 2β′E1 − ν2(4π)2 β′Eν) + . . . , m2

E2 = g22 (T 2βE1 − ν2(4π)2 βEν) + . . . ,
(2.3.5)

where the coefficients β′E1 and βE1 are the coefficients given in eq. (2.2.3). The
contribution of these two terms is then

∑
i=1,2

∂m2
Ei

∂ν2
∂pM

∂m2
Ei

= − T 2

(4π)3
⎡⎢⎢⎢⎣3g32 (

5

6
+ nG

3
) 1

2 + g31 (16 + 5nG
9
) 1

2
⎤⎥⎥⎥⎦+O(g4) . (2.3.6)

The contribution of the last term in eq. (2.3.4) is a bit more cumbersome
because there is a peculiarity in the parameter range under consideration. Since∣m2

3∣ ∼ ∣ − ν2 + g2T 2∣ ≲ g3T 2/π, the derivative of m2
3 is parametrically larger than

m2
3 itself:

ν2
∂m2

3

∂ν2
∼ ν2 ∼ g2T 2 . (2.3.7)

We thus have to take terms in pM that are of higher order than O(g3) into
account. However, the computation is simplified, since pG collects contributions
from the ultrasoft scales. Therefore, we can treat the Higgs and gauge fields as
massless for our computation of the matching coefficients and most diagrams
vanish in dimensional regularization. What remains are diagrams with at least
one adjoint scalar propagator and one mass insertion m2

3φ
†φ, denoted by a blob

in the diagrams below. The only two diagrams contributing at the relevant
order are

∂pM

∂m2
3

= + , (2.3.8)

where dashed lines are scalar propagators, solid lines are adjoint scalar propa-
gators and wiggly lines are gauge fields.

To solve these kind of topologies we first calculate the propagator in coordi-
nate space, i.e. Fourier transform to get

V (r) = ∫
k
eik⃗⋅r⃗

1

k2 +m2
. (2.3.9)

This Fourier transformed propagator can be expressed in terms of the modified
Bessel function of the second kind Kα(z) [70] as

V (r) = (eγE µ̄2

4π
)ǫ 1(2π) 3

2
−ǫ
(m
r
) 1

2
−ǫ

K 1

2
−ǫ(mr) . (2.3.10)

In the limit where ǫ→ 0 this expression reduces to

V0(r) = e−mr

4πr
. (2.3.11)

In the end we want to take the limit where r → 0. Therefore we expand
V (r) in a Laurent series for small r. For the Bessel function we use

Kα(z) = π
2

I−α(z) − Iα(z)
sinαπ

, Iα(z) = ∞∑
n=0

1

n!Γ(n + α + 1) (z2)
2n+α

, (2.3.12)
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where Iα(z) is the modified Bessel function of the first kind. The expansion of
the Bessel function is then written as

K1/2−ǫ(mr) = π
2

1

sin [(1
2
− ǫ)π]

∞∑
n=0

⎡⎢⎢⎢⎢⎢⎣
(mr

2
)2n− 1

2
+ǫ

Γ (n + 1
2
+ ǫ) −

(mr
2
)2n+ 1

2
−ǫ

Γ (n + 3
2
− ǫ)
⎤⎥⎥⎥⎥⎥⎦

= 1

2
Γ(1

2
− ǫ)(mr

2
)− 1

2
+ǫ [1 + 2

1 + 2ǫ (mr2 )
2 +O(m4R4)]

+ 1

2
Γ(−1

2
+ ǫ)(mr

2
) 1

2
−ǫ [1 + 2

3 − 2ǫ (mr2 )
2 +O(m4r4)] ,

(2.3.13)

where in the second equality we have used the Euler reflection formula

π

sin [(1
2
− ǫ)π] = Γ(12 − ǫ)Γ(12 + ǫ) . (2.3.14)

Inserting eq. (2.3.13) back into eq. (2.3.10) we get

V (r) = (eγE µ̄2

4
)ǫ Γ (12 − ǫ)

4πΓ (1
2
) r−1+2ǫ [1 + (mr)

2

2(1 + 2ǫ) +O(m4r4)]
− (eγE µ̄2)ǫ Γ (−1

2
+ ǫ)

4πΓ (−1
2
) m1−2ǫ [1 + (mr)2

2(3 − 2ǫ) +O(m4r4)] . (2.3.15)

The so called basketball diagram, corresponding to the topology of the first
diagram in eq. (2.3.8), is written as

∫
kpq

1

k2 +m2
1

1

p2 +m2
2

1

q2 +m2
3

1(k⃗ + p⃗ + q⃗)2 +m2
4

= ∫
r
V 4(r) , (2.3.16)

where ∫r = [eγe µ̄2/(4π)]−ǫ ∫ d3−2ǫr as defined in the notations and V 4 is to be
understood as a product Π4

i=1V (r,mi). The masses mi correspond to the four
lines in the diagram. There are ultraviolet divergences coming from the region
where r → 0, therefore we split the integral into

∫
r
V 4(r) = (eγE µ̄2

4
)−ǫ 4πΓ (3

2
)

Γ (3
2
− ǫ)

R

∫
0

dr r2−2ǫV 4(r)+4π ∞

∫
R

dr r2V 4
0 (r) , (2.3.17)

where in the second term we have set ǫ = 0. We choose R≪ 1/mi such that we
can use the expansion (2.3.15) and dropping all terms that vanish as R → 0, we
get

(eγE µ̄2

4
)−ǫ 4πΓ (32)

Γ (3
2
− ǫ)

R

∫
0

dr r2−2ǫV 4(r)
= (eγE µ̄2

4
)−ǫ 4πΓ (3

2
)

Γ (3
2
− ǫ)

R

∫
0

dr

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎣(
eγE µ̄2

4
)ǫ Γ (12 − ǫ)

4πΓ (1
2
)
⎤⎥⎥⎥⎦
4

r−2+6ǫ

+ 4⎡⎢⎢⎢⎣(
eγE µ̄2

4
)ǫ Γ (12 − ǫ)

4πΓ (1
2
)
⎤⎥⎥⎥⎦
3 (eγE µ̄2)ǫ Γ (−1

2
+ ǫ)

4πΓ (−1
2
) m1−2ǫr−1+4ǫ

⎫⎪⎪⎬⎪⎪⎭
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= − 1(4π)3 [ 1R +
4∑

i=1

mi

4
(1
ǫ
− 2 ln 2mi

R2µ̄3
+ 4γE + 4)] +O(ǫ) . (2.3.18)

To evaluate the second integral in eq. (2.3.17) we use integration by parts
and the exponential integral

Ei(x) = − ∞

∫
−x

dt
e−t

t
= γE + ln ∣x∣ +O(x) , x ∈ R , x ≠ 0 . (2.3.19)

Dropping terms that vanish as R → 0, we get

4π

∞

∫
R

dr r2V 4
0 (r) = 1(4π)3

∞

∫
R

dr
e−Mr

r2
= 1(4π)3

⎡⎢⎢⎢⎢⎣−
e−Mr

r
∣∞
R

+M
∞

∫
R

dr
e−Mr

r

⎤⎥⎥⎥⎥⎦
= 1(4π)3 [ 1R +M (lnMR + γE − 1)] , (2.3.20)

where M = ∑4
i=1mi. We see that the terms ∼ 1/R and ∼ lnR cancel between

(2.3.18) and (2.3.20). The resulting expression for the basketball diagram in eq.
(2.3.16) is then

∫
kpq

1

k2 +m2
1

1

p2 +m2
2

1

q2 +m2
3

1(k⃗ + p⃗ + q⃗)2 +m2
4

= 1(4π)3
4∑

i=1
mi

⎡⎢⎢⎢⎣−
1

4ǫ
− 2 + 1

2
ln

2mi

µ̄
+ ln ∑4

j=1mj

µ̄

⎤⎥⎥⎥⎦ +O(ǫ) . (2.3.21)

The second diagram in eq. (2.3.8) is of the type

I6 = ∫
k,p,q

1

k2 +m2
1

1(k⃗ + p⃗)2 +m2
2

1

q2 +m2
3

1(q⃗ + p⃗)2 +m2
4

1

p2 +m2
5

1

p2 +m2
6

,

(2.3.22)
which can be reduced using the partial fraction decomposition

1

p2 +m2
5

1

p2 +m2
6

= 1

m2
6 −m2

5

( 1

p2 +m2
5

− 1

p2 +m2
6

) . (2.3.23)

The resulting integral correspond to the topology in the top right corner of
figure 2.1. The Fourier transform of this integral is then [71]

I5 = ∫
k,p,q

1

k2 +m2
1

1(k⃗ + p⃗)2 +m2
2

1

q2 +m2
3

1(q⃗ + p⃗)2 +m2
4

1

p2 +m2
5

= 1(4π)5 ∫ d3x
e−(m1+m2)x

x2
∫ d3y

e−(m3+m4)y

y2
e−m5∣x⃗+y⃗∣

∣x⃗ + y⃗∣ , (2.3.24)

where x = ∣x⃗∣ and y = ∣y⃗∣. For the second integration we use the law of cosines
to write ∣x⃗ + y⃗∣ =√x2 + y2 − 2xy cos θ , (2.3.25)

and change the angular integration variable to

t =√x2 + y2 + 2xy cos θ ⇒ dθ sin θ = −dt t
xy

. (2.3.26)
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We can then write the second integration in eq. (2.3.24) as

∫ d3y
e−(m3+m4)y

y2
e−m5∣x⃗+y⃗∣

∣x⃗ + y⃗∣ = 2π
∞

∫
0

dy
e−(m3+m4)y

xy

x+y

∫
x−y

dt e−m5t

= 2π ∞

∫
0

dy
e−(m3+m4)y

xy

1

m5

(e−m5(x−y) − e−m5(x+y))
= 2π

m5x
[e−m5x

x

∫
0

dy

y
(e−(m3+m4−m5)y − e−(m3+m4+m5)y)

+ (em5x − e−m5x) ∞∫
x

dy

y
e−(m3+m4+m5)y] , (2.3.27)

where in the last equation we distinguished the two cases y < x and y > x. Using
the definition of the Euler integrals (see e.g. eq. (2.3.19)) this evaluates to

∫ d3y
e−(m3+m4)y

y2
e−m5∣x⃗+y⃗∣

∣x⃗ + y⃗∣
= 2πe−m5x

m5x
{ln m3 +m4 +m5

m3 +m4 −m5

+Ei [(m3 +m4 −m5)x]}
− 2πem5x

m5x
Ei [(m3 +m4 +m5)x] . (2.3.28)

Inserting this result into eq. (2.3.24) we can perform the remaining x in-
tegration. We use the expansion for small arguments of the Euler integral as
given in eq. (2.3.19) and we get

I5 = lim
z→0

1(4π)32m5

{ln m3 +m4 +m5

m3 +m4 −m5

[−γE − ln(m1 +m2 +m5)z]
− ζ(2) + [γE + ln(m3 +m4 −m5)z]2

2
− Li2 (−m1 +m2 +m5

m1 +m2 −m5

)
+ ζ(2) + [γE + ln(m3 +m4 +m5)z]2

2
+ Li2 (−m1 +m2 −m5

m3 +m4 +m5

)}
= 1(4π)32m5

{1
2
ln
m3 +m4 +m5

m3 +m4 −m5

ln
(m3 +m4 +m5)(m3 +m4 −m5)(m1 +m2 +m5)2

+ Li2 (−m1 +m2 −m5

m3 +m4 +m5

) − Li2 (−m1 +m2 +m5

m3 +m4 −m5

)} , (2.3.29)

where Li2(u) is the dilogarithm function and ζ(s) is the Riemann zeta function.
From this reduced integral where we have used the partial fraction decompo-
sition given in eq. (2.3.23), we go back to the integral we started with in eq.
(2.3.22) which is then

I6 = 1(4π)3(m2
6 −m2

5)m5

[π2

12
+ 1

4
(ln m1 +m2 +m5

m3 +m4 +m5

)2

+ 1

2
Li2 (m5 −m1 −m2

m5 +m3 +m4

) + 1

2
Li2 (m5 −m3 −m4

m5 +m1 +m2

)]
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− 1(4π)3(m2
6 −m2

5)m6

[π2

12
+ 1

4
(ln m1 +m2 +m6

m3 +m4 +m6

)2

+ 1

2
Li2 (m6 −m1 −m2

m6 +m3 +m4

) + 1

2
Li2 (m6 −m3 −m4

m6 +m1 +m2

)] , (2.3.30)

where we have used the following identity of the dilogarithm

Li2(z) + Li2 (1
z
) = −π2

6
− 1

2
[ln(−z)]2 . (2.3.31)

Using the Feynman rules and expressions for the couplings of the dimension-
ally reduced theory [68] as well as the results in eqs. (2.3.21) and (2.3.30) we
obtain from eq. (2.3.8)

∂m2
3

∂ν2
∂pM

∂m2
3

= − T 3

16(4π)3 [ g42
mE2

(−2
ǫ
− 12 ln µ̄

2mE2

+ 35

3
) + g41

mE1

+ 12g21g
2
2

mE1 +mE2

] .
(2.3.32)

The last term in eq. (2.3.1) captures the contributions from the ultrasoft
scales, i.e. the dependence of the MSM effective Higgs mass parameter m̄3 on
ν2. It can be expressed as

∂pG

∂ν2
= ∂m̄2

3

∂ν2
∂pG

∂m̄2
3

+O(g8) . (2.3.33)

The error comes from partial derivatives with respect to other effective couplings
of the MSM. Only the leading term [62]

∂m̄2
3

∂ν2
= −1 (2.3.34)

is needed and we get

∂m̄2
3

∂ν

∂pG

∂m̄2
3

= [1 + 3

2(4π)2 ((g21 + 3g22 − 8λ) ln µ̄e
γE

4πT
− 4h2t ln µ̄eγE

πT
)] ⟨φ†φ⟩3d(g2M2)

+ (g21 + 3g22)T 2

(4π)2 ( 1

4ǫ
+ ln µ̄

g2M2

)
− g42T

3

2(4π)3mE2

( 1

4ǫ
+ ln µ̄

g2M2

+ 1

2
ln

µ̄

2mE2

) +O(g4) . (2.3.35)

where the renormalization scale µ̄ = g2M2 is used within the MSM. The conden-
sate ⟨φ†φ⟩3d(g2M2) can be measured non-perturbatively. Thereby lattice mea-
surements are extrapolated to the infinite-volume limit and proper counterterms
are subtracted [72]. An extrapolation to the continuum limit has only been car-
ried out for a small Higgs mass [60], but cutoff effects are modest as long as we
are not in the broken phase. Therefore we use lattice results with the physi-
cal Higgs mass [59] only for the region −0.1 ≲ m̄2

3(g2M2)/g4M2 ≲ 0.2 and employ
perturbative expressions for the extrapolations to high and low temperature.

At low temperature, i.e. for m̄3 ≫ 0, the three-loop perturbative expres-
sion for ⟨φ†φ⟩3d can be extracted from ref. [68] (cf. Appendix B in ref. [1] for
corrections). The expression reads

⟨φ†φ⟩3d(g2M2)(g2M2)T = −√y
2π
+ 1(4π)2 [6x − (3 + z) ( ln y2 + ln 2 − 1

4
)]
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+ 1(4π)3√y [51 ln y32
+ 61 ln 2

16
+ 3π2

16
+ 485

64
+ x(9 ln y

2
+ 3 ln 2 + 39

4
)

− x2 (6 ln y + 24 ln 2 − 3

2
) − z (9 ln y

16
+ 27 ln 2

8
− π2

8
− 51

32
)

− z2 (5 ln y
32
+ 41 ln 2

48
− π2

48
+ 47

192
) + xz (3 ln y

2
− 3 ln 2 + 21

4
)] +O (1

y
) ,

(2.3.36)

where we have used the dimensionless variables for the MSM couplings λM , g2M1

and g2M2:

x = λM
g2M2

, y = m̄2
3(g2M2)
g4M2

, z = g2M1

g2M2

. (2.3.37)

In the broken phase, i.e. m̄3 ≪ 0, the available two-loop results show poor
convergence [51]. Therefore we employ the “Coleman-Weinberg (CW) method”
which makes use of a numerically determined value of the location of the min-
imum of the potential in the broken phase from which the condensate is then
computed. This has been tested against lattice simulations [51, 60]. The re-
sult in ref. [60] is derived in the approximation gM1 = 0, however, corrections
originating from gM1 are expected to be small.

In figure 2.2 we compare the different methods. The result of the perturba-
tive computation agrees very well with lattice data. The deviation of the CW
method from lattice data is expected to be reduced by a continuum extrapola-
tion [60]. The Higgs condensate becomes negative in the symmetric phase due
to the renormalization of this effective parameter.

Summing together all contributions from (2.3.3), (2.3.6), (2.3.32) and (2.3.35)
most of the 1/ǫ divergences cancel and we get for the second term in our master
equation (2.1.16)

− 2ν2Zm⟨φ†φ⟩
T 4

=∆2(T ; µ̄) − 4ν4(4π)2T 4ǫ
+O(g6) , (2.3.38)

where the finite part is

∆2(T ; µ̄) = −2ν2
T 4
[1 + 3

2(4π)2 ((g21 + 3g22 − 8λ) ln µ̄e
γE

4πT
− 4h2t ln µ̄eγE

πT
)] ⟨φ†φ⟩3d(g2M2)

− ν2

3T 2
[1 − 3

2(4π)2 ((g21 + 3g22)(4 ln g
2
M2

µ̄
+ 3 ln µ̄

4πT
+ γE + 5

3
+ 2ζ ′(−1)

ζ(−1) )
+ 4h2t ln µ̄eγE

8πT
+ 8λ ln µ̄eγe

4πT
)]

+ 2ν2(4π)3T 2
[g21mE1 + 3g22mE2

T
+ g41T

16mE1

+ 3g21g
2
2T

4(mE1 +mE2)
+ g42T

2mE2

(35
24
+ ln 2mE2

g2M2

)] − 8ν4(4π)2T 4
ln
µ̄eγE

4πT
. (2.3.39)
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Figure 2.2: The renormalized Higgs condensate as a function of y =
m̄2

3(g2M2)/g4M2: Coleman-Weinberg (CW) method in the broken phase; three-
loop perturbative expression; lattice data with fixed lattice spacing a [59, 60];
interpolation of the results.

2.4 Vacuum Subtraction

The vacuum subtraction part of the master equation (2.1.16) can be calculated
by a direct diagrammatical computation. The tree-level vacuum expectation
value of the Higgs field is v2 = ν2/λ and with this the one-loop expression for
the bare pressure reads

p0B ∣v2= ν2

λ

= 1

2
(ν2 + δν2)v2 − 1

4
(λ + δλ)v4

+ 3m4
W

32π2
(1
ǫ
− ln m2

W

µ̄2
+ 5

6
) + 3m4

Z

64π2
(1
ǫ
− ln m2

Z

µ̄2
+ 5

6
)

+ m4
h

64π2
(1
ǫ
− ln m2

h

µ̄2
+ 3

2
) − 3m4

t

16π2
(1
ǫ
− ln m2

t

µ̄2
+ 3

2
) +O(g6) . (2.4.1)

The counterterms of the Higgs mass parameter and self-coupling are

δν2 = 3ν2(4π)2ǫ [−g
2
1 + 3g22
4

+ h2t + 2λ] , (2.4.2)

δλ = 3(4π)2ǫ [g
4
1 + 2g21g22 + 3g22

16
− h2t (h2t − 2λ) + λ(4λ − g21 + 3g222

)] , (2.4.3)

and at the minimum the tree-level masses take the values

m2
W = g22ν24λ

, m2
Z = (g21 + g22)ν24λ

, m2
h = 2ν2 , m2

t = h2tν22λ
. (2.4.4)
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Figure 2.3: The trace anomaly and its different contributions. Gray bands
reflect variations of the renormalization scale as described in the text.

