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Chapter 1

INTRODUCTION

In this thesis, we consider families of projections in metric spaces and study the change of
Hausdorff measure and Hausdorff dimension of Borel sets under these projections. This
chapter introduces the reader to the topic of dimension and projections and its history
which is closely tied to the pioneering works of A. S. Besicovitch [7] and J. Marstrand [27].

A FUNDAMENTAL QUESTION

Let S be a non-degenerate line segment in R? and consider its image under the orthogonal
projection onto a one-dimensional linear subspace (line) L in R?. Obviously, this image
is itself a non-degenerate line segment except for the case when S is orthogonal to L.
This generalizes easily to the case when S is a topological arc in R?. Namely, the image
of a topological arc S under the orthogonal projection onto L is a non-degenerate line
segment for all except (at most) one line L. In particular, we may conclude that for
almost every line L in R? the image of a given topological arc in R? under the orthogonal
projection onto L is a set of positive Hausdorff 1-measure and, in particular, it is a set
of dimension 1. We aim to generalize this observation to a larger class of subsets of R2.

Denote the orthogonal projection of R? onto a line L by Py, : R? — L. Further, we denote
the Hausdorff dimension of a set A C R? by dim A and the Hausdorff 1-measure of A by
HY(A). The projections Pp, : R? — L are 1-Lipschitz mappings which do not increase
the distance of points. Lipschitz mappings do not increase the Hausdorff measure or
dimension of sets. This yields that dim P, (A) < dim A for all A C R? and for all lines L.
Furthermore, by monotonicity of the Hausdorff dimension and the fact that Pr(A) C L
and dim L = 1 it follows that dim Pr,(A) < 1. Thus, we have two upper bounds for the
dim Pr,(A) that hold for all A C R? and all lines L. By considering the case that A is a
non-degenerate line segment we see that these estimates cannot be improved.

Optimal lower bounds on dim Pr(A) are much more difficult to achieve. However, the
simple example where A is a topological arc reveals a surprising amount about the
general case. In 1939, Besicovitch [7] studied the behavior of 1-rectifiable sets A C R?
under orthogonal projections. Heuristically, a set is 1-rectifiable if it admits a curve-like
local structure. Besicovitch’s result states that if a set A C R? is l-rectifiable with
0 < #*(A) < oo, then the measure 21 (Py(A)) is positive (and thus dim Pp(A) = 1) for
almost every line L. Moreover, he proved that (roughly speaking) also the converse holds.



In particular, if a set A C R? satisfying J#1(A) < oo fails to have a curve-like local
structure, then J#!(Pr(A)) = 0 for a set of lines of positive measure. Recall that by
a “line” we mean a linear subspace of R?. By identifying every line L in R? with the
counterclockwise angle from the positive z-axis to L, the term “for almost every line”
can be understood with respect to the Hausdorff 1-measures on the set of angles [0, 7).

Besicovitch’s result only partially answers our original question. Though we know that
for sets A C R? that are not 1-rectifiable, 51 (Pf(A)) = 0 for a large set of lines L, this
does not yield any information on the dimension of Pr,(A) for lines L in this set. It is
easy to construct compact sets of dimension equal to 1 that fail to be 1-rectifiable. The
most well-known such example is the four-corner Cantor set; see Example 15.2 in [30],
and Chapter 10 in [32]. In addition, every set A C R? that has dimension greater than 1
fails to be 1-rectifiable. Therefore, Besicovitch’s result does not yield any information
about the distortion of this type of sets either. More insight can be gained from a result
due to Marstrand [27] from 1954. Marstrand’s theorem states that the trivial upper
bounds we deduced above in fact represent the generic dimension of the images of Borel
sets under orthogonal projections in R%. Namely, it states that, for all Borel sets A C R?

and for almost every line L,

dim Pr,(A) = min{1, dim A}. (1.1)

A BRIEF HISTORY OF PROJECTION THEOREMS

Marstrand’s result marked the start of a sequence of numerous strong results in the
same spirit that are often referred to as Marstrand-type projection theorems. In 1968,
Kaufman [24] reproved and improved (1.1) by introducing potential theoretic methods
for the study of the dimension of sets. In particular, he proved that for all Borel sets
A C R? with dim A4 < 1,

dim({L : dim Pr,(A) < dim A}) < dim A. (1.2)

In 1975, Mattila [29] adapted Kaufman’s potential theoretical approach and thereby
generalized (1.1) and (1.2) to include families of projections onto m-dimensional linear
subspaces (m-planes) of R™. In particular, the higher dimensional version of (1.1) states
that, for all Borel sets A C R™ with dim A < m < n, and almost every m-plane V in R™,
the image of A under the orthogonal projection Py : R® — V is a set of dimension
dim A. In order to formally make sense of Mattila’s result notice that the family of
m-planes in R™ can be viewed as an (n—m)m-dimensional smooth manifold called the
Grassmannian G(n,m) that is equipped with a natural (n—m)m-dimensional measure
induced by the action of O(n) on G(n,m); see Section 2.3. Besicovitch’s result on the
interplay of rectifiability and projections has also been generalized to higher dimensions;
see Theorem 3.7. This is due to Federer [17].



In 1982, Falconer [13] was the first to apply Fourier analytic methods to problems in
dimension and projections. He reproved some of the previous results and established
stronger versions of them. In particular, one of his results states that for all Borel sets
A C R? with dim 4 > 1,

dim({L : dim Pr,(A) < 1}) <2 —dim A. (1.3)

An analogous statement holds for the family of projections onto m-planes in R"™.

Many of these results have proven to be sharp. Given a Borel set A C R? we will often
call the set of lines for which the orthogonal projection does not satisfy the generic
property of the respective Marstrand-type result the exceptional set of lines. For all
parameters 0 < s < 2, there exists a Borel set A C R? of dimension s for which the
exceptional set F of lines is a set of dimension s; see [25]. This proves the sharpness
of (1.2). Similar result are known for the analog of (1.2) in higher dimensions, as well
as for (1.3); see [13]. Sharpness for the higher dimensional version of (1.3) is open.

The constructions of sets A C R™ that reveal the sharpness of Marstrand-type projection
theorems are very specific and in general do not yield any information on the structure
of exceptional sets in general. The study of the structure and size of exceptional sets
began in 2008 with the work of Jarvenpéa et. al. [22] on one-dimensional families of lines
in R3. For a detailed account on the latest progress in this area see the recent works [16],
[33], [9], and the references therein.

Marstrand-type projection theorems have also been studied for notions of dimension
other than the Hausdorff dimension; see [23], [14], [15], and references therein. Moreover,
the expository articles [31] and [28] are highly recommended.

THE METHOD OF TRANSVERSALITY

As mentioned above, the methods that Falconer employed in order to reprove and
extend earlier results are heavily based on Fourier analysis. For some of his results
no proof without Fourier analysis is known. Falconer’s Fourier analytic methods for
geometric measure theory have been further developed by numerous mathematicians. In
particular, Peres and Schlag [34] established a very general theorem about families of
abstract projections from compact metric spaces to Euclidean space and their impact on
the Sobolev-dimension of Borel measures. While the main applications of their results
concern Bernoulli convolutions, all the classical Marstrand-type projection theorems
stated above can be deduced as corollaries from their main result.

Even though the Fourier methods by Peres and Schlag differ substantially from Kaufman’s
and Mattila’s potential theoretic approach, there is a common ground: the notion of
transversality. Requiring a family of (abstract) projections to be transversal guarantees
that there are very few pairs of points such that the distance between the image of



the points under a projection (onto some line resp. m-plane) is very small compared
to the distance between the two points themselves. However, the way this rareness is
controlled differs substantially between the potential theoretic and the Fourier method.
In potential theoretic proofs of Marstrand-type projection theorems, one is concerned
with the condition of metric transversality (Definition 3.2). This condition imposes
an upper bound on the Grassmannian measure of the set of lines (resp. planes) in
R? (resp. R™) for which the distance between the image of two distinct points is
comparatively small. On the other hand, the Fourier analytic proof of projection
theorems for abstract projections works with the notion of differentiable transversality.
Differentiable transversality requires that if the ratio ® of the distance of two projected
points and the distance of the points themselves is small, then ® grows fast when the
projection parameter is altered. A precise definition can be found in Section 3.2.2.
Similar notions of transversality have been studied for example by Solomyak in [35].
Moreover, Hovila et. al. [20] have shown that the Besicovitch-Federer projection theorem
is also a direct consequence of a sufficiently strong version of differentiable transversality.