Inserting these expressions, most divergences cancel in eq. (2.4.1) and the result
is

4p0B
T 4
=∆3(T ; µ̄) + 4ν4(4π)2T 4ǫ

, (2.4.5)

where

∆3(T ; µ̄) = ν4

λT 4
+ 4ν4(4π)2T 4

(ln µ̄2

ν2
+ 3

2
)

+ 3ν4

16λ2(4π)2T 4
[2g42 (ln 4λµ̄2

g22ν
2
+ 5

6
) + (g21 + g22)2 (ln 4λµ̄2

(g21 + g22)ν2 +
5

6
)]

− 3ν4h4t
λ2(4π)2T 4

(ln 2λµ̄2

h2tν
2
+ 3

2
) +O(g6) . (2.4.6)

Since we choose the renormalization scale µ̄ ∼ πT , large logarithms are intro-
duced if we evaluate ∆3 directly. Therefore we evaluate the vacuum parameters
first at a scale µ̄0 =mZ and then run to the thermal scale using renormalization
group equations. From the running of the couplings we get ∆3(T ; µ̄) = 4p0R/T 4.
At the scale µ̄0 we express the couplings in terms of physical parameters. How
this is done is shown in [62] and we will describe the procedure in detail in the
next chapter in section 3.3. We restrict ourselves to the one-loop expressions
even though higher order computations exist for many parameters. This simpli-
fication is justified through the fact that thermal uncertainties outweigh these
corrections.
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Figure 2.4: The Standard Model pressure.

2.5 Results

We now have all three parts of the master equation (2.1.16), namely (2.2.7),
(2.3.39) and (2.4.6), and indeed all 1/ǫ divergences cancel. Even though the
trace anomaly

T
d

dT
[p(T )
T 4
] =∆1(T ) +∆2(T ; µ̄) +∆2(T ; µ̄) +O(g6) (2.5.1)

is formally independent of the renormalization scale µ̄, since corresponding
terms cancel between ∆2 and ∆3, a residual µ̄-dependence remains. It is an
indication of not included higher-order corrections. We write µ̄ = απT and vary
α ∈ (0.5 . . . 2.0) to get an estimate of these uncertainties.

Our study includes corrections up to order O(g5). However, studies of the
QCD pressure have shown that certain odd orders in the coupling constant show
poor convergence. The order O(g4) is related to corrections to the order O(g2)
and, likewise, the order O(g5) to order O(g3) corrections. Numerically, the
most significant contributions are those from the terms proportional to g23 in
∆1. Therefore, we assume the order O(g4), shown in figure 2.3, numerically
to be the most accurate estimate for ∆ and thus the following plots show the
result up to this order. QCD contributions up to O(g6) from [73] lead to results
lying in between the O(g4) and O(g5) contributions implying that the latter is
most probably on the low side.

As mentioned before, we match the pressure to already existing perturbative
results on both the low- and the high-temperature side of the crossover. These
results are taken from [73] for the low side and from [68] for high temperatures.
The result can be seen in figure 2.4 where both O(g4) and O(g5) of the dimen-
sionless ratio of the pressure are shown as functions of the temperature. The
matching on the high-temperature side lies within an error of 1% and the gray
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Figure 2.5: The dimensionless functions geff, heff and ieff are defined in eq.
(2.5.7). The errors in the matching are mostly due to electroweak corrections
proportional to g22 and h2t which were omitted in [73] and corrections compared
to ref. [68] as mentioned in the text.

bands show the variation of the renormalization scale in the range µ̄ = απT with
α ∈ (0.5 . . . 2.0).

From the pressure and its logarithmic temperature derivative ∆ we can now
obtain other thermodynamic functions as follows:

energy density:
e

T 4
=∆ + 3p

T 4
, (2.5.2)

entropy density s = p′: s

T 3
=∆ + 4p

T 4
, (2.5.3)

heat capacity c = e′: c

T 3
= T∆′ + 7∆ + 12p

T 4
, (2.5.4)

equation-of-state parameter: w = p
e
= (3 + ∆T 4

p
)−1 , (2.5.5)

speed of sound squared: c2s = p′
e′
= s
c
. (2.5.6)

Derivatives are understood to be with respect to the temperature. Some of
these functions are parametrized through

geff(T ) = e(T )[π2T 4

30
] , heff(T ) = s(T )[2π2T 3

45
] , ieff(T ) = c(T )[2π2T 3

15
] . (2.5.7)

The values of these functions across the crossover at the order O(g4) are
shown in figures 2.5 and 2.6. As can be seen, the most interesting quantities
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Figure 2.6: The equation-of-state parameter w and speed of sound squared c2s.

are the heat capacity and the speed of sound squared which show a peak or a
minimum respectively. Again the gray error band correspond to variations of
the renormalization scale.

For the non-perturbative contributions we have made use of already existing
results in the literature [59, 60]. There has been made progress lately and new
results, including the Abelian U(1) contributions, exist [57]. However, the plots
shown here (figures 2.3, 2.4, 2.5 and 2.6) were not updated with these new
results since they only have a minor numerical effect.

2.6 Implications

Even though there is no phase transition in the Standard Model, Standard
Model thermodynamics around the electroweak scale can still be important to
other phenomena taking place in this temperature range, i.e. at that time in
the early universe. Assuming a flat geometry we can express the temperature
evolution of the early universe using the thermodynamic functions of the last
section as

3

2

√
5

π3

mPl

T 3

dT

dt
= −
√
geff(T )heff(T )
ieff(T ) , (2.6.1)

where mPl is the Planck mass. A peak in the heat capacity ieff thus leads to
a short period of slower change in temperature. This in turn can lead to an
increased abundance of particles produced at this time or inversely to a reduced
density of weakly interacting relics of the early universe annihilating through
co-annihilation processes that are taking place.
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Regardless of the impact of the Standard Model background, new physics
Beyond the Standard Model (BSM) is needed for addressing e.g. baryogenesis
or dark matter. The effects studied in this chapter are usually not taken into
account in models for new physics. The reason is that the parameter space for
models is not as strongly constrained as one would hope. However, the ever
increasing amount of data from the LHC is published on a regular basis and
thus more and more regions of the allowed parameter spaces in BSM models are
excluded.

New physics in beyond the Standard Model theories can be introduced in
many different ways and with a variety of new particles. One possibility is to
consider the Standard Model as a low-energy effective theory. One can then in-
troduce higher-dimensional operators which in principle could render the phase
transition strongly first order [74, 75]. However, we will not consider this, but
instead use a simple renormalizable extension of the Standard Model.





Chapter 3

Phase Transition in the

Inert Doublet Model

The Standard Model of particle physics works very well and with the discovery
of the Higgs boson at the LHC in 2012 [46, 47] it has again proven to be a
predictive theory. However, we have known for a long time now that it is not
the final answer. There are a lot of phenomena which remain unexplained by
the Standard Model. Amongst them are dark matter, dark energy, neutrino os-
cillations, the enormous hierarchy between the electroweak scale (O(102) GeV)
and the Planck scale (O(1019) GeV), the reason for the number of families to
be three and the origin of the baryon asymmetry of the universe.

In order to address some of these phenomena, many different models have
been built. Unfortunately, experiments have not yet shown significant hints of
the nature of this new, beyond the Standard Model physics. Thus, most of these
models remain yet to be disproved and for now we are stuck with this plethora
of models.

There are a number of models with extended Higgs sectors with new scalars
in the singlet, doublet, triplet or even higher representations. These simple
extensions have small numbers of new parameters and are thus the most con-
strained ones, although not excluded. Depending on the new physics these
models aim to explain, conflicting ranges of couplings are required. To account
for an allowed dark matter relic density, co-annihilation of dark matter to Stan-
dard Model particles cannot be too strong and thus their interactions, i.e. the
couplings, have to be small. On the other hand large couplings are needed
to strengthen a first order phase transition for baryogenesis. However, large
couplings can compromise or even spoil a perturbative analysis as well as the
high-temperature expansion used for dimensionally reduced lattice studies.

This chapter focuses on one such model where a new scalar doublet is intro-
duced and a further simplification in terms of an unbroken Z2 is imposed. This
theory is called the Inert Doublet Model (IDM) [76–78]. The IDM is interesting
because it combines the two aforementioned regimes of small couplings for dark
matter [79–95] and large ones for a strong electroweak phase transition [96–103].

To create a strong first order phase transition, new large couplings are
needed. If new massive degrees of freedom were to be weakly coupled, they
could just be integrated out, leaving us with the same effective theory as before,

35
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i.e. the Standard Model. However, in this effective theory one could include
higher-order operators which in principle could render the phase transition first
order [75]. Nevertheless, we restrict ourselves to the renormalizable case and do
not consider higher-order operators. One way to prevent the new fields from
being integrated out, is to make these degrees of freedom light. They can then
have a phase transition of their own which can then have a substantial effect on
the dynamics of the electroweak phase transition [104, 105]. In our study, how-
ever, we focus on the case of large couplings which change the effective couplings
of the low-energy theory significantly.

In this chapter we want to calculate the full two-loop effective potential to
estimate the strength of a possible phase transition in the IDM. Besides the
estimation of the convergence of the perturbative series, we want to compare
our results to the high-temperature expansion. One goal is then to justify or
set limits to the use of the high-temperature expansion used in dimensionally
reduced lattice simulations. Furthermore, we provide the techniques to calculate
a thermal two-loop effective potential in a model independent way. All relevant
diagrams in any model can be reduced to a handful of master integral functions
which are presented in Appendix A.2.

For simplicity we neglect the gauge group U(1) in our calculations, i.e. set-
ting g1 = 0. This is justified because the loop-expansion parameter α is small(α = g21/(4π) ∼ 10−2) and the resulting corrections are much smaller than ther-
mal uncertainties originating from the variation of our thermal scale as described
below.

In section 3.1 we introduce the Inert Doublet Model, its particle content
and degrees of freedom as well as all the tree-level masses and their thermal
mass contributions. In section 3.2 we then describes the procedure for the
computation of the one- and two-loop potential and derive the master integrals.
The potential is then numerically evaluated and the results are presented in
section 3.3. Finally, a number of theoretical and experimental constraints for
the IDM are then given in section 3.4.

3.1 The Inert Doublet Model

We consider the Inert Doublet Model with the Lagrangian of the scalar sector

Lscalar = (Dµφ)†(Dµφ) + (Dµχ)†(Dµχ) − V (φ,χ) , (3.1.1)

where the tree-level potential takes the form

V (φ,χ) = V0 = µ2
1φ

†φ + µ2
2χ

†χ + λ1(φ†φ)2 + λ2(χ†χ)2 + λ3(φ†φ)(χ†χ)
+ λ4(φ†χ)(χ†φ) + λ5

2
[(φ†χ)2 + (χ†φ)2] . (3.1.2)

All coefficients {µ1, µ2, λ1, λ2, λ3, λ4, λ5} are real. This is not the case in general,
since λ5 could be complex, in which case the last term in the potential would
read

δVλ5
(φ,χ) = λ5

2
(φ†χ)2 + λ∗5

2
(χ†φ)2 = ∣λ5∣

2
[eiα(φ†χ)2 + e−iα(χ†φ)2] . (3.1.3)
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However, the phase α can be absorbed into a field redefinition of φ and χ.
Considering a transformation φ→ φeiθφ , χ→ χeiθχ , eq. (3.1.3) transforms into

δVλ5
(φ,χ)→ ∣λ5∣

2
[ei(α−2θφ+2θχ)(φ†χ)2 + e−i(α−2θφ+2θχ)(χ†φ)2] . (3.1.4)

The phase α is then eliminated by choosing θφ and θχ such that for n ∈ Z they
obey the relation

α − 2θφ + 2θχ = n ⋅ 2π ⇒ θφ − θχ = α
2
+ n ⋅ π . (3.1.5)

We want to study the effective potential as a tool for physical quantities
like the critical temperature Tc of the phase transition, the latent heat L or the
discontinuity of the Higgs condensate vphys. The effective potential is defined
through a shift of the neutral Higgs component, such that the two scalar doublets
can be written as

φ = 1√
2
( G2 + iG1

v + h − iG3
) , χ = 1√

2
(H2 + iH1

H0 − iH3
) , (3.1.6)

where h is the physical Standard Model Higgs boson. The new, inert, scalars
are the CP even H = H0, CP odd A = H3 and the charged ones H± = (H1 ±
iH2)/√2. The G’s are the Goldstone bosons and we use the usual definitions,
e.g. G± = (G1 ± iG2)/√2.

The Lagrangian of the IDM is invariant under a Z2 transformation under
which the inert doublet is odd while all the Standard Model fields are even

φ→ φ , χ→ −χ , fSM → fSM . (3.1.7)

This means that there are no Yukawa interactions between the inert doublet and
the SM fermions, hence the name of the model. Moreover, the Z2 symmetry
implies that the inert particles cannot decay into SM particles only, such that
the lightest new scalar is stable. If it is one of the electrically neutral ones, i.e.
H or A, it is a dark matter candidate.

From the potential (3.1.2) we can derive the tree-level masses of the inert
scalars

m2
H = µ2

2 + λL2 v2 , m2
A = µ2

2 + λS2 v2 , m2
H± = µ2

2 + λ32 v2 , (3.1.8)

with λL = (λ3 +λ4 +λ5) and λS = (λ3 +λ4 −λ5). We choose H to be the lightest
new scalar, i.e. the dark matter candidate, thus rendering λ5 negative.1

We consider the case where only φ acquires a vacuum expectation value⟨h⟩ = v as in the Standard Model. This means that µ2
2 is positive while µ2

1 is
negative. In principle ⟨χ⟩ could be non-zero at some high temperature where⟨φ⟩ = 0 before going to the electroweak minimum where ⟨χ⟩ = 0 and ⟨φ⟩ ≠ 0. The
scenario of this two step phase transition has also been studied for the IDM [101]
and could in general lead to an even stronger first order transition [106]. In our
computation, however, we want the Z2 symmetry to be unbroken.

1This leads to a misleading notation with λL(arge) to be smaller than λS(mall). However,
we stay with this convention used in the literature.
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Our computations are performed using the MS renormalization scheme in
Feynman Rξ gauge. The gauge fixing and SU(2) Faddeev-Popov ghost (caA, c̄aA)
terms coupling to the scalar degrees of freedom are

Lgauge fixing = 1

2ξ

3∑
a=1
(∂µAa

µ − ξgv2 G2
a) + ξg2v4 (c̄aAhcaA + ǫabcc̄aAGbc

c
A) . (3.1.9)

In Rξ gauges the parameter v appears here as a background field and is in
general different from the shift of the Higgs field in eq. (3.1.6). For a proper
renormalization of gauge-dependent quantities they need to be renormalized
separately (cf. refs. [107,108]).

There is a contribution from the gauge fixing term to the masses of the
Goldstone bosons δm2

G = ξm2
W . In Feynman gauge (ξ = 1) the tree-level masses

of the Higgs and Goldstones are then

m2
h = µ2

1 + 3λ1v2 , m2
G = µ2

1 + λ1v2 +m2
W . (3.1.10)

In this model we have introduced five additional parameters to the ones from
the Standard Model: µ2, λ2, λ3, λ4, λ5. We express these in a different basis with
a more convenient set of variables

{mH ,mA,mH± , λ2, λL} . (3.1.11)

In our numerical study of various benchmark points we will use different values
for these five parameters as input parameters. However, we also want to relate
them, together with the other couplings, to physical parameters using one-loop
self-energies for physical pole mass expressions. How this is done is explained
in section 3.3.

The next step is to determine the thermal mass contributions. As described
in the introduction we have to consider the one-loop corrections to the propaga-
tor at high-temperature in the symmetric phase and with vanishing external mo-
menta. We thus omit higher-order corrections of order O(g4T 2) and O(g2m2).
We remember the high-temperature expansions which in the massless case are

I(0b) = T 2

12
, I(0f) = −T 2

24
, (3.1.12)

where we denote by a subscript b or f whether it corresponds to a massless boson
or fermion respectively. It is then straightforward to calculate the thermal mass
corrections. However, we do this in D dimensions. Since I(0) can be multiplied
by factors of 1/ǫ in loop diagrams, the terms of O(ǫ) from using dimensional
regularization where D = 4 − 2ǫ have to be kept.

Within the high-temperature expansion (see Appendix A.2) these so called
linear terms ∼ g2I(0)In=0(m), where the contribution from the Matsubara zero-
modes is In=0(m) = −mT /(4π)[1 +O(ǫ)] (cf. eq. (1.3.15)), cancel. This can-
cellation is also a crosscheck for the consistency of our resummation. However,
within the Inert Doublet Model with large couplings, the corrections omitted by
using (3.1.12) can be large. Thus beyond the high-temperature expansion the
cancellation is incomplete. However, such terms only become visible at small
v/T , i.e. for weak transitions, and thus we will not go into more detail.

The full expressions for the masses squared including the thermal mass cor-
rections are summarized in table 3.1. The thermal masses in D dimensions
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field vacuum mass thermal mass degeneracy

h m2
h = µ2

1 + 3λ1v2 m̃2
h =m2

h + δm2
φT 1

G m2
G = µ2

1 + λ1v2 +m2
W m̃2

G =m2
G + δm2

φT 3

H m2
H = µ2

2 + 1
2
λLv

2 m̃2
H =m2

H + δm2
χT 1

A m2
A = µ2

2 + 1
2
λSv

2 m̃2
A =m2

A + δm2
χT 1

H± m2
H± = µ2

2 + 1
2
λ3v

2 m̃2
H± =m2

H± + δm2
χT 2

Ai m2
W = 1

4
g22v

2 mW 3(D − 1)
A0 m2

W m̃2
W =m2

W +m2
E2 3

cA, c̄A m2
W m2

W −6
Ci 0 0 8(D − 1)
C0 0 m2

E3 8

cC , c̄C 0 0 −16
t m2

t = 1
2
h2t v

2 m2
t 12

Table 3.1: Tree-level masses squared in Feynman Rξ gauge with thermal masses
given in eqs. (3.1.13) - (3.1.16). The gauge fields Aµ and Cµ correspond to
the gauge groups SU(2) and SU(3) and cA, c̄A, cC , c̄C are the Faddeev-Popov
ghosts. The top quark is denoted by t.

are

δm2
φT = 1

2
[6λ1 + 3 ⋅ 2λ1 + λL + λS + 2λ3 + 3(D − 1)

2
g22] I(0b) − 12

2
h2t I(0f)

= [6λ1 + 2λ3 + λ4
12

+ 3g22
16
+ h2t

4
]T 2 +O(ǫT ) , (3.1.13)

δm2
χT = 1

2
[6λ2 + 3 ⋅ 2λ2 + λL + λS + 2λ3 + 3(D − 1)

2
g22] I(0b)

= [6λ2 + 2λ3 + λ4
12

+ 3g22
16
]T 2 +O(ǫT ) , (3.1.14)

m2
E2 = (D − 2)g22 [2(D − 1)I(0b) − 4nGI(0f)]
= [1 + nG

3
] g22T 2 +O(ǫT ) , (3.1.15)

m2
E3 = (D − 2)g23 [3(D − 2)I(0b) − 4nGI(0f)]
= [1 + nG

3
] g23T 2 +O(ǫT ) . (3.1.16)

With these tree-level expressions we can now begin our computation of the
scalar potential.

3.2 The Two-Loop Potential

With the masses and degeneracies given in table 3.1 as well as the already
introduced J-function (cf. eq. (2.1.5) and section 3.2.1) we can now easily write
down the one-loop contribution of the potential. Including counterterms, the
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tree-level and one-loop potential is then

V0 + V1 = µ2
1v

2

2
+ λ1v4

2
+ δµ2

1v
2

2
+ δλ1v4

2+ J(m̃h) + 3J(m̃G) + J(m̃H) + J(m̃A) + 2J(m̃H±)+ 3 [(D − 3)J(mW ) + J(m̃W )] + 8 [(D − 3)J(0b) + J(mE3)]− 12J(mt) − (30nG − 12)J(0f) , (3.2.1)

where the masses are listed in table 3.1, the counterterms are given in Appendix
C.1 and nG = 3 is the number of fermion generations. The last term includes
five massless quarks and nine massless leptons.

We now introduce a notation where we keep track of the 1/ǫ expansion in
a superscript index. This notation is used for the potential and similarly for
all the master integral functions, e.g. the J-function below. We expand the
potential as

V = 1

ǫ
V (−1) + V (0) + ǫV (1) +O(ǫ2) . (3.2.2)

We are using dimensional regularization in all our calculations, i.e. setting
D = 4 − 2ǫ. Therefore, the numbers of degrees of freedom of the spatial compo-
nents of the gauge fields are ǫ-dependent. To some extent vacuum counterterms
cancel divergences and some of the temperature dependent divergences cancel
in the sum of all terms. The remaining divergences, however, which are pro-
portional to thermal masses and thus formally of higher order are removed by
hand. Since these divergences cancel at higher order we do not expand thermal
masses in ǫ.

Using the notation of eq. (3.2.2) in eq. (3.2.1) and proceed as described, the
finite part of the one-loop potential becomes

V
(0)
1 = J(0)(m̃h) + 3J(0)(m̃G) + J(0)(m̃H) + J(0)(m̃A) + 2J(0)(m̃H±)

+ 3 [J(0)(mW ) − 2J(−1)(mW ) + J(0)(m̃W )]
+ 8 [J(0)(0b) − 2J(−1)(0b) + J(0)(mE3)]
− 12J(0)(mt) − (30nG − 12)J(0)(0f) . (3.2.3)

We now turn to the two-loop potential. The topologies of the Feynman
diagrams for its calculation are of course the same as in chapter 2. We include
the counterterm and denote them by

= (x) , = (xx) , = (xxx) . (3.2.4)

The fields inside the brackets are either scalars (s), vector bosons (v), ghosts
(g) or fermions (f). All the contributions are expressed in terms of the master
sum-integrals derived in sections 3.2.1 and 3.2.2.

In perturbation theory we do a weak-coupling expansion, i.e. a Taylor series
in the coupling constant. We can write the action as S = S0 +SI , where S0 cap-
tures the kinetic and the mass terms and SI the interaction terms proportional
to the coupling constants. We can then write the partition function as

Z = ∫ D[. . .]e−S0−SI , (3.2.5)
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where D[. . .] is the path integration measure for all the fields. Introducing the
free partition function Z0 = ∫ D[. . .]e−S0 we expand eq. (3.2.5) in terms of the
coupling constants and write

Z = Z0 [1 − ⟨SI⟩0 + 1

2
⟨S2

I ⟩0 +O(⟨S3
I ⟩0)] , (3.2.6)

where the expectation value is defined as ⟨A⟩0 = Z−10 ∫ D[. . .]Ae−S0 . The free
energy density can be expressed with the partition function as

f = −T
V

lnZ = f0 − T
V
[−⟨SI⟩0 + 1

2
(⟨S2

I ⟩0 − ⟨SI⟩20) +O(⟨S3
I ⟩0)] , (3.2.7)

where f0 contains contributions from S0 and the thermodynamical limit V →∞
is implied. We denote the second term in eq. (3.2.7) with fI , such that f =
f0 + fI , and rewrite it as

fI = −T
V
⟨e−SI − 1⟩0 = ⟨SI − 1

2
S2
I +O(S3

I )⟩0 . (3.2.8)

In the last step we have dropped an overall integration ∫X because it cancels
against the factor T /V . Inserting the interaction part of the action into eq.
(3.2.8) and using Wick’s theorem [109] we can write the expectation value in
terms of two-point functions.

The diagrams of eq. (3.2.4) are then constructed by contracting the fields
in the corresponding terms. The first two types, (x) and (xx), originate from
the first term of the expansion in eq. (3.2.8), whereas the last one comes from
the second term. Therefore, diagrams with the sunset topology (xxx) have to
be multiplied by a factor of −1/2.

As an example of the computation of the two-loop potential we consider the
diagrams with only scalar fields. The Feynman rules are derived by inserting
the expressions for the scalar doublets (3.1.6) into the potential (3.1.2) and then
taking explicit derivatives. The term ∼ λ1 for example reads

δVλ1
= λ1 [G+G− + 1

2
(v2 + 2hv + h2 +G0G0)]2 (3.2.9)

and leads to the Feynman rules

h

h

h

= δ3Vλ1

∂h3
∣
⟨f⟩=0
= 6vλ1 , (3.2.10)

h

G0

G0

= δ3Vλ1

∂h∂(G0)2 ∣⟨f⟩=0= 2vλ1 , (3.2.11)

h

G+

G−

= δ3Vλ1

∂h∂G+∂G−
∣
⟨f⟩=0
= 2vλ1 , (3.2.12)
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where ⟨f⟩ = 0 means that all the fields, here f ∈ {h,G0,G±}, are set to zero.
The expression of the full scalar potential (3.1.2) leads to the rest of the scalar
Feynman rules. We denote the Goldstone bosons as G ∈ {G0,G±} and write
down the scalar sunset diagrams with their appropriate symmetry factors:

− 1

12
×

h

h

h = −3v2λ21H(m̃h, m̃h, m̃h) , (3.2.13)

−3
4
×

G

G

h = −3v2λ21H(m̃h, m̃G, m̃G) , (3.2.14)

−1
4
×

H

H

h = −v2
4
λ2LH(m̃h, m̃H , m̃H) , (3.2.15)

−1
4
×

A

A

h = −v2
4
λ2SH(m̃h, m̃A, m̃A) , (3.2.16)

−1
2
×

H±

H±

h = −v2
2
λ23H(m̃h, m̃H± , m̃H±) , (3.2.17)

−1
2
×

H

A

G0 = −v2
2
λ25H(m̃G, m̃H , m̃A) , (3.2.18)

−1
2
×

H

H±

G± = −v2
4
(λ4 + λ5)2H(m̃G, m̃H , m̃H±) , (3.2.19)

−1
2
×

A

H±

G± = −v2
4
(λ4 − λ5)2H(m̃G, m̃A, m̃H±) , (3.2.20)

The Feynman rules for the quartic vertices are derived by taking four deriva-
tives of the potential. For the part given in eq. (3.2.9) these are for example

h

h

h

h

= δ4Vλ1

∂h4
= 6λ1 , (3.2.21)
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h

h

G0

G0

= δ4Vλ1

∂h2∂G02
= 2λ1 , (3.2.22)

h

h

G+

G−

= δ4Vλ1

∂h2∂G+∂G−
= 2λ1 , (3.2.23)

which lead to the diagrams

1

8
×

h h

= 3

4
λ1I

2(m̃h) , (3.2.24)

3

4
×

h G

= 3

2
λ1I(m̃h)I(m̃G) . (3.2.25)

The Feynman rules for all the other vertices are derived in a similar way. The
results for all the diagrams contributing to the two-loop potential are listed in
Appendix B.

To express diagrams with fermion lines in terms of the master integrals, we
need to rewrite traces as

Tr [( /K +m1)( /P +m2)] = 4(K ⋅ P +m1m2)= 2 [(K + P )2 +m2
3 − (K2 +m2

1) − (P 2 +m2
2) + (m1 +m2)2 −m2

3] . (3.2.26)

Using this we can simply read off the contributions from the different master
integrals as shown in the following example:

−1
2
×

t

t

h = 3h2t
4
⨋

K,P

Tr [( /K +m1)( /P +m2)](K2 +m2
t )(P 2 +m2

t ) [(K + P )2 + m̃2
h
]

= 3h2t
2
⨋

K,P

[(K + P )2 + m̃2
h] − (K2 +m2

t ) − (P 2 +m2
t ) + 4m2

t − m̃2
h(K2 +m2

t )(P 2 +m2
t ) [(K + P )2 + m̃2

h
]

= −3h2t
2
[(m̃2

h − 4m2
t )H(m̃h,mt,mt) + 2I(m̃h)I(mt) − I2(mt)] .

(3.2.27)

In the following two sections we derive the master integral functions for
one- and two-loop finite temperature integrals. An overview as well as their
high-temperature expansions can be found in Appendix A.2. The derivation
follows a similar path in each case. We rewrite the integrals in a convenient
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way such that the Matsubara sums can be performed. The remaining integrals
are then evaluated if possible or otherwise left to be evaluated numerically.
These numerical integrals are usually rapidly converging, although there are
some difficulties in the two-loop integral functions concerning poles. These
technicalities are discussed below.

3.2.1 One-Loop Finite Temperature Integrals

The integral function I(m), also called the tadpole integral, is

I(m) = ⨋
K

1

K2 +m2
= T∑

k0

∫
k

1

k20 + k2 +m2
. (3.2.28)

For the moment we want to keep the bosonic and fermionic cases separated.
Which modes k0 stands for is implicitly given by the argument of the I-function.
The Matsubara sums can be evaluated as

T
∞∑

n=−∞

1(2πnT )2 + ω2
= 1

2ω
coth [ ω

2T
] ,

T
∞∑

n=−∞

1

((2n + 1)πT )2 + ω2
= 1

2ω
tanh [ ω

2T
] . (3.2.29)

We can rewrite the hyperbolic functions as

cothx = ex + e−x
ex − e−x = 1 + 2e−x

ex − e−x = 1 + 2

e2x − 1 = 1 + 2nb(ω) ,
tanhx = ex − e−x

ex + e−x = 1 − 2e−x

ex + e−x = 1 − 2

e2x + 1 = 1 − 2nf(ω) , (3.2.30)

where in the last step we have set x = ω/(2T ), where ω =√k2 +m2. The tadpole
integral now splits into a zero-temperature and a finite-temperature part

Ib(m) = Ivac(m) + IT,b(m) = ∫
k

1

2ω
+∫

k

nb(ω)
ω

,

If(m) = Ivac(m) + IT,f(m) = ∫
k

1

2ω
−∫

k

nf(ω)
ω

, (3.2.31)

where the minus sign in the fermionic integrals stems from the fermionic loop.
We now introduce the distribution function n(ω) which is understood to be
either the Bose-Einstein distribution n(ω) = nb(ω) for bosonic arguments or
minus the Fermi-Dirac distribution n(ω) = −nf(ω) for fermionic arguments.
The zero-temperature integral Ivac(m) is the same as the integral A(m) given
in Appendix A.1, since

∫
K

1

K2 +m2
= ∫

k

∞

∫
−∞

dk0

2π

1

k20 + ω2
= ∫

k

1

2ω
. (3.2.32)

We thus write

I(m) = A(m) +∫
k

n(ω)
ω

. (3.2.33)

Since we need the integral function at hand for our two-loop potential com-
putation where there are terms ∼ I(m)/ǫ we need the terms up to order O(ǫ)
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in the ǫ-expansion. For the A(m) function this is easily evaluated using the
general function for such integrals given in eq. (A.0.5). The expansion reads

A(m) = 1

2
∫
k

1√
k2 +m2

= 1

2
( µ̄2eγE

4π
)e 1(4π) 3

2
−ǫ

Γ(ǫ − 1)
Γ (1

2
) (m2)1−ǫ

= m2

(4π)2 [−1ǫ + ln m
2

µ̄2
− 1 − ǫ(1 + π2

12
+ 1

2
ln2

m2

µ̄2
− ln m2

µ̄2
)] +O(ǫ2) .

(3.2.34)

The finite temperature integrals only depend on the absolute value of the
momentum and thus the angular integrals can be performed leaving

IT (m) = 1

2π2

∞

∫
0

dk k2
n(ω)
ω
+ ǫ

2π

∞

∫
0

dk k2 (2 − 2 ln 2 − ln k2
µ̄2
) n(ω)

ω
. (3.2.35)

In our calculations we also need a modified expression of the tadpole integral
function which is

I(m) ≡ ⨋
K

k2

K2 +m2
= ∫

k

k2

2ω
+∫

k

k2n(ω)
ω

. (3.2.36)

For the first term, which is independent of the temperature, we use [110]

∫ ddp
(p2)α(p2 +m2)β = π d

2md+2α−2β
Γ (α + d

2
)Γ (β − α − d

2
)

Γ (d
2
)Γ(β) . (3.2.37)

We set α = 1, β = 1/2 and d = 3 − 2ǫ and we expand to O(ǫ) and get

∫
k

k2

2ω
= m4

4(4π)2 [3ǫ + 5

2
− ln m2

µ̄2
+ ǫ(9

4
+ π
4
+ 3

2
ln2

m2

µ̄2
− 5

2
ln
m2

µ̄2
)] . (3.2.38)

In the finite temperature part of eq. (3.2.36) where the integration over k
remains to be evaluated numerically, this modification just changes the exponent
k2 → k4 with respect to the I-function in eq. (3.2.35). For the counterterms we
need the following relation which is true for both bosonic and fermionic modes,

⨋
K

K2

K2 +m2
= −m2 ⨋

K

1

K2 +m2
= −m2I(m) , (3.2.39)

where the first equality is true in this context since a power law divergence van-
ishes in dimensional regularization ⨋K 1→ 0.

The J(m) function needed in the one-loop potential is related to the I(m)
function through

I(m) = 1

m

d

dm
J(m) ⇒ J(m) = ∫ dm mI(m) , (3.2.40)

where we have set the additive constant to zero. Using this relation the J-
function reads

J(m) = 1

2
⨋
K

ln (K2 +m2) = m2A(m)
D

− 1

D − 1 ∫k k
2n(ω)
ω
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= − m4

4(4π)2 [1ǫ + 3

2
− ln m2

µ̄2
] − I(0)T (m)

3
+O(ǫ) . (3.2.41)

3.2.2 Two-Loop Finite Temperature Integrals

The calculation of the two-loop integral function has already been done in ref.
[111]. The relevant integral for the sunset diagram is

H(m1,m2,m3) = ⨋
K,P

1(K2 +m2
1)(P 2 +m2

2) [(K + P )2 +m2
3] . (3.2.42)

To solve this integral for arbitrary masses mi we first have to evaluate the
Matsubara sums. We introduce a third momentum Q = (q0, q⃗) which comes
with a delta function. We can then rewrite one of delta functions as an integral

δ(a) = T ∫ β

0
dx eiax, where β = T −1, such that

H(m1,m2,m3) = 1

T
⨋

K,P,Q

δ(k0 + p0 + q0)(2π)3δ(3) (k⃗ + p⃗ + q⃗)(K2 +m2
1)(P 2 +m2

2)(Q2 +m2
3)

= ⨋
K,P,Q

β

∫
0

dx (2π)3δ(3) (k⃗ + p⃗ + q⃗) eik0x

K2 +m2
1

eip0x

P 2 +m2
2

eiq0x

Q2 +m2
3

= ⨋
K,P,Q

β

∫
0

dx (2π)3δ(3) (k⃗ + p⃗ + q⃗) eik0x

k20 + ω2
1

eip0x

p20 + ω2
2

eiq0x

q20 + ω2
3

,

(3.2.43)

where in the last step we have introduced ω2
i = k2i +m2

i . We can now perform
the Matsubara sums using

T∑
k0

eik0x

k20 + ω2
= n(ω)

2ω
[e(β−x)ω + exω] = 1

2ω

cosh [(β
2
− x)ω]

sinh [βω
2
] . (3.2.44)

Using this identity we can then perform the integration over x to get

H(m1,m2,m3) = 1

4
∫
k,p,q
(2π)3δ(3) (k⃗ + p⃗ + q⃗)D(ω1, ω2, ω3) ,

D(ω1, ω2, ω3) = n1n2n3
ω1ω2ω3

[eβ(ω1+ω2+ω3) − 1
ω1 + ω2 + ω3

+ eβ(ω1+ω2) − eβω3

ω1 + ω2 − ω3

+ eβ(ω1+ω3) − eβω2

ω1 − ω2 + ω3

+ eβ(ω2+ω3) − eβω1

−ω1 + ω2 + ω3

] , (3.2.45)

where we have introduced the notation ni = n(ωi). The exponential functions
can be rewritten in terms of the distribution functions which for either of them
reads

eβω = eβω

eβω − 1(eβω − 1) = (1 + 1

eβω − 1)(eβω − 1) = 1 + nb(ω)
nb(ω) , (3.2.46)
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eβω = eβω

eβω + 1 (eβω + 1) = (1 − 1

eβω + 1)(eβω + 1) = 1 − nf(ω)
nf(ω) . (3.2.47)

Writing these expressions using the definition of n(ω) as given below eq. (3.2.31)
there arises a minus sign in the fermionic expression. We will keep this in mind,
however, for simplicity we will continue with the case of only bosonic particles.
We then get

D(ω1, ω2, ω3) = 1

ω1ω2ω3

[(1 + n1)(1 + n2)(1 + n3) − n1n2n3
ω1 + ω2 + ω3

+ (1 + n1)(1 + n2)n3 − n1n2(1 + n3)
ω1 + ω2 − ω3

+ (1 + n1)n2(1 + n3) − n1(1 + n2)n3
ω1 − ω2 + ω3

+ n1(1 + n2)(1 + n3) − (1 + n1)n2n3−ω1 + ω2 + ω3

]
= 1

ω1ω2ω3

[1 + n1n2 + n1n3 + n2n3 + n1 + n2 + n3
ω1 + ω2 + ω3

+ −n1n2 + n1n3 + n2n3 + n3
ω1 + ω2 − ω3

+ n1n2 − n1n3 + n2n3 + n2
ω1 − ω2 + ω3

+ n1n2 + n1n3 − n2n3 + n1−ω1 + ω2 + ω3

] . (3.2.48)

The terms proportional to n1n2n3 have vanished and only terms with one, two
or no ni remain. We first take the terms inside the square brackets with two ni
and collect those with the same numerator which are of the form

D̃ = n1n2 ( 1

ω1 + ω2 + ω3

− 1

ω1 + ω2 − ω3

+ 1

ω1 − ω2 + ω3

+ 1−ω1 + ω2 + ω3

)
= 4ω3(ω2

1 + ω2
2 − ω2

3)n1n2(ω1 + ω2 + ω3)(ω1 + ω2 − ω3)(ω1 − ω2 + ω3)(−ω1 + ω2 + ω3)
= − 4ω3(ω2

1 + ω2
2 − ω2

3)n1n2[(ω1 + ω2)2 − ω2
3] [(ω1 − ω2)2 − ω2

3] . (3.2.49)

At this point we use the delta function to rewrite e.g. q⃗ = − (k⃗ + p⃗).2 Thus
we can write

ω2
3 = q2 +m2

3 = (k⃗ + p⃗)2 +m2
3 = ω2

1 + ω2
2 +m2

3 −m2
1 −m2

2 + 2zkp , (3.2.50)

where e.g. k = ∣k⃗∣ and z = k⃗ ⋅ p⃗/(kp). The newly introduced parameter z takes
values −1 ≤ z ≤ 1. Eq. (3.2.49) is then

D̃ = − 4ω3(m2
1 +m2

2 −m2
3 − 2zkp)n1n2[2ω1ω2 +m2

1 +m2
2 −m2

3 − 2zkp] [−2ω1ω2 +m2
1 +m2

2 −m2
3 − 2zkp]

= 4ω3(m2
1 +m2

2 −m2
3 − 2zkp)n1n2

4ω2
1ω

2
2 − (m2

1 +m2
2 −m2

3 − 2zkp)2 . (3.2.51)

2The integral evaluated using the delta function is always the one over the momentum
where there is no corresponding ni factor.
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Of the nine integrations in eq. (3.2.45) three are evaluated using the delta
function and three angular integrations can be performed, since the expression
D(ω1, ω2, ω3) now only depends on k, p and z:

H(m1,m2,m3) = 1

4
∫

k,p,q

(2π)3δ(3) (k⃗ + p⃗ + q⃗)D(ω1, ω2, ω3)

= ∑
i≠j

1

4 ⋅ 8π4

∞

∫
0

dk

∞

∫
0

dp

1

∫
−1

dz
k2p2

ω1ω2ω3

D̃(ωi, ωj , z) +H ′ +Hvac .