Moreover, Marstrand-type results have been successfully studied in non-Euclidean spaces.
Balogh et. al. [1] established counterparts for Marstrand’s projection theorem for the
family of projections onto horizontal lines and the family of projections onto vertical
planes in the first Heisenberg group. Moreover, in [2] they give counterparts for these
results in higher dimensional Heisenberg groups. Both these works employ methods
similar to the potential theoretic methods mentioned above. Furthermore, Hovila [19]
proved that the families of isotropic projections in the Heisenberg groups satisfy a version
of differentiable transversality that is strong enough for many Marstrand-type projection
theorems as well as the Besicovitch-Federer projection theorem to hold.

PROJECTIONS IN NORMED SPACES AND RIEMANNIAN MANIFOLDS

In this thesis, we establish Marstrand-type projection theorems for closest-point projec-
tions in sufficiently regular normed spaces as well as on Riemannian manifolds of constant
curvature. Chapter 2 contains preliminaries and can be safely skipped by experts. In
Chapter 3, we give the formal definitions of metric and differentiable transversality, and

compare these definitions.

In Chapter 4, we establish sufficient conditions for a family of linear and surjective pro-
jections (Definition 4.1) to satisfy Marstrand-type projection theorems; see Theorem 4.2.
These conditions turn out to be essentially necessary. Moreover, we consider a weaker
version of differentiable transversality that we show to be equivalent to differentiable
transversality for families of linear projections; see Proposition 4.7.

In Chapter 5, we consider finite dimensional normed spaces, i.e., we equip R"™ with a
strictly convex norm ||-||, and study the family of closest-point projections P!'l onto
m-planes with respect to ||-||. Note that by the assumption of strict convexity of ||- ||



these closest-point projections are well-defined. If the norm ||-|| is sufficiently regular,
then a comparison argument shows that the family of closest-point projections onto
(n—1)-planes is a family of linear and surjective projections for which Theorem 4.2 applies;
see Lemma 5.6 and Theorem 5.5. The same methods provide a Besicovitch-Federer
characterization of purely unrectifiable sets in terms of closest-point projections; see
Corollary 5.8. Moreover, Theorem 5.16 states that any strictly convex norm in R? that
barely fails the assumptions of Theorem 5.5 does not support Marstrand-type projection
theorems. In the proof of Theorem 5.16 we explicitly construct a norm for which
Marstrand’s and Kaufman’s Theorem fail. Whether or not this provides a rigorous proof
of the sharpness of Theorem 5.5 depends on open problems concerning the structure
of exceptional sets for Euclidean projections. Aside from these results obtained by
comparison arguments, we also investigate differentiable transversality for the family of
closest-point projections onto (n—1)-planes in R™ with respect to strictly convex norms.
Theorem 5.9 proves that under slightly stronger regularity assumptions for ||-||, the
according family of closest-point projections satisfies differentiable transversality. This
is of particular interest in light of a recent result due to Bate, Csornyei, and Wilson [5]
which states that differentiable transversality fails for closest-point projections in infinite
dimensional Banach spaces. Finally, Corollary 5.14 reveals that establishing differentiable
transversality in order to prove Marstrand-type results for closest-point projections in

finite dimensional normed spaces is in general not efficient.

In Chapter 6, we study the same questions for orthogonal projections along geodesics in
Riemannian manifolds. Fix a base point p in a simply connected Riemannian manifold M
of constant sectional curvature. We call a submanifold V' of M a geodesic m-plane if
V' is the image of a linear m-plane under the exponential map at p. Then, all geodesic
m-planes are geodesically convex subspaces of M. Hence, the projections onto m-planes
are globally defined for manifolds of constant negative sectional curvature; and they are
defined in an open ball of radius r and center p for manifolds with constant positive
sectional curvature less than or equal to %2 In Theorem 6.1 (resp. 6.4) we establish
differentiable transversality for the family of orthogonal projections onto geodesic lines
in the hyperbolic two-plane H? (resp. geodesic segments in an open half-sphere of S?).
Thereby we prove Marstrand-type projection theorems as well as the Besicovitch-Federer
projection theorem in these settings; see Corollary 6.2 and 6.5. Lépez et. al. [26] have
generalized parts of these results to surfaces of negative curvature by a case study.
Theorem 6.7 states that the Marstrand-type results known to hold for projections
onto lines in the hyperbolic plane generalize projections onto m-planes in hyperbolic
n-space H". By consideration of the Klein model for hyperbolic space one may view
the family of orthogonal projections onto lines in H" as a family of linear projections.
Hence, Marstrand-type projection theorems in H™ (Theorem 6.7) can be deduced from
Theorem 4.2. Furthermore, we establish differentiable transversality for the family of
orthogonal projections onto lines in H" by studying the transition from the Poincaré
model of H” to the Klein model.






Chapter 2

PRELIMINARIES

The main part of the material presented in this chapter can be found in [30]. We also
recommend [12], [18], and [11]. Experts may safely skip this chapter.

Throughout this thesis, n and m will denote positive integers with n > m.

2.1  MEASURES ON METRIC SPACES

Let (X, d) be a metric space and p a measure on X. We say that a property (P) holds
for p-almost every x € X (or short, for p-a.e. z € X) if there exists a set £ C X with
w(E) =0 and all z € X\ E have the property (P).

The measure p is called a Borel measure if all Borel sets in (X, d) are u-measurable. It
is called Borel regular if, in addition, for all sets A C X there exists a Borel set B C X
such that A C B and pu(B\A) = 0. A Borel measure is called locally finite if compact
sets have finite measure. Furthermore, a measure p on X is called a Radon measure if it
is a locally finite Borel measure that is inner and outer regular, i.e.,

— w(U) =sup{u(K) : K C U, K compact}, for all U C X open,
— uw(A) =inf{u(V): ACV, VC X open}, forall A C X.

The support of a measure p on (X,d) is the smallest closed set K C X for which
w(X\K) = 0. We denote the support of p by spt p.

When (X, d) is R™ equipped with the Euclidean metric, then

— a measure 4 on R is a Radon measure if and only if it is a locally finite Borel
regular measure,

— for every Borel measure y on R", there exists a Borel regular measure p* such that
w(A) = p*(A) for all y-measurable sets A C X.

For A C R?, we denote by .#(A) the set of all non-trivial finite Borel measures u
with compact support contained in A. Notice that by the two facts above, in many
applications we may assume without loss of generality that the measures in .#Z(A) are

Borel regular and thus Radon measures.

Let (X,dx) and (Y, dy) be metric spaces, p a measure on X, and f: (X,dx) — (Y, dy)



a mapping. Then, the push-forward of p by f is a measure on Y defined by

Farl(A) = p(f71(A))

for all A C Y. In case pu is a Borel measure and f is a Borel function, then f;u is a Borel
measure. Thus, in particular, if f : (X,dx) — (Y,dy) is continuous and p is locally
finite Borel measure with compact support in A, for some A C X, then fyu is a locally
finite Borel measure with compact support in f(A).

Moreover, a measure p on (X, d) is called absolutely continuous with respect to another
measure v on (X, d), if whenever v(A) = 0 for some A C X, then also u(A) = 0. We will
mostly be interested in whether or not certain measures on R™ are absolutely continuous
with respect the Lebesgue measure £ or some s-dimensional Hausdorff measure on R™
(which we formally define below).

Finally, let © and v be measures on sets X and Y, respectively, and consider f : (X, u) —
(Y,v). We say that that f has the Lusin property if whenever p(A) = 0 for some A C X,
then v(f(A)) = 0. We say that f has the inverse Lusin property, if, whenever v(B) =0
for some B C Y, then u(f~'(B)) = 0. Notice that f having the inverse Lusin property
is equivalent to fyu being absolutely continuous with respect to v. In case f is invertible,
then f has the inverse Lusin property if and only if f~! has the Lusin property.