(3.2.52)

Here H ′ captures the contribution from the terms proportional to one ni in eq.
(3.2.48) and Hvac is the zero-temperature contribution. In the first term of eq.
(3.2.52) the integration over z can be performed. It is of the form

1

∫
−1

dz
A − 2Bz

C2 − (A − 2Bz)2 = 1

4B
ln [(A − 2B)2 −C2

(A + 2B)2 −C2
] . (3.2.53)

We then get

1

∫
−1

dz
k2p2

ω1ω2ω3

D̃(ω1, ω2, z) = kp

ω1ω2

ln [ (m2
1 +m2

2 −m2
3 − 2kp)2 − 4ω1ω2(m2

1 +m2
2 −m2

3 + 2kp)2 − 4ω2
1ω

2
2

] .
(3.2.54)

The argument of the logarithm could be negative, so we are going to take the
absolute value which is equivalent of taking the real part of the logarithm. The
imaginary part anyway cancels against the imaginary part of other terms in the
final expression as stated in ref. [111].

For the terms with only one ni in eq. (3.2.48) we need the Passarino-Veltman
integral B(P ;m1,m2) given in Appendix A in eq. (A.1.3). We can perform the
integration over k0 and then set the external particle on-shell, i.e. p0 = iω3,
yielding

1

2π

∞

∫
−∞

dk0
1(k20 + ω2

1) [(k0 + p0)2 + ω2
2] =

1

2ω2

ω2
3 − ω2

1 − ω2
2

ω4
1 + (ω2

2 − ω2
3)2 − 2ω2

1(ω2
2 + ω2

3)
= 1

2ω2

ω2
1 − ω2

2 − ω2
3[(ω1 + ω2)2 − ω2

3] [(ω1 − ω2)2 − ω2
3]

= 1[(ω1 + ω2)2 − ω2
3] [(ω1 − ω2)2 − ω2

3] [
ω2
1 − ω2

2 − ω2
3

4ω2

+ −ω2
1 + ω2

2 − ω2
3

4ω1

] ,
(3.2.55)

where the symmetrization in the last equation was carried out sinceB(P ;m1,m2)
is symmetric under the simultaneous exchange of the masses and the momen-
tum m1 ↔m2, K → −K −P . The integrand, however, only depends on ∣p0∣ and
p⃗ will be integrated over anyway, so our last step is justified. The last term can
then be rewritten as

ω2
1 − ω2

2 − ω2
3

4ω2

+ −ω2
1 + ω2

2 − ω2
3

4ω1

= (ω2 − ω1)(ω2
1 − ω2

2) − ω2
3(ω1 + ω2)

4ω1ω2
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= [(ω1 − ω2)2 − ω3
3] (ω1 + ω2)

4ω1ω2

. (3.2.56)

The integral in eq. (3.2.55) is then

1

2π

∞

∫
−∞

dk0
1(k20 + ω2

1) [(k0 + iω3)2 + ω2
2] =

1

2ω1ω2

ω1 + ω2(ω1 + ω2)2 − ω2
3

. (3.2.57)

The terms with only one ni in eq. (3.2.48) have a similar structure. We
reinsert the factor of 1/4 we have taken out of the integral and rewrite the
terms with one ni as

1

4
∫

k,p,q

(2π)3δ(3) (k⃗ + p⃗ + q⃗) 2n3
ω1ω2ω3

ω1 + ω2(ω1 + ω2)2 − ω2
3

= 2IT,b(m3)B(−im3;m1,m2) .
(3.2.58)

Since the B-function is symmetric in its second and third argument, in the above
expression we can use the symmetrization

2B(−im3;m1,m2) = B(−im3;m1,m2) +B(−im3;m2,m1) . (3.2.59)

The last remaining term of eq. (3.2.48), i.e. the one without ni’s in the
numerator, is equal to the vacuum sunset diagram

∞

∫
−∞

dp0

2π

1

p20 + ω2
2

∞

∫
−∞

dk0

2π

1(k20 + ω2
1) [(k0 + p0)2 + ω2

3] =
1

4ω1ω2ω3(ω1 + ω2 + ω3) .
(3.2.60)

Finally we can put everything together and write

H(m1,m2,m3) =Hvac(m1,m2,m3) + ∑
i≠j≠ℓ

IT,b(mi)Re B(−imi,mj ,mℓ)
+ 1

32π4
∑

i≠j≠ℓ

∞

∫
0

dk

∞

∫
0

dp kp
nb(ωk,i)
ωk,i

nb(ωp,j)
ωp,j

fk,p(mi,mj ,mℓ) ,
fk,p(m1,m2,m3) = ln ∣ (m2

1 +m2
2 −m2

3 − 2kp)2 − 4(k2 +m2
1)(p2 +m2

2)(m2
1 +m2

2 −m2
3 + 2kp)2 − 4(k2 +m2

1)(p2 +m2
2) ∣ .

(3.2.61)

The vacuum contribution of the sunset integral has been extensively studies
in the literature, e.g. in refs. [112–114]. We take the results from ref. [114],
however, we need to adjust them to our conventions by first multiplying by a
factor of 1/(2π)4. Furthermore, in dimensional regularization they use n − 4
dimensions while we use 4 − 2ǫ leading to a different expansion by a factor of
2 and we have to take the factor µ̄4ǫ into our expansion. Our result Hvac is
expressed through the results V from ref. [114] as

H(−2)vac = 1

4ǫ2
V (−2) ,

H(−1)vac = 1

2ǫ
(V (−2) ln µ̄2 − V (−1)) ,
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H(0)vac = (π2

24
+ 1

2
ln2 µ̄2)V (−2) − V (−1) ln µ̄2 + V (0) . (3.2.62)

For the computation of the two-loop potential we also need a modified version
of the H-function with one line weighted by a spatial momentum. It is defined
as

H(m1,m2,m3) = ⨋
K,P

k2(K2 +m2
1)(P 2 +m2

2) [(K + P )2 +m2
3] . (3.2.63)

The Matsubara sums can be carried out as in the H-function and similar to the
function D, defined in (A.1.9) in the Appendix, we use Lorentz symmetry to
write the vacuum part as

Hvac(m1,m2,m3) = D − 1
D
[−m2

1Hvac(m1,m2,m3) + Ivac(m2)Ivac(m3)] ,
(3.2.64)

where Ivac(m) = A(m) is given in eq. (3.2.34). This modified H-function is
needed for contributions of an odd number of vectors in a sunset diagram. The
reason this structure appears is that only the temporal components of the gauge
fields have a thermal mass term and we have to use

K0K0

K2 + m̃2
+ KiKi

K2 +m2
= K2

K2 + m̃2
+ k2

K2 +m2
− k2

K2 + m̃2
. (3.2.65)

The following example, where W stands for an SU(2) gauge boson, shows how
this is implemented in practice:

−1
2
×

h

G

W = −3
2
×

h

G

A0 − 3

2
×

h

G

Ai

(3.2.66)

= 3g22
8
⨋

K,P

(K − P )0(P −K)0(K2 + m̃2
h)(P 2 + m̃2

G) [(K + P )2 + m̃2
W
]

+ 3g22
8
⨋

K,P

(K − P )i(P −K)i(K2 + m̃2
h)(P 2 + m̃2

G) [(K + P )2 +m2
W
]

= −3g22
8
⨋

K,P

2K2 + 2P 2 − (K + P )2(K2 + m̃2
h)(P 2 + m̃2

G) [(K + P )2 + m̃2
W
]

+ 3g22
8
⨋

K,P

2k2 + 2p2 − (k + p)2(K2 + m̃2
h)(P 2 + m̃2

G) [(K + P )2 + m̃2
W
]

− 3g22
8
⨋

K,P

2k2 + 2p2 − (k + p)2(K2 + m̃2
h)(P 2 + m̃2

G) [(K + P )2 +m2
W
]

= −3g22
8
[2 [I(m̃h) + I(m̃G)] I(m̃W ) − I(m̃h)I(m̃G)

+ (m̃2
W − 2m̃2

h − 2m̃2
W )H(m̃h, m̃G, m̃W )+ 2H(m̃h, m̃G, m̃W ) + 2H(m̃h, m̃G, m̃W ) −H(m̃h, m̃G, m̃W )
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mH/GeV mA/GeV mH±/GeV λL(mZ)/2 λ2(mz)
BM1 66 300 300 1.07×10−2 0.01
BM2 200 400 400 1.00×10−2 0.01
BM3 5 265 265 −0.60×10−2 0.01

Table 3.2: The three benchmark points from ref. [102]. The coupling λL is
chosen to be small to comply with dark matter relic abundance, whereas λ2 is
small because of dark matter self-interaction constraints.

− 2H(m̃h, m̃G,mW ) − 2H(m̃h, m̃G,mW ) +H(m̃h, m̃G,mW )] .
(3.2.67)

3.3 Numerical Evaluation

We want to consider the three benchmark points that were introduced in ref.
[102] for our numerical evaluation. For our purpose to compare the full two-loop
result with the high-temperature expansion, these points are sufficient.

The input parameters for these three benchmark points are listed in table
3.2. All three points share some common features like the degeneracy of the
two heavy scalars A and H± and, although the mass of the lightest one varies
significantly in the three cases, the splitting between the heavy masses and mH

is large (mA,H± −mH ≫mZ). This implies that some of the new couplings are
large. Moreover, the coupling λL is chosen to be small to obey dark matter relic
abundance limits [89].

Due to the fact that some of the couplings are large, the one-loop corrections
to e.g. pole masses are also large and of order O(100%). Since we want to
express the couplings in terms of physical pole masses (see Appendix C.2),
we need to solve the corresponding system of equations iteratively in a self-
consistent way. The numerical values of the couplings are listed in table 3.3.

Instead of using the expressions for the couplings in terms of the self-energies,
we use a different procedure to determine the Higgs couplings µ2

1 and λ1. This
procedure uses the effective potential, and we call it the Coleman-Weinberg
(CW) method (inspired by ref. [115]). The two conditions are

∂V (φ)
∂φ

= 0 and
∂2V (φ)
∂φ2

=m2
h , (3.3.1)

where the derivatives are evaluated at the minimum of the potential. We can
now first solve these two equations keeping all the other couplings at their
initial value and then using them as input values to solve the other equations.
This leads to one more step in each iteration, however, it also allows us to
include higher-order corrections by using the two-loop potential without having
to calculate higher-order corrections to the self-energies. The results of this
method are denoted by “2-loop” in table 3.3, where the quotation marks hint
at an incomplete two-loop computation.

As can be seen from table 3.3, the reference scale is µ̄ =mZ from where we
run the couplings to the thermal scale using renormalization group equations.
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BM1 BM2 BM3
1-loop “2-loop” 1-loop “2-loop” 1-loop “2-loop”

µ2
1(mZ)/GeV2 -6669 -6568 -8463 -8127 -7392 -7251
µ2
2(mZ)/GeV2 842 842 36620 36620 -1243 -1243
λ1(mZ) 0.0670 0.0634 0.0671 0.0579 0.1021 0.0979
λ2(mZ) 0.010 0.010 0.010 0.010 0.010 0.010
λ3(mZ) 2.757 2.757 2.618 2.618 2.243 2.243
λ4(mZ) -1.368 -1.368 -1.299 -1.299 -1.127 -1.127
λ5(mZ) -1.368 -1.368 -1.299 -1.299 -1.127 -1.127
g22(mZ) 0.425 0.425 0.425 0.425 0.425 0.425
g23(mZ) 1.489 1.489 1.489 1.489 1.489 1.489
h2t (mZ) 0.971 0.971 0.973 0.973 0.969 0.969

Table 3.3: Values of the couplings at µ̄ =mZ . The “two-loop” column indicates
that µ2

1 and λ1 were obtained by the CW-method for the two-loop potential as
described in the text.

As usual, the scale is chosen to cancel large logarithms which in our case origi-
nate from thermal fluctuations and give rise to terms ∼ ln[µ̄/(πT )]. Therefore,
the thermal scale we choose is

µ̄ = απT , α ∈ (0.5 . . . 2.0) . (3.3.2)

The variation of the scale, introduced through α allows us to estimate errors of
our perturbative expansion. Furthermore, we settle for our considerations for
the one-loop beta-functions derived from counterterms listed in Appendix C.1
since we believe these uncertainties to be not so important for our qualitative
statements.

Looking at table 3.3 we see that λ1 is smaller than in the Standard Model,
where λ1(mZ) ∼ 0.13. The shape of the Higgs potential for values of φ larger
than the vacuum expectation value (the part ∼ φ4 in figure 1.2) is mostly given
by the Higgs self-coupling. Therefore, a small quartic coupling, in addition to
the new bosonic degrees of freedom, also favors a strong phase transition.

Even though different techniques in deriving the couplings, i.e. iterative so-
lutions using one-loop self energies and a combination of the iterative procedure
and CW method, lead to large variations of O(20%) for BM2, our conclusions
concerning thermal effects remain the same.

Everything is now set for the numerical evaluation of the two-loop potential
and its high-temperature expansion. Nevertheless, caution has to be taken
when using the two-loop master integral functions. For one thing, the function
L, appearing in the H-function (A.2.25) and its modified version (A.2.32) is
singular in certain limits, e.g.

L(m2, ǫ2, ǫ2) = −π2

6
− 2 ln2 m

ǫ
, as ǫ→ 0+ . (3.3.3)

This limit is relevant for the computation of diagrams involving massless fermions.
However, divergences from such terms are canceled from other infrared divergent
terms.

Moreover, if the masses are not all of the same order, the finite part of the
modified H-function has divergent terms as some masses tend to zero. In eq.
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Figure 3.1: One- and two-loop effective potentials and their high-temperature
expansions taken at their respective critical temperatures for the three bench-
mark points given in table 3.2.

(A.2.32) the term multiplying I
(0)
T (m2) has divergent terms ∼ 1/m4

2 as m2 → 0,
however in the sum the limit is finite. The same is true for the term multiplying

I
(0)
T (m2), with divergences ∼ 1/m2

2. In these terms, there are also cusps at

m2 = m1 +m3 from the functions B(0). However, equal and opposite terms
appear in the numerical integrations, i.e. the last four lines of eq. (A.2.32).

For the high-temperature expansions in eqs. (A.2.33) - (A.2.35) we want to
note that the function H(0)(m1,m2,m3) always appears in a difference, con-

taining various masses. Therefore, the leading term ∼ T 4 drops out completely.
Moreover, at the next order (∼ m2) there are only the contributions from the
Matsubara zero-modes kept, since the other contributions lead to v-independent
terms ∼ g2(m̃2

W −m2
W )T 2 ∼ g4T 4 which do not effect the physical parameters

shown in table 3.4.
Considering all these issues, the effective potential can then be computed.

Figure 3.1 shows both the one-loop and the two-loop full potential as well as
the corresponding high-temperature expansion for the three benchmark points
respectively. The critical temperatures Tc differ between the effective potential
approach and the high-temperature expansion, especially for the two-loop re-



54 CHAPTER 3. PHASE TRANSITION IN THE IDM

full effective potential
Tc/GeV L/T 4

c vphys/Tc vmin/Tc

1-loop 2-loop 1-loop 2-loop 1-loop 2-loop 1-loop 2-loop
BM1 139(14) 155(21) 0.44(1) 0.34(1) 1.14(12) 0.98(4) 1.15(12) 0.98(3)
BM2 159(13) 181(22) 0.07(7) 0.03(3) 0.39(28) 0.16(16) 0.39(28) 0.17(17)
BM3 138(8) 167(19) 0.35(3) 0.20(1) 0.96(10) 0.84(6) 0.98(10) 0.81(2)

high-temperature expansion
Tc/GeV L/T 4

c vphys/Tc vmin/Tc

1-loop 2-loop 1-loop 2-loop 1-loop 2-loop 1-loop 2-loop
BM1 140(14) 124(8) 0.45(1) 0.49(22) 1.15(13) 1.04(31) 1.16(13) 1.05(32)
BM2 159(14) 140(9) 0.08(8) 0.16(8) 0.42(30) 0.60(19) 0.42(30) 0.60(19)
BM3 138(8) 125(3) 0.35(3) 0.37(16) 0.97(10) 0.89(23) 0.98(10) 0.91(23)

Table 3.4: Results from the full effective potential and the high-temperature
expansion for the physical quantities Tc, L and vphys as well as for vmin for the
benchmark points listed in table 3.2. Uncertainties are obtained by varying the
thermal scale µ̄ = (0.5 . . . 2.0)πT .
sults, as can be read off from table 3.4. Therefore, the curves in the figures are
plotted at their respective critical temperatures, which allows us to compare the
strength of the phase transition.

Table 3.4 shows the physical parameters we want to study, i.e. the critical
temperature Tc, the latent heat L and the discontinuity of the Higgs condensate
vphys, defined by vphys/2 = Zµ2

1

∆⟨φ†φ⟩, where Zµ2

1

is the renormalization factor

related to the bare mass parameter µ2
1. The value of v at which the potential

reaches its minimum depends on our gauge choice. It is listed as vmin in table
3.4. Taking the difference of vphys and vmin allows us to estimate our error due
to our choice of the Feynman Rξ gauge. It is in fact much smaller than the
thermal uncertainties originating from the variation of the thermal scale.

Both figure 3.1 and table 3.4 show that the two-loop corrections are large.
They do not, however, change the physical interpretation of these points. Even
though the phase transition is weakened, at least for BM1 a first order tran-
sition remains viable. Although such a transition is strengthened in the high-
temperature expansion of BM2, the large value of µ2

2 questions the reliability of
this result. Therefore, besides BM2 the high-temperature expansions seems to
work very well and leads to the same qualitative conclusions.

For one observable, i.e. the critical temperature Tc, the high-temperature
expansion does not work well. This can be read off from the first two columns in
table 3.4 where we see that Tc slightly increases by adding the two-loop correc-
tions to the full effective one-loop potential, whereas in the high-temperature
expansion the two-loop contributions decrease Tc. But since we are dealing
with some scalars that do have large masses this should not come as a surprise.
They do contribute to large corrections to the effective Higgs mass parameter.
However, their effect on the phase transition is marginal. This can be seen by
comparing the rows of vphys/Tc in table 3.4 for the full effective potential and the
high-temperature expansion for the benchmark point BM1 where a first order
phase transition is feasible. This is also true for BM3 where vphys/Tc is only
slightly below 1.

The cosmological interpretation concerning a first order electroweak phase
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transition is that such a transition remains a possibility. This is true at least
for BM1 and could be true for a whole region of parameter space that is not yet
excluded.

We want to emphasize that the effective potential as a tool to e.g. study the
phase transition is only theoretically consistent at stable points. These points
are the high-temperature symmetric phase as well as the low-temperature Higgs
phase. Away from these local minima the potential is not gauge-independent
and contains uncanceled divergences and furthermore, masses can become tachy-
onic. In our numerical evaluation we replace the masses squared by their ab-
solute values while removing ultraviolet divergences proportional to thermal
masses introduced by resummation (cf. discussion below (1.3.32)) by hand.
However, this procedure leaves terms dependent on the renormalization scale µ̄.

3.4 Constraints

The parameters of every new model are to some extent constrained. Even in
the most generic case one wants a model to satisfy some theoretical aspects
and obviously it should agree with experimental data. If we want to perform
a perturbative analysis, we better make sure we are in fact in a perturbative
regime. Furthermore, to be able to describe nature and have a predictive model
we impose the conditions of vacuum (meta-)stability and unitarity.

Electroweak precision tests, i.e. measuring the Peskin-Takeuchi parameters
[116, 117], set bounds on Beyond the Standard Model models as do various
experiments measuring the dark matter relic density for models with a dark
matter candidate. Since most extensions of the Standard Model interact via
the Higgs boson with the SM sector, Higgs physics like the di-photon decay
H → γγ constrains the parameter space.