2.2 HAUSDORFF MEASURE AND DIMENSION

Let (X, d) be a metric space and for a set A C X we denote by diam A the diameter
of A with respect to d. The Hausdorff s-measure on (X, d), denoted by ¢, is defined
as follows. For a set A C X and a parameter s > 0,

H%(A) = sup 5 (A) = lim 57 (A),
5>0 6—0
where

N
H3(A) = inf {Z(diamAi)s : A; CR" open, diam A; <4, AC | A, }

i=1 i€EN

In case #7%(A) = 0 for all s > 0, we say that the Hausdorff dimension of A (with respect
to d), denoted by dim A, equals co. On the other hand, if #%(A) = oo for all s > 0,
then dim(A) = 0. One can check that for a given .##*-measurable Hausdorff dimension
neither 0 nor oo, there exists a unique sg > 0 such that J°(A) = oo for all s < s and
H(A) =0 for all t > 5. In this case, we call sy the Hausdorff dimension of A with
respect to d denoted by dim(A). We can thus write

dim(A) = inf{s > 0: #°(A) =0} =inf{s > 0: H#°(A4) < o0}. (2.1)

10



A mapping f : (X,dx) — (Y,dy) is called L-Lipschitz (L > 0), if for all z, 2’ € A,

dY(f(x)a f('fl)) < Ld)((l‘, x,)'
Moreover, f is called L-bi-Lipschitz, if for all z,2’ € A,

Lx(e,2) < dy (f(2), J@)) < Ldx(e,a).

It is easy to check that if f is L-Lipschitz then J#°(f(A)) < L*5¢°(A) for all s > 0
and A C X, and hence, dim f(A) < dim(A). Therefore, in case that f is L-bi-Lipschitz,
E5(A) < H5(f(A)) < L*#%(A) and hence dim f(A) = dim(A). This shows that
all Lipschitz mappings f : (X,dx, %) — (Y,dy, 747) have the Lusin property, and if
f is bi-Lipschitz, then f in addition has the inverse Lusin property.

As we will almost always consider only metric spaces that are locally bi-Lipschitz
equivalent to R”, we omit reference to the underlying metric in our notation for Hausdorft
measure and dimension. Note that for all spaces (X, d) that are bi-Lipschitz equivalent to
some Euclidean space, 7 is known to be an inner and outer regular measure. It follows
from scaling and translation arguments that 52" = C .£Z" on R", for some constant

C=C(n)>0.

We may generalize the above discussion about Lipschitz mappings by considering Hoélder
mappings. A mapping f: (X,dx) — (Y, dy) is called §-Holder for § > 0, if there exists
a constant M > 0 with

dy (f(2), f(a') < M dx(,2')",

for all z, 2" € X. Moreover, f is called d-bi-Holder, if there exists a constant M > 0 with

Sdx (o a)’ < dy(f(2), f&)) < Mdx(, ')’

for all z,2’ € X. It follows that if f : (X,dx) — (Y,dy) is 6-Holder and A C X,
then dim f(A) < }dim(A). Therefore, in case f : (X,dx) — (Y, dy) is 6-bi-Holder,
dim f(A) = 3dim(A). Moreover, note that a function f : (X,dy) — (Y,dy) is L-
Lipschitz if and only if it is 1-Holder with multiplicative constant M = L.

2.3 THE GRASSMANNIAN OF M-PLANES

The Grassmannian G(n,m) is the set of all m-dimensional linear subspaces of R"”. We
will often refer to the Grassmannian elements as m-planes (in R"). G(n,m) is usually
equipped with the metric d that is defined as follows. For V,W € G(n,m),

d(V, W) = || Py — Py || o,

11



where |- ||c denotes the standard operator norm for linear operators R" — R" and Py’
denotes the orthogonal projection R” — V' C R™. With this metric, G(n,m) is compact.

The group of orthogonal transformation O(n) acts transitively on G(n, m). Therefore,
the invariant Haar measure 6,, on O(n), induces a measure oy, ,, on G(n,m) as follows.
Fix Vy € G(n,m) and for E C G(n,m) set

onm(E) == 0n({g € O(n) : g(Vo) € E}).

One can check that this definition does not depend on the choice of V and in fact defines
a Radon probability measure on G(n, m). By construction, oy, », is invariant under the
action of O(n), that is, 0y m(E) = 0pm(g(E)), for all g € O(n) and E C G(n,m).

There is a natural identification of G(n, m) with G(n,n—m). Namely, for every m-plane
V € G(n,m), the orthogonal complement V+ of V is an element of G(n,n—m). In fact,
this identification is a measure preserving isometry with respect to the metric d defined
above and the measure oy, ,,,. In particular, the measure o, ,, satisfies the following
symmetry property: for all sets E C G(n,m), opm(E) = 0npn-m({V+:V € E}).

Furthermore, one can view G(n,1) as S"~! in the following sense. For every v € S"~1,
define L, := {tv : t € R}. Then, L : S"~! — G(n,1), v+~ L, is a surjective mapping
that is also injective up to the fact that L, = L_,, for all v € S"~1. Thus, its inverse is
well-defined as a set-valued map and for every L € G(n, 1) there exists a v € S"~! such
that h=1(L) = {v, —v}. By 0" ! denote the normalized surface measure on S"~! then
for every £ C G(n,1),

on1(E)=0""t{ve S L, cE}).

If we first identify G(n,n—1) with G(n,1), then G(n,1) with S"~! we obtain the
following identification of G(n,n—1) with S"~!. An element V € G(n,n—1) is identified
with the directions w, —w € S™~! that are orthogonal to V. In particular, it follows that

Onn-1(E) =o0"'{ve St L} € EY). (2.2)

Furthermore, the Grassmannian G(n,m) can be viewed as a smooth manifold of dimen-
sion (n—m)m. We will now define local coordinates on G(n,m). By Mat(;,_,)xm(R) de-
note the space of ((n—m)xm)-matrices with real entries. For every 7" € Mat(,_p,)xm(R)

denote the entries by ¢;;,7=1,...,n—m, 7 =1,...,m, and we write
t].,]. t172 P t]_7m
t271 t272 e t27m
T = (2.3)
ZL/n—m,l tn—m,Q o tn—m,m
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We will sometimes identify Mat, _p,)xm(R) with R™=m)m by identifying the matrix T
with the vector

(tl,la tl,?, s 7t1,m7 t2,17 t2,2a s atQ,mv ) tnfm,h tn,mz, s 7tnfm,m) S R(nim)

In case n =2 and m = 1, Mat(,_p)xm(R) = R and we will write ¢ for 7.

Let Vo = R™ x {0}"™™ € G(n,m). Then, a local parameterization of G(n,m) near
Vo =R™ x {0}"™ € G(n,m) is given by

®: Mat(nfm)xm(R) - G(na m)
(2.4)
T Vp:={(w,Tw) e R" : w € R™}.

Note that if T" is the zero-matrix, then Vp = Vj, i.e., our notation is compatible. For any
other choice of Vj, we can pre-compose ¢ with a rotation that maps R™ x {0}"~™ to
Vo and thereby obtain a local parameterization of G(n, m) near this new Vj. Note that
the topology induced by these local charts coincides with the topology of the metric d
defined above.

For our studies of projections onto elements V' of the Grassmannian G(n,m), we will
not only need local parameterizations of G(n,m), but also orthonormal bases of the
elements V in terms of the parameterization. For this, let wy, ..., w,, be the standard
(Euclidean orthonormal) basis of R™, and for every T € Mat(,,_p,)xm(R), define

vl = (wi, Tw;).

Then, vlT, e ,vg is a basis of Vp that depends smoothly on T'. In particular, for all
i=1,...,m, we have U? = ¢; where eq,..., e, denotes the standard basis of R”. Thus,

it follows that ¢; = (w;,0) € R™ x R"™™ = R", for i = 1,...,m. Now, for every
T e Mat(n_m)Xm(R), let

er, ... eh (2.5)
the basis of Vi obtained by applying the Gram-Schmitt algorithm to the basis v{ , ..., vL.
This makes ef, ..., el an orthonormal basis of V7 that varies smoothly in 7.