Although many theoretical [118–122] and collider [124–139] constraints for
the Inert Doublet Model have already and extensively been considered in the
literature, we want to look at some of these more closely. Techniques for theo-
retical constraints, such as unitarity bounds, can be adapted to other extensions
of the Standard Model.

3.4.1 Theoretical Constraints

Although we explicitly have large couplings in the IDM, we still want our theory
to remain in the perturbative regime. Therefore, all couplings have to satisfy

∣λ1,2,3,4,5∣≪ 4π . (3.4.1)

The couplings can a priori be negative and indeed we choose λ5 < 0. These
constraints are easily satisfied by our benchmark points and even the large
coupling λ3 ∼ 3 is well inside the allowed region.

The world we want to describe lies at the electroweak broken minimum of
the potential. To guarantee vacuum stability, we want to make sure that this
minimum is a global one.3 At tree-level this translates into the inequalities

λ1,2 ≥ 0 , λ3,L,S ≥ −2√λ1λ2 . (3.4.2)

3If it were only a local minimum we would live in an unstable vacuum. However, if the
global minimum is very far away and our vacuum thus very long lived, i.e. of the order of the
age of the universe, we speak of a meta-stable vacuum.
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The first two constraints concerning λ1 and λ2 are obvious, the other ones are
an implication of the reparametrization invariance of the scalar potential [140].
A short derivation is given below.

Calculating scattering amplitudes, in particular scalar-scalar, scalar-gauge
boson and gauge boson-gauge boson scatterings [141], there arise constraints
from the eigenvalues of the corresponding S-matrix [127]:

∣λ3 + 2λ4 ± 3λ5∣ ≤ 8π ,
∣ − λ1 − λ2 ±√(λ1 − λ2)2 + λ24∣ ≤ 8π ,

∣ − 3λ1 − 3λ2 ±√9(λ1 − λ2)2 + (2λ3 + λ4)2∣ ≤ 8π ,
∣ − λ1 − λ2 ±√(λ1 − λ2)2 + λ25∣ ≤ 8π . (3.4.3)

In the rest of this section we want to derive the constraints given in eqs.
(3.4.2) and (3.4.3). We first note that the scalar potential of the Inert Doublet
Model, given in eq. (3.1.2), has a freedom of reparametrization. Changing the

coefficients m2
i and λi into m

′

i
2
and λ′i the potential can be brought back to its

original form via a field transformation

φi → φ′i = Rφi , (3.4.4)

where R is an element of the general linear group GL(2,C). For simplicity we
choose here to write the two doublets as φ1 = φ and φ2 = χ. The physics of the
potentials V and V ′ has to be the same. The common way to introduce this
reparametrization freedom is to consider the two scalar doublets φ1 and φ2 as
components of a hyperspinor Φ with the transformation Φ→ UΦ , U ∈ U(2).

It is convenient to switch from the fundamental representations of SU(2) to
the adjoint [140]. Since 2⊗ 2̄ = 1⊕ 3 we write

r0 = Φ†Φ = φ†
1φ1 + φ†

2φ2 , (3.4.5)

ri = Φ†σiΦ = ⎛⎜⎜⎝
φ

†
2φ1 + φ†

1φ2−i (φ†
1φ2 − φ†

2φ1)
φ

†
1φ1 − φ†

2φ2

⎞⎟⎟⎠ , (3.4.6)

where σi are the Pauli matrices, as the components of rµ = (r0, ri). These
quantities are gauge invariant and thus rµ parametrize gauge orbits of the Higgs
fields [142].

The quartic part of the scalar potential of a general two Higgs doublet model
contains all possible forth-order terms and is thus invariant not only under
a U(2) transformation but under GL(2,C). However, multiplication by an
arbitrary complex number does not change the potential since the couplings
can be rescaled by the absolute value of that number and an overall phase
leaves the potential invariant. Therefore, the interesting symmetries are in the
subgroup SL(2,C), which induces the proper Lorentz group SO(1,3) on our
adjoint representation.

The four-vector rµ is an irreducible representation of SO(1,3), thus there
is a Minkowski space structure in the orbit space of the Higgs potential. The
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potential takes the simple form

V0 = −Mµr
µ + 1

2
Λµνr

µrν , (3.4.7)

where Mµ is a mass four-vector, i.e. its entries are combinations of the masses
of the two doublets. This vector, however, is not important here. The matrix
Λ is given by

Λµν =
⎛⎜⎜⎜⎝
λ+ + λ3 0 0 λ−

0 λ4 + λ5 0 0
0 0 λ4 − λ5 0
λ− 0 0 λ+ − λ3

⎞⎟⎟⎟⎠
, (3.4.8)

with λ± = λ1 ± λ2. In order for the potential to be bounded from below, the
matrix Λµν must be positive-definite. This is true if (and only if) the following
three properties are fulfilled (see Appendix A of ref. [140] for a proof of this
equivalence):

(i) Λµν has to be diagonalizable by an SO(1,3) transformation,

(ii) the time-like eigenvalue Λ0 has to be non-negative and

(iii) all space-like eigenvalues are smaller or equal to Λ0.

With the metric gµν we construct the in general not symmetric mixed tensor

Λµ
ν = gνσΛµσ =

⎛⎜⎜⎜⎝
λ+ + λ3 0 0 λ−

0 −(λ4 + λ5) 0 0
0 0 λ5 − λ4 0−λ− 0 0 −(λ+ − λ3)

⎞⎟⎟⎟⎠
. (3.4.9)

Diagonalizing this matrix as Λµ
ν = (TΛT −1)µν we get

Λ =
⎛⎜⎜⎜⎝
λ3 + 2√λ1λ2 0 0 0

0 −λ4 − λ5 0 0
0 0 λ5 − λ4 0
0 0 0 λ3 − 2√λ1λ2

⎞⎟⎟⎟⎠
. (3.4.10)

According to property (ii), the time-like eigenvalue Λ0 = λ3 + 2√λ1λ2 has to be
non-negative. This leads to the constraint

λ3 ≥ −2√λ1λ2 , (3.4.11)

whereas property (iii) leads to

λL = λ3 + λ4 + λ5 ≥ −2√λ1λ2 ,
λS = λ3 + λ4 − λ5 ≥ −2√λ1λ2 . (3.4.12)

Thus there are three additional constraints from imposing vacuum stability,
summarized in eq. (3.4.2).

We now turn to the issue of unitarity. We start with the partial wave de-
composition of the amplitudeM of the scattering S1S2 → S3S4, which is [143]

M(s, t, u) = 16π ∞∑
ℓ=0
(2ℓ + 1)Pℓ(cos θ)aℓ(s) , (3.4.13)
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where s, t, u are the Mandelstam variables and Pℓ are the Legendre polynomials.
These polynomials are orthogonal and thus the total cross section σ becomes

σ = 16π

s

∞∑
ℓ=0
∣aℓ∣2 . (3.4.14)

Using the optical theorem we can derive the unitarity constraint

∣aℓ∣2 = (Re aℓ)2 + (Im aℓ)2 = Im aℓ , ∀ℓ , (3.4.15)

which describes a circle in the complex plane with the center for the extreme
value ∣aℓ∣ = 1 lying at i/2 and with radius 1/2. Thus

∣Re aℓ∣ ≤ 1

2
, ∀ℓ . (3.4.16)

Inverting the decomposition in eq. (3.4.13), the partial wave aℓ(s) can be
expressed as

aℓ(s) = 1

32π

1

∫
−1

d cos θ Pℓ(cos θ)M(s, t, u) . (3.4.17)

We now consider the J = ℓ = 0 s-wave a0(s) for vanishing external masses
which corresponds to the high energy limit s≫m. The Legendre polynomial is
P0(x) = 1 and the Mandelstam variables t and u are rewritten as

t = −s
2
(1 − cos θ) , u = −s

2
(1 + cos θ) . (3.4.18)

This leads to

a0(s) = 1

16π
{Q + [T 12

h T 34
h

s −m2
h

− 1

s
(ctT 13

h T 24
h + cuT 14

h T 23
h ) ln(1 + s

m2
h

)]} ,

(3.4.19)
where Q is the four point vertex and T

ij
h are the trilinear vertices hSiSj . We

have introduced ct and cu which take values 1 or 0 depending on whether or
not t- and u-channels are open in the considered process. In high energy colli-
sions the contributions of the trilinear couplings are suppressed and the quartic
interaction dominates. Eq. (3.4.16) then takes the form ∣Q(S1, S2, S3, S4)∣ ≤ 8π.

Going back to our two Higgs doublet model and again denoting φ1 = φ and
φ2 = χ we rewrite the products (φ†

aφb)(φ†
cφd) = (φ∗aαφbα)(φ∗cβφdβ) by introduc-

ing the decomposition [144]

(φ∗aαφbα)(φ∗cβφdβ) = 1

2
[(φ∗aαφdα)(φ∗cβφbβ) +∑

r

(φ∗aασr
αβφdβ)(φ∗cγσr

γδφbδ)] ,
(3.4.20)

where σi are the Pauli matrices. This decomposition can easily be derived by
an explicit calculation

(φ∗aαφdα)(φ∗cβφbβ) +∑
r

(φ∗aασr
αβφdβ)(φ∗cγσr

γδφbδ) =
= φ∗a1φd1φ∗c1φb1 + φ∗a1φd1φ∗c2φb2 + φ∗a2φd2φ∗c1φb1 + φ∗a2φd2φ∗c2φb2+ φ∗a1φd2φ∗c1φb2 + φ∗a1φd2φ∗c2φb1 + φ∗a2φd1φ∗c1φb2 + φ∗a2φd1φ∗c2φb1
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− φ∗a2φd1φ∗c2φb1 + φ∗a2φd1φ∗c1φb2 + φ∗a1φd2φ∗c2φb1 − φ∗a1φd2φ∗c1φb2+ φ∗a1φd1φ∗c1φb1 − φ∗a1φd1φ∗c2φb2 − φ∗a2φd2φ∗c1φb1 + φ∗a2φd2φ∗c2φb2= 2 [φ∗a1φd1φ∗c1φb1 + φ∗a1φd2φ∗c2φb1 + φ∗a2φd1φ∗c1φb2 + φ∗a2φd2φ∗c2φb2]= 2(φ∗aαφbα)(φ∗cβφdβ) . (3.4.21)

The weak hypercharge is the generator of the U(1) subgroup of the elec-
troweak gauge group SU(2) × U(1) [145]. The weak hypercharge of the scalar
fields are both Y = +1 such that in a scalar-scalar scattering the three states
Y = {0,2,−2} are possible. For states with hypercharge Y = 2 we introduce
φ̃a = (iσ2φa)T where the isoscalar φ̃aφb = −φ̃bφa is antisymmetric under a↔ b.
The decomposition is then

(φ∗aαφbα)(φ∗cβφdβ) = 1

2
[(φ∗aαφ̃∗cα)(φ̃dβφbβ) +∑

r

(φ∗aασr
αβφ̃

∗

cβ)(φ̃dγσr
γδφbδ)] .

(3.4.22)
From the potential

V0 = λ1(φ†
1φ1)2 + λ2(φ†

2φ2)2 + λ3(φ†
1φ1)(φ†

2φ2)
+ λ4(φ†

1φ2)(φ†
2φ1) + λ52 [(φ†

1φ2)2 + (φ†
2φ1)2] (3.4.23)

and the decompositions (3.4.20) and (3.4.22) we get the following contributions
for the hypercharge Y :

• Y = 0
λ1 ∶ (φ†

1φ1)(φ†
1φ1) = 1

2
[(φ†

1φ1)(φ†
1φ1) +∑

r

(φ†
1σ

rφ1)(φ†
1σ

rφ1)]
λ2 ∶ (φ†

2φ2)(φ†
2φ2) = 1

2
[(φ†

2φ2)(φ†
2φ2) +∑

r

(φ†
2σ

rφ2)(φ†
2σ

rφ2)]
λ3 ∶ (φ†

1φ1)(φ†
2φ2) = 1

2
[(φ†

1φ2)(φ†
2φ1) +∑

r

(φ†
1σ

rφ2)(φ†
2σ

rφ1)]
λ4 ∶ (φ†

1φ2)(φ†
2φ1) = 1

2
[(φ†

1φ1)(φ†
2φ2) +∑

r

(φ†
1σ

rφ1)(φ†
2σ

rφ2)]
λ5 ∶ (φ†

1φ2)(φ†
1φ2) = 1

2
[(φ†

1φ2)(φ†
1φ2) +∑

r

(φ†
1σ

rφ2)(φ†
1σ

rφ2)]
(φ†

2φ1)(φ†
2φ1) = 1

2
[(φ†

2φ1)(φ†
2φ1) +∑

r

(φ†
2σ

rφ1)(φ†
2σ

rφ1)] (3.4.24)

• Y = 2
λ1 ∶ (φ†

1φ1)(φ†
1φ1) = 1

2
[(φ†

1φ̃
†
1)(φ̃1φ1) +∑

r

(φ†
1σ

rφ̃
†
1)(φ̃1σrφ1)]

λ2 ∶ (φ†
2φ2)(φ†

2φ2) = 1

2
[(φ†

2φ̃
†
2)(φ̃2φ2) +∑

r

(φ†
2σ

rφ̃
†
2)(φ̃2σrφ2)]

λ3 ∶ (φ†
1φ1)(φ†

2φ2) = 1

2
[(φ†

1φ̃
†
2)(φ̃2φ1) +∑

r

(φ†
1σ

rφ̃
†
2)(φ̃2σrφ1)]
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Z2-even Z2-odd

Y = 0 , σ = 0 1√
2
(φ†

1φ1) , 1√
2
(φ†

2φ2) 1√
2
(φ†

1φ2) , 1√
2
(φ†

2φ1)
Y = 0 , σ = 1 1√

2
(φ†

1σ
iφ1) , 1√

2
(φ†

2σ
iφ2) 1√

2
(φ†

1σ
iφ2) , 1√

2
(φ†

2σ
iφ1)

Y = 2 , σ = 0 - 1√
2
(φ̃1φ2) = − 1√

2
(φ̃2φ1)

Y = 2 , σ = 1 1
2
(φ̃1σiφ1) , 1

2
(φ̃2σiφ2) 1√

2
(φ̃1σiφ2) = − 1√

2
(φ̃2σiφ1)

Table 3.5: All possible states with weak hypercharge Y and isospin σ.

λ4 ∶ (φ†
1φ2)(φ†

2φ1) = 1

2
[(φ†

1φ̃
†
2)(φ̃1φ2) +∑

r

(φ†
1σ

rφ̃
†
2)(φ̃1σrφ2)]

λ5 ∶ (φ†
1φ2)(φ†

1φ2) = 1

2
[(φ†

1φ̃
†
1)(φ̃1φ1) +∑

r

(φ†
1σ

rφ̃
†
1)(φ̃1σrφ1)]

(φ†
2φ1)(φ†

2φ1) = 1

2
[(φ†

2φ̃
†
2)(φ̃1φ1) +∑

r

(φ†
2σ

rφ̃
†
2)(φ̃1σrφ1)] (3.4.25)

The weak isospin T3 is a quantum number related to the weak interaction
and obeys the relation Q = T3 + Y /2, where Q is the charge and Y the weak
hypercharge. Thus a state with two scalars can have either σ = 0 or σ = 1, where
σ is the absolute value of the isospin of the two-scalar state.

We can now construct the set of states with weak hypercharge Y = {0,2} and
isospin σ = {0,1}. They are summarized in table 3.5. The states with Y = −2
are obtained from the ones with Y = 2 by charge conjugation.

Taking these states we can construct the S-matrices from the potential
(3.1.2) with the decompositions (3.4.20) and (3.4.22). For given quantum num-
bers Y and σ they are

SY =2,σ=1 = 1

8π

⎛⎜⎝
2λ1 λ5 0
λ5 2λ2 0
0 0 λ3 + λ4

⎞⎟⎠ , (3.4.26)

SY =2,σ=0 = 1

8π
(λ3 − λ4) , (3.4.27)

SY =0,σ=1 = 1

8π

⎛⎜⎜⎜⎝
2λ1 λ4 0 0
λ4 2λ2 0 0
0 0 λ3 λ5
0 0 λ5 λ3

⎞⎟⎟⎟⎠
, (3.4.28)

SY =0,σ=0 = 1

8π

⎛⎜⎜⎜⎝
6λ1 2λ3 + λ4 0 0

2λ3 + λ4 6λ2 0 0
0 0 λ3 + 2λ4 3λ5
0 0 3λ5 λ3 + 2λ4

⎞⎟⎟⎟⎠
. (3.4.29)

The matrices are block diagonal and the upper left corner corresponds to scat-
tering of Z2-even states, the bottom right corner to Z2-odd states. In the
Y = 0, σ = 0 matrix there is a factor of 3 which comes from the differ-
ent possibilities of contracting the fields. For example the matrix element
S12
Y =0,σ=0 = (2λ3 + λ4)/(8π) has contributions from λ4 and 2 ⋅ λ3/2.
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We impose unitarity on the scattering matrix which implies that the eigen-
values are ±1. However, since we only included the leading partial wave, i.e. the
s-wave, in our derivation of the unitarity constraint (3.4.16), imposing unitarity
on the matrices (3.4.26) - (3.4.29) translates into S ≤ I, which means that the
eigenvalues Λ of the matrices Ŝ = 8πS satisfy ∣Λ∣ ≤ 8π [146]. The eigenvalues of
the matrices Ŝ in eqs. (3.4.26) - (3.4.29) are

Λeven
21± = λ1 + λ2 ±√(λ1 − λ2)2 + λ25 ,
Λodd
21 = λ3 + λ4 ,

Λodd
20 = λ3 − λ4 ,

Λeven
01± = λ1 + λ2 ±√(λ1 − λ2)2 + λ24 ,
Λodd
01± = λ3 ± λ5 ,

Λeven
00± = 3(λ1 + λ2) ±√9(λ1 − λ2)2 + (2λ3 + λ4)2 ,
Λodd
00± = λ3 + 2λ4 ± 3λ5 . (3.4.30)

Since we have already imposed perturbativity, three of these inequalities are
easily satisfied. The other relations are the given unitarity constraints in eq.
(3.4.3).

3.4.2 Experimental Constraints

From LEP I data of the Z-boson decay [123], a decay Z → HA is in tension
with measurements and thus for practical purposes we require that

mH +mA >mZ . (3.4.31)

LEP II results, interpreted in ref. [124], exclude models that satisfy simultane-
ously

mH < 80 GeV , mA < 100 GeV and ∆mAH =mA −mH > 8 GeV . (3.4.32)

This means that in a low dark matter mass region where mH < 80 GeV, either
the mass of the other neutral scalar is large (mA > 100 GeV) or the mass splitting
is small (∆mAH < 8 GeV).

Constraints from electroweak precision measurements [78,127] are imposed,
using the Peskin-Takeuchi parameters S and T . The additional contributions
are given by

∆T = 1

32π2αv2
[F (m2

H± ,m
2
A) + F (m2

H± ,m
2
H) − F (m2

H ,m
2
A)] , (3.4.33)

where

F (m2
1,m

2
2) = m2

1 +m2
2

2
− m2

1m
2
2

m2
1 −m2

2

log
m2

1

m2
2

, (3.4.34)

and

∆S = 1

6π
[1
2
log

m2
H

m2
H±

− 5

12
+ m2

Hm
2
A(m2

A −m2
H)2 +

m4
A(m2

A − 3m2
H)

2(m2
A −m2

H)3 log
m2

A

m2
H

] .
(3.4.35)
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Electroweak precision measurements set an upper bound on the oblique pa-
rameters [147]. ∣∆T ∣ ≤ 0.2 is easily realized if either mH or mA is approximately
degenerate with mH± . In the exact degenerate case, ∆T vanishes. However, the
constraint is not very restrictive as long as the mass splittings do not become
large. ∣∆S∣ ≤ 0.15 does not much constrain our parameter space, since it is ful-
filled for a wide range of masses and mass splittings. When the mass splittings
are small, we can approximate

m2
1m

2
2

m2
1 −m2

2

log
m2

1

m2
2

≈m1m2 (3.4.36)

and write

∆T ≈ 1

32π2αv2
(mH± −mA)(mH± −mH) . (3.4.37)

The particles of the inert scalar doublet could have interesting consequences
in the Higgs di-photon decay h → γγ [127], which does not occur at tree-level.
In the Standard Model, this decay is dominantly mediated through a charged
gauge boson and a top loop. This diagram is proportional to the mass of the
particle in the loop and thus a heavy new charged scalar can give a significant
contribution. If the decay channel h → HH is kinematically open, this decay
has to be taken into account as well and thus we should not compare decay
widths but rather branching ratios.