Remark 2.1. Notice that for a set £ C G(n,m), #;(E) = 0 where J£; denotes
the Hausdorff s-measure on G(n,m) with respect to the Grassmannian metric d if
and only if for all smooth charts @ : U — G(n,m) with U C R"~™™ gpen we have
(o~ Y(E)) = 0. Moreover, 0, ,(E) = 0, if and only if %ﬁd(n_m)m(E) = 0. In the sequel
of this thesis, we will mainly be interested in whether or not certain sets £ C G(n, m)
are zero sets with respect to either oy, ,, or some Hausdorff s-measure, and we will not
care about the exact value of the measure of E. Therefore, we won’t distinguish (in
notation and else) between JZ; on G(n,m) and £ in its charts.
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Chapter 3

THE METHOD OF TRANSVERSALITY

3.1 POTENTIAL THEORETIC METHODS AND METRIC TRANSVERSALITY

The method for proving Marstrand-type projection results presented in this chapter is
originally due to Kaufman [24], who has developed it in R2. It has been generalized to
higher dimensions and brought to the form in which we present it here by Mattila [29].
See also Chapters 8 and 9 in [30] for a detailed account.

For each V' € G(n,m), define Pj; : R" — V to be the orthogonal projection of R” onto V.
It will be useful to consider the entire family {Py; : V € G(n,m)} of projections as a
single object. To this end, we define the mapping

P*:G(n,m) x R" - R" (3.1)
by P*(V,z) = Pj(z). We will often refer to the mapping P* as the family of orthogonal

projections (onto m-planes) in R™, or as the family of Euclidean projections.

We begin with the following theorem that summarizes the theorems mentioned in the
introduction. A proof can be found in [30], Chapter 9.

Theorem 3.1. Let A C R" be a Borel set.
(1) If dim A < m, then
(a) dim(PFA) > dim A for opm-a.e. V € G(n,m),
(b) dim({V € G(n,m) : dim(PyA) < dimA}) < (n —m — 1)m + dim A.
(2) If dim A > m, then ™ (PFA) > 0 for oy m-a.e. V € G(n,m).

Notice that by inner regularity of the Hausdorff measure, it suffices to prove Theorem 3.1

for compact sets A C R"™.

Having in mind the classical definition of the Hausdorff dimension (see (2.1)), one might
try to prove the Theorem 3.1 by showing that if J#%(A) > 0 for some s > 0, then
H°(Pj(A)) > 0 for on,m-a.e. V € G(n,m). Unfortunately, this does not hold. A
counterexample can be found in [30], Example 9.2. Therefore, it is a better option
to work with the capacitary dimension that we shall define now. Let A € R™ and by
M (A) denote the set of all non-trivial finite Borel measures on R™ with compact support
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contained in A. For p € .#(A) and s > 0, define the s-energy of u € .#(A) by

nw=[ [ kﬁ_ly‘sdu(:ﬂ)du(y)

Notice that if I4(p) < oo for some s > 0, then Iy (u) < oo for all 0 < s’ < s. Moreover,
we call p € #(A) a Frostman s-measure if for all z € R™ and r > 0,

w(B(x,r)) <7°

where B(z,r) denotes the open ball with center z and radius r in R™. Now, define the
capacitary dimension of A to be

dim.(A) = sup{s > 0 : there exists p € .#(A) with Iy(u) < oo}, (3.2)
or equivalently, see Chapter 8 in [30],
dim.(A) = sup{s > 0 : there exists a Frostman s-measure p in .#(A)}.

It is straight-forward to check that then dim(A) > dim.(A) for all A C R™. The well-
known Frostman’s lemma states that for all Borel sets A C R™ and s > 0, J#°(A) > 0 if
and only if there exists a Frostman s-measure in p(A); see Theorem 8.8 in [30]. From
this one easily deduces that dim(A) = dim.(A) whenever A is a Borel set.

Let A C R™ be a compact set and s > 0 such that there exists p € .#(A) with I5(u) < oo.
One can show that

(i) if 0 < s < m, then I;((P)p) < oo for oy m-a.e. V € G(n,m),

(i) if s > m, then J™((Py)gp) > 0 for o, m-almost every V € G(n,m).
See Chapter 9 in [30] for the proofs. Note (1.a) and (2) from Theorem 3.1 are straight-

forward consequences of the facts (i) and (ii).