If BSM theories have a dark matter candidate they should be able to re-
produce the correct DM relic abundance. If one assumes that there are further
extensions of the model with new particles contributing to the dark matter
content in the universe, the relic abundance does not necessarily have to be
reproduced but rather acts as an upper bound.

The current value of the Cold Dark Matter (CDM) relic abundance by Planck
[15] is ΩCDMh

2 = 0.1199±0.0022, which leads to the 3σ (99.7% confidence level)
range of

0.1133 < ΩCDMh
2 < 0.1265 or ΩCDMh

2 < 0.1265 . (3.4.38)

The calculation of the relic abundance can be done using different codes
from the literature with SARAH, SPheno and micrOMEGAs [148–151] being
the most commonly used. Nevertheless, we did not perform these calculations,
relying rather on the benchmark points from ref. [102] where this has been done.



Chapter 4

Conclusions

To really understand the origin of the matter-antimatter asymmetry it is of
course important to consider all of the three Sakharov conditions mentioned
in the introduction. However, even the third one alone, non-equilibrium of the
system, can have many different origins as the literature shows. The electroweak
phase transition is but one possible mechanism and even so, the number of
models to realize such a transition is huge. We constrained ourselves to one such
model for the reasons stated in chapter 3. These are simplicity, falsifiability, and
the combination of effects requiring a priori contradictory parameter ranges, i.e.
small couplings for dark matter and large ones for a first order phase transition.

For one thing we have shown that the high-temperature expansion is still
quite accurate for describing the strength of the electroweak phase transitions,
even though some of the masses are large. The implication of these findings,
that simple expressions from the high-temperature expansions can be used for
calculations within the Inert Doublet Model and other simple extensions of the
Standard Model simplifies numerical calculations significantly. This allows to
scan parameter spaces more efficiently and especially facilitates dimensionally
reduced lattice studies which are necessary for cases in which good precision is
needed. Furthermore, it allows investigations of properties with inhomogeneous
configurations like surface tension [152, 153], bubble nucleation rate [154] and
sphaleron rate [57,59,60].

It should be noted that there is one observable for which the high-temperature
expansion does not work well. As can be seen from table 3.4 in chapter 3 this is
the critical temperature Tc. In the Inert Doublet Model the large masses of the
inert scalars have little effect on the strength of the phase transition but they
do contribute to the effective Higgs mass parameter by a large amount. How-
ever, in a dimensionally reduced computation, these effects can be implemented
without having to make use of a high-temperature expansion [111]. Therefore,
good precision can be expected even for Tc.

We have also presented general expressions for master integral functions
which allow the evaluation of the full two-loop effective thermal potential in a
model independent way without having to resort to a high-temperature expan-
sion or to the introduction of a mass scale hierarchy. Furthermore, we have
shown that a first order phase transition is in fact possible, at least for two of
the three benchmark points given.

Whether or not the Standard Model background really is important in the
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evolution of the early universe, e.g. dark matter production or annihilation, is
unknown. What we have shown, however, is that the electroweak crossover does
experience unexpected behavior around a soft point at T ∼ 160 GeV.

As already mentioned, the electroweak phase transition only tackles one
part of the full story of baryogenesis. We have neither discussed baryon number
violation nor the breaking of C and CP symmetries. Many different theories and
ideas are presented in the literature and all model builders and phenomenologists
await eagerly the newest results from various experiments. Meanwhile, we are
hoping that some evidence can and will be found, be it either in favor or against
a certain model. While the hope for conclusive proof is dim or even absent, the
possibility of exclusion, at least for models with a modest number of independent
parameters, is there.

Experimentalists and engineers around the world are working on various
experiments and instruments to gather new or better data. These projects are
not only big and expensive but also very sophisticated and thus the timescales
are rather large. For high energy particle collisions this means that for now we
have to do with the 13 TeV Large Hadron Collider (LHC) at CERN. However,
concerning the electroweak phase transition there is a new promising star on
the horizon: gravitational waves.

4.1 Outlook

The hope for model builders and physicists in general is that new particles are
found at the LHC or any other (future) collider. This would not only allow us to
get rid of many models and constraining the remaining ones but we would also
gain some direct insight into the regime of new physics beyond the Standard
Model. Besides new interactions, scatterings and decay channels new degrees of
freedom could also shed some light on a possible electroweak phase transition.
But finding new particles is not the only way to learn more about the early
universe.

The electroweak phase transition, or in the case of the Standard Model the
crossover, occurred in the very early universe at ∼ 10−12 seconds after the big
bang. Given that the oldest particles that we can actually see, the photons in
the cosmic microwave background, were created 105 years later, it is hard to
imagine that we can observe what actually happened at the electroweak sym-
metry breaking scale. However, besides neutrinos there is one other source that
does not require a transparent universe to make itself seen and that source is
gravity. Propagating gravitational waves could have survived since the very be-
ginning of the universe and their perturbation of e.g. the CMB could in principle
be measured today.

Every source of energy that is in motion produces gravitational waves through
a change in their quadrupole moment [155]. The problem with gravity, however,
is that it is very weak. So to be able to detect these waves, their source must
have released an enormous amount of energy through gravitational waves and
their origin must thus be a very violent process. Fortunately, a cosmological
first order phase transition is indeed extremely violent.

There are three main sources for the creation of gravitational waves in a first
order phase transition. First of all there are the collisions of expanding bubbles
during the transition [156,157], as well as the sound waves generated afterward
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[158,159]. The collision of many bubbles also creates magneto-hydrodynamical
turbulence in the plasma [160] which produce gravitational waves for many
Hubble times after the transition.

To calculate the spectrum of gravitational waves produced by a first order
phase transition, an important ingredient is the latent heat [161]. The efficiency
factor describing the conversion from the latent heat into bulk motion of the
expanding and colliding bubbles of the broken symmetry phase also depends on
the bubble-wall velocity. For the velocity vw of the expanding bubble-wall, the
runaway scenario where there is no bound on the acceleration and thus vw → c

is mostly ruled out [162]. Therefore, assuming the non-runaway case where vw
asymptotically approaches a constant value and using parameters of a first order
transition as presented in this thesis, namely the latent heat, the gravitational
wave spectrum can be calculated. However, another important parameter which
in principle could be determined from the potential [37] but we did not calculate
is the inverse time duration of the phase transition [161].

The frequency of cosmological gravitational waves lies in the range covered
by LISA (10−4−10−1Hz) [163]. The Laser Interferometer Space Antenna (LISA)
is thus a promising experiment to probe the nature of the electroweak phase
transition or of other phase transitions that took place in the early universe. For
a full frequency classification of gravitational waves according to their detection
method, see ref. [164].

While there exist many ground-based gravitational waves interferometers,
e.g. LIGO, VIRGO, GEO, TAMA, we will only look briefly into one of them,
namely LIGO for reasons explained below. However, there are also many space-
based interferometer experiments proposed [165] or even planned which are far
more relevant for the topic of this thesis. We will introduce the most promising
next gravitational wave experiment, LISA, which consist of three spacecrafts
and we will also look even further into the future.

The Laser Interferometer Gravitational Wave Observatory (LIGO or since
the upgrade in 2014/15 Advanced LIGO) is a Michelson interferometer type ex-
periment [166,167]. Its two identical facilities are located in the US at Hanford
and Livingston. With its 4 km long arms the LIGO detectors are most sensi-
tive around 100 Hz with its total range being 10 − 103 Hz. Events producing
gravitational waves in this range are for example supernovae, neutron star inspi-
rals and black hole mergers. LIGO is estimated to measure O(80) such events
each year. However, it will not be able to measure gravitational waves from
cosmological phase transitions. Nevertheless, LIGO deserves to be mentioned
since it is responsible for the first direct measurements of gravitational waves
ever [168–170].

The Laser Interferometer Space Antenna (LISA) is a collaboration of the Eu-
ropean Space Agency (ESA) and the National Aeronautics and Space Adminis-
tration (NASA). One of its main goals is to detect gravitational waves produced
in the very early universe [171]. However, such gravitational waves from non-
equilibrium phenomena, including (p)reheating, cosmic defects, cosmic strings
and global phase transitions, are not all detectable by LISA. The frequency peak
of gravitational waves from preheating lies well out of range for LISA, whereas
cosmic defects, depending on the scenario, produce gravitational waves in a wide
range and should therefore be detectable. The gravitational wave background
from the electroweak phase transition, however, lies precisely in the frequency
window where LISAs precision is highest. The whole range where LISA is to
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detect gravitational waves is 10−5−0.1 Hz. Not only the aforementioned primor-
dial sources produce gravitational waves in this range. LISA is also expected
to detect massive black hole binaries (MBHB) with 104 − 107M⊙, black hole
mergers as detected by LIGO and extreme mass ratio inspirals (EMRI).

An interesting point in the setup is that other than in ground-based experi-
ments, the LISA spacecrafts rather than the test masses have to be stabilized.
The test masses are in free fall and thus on very well behaved trajectories while
the spacecraft itself is moving around the masses.

The Big Bang Observer (BBO) is a space-based experiment in its planning
phase [172]. Its goal is to close the gap in the frequency spectrum between
Advanced LIGO and LISA. In this range between 0.1 − 10 Hz lies the expected
primordial gravitational wave background created during inflation. However,
BBO will also be able to detect gravitational waves from supernovae and com-
pact body inspirals like white dwarfs, neutron stars and stellar mass black holes.

The arms of BBO will be shorter than those of LISA, however, the laser is
more powerful to improve on the signal to noise ratio. In a first stage, three
spacecrafts will be placed in a triangular shape much like LISA. In the second
stage nine additional spacecrafts will be placed in a second triangle and a star of
David shaped constellation on different points spaced 120○ apart in solar orbit.

The departure from thermal equilibrium during a first order electroweak
phase transition remains a viable possibility for the origin of the matter anti-
matter asymmetry of the universe. Future experiments at particle colliders and
the ongoing search for gravitational waves will not only shed light on a possible
phase transition at the electroweak scale but also provide us with new insights
into the history and nature of our universe. Through these experiments and the
theoretical studies of the gathered results, the scientific field of physics will keep
up improving our understanding of nature and continue to fascinate us.



Appendix A

Master Integrals

In this Appendix we derive the one-loop zero temperature expressions for the
calculation of the on-shell self-energies in Appendix C.2. Furthermore, we pro-
vide an overview of the one- and two-loop master integrals derived in chapter 3
as well as their high-temperature expansions.

Before we tackle the integrals needed there is a very general integral we want
to compute, since we are going to use it on various occasions, namely

Φ(m,d,A) = ∫ ddk(2π)d 1(k2 +m2)A . (A.0.1)

Since the integrand only depends on the absolute value of k all the angular
integrations can be carried out. The momentum measure is then

ddk = π
d
2

Γ (d
2
)kd−2d(k2) , (A.0.2)

where Γ(s) is the Euler gamma function. Performing the two consecutive sub-
stitutions k2 →m2t and t→ 1/s − 1 we get

Φ(m,d,A) = md−2A

(4π) d
2Γ (d

2
)
∞

∫
0

dt t
d
2
−1(1 + t)−A

= md−2A

(4π) d
2Γ (d

2
)

1

∫
0

ds sA−
d
2
−1(1 − s) d

2
−1 . (A.0.3)

This last integral corresponds to the Euler beta function B(x, y) which can be
expressed in terms of Euler gamma functions as

B(x, y) = Γ(x)Γ(y)
Γ(x + y) (A.0.4)

and we have thus arrived at the simple form

Φ(d,m,A) = ∫ ddk(2π)d 1(k2 +m2)A = (m
2) d

2
−A

(4π) d
2

Γ (A − d
2
)

Γ(A) . (A.0.5)

We can now turn to the derivation of the vacuum integrals.

67



68 APPENDIX A. MASTER INTEGRALS

A.1 Vacuum Integrals A(m), B(P ;m1,m2),

C(P ;m1,m2) and Dµν(P ;m1,m2)

The integral A(m) is
A(m) = ∫

K

1

K2 +m2
. (A.1.1)

We can directly use (A.0.5) in d = 4 − 2ǫ dimensions to get

A(m) = m2

(4π)2 [−1ǫ − 1 + ln m
2

µ̄2
] +O(ǫ) . (A.1.2)

The integral B(P ;m1,m2) is

B(P ;m1,m2) = P

K
m1

m2

= ∫
K

1(K2 +m2
1) [(P +K)2 +m2

2] . (A.1.3)

In the first step we use Feynman parametrization and then we change the
integration variable as usual, i.e. K →K − (1−x)P . We can then apply (A.0.5)
to get

∫
K

1(K2 +m2
1) [(P +K)2 +m2

2]
=

1

∫
0

dx∫
K

1

[K2 + x(1 − x)P 2 + (1 − x)m2
1 + xm2

2]2
=

1

∫
0

dx(4π)2 [1ǫ − ln(x(1 − x)P
2 + (1 − x)m2

1 + xm2
2

µ̄2
) +O(ǫ)] . (A.1.4)

Since the diagram in eq. (A.1.3) is symmetric under an exchange of m1 ↔ m2

we exchange the masses in half of the expression in eq. (A.1.4). We perform
the integration over x such that the symmetrized result then reads

B(P ;m1,m2) = 1(4π)2 [1ǫ + 2 − ln m1m2

µ̄2
+ m2

1 −m2
2

P 2
ln
m1

m2

− 2
√(m1 −m2)2 + P 2

√(m1 +m2)2 + P 2

P 2
atanh

√(m1 −m2)2 + P 2√(m1 +m2)2 + P 2
] .
(A.1.5)

The remaining two integrals can be expressed in terms of the masters A and
B. We first consider the C function where

PµC(P ;m1,m2) = ∫
K

Kµ(K2 +m2
1) [(P +K)2 +m2

2] . (A.1.6)
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We multiply this by Pµ and use the decomposition

PµKµ = 1

2
[(P +K)2 −K2 − P 2]

= 1

2
[(P +K)2 +m2

2 − (K2 +m2
1) − P 2 +m2

1 −m2
2] . (A.1.7)

We divide by P 2 and thus get

C(P ;m1,m2) = 1

2P 2
[A(m1) −A(m2) − (P 2 −m2

1 +m2
2)B(P ;m1,m2)] .

(A.1.8)
The last function to compute here is

Dµν(P ;m1,m2) = ∫
K

KµKν(K2 +m2
1) [(P +K)2 +m2

2] . (A.1.9)

Lorentz invariance now implies that the resulting structure must be

Dµν(P ;m1,m2) = δµνD0(P ;m1,m2) + PµPνD1(P ;m1,m2) . (A.1.10)

Contracting this equation with the Euclidean metric δµν gives us one equation
and multiplying it by Pµ a second one to build the system

δµνDµν(P ;m1,m2) =DD0(P ;m1,m2) + P 2D1(P ;m1,m2) ,
PµDµν(P ;m1,m2) = Pν [D0(P ;m1,m2) + P 2D1(P ;m1,m2)] . (A.1.11)

The first equation is easily solved to

δµνDµν(P ;m1,m2) = ∫
K

K2

(K2 +m2
1) [(P +K)2 +m2

2]
= A(m2) −m2

1B(P ;m1,m2) . (A.1.12)

For the second equation in the system in eq. (A.1.11) we again use the
decomposition in eq. (A.1.7) to get

PµDµν(P ;m1,m2) = ∫
K

(P ⋅K)Kν(K2 +m2
1) [(P +K)2 +m2

2]
= 1

2

⎡⎢⎢⎢⎢⎣∫K
Kν

K2 +m2
1

−∫
K

Kν(P +K)2 +m2
2

− Pν(P 2 −m2
1 +m2

2)C(P ;m1,m2)⎤⎥⎥⎥⎥⎦ .
(A.1.13)

Changing integration variables from K → K − P in the second term and using
that the first term, being odd, vanishes, we get

PµDµν(P ;m1,m2) = Pν

2
[A(m2) − (P 2 −m2

1 +m2
2)C(P ;m1,m2)] . (A.1.14)

We can now solve the system in eq. (A.1.11) for D0 and D1 and finally get

Dµν(P ;m1,m2) = ( δµν

4(D − 1)P 2
− DPµPν

4(D − 1)P 4
){(P 2 −m2

1 +m2
2)A(m1)
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+ (P 2 +m2
1 −m2

2)A(m2)
− [P 4 + 2P 2(m2

1 +m2
2) + (m2

1 −m2
2)2]B(P ;m1,m2)}

+ PµPν

P 2
[A(m2) −m2

1B(P ;m1,m2)] . (A.1.15)

For our calculation of the vector boson self-energy we only need the trans-
verse part D(T ) which is defined through Dµν =D(T )δµν +O(PµPν).
A.2 Overview and High-Temperature

Expansions

In this summary, all the different terms in the ǫ-expansion defined in eq. (3.2.2)
of the functions computed in chapter 3 as well as their high-temperature limit
are presented in a compact form.

The expressions for the J-function are

J(−1)(m) = − m4

4(4π)2 , (A.2.1)

J(0)(m) = − m4

4(4π)2 (32 − ln m
2

µ̄2
) − I(0)T (m)

3
, (A.2.2)

with the high-temperature expansion for bosonic particles with mass mb and
fermionic particles with mass mf

J(0)(mb) = −π2T 4

90
+ m2

bT
2

24
− m3

bT

12π
− m4

b

2(4π)2 ln( µ̄eγE

4πT
) +O ( m6

b

π4T 2
) , (A.2.3)

J(0)(mf) = −7
8

π2T 4

90
+ m2

fT
2

48
− m4

f

2(4π)2 ln( µ̄eγE

πT
) +O ( m6

f

π4T 2
) . (A.2.4)

For the I-function we need one more term in the ǫ-expansion

I(−1)(m) = − m2

(4π)2 , (A.2.5)

I(0)(m) = − m2

(4π)2 (1 − ln m
2

µ̄2
) + I(0)T (m) , (A.2.6)

I
(0)
T (m) =

∞

∫
0

dp p2n(ω)
2π2ω

, (A.2.7)

I(1)(m) = − m2

(4π)2 (12 ln2
m2

µ̄2
− ln m2

µ̄2
+ 1 + π2

12
) + I(1)T (m) , (A.2.8)

I
(1)
T (m) =

∞

∫
0

dp p2n(ω)
2π2ω

(ln µ̄2

4p2
+ 2) . (A.2.9)

The high-temperature contributions read

I(0)(mb) = T 2

12
− mbT

4π
− 2m2

b(4π)2 ln( µ̄eγE

4πT
) +O ( m4

b

π4T 2
) , (A.2.10)
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I(1)(mb) = T 2

6
[ln( µ̄eγE

2T
) − ζ ′(2)

ζ(2) ] − mbT

2π
[1 − ln 2mb

µ̄
]

− 2m2
b(4π)2 [ln2 ( µ̄e

γE

4πT
) − γ2E − 2γ1 + π2

8
] +O ( m4

b

π4T 2
) , (A.2.11)

I(0)(mf) = −T 2

24
− 2m2

f(4π)2 ln( µ̄eγE

πT
) +O ( m4

f

π4T 2
) , (A.2.12)

I(1)(mf) = −T 2

12
[ln( µ̄eγE

4T
) − ζ ′(2)

ζ(2) ]
− 2m2

f(4π)2 [ln2 ( µ̄e
γE

πT
) − γ2E − 2 ln2 2 − 2γ1 + π2

8
] +O ( m4

f

π4T 2
) ,

(A.2.13)

where γ1 is the Stieltjes constant defined by the expansion of the ζ-function
ζ(s) = 1/(s − 1) +∑∞n=0 γn(−1)n(s − 1)n/n!. The contributions to the modified
I-function appearing in the two-loop potential are

I(−1)(m) = 3m4

4(4π)2 , (A.2.14)

I(0)(m) = m4

(4π)2 (58 − 3

4
ln
m2

µ̄2
) + I(0)T (m) , (A.2.15)

I
(0)
T (m) =

∞

∫
0

dp p4n(ω)
2π2ω

, (A.2.16)

I(1)(m) = m4

(4π)2 (38 ln2
m2

µ̄2
+ 5

8
ln
m2

µ̄2
+ 9

16
+ π2

16
) + I(1)T (m) , (A.2.17)

I
(1)
T (m) =

∞

∫
0

dp p4n(ω)
2π2ω

(ln µ̄2

4p2
+ 2) . (A.2.18)

The high-temperature expansion thereof is

I(0)(mb) = π2T 4

30
− m2

bT
2

8
+O (m3

bT

π
) , (A.2.19)

I(1)(mb) = π2T 4

15
[ln( µ̄eγE

2T
) − ζ ′(4)

ζ(4) − 5

6
]

− m2
bT

2

4
[ln( µ̄eγE

2T
) − ζ ′(2)

ζ(2) − 1

3
] +O (m3

bT

π
) , (A.2.20)

I(0)(mf) = −7
8

π2T 4

30
+ m2

fT
2

16
+O ( m4

f

π4T 2
) , (A.2.21)

I(1)(mf) = −7π2T 4

120
[ln( µ̄eγE

2T
) − ζ ′(4)

ζ(4) − ln 2

7
− 5

6
]

− m2
fT

2

8
[ln( µ̄eγE

4T
) − ζ ′(2)

ζ(2) − 1

3
] +O (m4

f

π2
) . (A.2.22)

The expressions for the sunset H-function are

H(−2)(m1,m2,m3) = m2
1 +m2

2 +m2
3

2(4π)4 , (A.2.23)
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H(−1)(m1,m2,m3) = − 1(4π)4
3∑

i=1
m2

i (32 − ln m
2
i

µ̄2
) + 3∑

i=1

I
(0)
T (mi)(4π)2 , (A.2.24)

H(0)(m1,m2,m3)
= 1(4π)4 [−12

3∑
i=1
m2

i ln
2 (m2

i

µ̄2
) + 3 3∑

i=1
m2

i ln(m2

µ̄2
) − (7

2
+ π2

12
) 3∑

i=1
m2

i

− m2
1 +m2

2 −m2
3

2
ln(m2

1

µ̄2
) ln(m2

µ̄2
) − m2

1 +m2
3 −m2

2

2
ln(m2

1

µ̄2
) ln(m3

µ̄2
)

− m2
2 +m2

3 −m2
1

2
ln(m2

2

µ̄2
) ln(m3

µ̄2
) − 1

2
R(m2

1,m
2
2,m

2
3)L(m2

1,m
2
2,m

2
3)]

+ I(0)T (m1)Re B(0)(−im1;m2,m3) + I(0)T (m2)Re B(0)(−im2;m3,m1)
+ I(0)T (m3)Re B(0)(−im3;m1,m2) + 3∑

i=1

I
(1)
T (mi)(4π)2

+ ∞

∫
0

dpdq pqn(ωp
1)n(ωq

2)
32π4ω

p
1ω

q
2

ln ∣ (m2
3 −m2

1 −m2
2 + 2pq)2 − 4(ωp

1)2(ωq
2)2(m2

3 −m2
1 −m2

2 − 2pq)2 − 4(ωp
1)2(ωq

2)2 ∣
+ ∞

∫
0

dpdq pqn(ωp
2)n(ωq

3)
32π4ω

p
2ω

q
3

ln ∣ (m2
1 −m2

2 −m2
3 + 2pq)2 − 4(ωp

2)2(ωq
3)2(m2

1 −m2
2 −m2

3 − 2pq)2 − 4(ωp
2)2(ωq

3)2 ∣
+ ∞

∫
0

dpdq pqn(ωp
3)n(ωq

1)
32π4ω

p
3ω

q
1

ln ∣ (m2
2 −m2

3 −m2
1 + 2pq)2 − 4(ωp

3)2(ωq
1)2(m2

2 −m2
3 −m2

1 − 2pq)2 − 4(ωp
3)2(ωq

1)2 ∣ ,
(A.2.25)

with ωp
i =√p2 +m2

i and [114]

R(m2
1,m

2
2,m

2
3) =√m4

1 +m4
2 +m4

3 − 2m2
1m

2
2 − 2m2

1m
2
3 − 2m2

2m
2
3 , (A.2.26)

L(m2
1,m

2
2,m

2
3) = Li2 (− t3m2

m1

) + Li2 (− t3m1

m2

) + π2

6
+ ln2 t3

2

+ 1

2
[ln(t3 + m2

2

m2
1

) − ln(t3 + m2
1

m2
2

) + 3

4
ln(m2

1

m2
2

)] ln(m2
1

m2
2

) ,
(A.2.27)

t3 = m2
3 −m2

1 −m2
2 +R(m2

1,m
2
2,m

2
3)

2m1m2

. (A.2.28)

In the effective potential the H-function is always multiplied by a factor∼ g2m2, therefore the ∼ T 2 term in the high-temperature expansion is sufficient
to get the desired order ∼ g2m2T 2. The high-temperature expansion is then
[173,174]

H(mb1,mb2,mb3) = T 2

(4π)2 ( 14ǫ − ln mb1 +mb2 +mb3

µ̄
+ 1

2
) +O (ǫT 2

π2
,
mbiT

π3
) ,

(A.2.29)

H(mb1,mf2,mf3) = O (ǫT 2

π2
,
mbiT

π3
) . (A.2.30)
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The contributions for the modified H-function are

H(−2)(m1,m2,m3)
= 3 [m2

1(m2
1 +m2

2 +m2
3) + 2m2

2m
2
3]

8(4π)4 , (A.2.31)

H(−1)(m1,m2,m3)
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+ 1
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The high-temperature limit is [175]

H(mb1,mb2,mb3) = T 4
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[ 1
4ǫ
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(A.2.33)

H(mb1,mf2,mf3) = T 4
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ζ(2) ] +O (ǫT 4,
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(A.2.34)

H(mf1,mf2,mb3) = − T 4
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+ ln( µ̄eγE

T
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ζ(2) ]
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m2T 2

π2
) . (A.2.35)

Here only the zero-modes of the I-function with non-zero argument have to be
considered as explained in section 3.3. These so called linear terms ∼ mT 3 are
written in D dimensions as to check their D-dimensional cancellation in the full
result (cf. the discussion at the end of section 3.1). The function In=0(m) is
given in eq. (1.3.15).



Appendix B

Two-Loop Diagrams

In this Appendix we list the expressions for all the diagrams contributing to
the two-loop potential of the Inert Doublet Model as explained in section 3.2.
Dropping some v-independent terms for simplicity the expressions read

(sss) = −3v2λ21 [H(m̃h, m̃h, m̃h) +H(m̃h, m̃G, m̃G)]
− v2

4
[λ2LH(m̃h, m̃H , m̃H) + λ2SH(m̃H , m̃A, m̃A)]

− v2
4
[(λ4 + λ5)2H(m̃G, m̃H , m̃H±) + (λ4 − λ5)2H(m̃G, m̃A, m̃H±)]

− v2
2
[λ23H(m̃h, m̃H± , m̃H±) + λ25H(m̃G, m̃H , m̃A)] , (B.0.1)

(ss) = 3λ1
4
[I2(m̃h) + 2I(m̃h)I(m̃G) + 5I2(m̃G)]

+ λ2
2
[I2(m̃H) + I2(m̃A) + 2I2(m̃H±)]

+ λ2
4
[I(m̃H) + I(m̃A) + 2I(m̃H±)]2

+ λL
4
[I(m̃h)I(m̃H) + I(m̃G)I(m̃A)]

+ λS
4
[I(m̃h)I(m̃A) + I(m̃G)I(m̃H)] + (λ3 + λ4)I(m̃G)I(m̃H±)
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2
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2
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(ssv) = −3g22
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75



76 APPENDIX B. TWO-LOOP DIAGRAMS

− [I(m̃h) + I(m̃G)] I(m̃G) + 2 [I(m̃h) + 3I(m̃G)] I(m̃W )+H(m̃W , m̃h, m̃G) − 2H(m̃W , m̃h, m̃G) − 2H(m̃W , m̃h, m̃G)+H(m̃W , m̃G, m̃G) − 4H(m̃W , m̃G, m̃G)−H(mW , m̃h, m̃G) + 2H(mW , m̃h, m̃G) + 2H(mW , m̃h, m̃G)
−H(mW , m̃G, m̃G) + 4H(mW , m̃G, m̃G)]

− g22
8
[(m̃2

W − 2m̃2
H − 2m̃2

A)H(m̃W , m̃H , m̃A)
+ (m̃2

W − 4m̃2
H±)H(m̃W , m̃H± , m̃H±)+ 2(m̃2

W − 2m̃2
H − 2m̃2

H±)H(m̃W , m̃H , m̃H±)+ 2(m̃2
W − 2m̃2

A − 2m̃2
H±)H(m̃W , m̃A, m̃H±)− I(m̃H)I(m̃A) − [2I(m̃H) + 2I(m̃A) + I(m̃H±)] I(m̃H±)+ 6 [I(m̃H) + I(m̃A) + 2I(m̃H±)] I(m̃W )+H(m̃W , m̃H , m̃A) − 2H(m̃W , m̃H , m̃A) − 2H(m̃W , m̃H , m̃A)+ 2H(m̃W , m̃H , m̃H±) − 4H(m̃W , m̃H , m̃H±) − 4H(m̃W , m̃H , m̃H±)+ 2H(m̃W , m̃A, m̃H±) − 4H(m̃W , m̃A, m̃H±) − 4H(m̃W , m̃A, m̃H±)+H(m̃W , m̃H± , m̃H±) − 4H(m̃W , m̃H± , m̃H±)−H(mW , m̃H , m̃A) + 2H(mW , m̃H , m̃A) + 2H(mW , m̃H , m̃A)− 2H(mW , m̃H , m̃H±) + 4H(mW , m̃H , m̃H±) + 4H(mW , m̃H , m̃H±)− 2H(mW , m̃A, m̃H±) + 4H(mW , m̃A, m̃H±) + 4H(mW , m̃A, m̃H±)

−H(mW , m̃H± , m̃H±) + 4H(mW , m̃H± , m̃H±)] , (B.0.4)

(sv) = 3g22
8
[I(m̃h) + 3I(m̃G)] [I(m̃W ) + (D − 1)I(mW )]

+ 3g22
8
[I(m̃H) + I(m̃A) + 2I(m̃H±)] [I(m̃W ) + (D − 1)I(mW )] ,

(B.0.5)

(svv) = −3g22m2
W

4
[H(m̃h, m̃W , m̃W ) + (D − 1)H(m̃h,mW ,mW )] , (B.0.6)

(sgg) = −3g22m2
W

4
[H(m̃h,mW ,mW ) − 2H(m̃G,mW ,mW )] , (B.0.7)

(vvv) = −3g22
2
(D − 1)[(m̃2

W − 4m2
W )H(m̃W ,mW ,mW )

+ [4I(m̃W ) − I(mW )] I(mW )
+H(m̃W ,mW ,mW ) − 4H(m̃W ,mW ,mW ) + 3H(mW ,mW ,mW )]

+ 3g22
2
[−H(mW , m̃W , m̃W ) + 4H(mW , m̃W , m̃W )

− 3H(mW ,mW ,mW )] , (B.0.8)
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(ggv) = −3g22
2
[(2m2

W − m̃2
W )H(m̃W ,mW ,mW ) + [I(mW ) − 2I(m̃W )] I(mW )

−H(m̃W ,mW ,mW ) + 4H(m̃W ,mW ,mW ) −H(mW ,mW ,mW )] ,
(B.0.9)

(vv) = 3g22
2
(D − 1) [2I(m̃W ) + (D − 2)I(mW )] I(mW ) , (B.0.10)

(v) = 3

2
[δZξ [I(m̃W ) − I(mW )] + (D − 1)m2

W (δZg2 + δZφ)I(mW )
+ [m̃2

W δZξ −m2
E2δZA +m2

W (δZg2 + δZφ)] I(m̃W )] − 3

2
m2

E2I(m̃W ) ,
(B.0.11)

(g) = −3m2
W (δZξ + δZg2 + δZφ + δZv

2
) I(mW ) , (B.0.12)

(sff) = −3g22
2
[(m̃2

h − 4m2
t )H(m̃h,mt,mt) + m̃GH(m̃G,mt,mt)

+ 2(m̃2
G −m2

t )H(m̃G,mt,0f) − 2 [I(mt) + I(0f)] I(mt)
+ 2I(m̃h)I(mt) + 2I(m̃G) [I(0f) + 2I(mt)]] , (B.0.13)

(gff) = 3g22
8
[(m̃2

W − 2m2
t )H(m̃W ,mt,mt)

− (D − 1)(m2
W − 2m2

t )H(mW ,mt,mt)+ (D − 2)I2(mt) + 2 [I(m̃W ) − (D − 1)I(mW )] I(mt)−H(mW ,mt,mt) + 4H(mW ,mt,mt)
+ 2H(m̃W ,mt,mt) − 4H(m̃W ,mt,mt)]

+ 3g22
2
[(m̃2

W −m2
t )H(m̃W ,mt,0f) − (D − 1)(m2

W −m2
t )H(mW ,mt,0f)

+ (D − 2)I(mt)I(0f) + [I(m̃W ) − (D − 1)I(mW )] [I(mt) + I(0f)]− 2H(mW ,mt,0f) + 2H(mW ,mt,0f) + 2H(mW ,mt,0f)
+ 2H(m̃W ,mt,0f) − 2H(m̃W ,mt,0f) − 2H(m̃W ,mt,0f)]

+ 3(8nG − 5)g22
8

[m̃2
WH(m̃W ,0f ,0f) − (D − 1)m2

WH(mW ,0f ,0f)
+ (D − 2)I2(0f) + 2 [I(m̃W ) − (D − 1)I(mW )] I(0f)− 2H(mW ,0f ,0f) + 4H(mW ,0f ,0f)
+ 2H(m̃W ,0f ,0f) − 4H(m̃W ,0f ,0f)]

+ 4g23[(m2
E3 − 4m2

t )H(mE3,mt,mt)
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+ (D − 2)I2(mt) + 2 [I(mE3) − (D − 1)I(0b)] I(mt)− 2H(0b,mt,mt) + 4H(0b,mt,mt)
+ 2H(mE3,mt,mt) − 4H(mE3,mt,mt)] , (B.0.14)

(f) = −6m2
t (δZφ + δZh2

t
)I(mt) . (B.0.15)



Appendix C

Pole Masses

In this Appendix we list the counterterms of the Inert Doublet Model and state
their relation to the renormalization group equations. Furthermore, we show
the expressions for the one-loop on-shell self-energies. Using these expressions
and the pole mass relations we can then write the couplings of the Inert Doublet
Model in terms of the pole masses, i.e. physical parameters. We derive the input
parameters for our numerical evaluation of the effective potential by solving the
system of expressions for the couplings in a self-consistent way as described in
section 3.3.

C.1 Counterterms

The bare coupling constants of the Lagrangian of the Inert Doublet Model are
expressed as

µ2
iB = µ2

i (1 + δZµ2

i
) , λiB = λi(1 + δZλi

) ,
g2iB = g2i (1 + δZg2

i
) , h2tB = h2t (1 + δZh2

t
) . (C.1.1)

We also need to renormalize certain unphysical quantities, i.e. wave functions
and the gauge fixing parameter:

φ
†
BφB = φ†φ(1 + δZφ) , χ

†
BχB = χ†χ(1 + δZχ) ,

Aa
µBA

a
νB = Aa

µA
a
ν(1 + δZA) , ξB = ξ(1 + δZξ) . (C.1.2)

The renormalization of the background field (cf. discussion in section 3.1) is
given through

vB = v(1 + δZv) . (C.1.3)

The computation of the counterterms for the couplings is a standard calcula-
tion, presented e.g. in ref. [176]. The wave function counterterms have to cancel
the momentum dependent terms in the two-point functions and the background
field v is renormalized through the gauge-fixing interaction term given in eq.
(3.1.9). The results of the counterterms are

δZµ2

1

= 1(4π)2ǫ [3h2t − 9g22
4
+ 6λ1 + µ2

2

µ2
1

(2λ3 + λ4)] , (C.1.4)
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δZµ2

2

= 1(4π)2ǫ [−9g
2
2

4
+ 6λ2 + µ2

1

µ2
2

(2λ3 + λ4)] , (C.1.5)

δZλ1
= 1(4π)2ǫ [6h2t − 9g22

2
+ 9g42
16λ1

− 3h2t
λ1
+ 12λ1 + 2λ23 + 2λ3λ4 + λ24 + λ25

2λ1
] ,
(C.1.6)

δZλ2
= 1(4π)2ǫ [−9g

2
2

2
+ 9g42
16λ2

+ 12λ2 + 2λ23 + 2λ3λ4 + λ24 + λ25
2λ2

] , (C.1.7)

δZλ3
= 1(4π)2ǫ [3h2t − 9g22

2
+ 9g42
8λ3
+ 6(λ1 + λ2) + 2λ3 + 2(λ1 + λ2)λ4 + λ24 + λ25

λ3
] ,

(C.1.8)

δZλ4
= 1(4π)2ǫ [3h2t − 9g22

2
+ 2(λ1 + λ2) + 4λ3 + 2λ4 + 4λ5

λ4
] , (C.1.9)

δZλ5
= 1(4π)2ǫ [3h2t − 9g22

2
+ 2(λ1 + λ2) + 4λ3 + 6λ4] , (C.1.10)

δZg2

2

= g22(4π)2ǫ [4nG3 − 7] , (C.1.11)

δZg2

3

= g23(4π)2ǫ [4nG3 − 11] , (C.1.12)

δZh2

t
= 1(4π)2ǫ [9h

2
t

2
− 9g22

4
− 8g23] , (C.1.13)

δZφ = 1(4π)2ǫ [−3h2t + 3g22] , (C.1.14)

δZv = 1(4π)2ǫ [3h2t + 5g22
2
] , (C.1.15)

δZχ = 1(4π)2ǫ 3g
2
2

2
, (C.1.16)

δZA = δZξ = g22(4π)2ǫ [3 − 3nG
4
] . (C.1.17)

The renormalization group β-functions are fixed by the counterterms through

µ̄
dλi

dµ̄
= 2λiǫ δZλi

+O(λ3i ) , (C.1.18)

and likewise for the other couplings.

C.2 Pole masses

To calculate the one-loop on-shell self-energies in the Higgs broken phase we
need to compute the corrections to the two-point functions. The topologies of
all the diagrams contributing to the two-point function are shown in figure C.1,
where the blob is a counterterm.

The computations are carried out for all the scalars, gauge bosons and the
top quark. The results are given in terms of the vacuum master integrals given in
Appendix A.1. The resulting expressions for the one-loop on-shell self-energies
Π(K; µ̄) are
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Figure C.1: Topologies contributing to the pole masses.

Πh(−imh; µ̄)
=m2

hδZµ2

1

+ 12h2tA(mt) − 6λ1A(mh) + (3(1 − d)
2

g22 − 6λ1)A(mW )
− 2λ3A(mH±) − λLA(mH) − λSA(mA)+ 3h2t (4m2

t −m2
h)B(−imh;mt,mt) − 9λ1m2

hB(−imh;mh,mh)
+ (3

2
g22 [(1 − d)m2

W +m2
h] − 3λ1m2

h)B(−imh;mW ,mW )
− λ23v20B(−imh;mH± ,mH±) − 1

2
λ2Lv

2
0B(−imh;mH ,mH)

− 1

2
λ2Sv

2
0B(−imh;mA,mA) , (C.2.1)

Π
(T )
W (−imW ; µ̄)
=m2

W (δZg2

2

− δZλ1
+ δZµ2

1

) + g22([6m2
t

m2
h

− 3

2
]A(mt) − A(mh)

2

+ [3(d − 1)m2
W

2m2
h

+ 2d − 4]A(mW ) + [1
2
− λ3v20
2m2

h

]A(mH±)
+ [1

4
− λLv20

4m2
h

]A(mH) + [1
4
− λSv20

4m2
h

]A(mA)
+ 6m2

WB(−imW ;mW ,mW ) −m2
WB(−imW ;mW ,mh)

+ 3(m2
t −m2

W )
2

B(−imW ; 0,mt) + (3
2
− 2nG)m2

WB(−imW ; 0,0)
+ (7 − 4d)D(T )(−imW ;mW ,mW ) −D(T )(−imW ;mW ,mh)
−D(T )(−imW ;mH± ,mH) −D(T )(−imW ;mH± ,mA)
+ 6D(T )(−imW ; 0,mt) + (8nG − d)D(T )(−imW ; 0,0)) , (C.2.2)

2[ΣS(−imt; µ̄) −ΣV (−imt; µ̄)] = δZh2

t
− δZλ1

+ δZµ2

1

+ 1

m2
t

(12h2tA(mt) − 6λ1A(mh) + [3(d − 1)g22
2

− 6λ1]A(mW )
− 2λ3A(mH±)1λLA(mH) − λSA(mA))
+ 8dg23

3
B(−imt; 0,mt) + h2t [B(−imt;mW ,mt) −B(−imt;mh,mt)]

+ 8(d − 2)g23
3

C(−imt; 0,mt)
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+ (d − 2)g22
4

[2C(−imt;mW ,0) +C(−imt;mW ,mt)]
+ h2t [C(−imT ;mh,mt) +C(−imt;mW ,mt) +C(−imt;mh,mt)] .

(C.2.3)

For the on-shell self-energies of the inert scalars we use n3 = n4 = −n5 = 1
and obtain

ΠH(−imH ; µ̄)
= µ2

2δZµ2

2

+ ∑
i=3,4,5

λiv
2
0

2
(δZlai + δZµ2

1

− δZla1)
+ 12λLm

2
t

m2
h

A(mt) − λLA(mh)
+ [3(1 − d)λLm2

W

m2
h

+ 3(d − 2)g22
4

− λ4 − 2λ5]A(mW )
+ [3λ2 − λ2Lv20

2m2
h

]A(mH)
+ [λ2 + g22

4
+ λ25v20 − (λ3 + λ4)2v20

2m2
h

]A(mA)
+ [2λ2 + g22

2
− λ3λLv20

m2
h

]A(mH±) −Λ2
Lv

2
0B(−imH ;mh,mH)

− [λ25v02 + (m2
W − 2m2

H − 2m2
A)g22

4
]B(−imH ;mW ,mA)

− [(λ4 + λ5)2v20
2

+ (m2
W − 2m2

H − 2mH±)g22
2

]B(−imH ;mW ,mH±) ,
(C.2.4)

ΠA(−imA; µ̄)
= µ2

2δZµ2

2

+ ∑
i=3,4,5

niλiv
2
0

2
(δZλi

+ δZµ2

1

− δZλ1
)

+ 12λSm
2
t

m2
h

A(mt) − λSA(mh)
+ [3(1 − d)λSm2

W

m2
h

+ 3(d − 2)g22
4

− λ4 + 2λ5]A(mW )
+ [3λ2 − λ2Sv20

2m2
h

]A(mA)
+ [λ2 + g22

4
+ λ25v20 − (λ3 + λ4)2v20

2m2
h

]A(mH)
+ [2λ2 + g22

2
− λ3λSv20

m2
h

]A(mH±) −Λ2
Sv

2
0B(−imA;mh,mA)

− [λ25v02 + (m2
W − 2m2

H − 2m2
A)g22

4
]B(−imA;mW ,mH)
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− [(λ4 − λ5)2v20
2

+ (m2
W − 2m2

A − 2mH±)g22
2

]B(−imA;mW ,mH±) ,
(C.2.5)

ΠH±(−imH± ; µ̄)
= µ2

2δZµ2

2

+ λ3v20
2
(δZλ3

+ δZµ2

1

− δZλ1
)

+ 12λ3m
2
t

m2
h

A(mt) − λ3A(mh)
+ [3(1 − d)λ3m2

W

m2
h

+ 3(d − 2)g22
4

+ λ4]A(mW )
+ [λ2 + g22

4
− λ3λLv20

2m2
h

]A(mH)
+ [λ2 + g22

4
− λ3λSv20

2m2
h

]A(mA)
+ [4λ2 + g22

4
− λ23v20
m2

h

]A(mH±) −Λ2
3v

2
0B(−imH± ;mh,mH±)

− [(λ4 + λ5)2v20
4

+ (m2
W − 2m2

H − 2mH±)g22
4

]B(−imH± ;mW ,mH)
− [(λ4 − λ5)2v20

4
+ (m2

W − 2m2
A − 2mH±)g22
4

]B(−imH± ;mW ,mA)
− (m2

W − 4mH±)g22
4

B(−imH± ;mW ,mH±) . (C.2.6)

We want to check that all the divergences are canceled by the counterterms
given in eqs. (C.1.4) - (C.1.17). To do so we use the tree-level vacuum ex-
pectation value v0 which can be approximated within the one-loop expressions
as

v20 = −µ2
1

λ1
≈ m2

h

2λ1
≈ 4m2

W

g2
. (C.2.7)

We collect all the terms proportional to [(4π)2ǫ]−1 in Πh(−imh; µ̄) for both
counterterms and the loop expressions. Using the tree-level mass relations from
table 3.1 in chapter 3 and the expressions for the master integrals we get

ct ∶ m2
h (3h2t − 9g22

4
+ 6λ1 + µ2

2

µ2
1

(2λ3 + λ4)) =
=m2

h (3h2t − 9g22
4
+ 6λ1) − 2µ2

2(2λ3 + λ4) , (C.2.8)

loops ∶ −12h2tm2
t + 6λ1m2

h − (3(1 − d)2
g22 − 6λ1)m2

W + 2λ3m2
H± + λLm2

H + λSm2
A

+ 3h2t (4m2
t −m2

h) − 9λ1m2
h + 3

2
g22 [(1 − d)m2

W +m2
h] − 3λ1m2

h

− λ23v20 − 1

2
λ2Lv

2
0 − 1

2
λ2Sv

2
0

= −6λ1m2
h + 2µ2

2(2λ3 + λ4) − 3h2tm2
h + 9g22

4
m2

h . (C.2.9)
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Taking now the sum over both 1/ǫ contributions we see that they vanish and
thus all the divergences are canceled. Similarly all divergences cancel in the
expressions for the other self-energies.

Using these expressions we can write the one-loop corrected masses in the
form mh = −2µ2

1 +Re Πh, where the couplings and self-energies are understood
to be taken at the scale µ̄ = mZ . We can invert these relations to get a set of
equations for the different couplings:

µ2
1(µ̄) = −m2

h

2
[1 − Re Πh(−imh; µ̄)

m2
h

] , (C.2.10)

µ2
2(µ̄) =m2

H [1 − Re ΠH(−imH ; µ̄)
m2

H

] − 2λLm
2
W

g20

⎡⎢⎢⎢⎢⎣1 −
δg22
g20
− Re Π

(T )
W (−imW ; µ̄)
m2

W

⎤⎥⎥⎥⎥⎦ ,
(C.2.11)

λ1(µ̄) = g20m2
h

8m2
W

[1 + δg22(µ̄)
g20

+ Re PiW

m2
W

− Re Πh(−imh; µ̄)
m2

h

] , (C.2.12)

h2t (µ̄) = g20m2
t

2m2
W

⎡⎢⎢⎢⎢⎣1 +
δg22(µ̄)
g20

+ Re Π
(T )
W (−imW ; µ̄)
m2

W

− 2(ΣS −ΣV )(−imt; µ̄)⎤⎥⎥⎥⎥⎦ ,
(C.2.13)

λ3(µ̄) = g20m2
H±

2m2
W

⎡⎢⎢⎢⎢⎣1 +
δg22(µ̄)
g20

+ Re Π
(T )
W (−imW ; µ̄)
m2

W

− Re ΠH±(−imH± ; µ̄)
m2

H±

⎤⎥⎥⎥⎥⎦
− g20m2

H

2m2
W

⎡⎢⎢⎢⎢⎣1 +
δg22(µ̄)
g20

+ Re Π
(T )
W (−imW ; µ̄)
m2

W

− Re ΠH(−imH ; µ̄)
m2

H

⎤⎥⎥⎥⎥⎦
+ λL(µ̄) ⎡⎢⎢⎢⎢⎣1 −

δg22(µ̄)
g20

− Re Π
(T )
W (−imW ; µ̄)
m2

W

⎤⎥⎥⎥⎥⎦ , (C.2.14)

λ4(µ̄) = g20m2
H

4m2
W

⎡⎢⎢⎢⎢⎣1 +
δg22(µ̄)
g20

+ Re Π
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⎤⎥⎥⎥⎥⎦
+ g20m2

A
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− g20m2
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W
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g20
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W (−imW ; µ̄)
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⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎦ , (C.2.15)

λ5(µ̄) = g20m2
H

4m2
W

⎡⎢⎢⎢⎢⎣1 +
δg22(µ̄)
g20

+ Re Π
(T )
W (−imW ; µ̄)
m2

W

− Re ΠH(−imH ; µ̄)
m2

H

⎤⎥⎥⎥⎥⎦
− g20m2

A

4m2
W

⎡⎢⎢⎢⎢⎣1 +
δg22(µ̄)
g20

+ Re Π
(T )
W (−imW ; µ̄)
m2

W

− Re ΠA(−imA; µ̄)
m2

A

⎤⎥⎥⎥⎥⎦
+ λL(µ̄)

2

⎡⎢⎢⎢⎢⎣
δg22(µ̄)
g20

+ Re Π
(T )
W (−imW ; µ̄)
m2

W

⎤⎥⎥⎥⎥⎦ , (C.2.16)
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where δg22(µ̄) = g22(µ̄) − g20 . The constant g20 is related to the Fermi constant
Gµ as g20 = 4√2Gµm

2
W and the Fermi constant is defined in terms of the muon

lifetime [177,178].
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Inert Scalars at the high energy e+e− colliders,” JHEP 1602 (2016) 187
[arXiv:1512.01175 [hep-ph]].

[135] P. Poulose, S. Sahoo and K. Sridhar, “Exploring the Inert Doublet Model
through the dijet plus missing transverse energy channel at the LHC,”
Phys. Lett. B 765 (2017) 300 [arXiv:1604.03045 [hep-ph]].



96 BIBLIOGRAPHY

[136] S. Kanemura, M. Kikuchi and K. Sakurai, “Testing the dark matter
scenario in the inert doublet model by future precision measurements
of the Higgs boson couplings,” Phys. Rev. D 94 (2016) no.11, 115011
[arXiv:1605.08520 [hep-ph]].

[137] A. Datta, N. Ganguly, N. Khan and S. Rakshit, “Exploring collider sig-
natures of the inert Higgs doublet model,” Phys. Rev. D 95 (2017) no.1,
015017 [arXiv:1610.00648 [hep-ph]].

[138] M. Hashemi and S. Najjari, “Observability of Inert Scalars at the LHC,”
arXiv:1611.07827 [hep-ph].

[139] A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas and M. Thomas,
“Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC
and non-LHC Dark Matter Searches,” arXiv:1612.00511 [hep-ph].

[140] I. P. Ivanov, “Minkowski space structure of the Higgs potential in 2HDM,”
Phys. Rev. D 75 (2007) 035001 [Phys. Rev. D 76 (2007) 039902] [hep-
ph/0609018].

[141] B. W. Lee, C. Quigg and H. B. Thacker, “Weak Interactions at Very High-
Energies: The Role of the Higgs Boson Mass,” Phys. Rev. D 16 (1977)
1519.

[142] I. P. Ivanov, “Minkowski space structure of the Higgs potential in 2HDM.
II. Minima, symmetries, and topology,” Phys. Rev. D 77 (2008) 015017
[arXiv:0710.3490 [hep-ph]].

[143] A. Arhrib, “Unitarity constraints on scalar parameters of the standard
and two Higgs doublets model,” hep-ph/0012353.

[144] I. F. Ginzburg and I. P. Ivanov, “Tree-level unitarity constraints in the
most general 2HDM,” Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020].

[145] J. S. Schwinger, “A Theory of the Fundamental Interactions,” Annals
Phys. 2 (1957) 407.

[146] A. Castillo, R. A. Diaz, J. Morales and C. G. Tarazona, “Study of vac-
uum behavior for inert models with discrete Z2-like and abelian U(1)
symmetries,” arXiv:1510.00494 [hep-ph].

[147] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig,
M. Schott and J. Stelzer, “Updated Status of the Global Electroweak
Fit and Constraints on New Physics,” Eur. Phys. J. C 72 (2012) 2003
[arXiv:1107.0975 [hep-ph]].

[148] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, “MicrOMEGAs
2.0: A Program to calculate the relic density of dark matter in a generic
model,” Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059].

[149] A. Vicente, “Computer tools in particle physics,” arXiv:1507.06349 [hep-
ph].

[150] F. Staub, “Sarah,” arXiv:0806.0538 [hep-ph].



BIBLIOGRAPHY 97

[151] W. Porod and F. Staub, “SPheno 3.1: Extensions including flavour, CP-
phases and models beyond the MSSM,” Comput. Phys. Commun. 183
(2012) 2458 [arXiv:1104.1573 [hep-ph]].

[152] M. Laine and K. Rummukainen, “Two Higgs doublet dynamics at the
electroweak phase transition: A Nonperturbative study,” Nucl. Phys. B
597 (2001) 23 [hep-lat/0009025].

[153] M. Laine, G. Nardini and K. Rummukainen, “Lattice study of an elec-
troweak phase transition at mh 126 GeV,” JCAP 1301 (2013) 011
[arXiv:1211.7344 [hep-ph]].

[154] G. D. Moore and K. Rummukainen, “Electroweak bubble nucleation, non-
perturbatively,” Phys. Rev. D 63 (2001) 045002 [hep-ph/0009132].

[155] K. Kokkotas, “Gravitational Wave Physics,”
http://www.tat.physik.uni-tuebingen.de/~kokkotas/Teaching/

NS.BH.GW_files/GW_Physics.pdf

[156] M. Kamionkowski, A. Kosowsky and M. S. Turner, “Gravitational radi-
ation from first order phase transitions,” Phys. Rev. D 49 (1994) 2837
[astro-ph/9310044].

[157] S. J. Huber and T. Konstandin, “Gravitational Wave Production by Colli-
sions: More Bubbles,” JCAP 0809 (2008) 022 [arXiv:0806.1828 [hep-ph]].

[158] M. Hindmarsh, S. J. Huber, K. Rummukainen and D. J. Weir, “Gravita-
tional waves from the sound of a first order phase transition,” Phys. Rev.
Lett. 112 (2014) 041301 [arXiv:1304.2433 [hep-ph]].

[159] M. Hindmarsh, S. J. Huber, K. Rummukainen and D. J. Weir, “Nu-
merical simulations of acoustically generated gravitational waves at a
first order phase transition,” Phys. Rev. D 92 (2015) no.12, 123009
[arXiv:1504.03291 [astro-ph.CO]].

[160] C. Caprini, R. Durrer and G. Servant, “The stochastic gravitational wave
background from turbulence and magnetic fields generated by a first-
order phase transition,” JCAP 0912 (2009) 024 [arXiv:0909.0622 [astro-
ph.CO]].

[161] C. Caprini et al., “Science with the space-based interferometer eLISA. II:
Gravitational waves from cosmological phase transitions,” JCAP 1604,
no. 04, 001 (2016) [arXiv:1512.06239 [astro-ph.CO]].

[162] D. Bodeker and G. D. Moore, “Electroweak Bubble Wall Speed Limit,”
JCAP 1705 (2017) no.05, 025 [arXiv:1703.08215 [hep-ph]].

[163] H. Audley et al., “Laser Interferometer Space Antenna,” arXiv:1702.00786
[astro-ph.IM].

[164] W. T. Ni, “Gravitational waves, dark energy and inflation,” Mod. Phys.
Lett. A 25 (2010) 922 [arXiv:1003.3899 [astro-ph.CO]].

[165] W. T. Ni, “Gravitational wave detection in space,” Int. J. Mod. Phys. D
25 (2016) no.14, 1630001 [arXiv:1610.01148 [astro-ph.IM]].

http://www.tat.physik.uni-tuebingen.de/~kokkotas/Teaching/NS.BH.GW_files/GW_Physics.pdf
http://www.tat.physik.uni-tuebingen.de/~kokkotas/Teaching/NS.BH.GW_files/GW_Physics.pdf


98 BIBLIOGRAPHY

[166] G. M. Harry [LIGO Scientific Collaboration], “Advanced LIGO: The next
generation of gravitational wave detectors,” Class. Quant. Grav. 27 (2010)
084006.

[167] J. Aasi et al. [LIGO Scientific Collaboration], “Advanced LIGO,” Class.
Quant. Grav. 32 (2015) 074001 [arXiv:1411.4547 [gr-qc]].

[168] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “Obser-
vation of Gravitational Waves from a Binary Black Hole Merger,” Phys.
Rev. Lett. 116 (2016) no.6, 061102 [arXiv:1602.03837 [gr-qc]].

[169] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations],
“GW151226: Observation of Gravitational Waves from a 22-Solar-Mass
Binary Black Hole Coalescence,” Phys. Rev. Lett. 116 (2016) no.24,
241103 [arXiv:1606.04855 [gr-qc]].

[170] B. P. Abbott et al. [LIGO Scientific and VIRGO Collaborations],
“GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coa-
lescence at Redshift 0.2,” Phys. Rev. Lett. 118 (2017) no.22, 221101
[arXiv:1706.01812 [gr-qc]].

[171] K. Danzmann et al. “Laser Interferometer Space Antenna,”
[arXiv:1702.00786 [astro-ph.IM]]

[172] J. Crowder and N. J. Cornish, “Beyond LISA: Exploring future gravita-
tional wave missions,” Phys. Rev. D 72 (2005) 083005 [gr-qc/0506015].

[173] P. B. Arnold and C. X. Zhai, “The Three loop free energy for pure gauge
QCD,” Phys. Rev. D 50 (1994) 7603 [hep-ph/9408276].

[174] P. B. Arnold and C. x. Zhai, “The Three loop free energy for high tem-
perature QED and QCD with fermions,” Phys. Rev. D 51 (1995) 1906
[hep-ph/9410360].

[175] M. Nishimura and Y. Schroder, “IBP methods at finite temperature,”
JHEP 1209 (2012) 051 [arXiv:1207.4042 [hep-ph]].

[176] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field
theory,” Reading, USA: Addison-Wesley (1995) 842 p

[177] A. Sirlin, “Radiative Corrections in the SU(2)L×U(1) Theory: A Simple
Renormalization Framework,” Phys. Rev. D 22 (1980) 971.

[178] A. Sirlin, “On the O(α2) Corrections to τµ, mW , mZ in the SU(2)L×U(1)
Theory,” Phys. Rev. D 29 (1984) 89.







Erklärung
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