Now, consider a mapping
P:G(n,m)xR" - R"

for which P(V,z) € V for all V € G(n,m). We will call such a mapping a family of
projections (onto m-planes) in R™ and think of them as the family {Py : V € G(n,m)}
where Py is given by Py (x) = P(V,x); compare (3.1). The properties of the family P*
that are used in the proof of facts (i) and (ii) can be axiomatized as follows.

Definition 3.2. We say that a family of projections P : G(n, m)xR™ — R™ is metrically
transversal if the following hold.

(a) P : G(n,m) x R" — R"™ is a Borel function such that for all V € G(n,m),
Py : R"™ — V maps bounded sets to bounded sets,

(b) there exists a constant C' > 0 such that for every pair of distinct points z,y € R"
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and every ¢ > 0,
onm({V € G(n,m) : |Pyx — Pyy| < 0}) < C™|z —y|™™.

Notice that the regularity condition (a) implies that (Py)yu € 4 (Py(A)) for all p €
A (A) and for Borel sets A C R". The theorem below follows from the proof of
conclusions (1.a) and (2) of Theorem 3.1 given in Chapter 9 in [30].

Theorem 3.3. Let P : G(n,m) x R® — R"™ be a metrically transversal family of

projections for which Py : R™ — V is dimension non-increasing for all V- € G(n,m).
Then, the following hold for all Borel sets A C R™.

(1) If dim A < m, then dim(PyA) = dim A for o m-a.e. V € G(n,m),
(2) If dim A > m, then ™ (PyA) > 0 for opm-a.e. V € G(n,m).

If we drop the assumption of Py : R® — V being dimension non-increasing for all
V € G(n,m), Theorem 3.3 still holds, except that (i) becomes: If dim A < m, then
dim(Py (A)) > dim A for o, p-a.e. V € G(n,m).

It is possible to axiomatize the conditions that are necessary for (1.b) of Theorem 3.1
to hold as well, and thereby extend Theorem 3.3 by an analog of (1.b). For this, in
particular, one would have to replace condition (b) in Definition 3.2 by the following
stronger condition (compare [29]):

(c) for t = s+ m(n —m — 1) and all Frostman ¢-measures v on G(n,m),
v({V € G(n,m) : dim(P;A) < s}) = 0.

As pointed out in the introduction there is another important theorem about dimension
and projections in Euclidean space due to Besicovitch [7] and Federer [17]. This theorem
relates the rectifiability of a set to the Hausdorff measure of its images under orthogonal
projections. A set A C R"™ is called m-rectifiable if there exist at most countably many
Lipschitz mappings f; : R™ — R” such that

a0 (A\Ufi(]Rm)) = 0.

It is a simple consequence of this definition that every m-rectifiable set A C R"™ locally is
of finite J#™-measure. If m > n, then every set A C R" is m-rectifiable. Therefore, the
case m > n is not of interest for our purposes and we stick to our general assumption
that m < n. A set E C R" is called purely m-unrectifiable, if #™(E N A) = 0 for every
m-rectifiable set A C R™.

In the introduction we briefly addressed the notion of 1-rectifiability of subsets of R?.
Namely, we gave the heuristic definition that a subset A of R? is rectifiable if it has
some sort of local curve-like structure. While this is not obvious from the definition of
rectifiability, the heuristic notion of a local curve-like structure can be made rigorous
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by introducing the notion of approximate tangent lines. This yields an equivalent
definition of 1-rectifiability which in fact can be generalized to an equivalent definition
of m-rectifiability by a notion of (m-dimensional) approximative tangent planes; see
Chapter 16 in [30].

The following theorem is widely known as the Besicovitch-Federer projection theorem.
It was proven in [7] for the case when n = 2 and m = 1, and later generalized to the
statement below in [17]. For a more recent account, see [30], Theorem 18.1.

Theorem 3.4. An ™ -measurable set A C R™ with 7#™(A) < oo is purely m-
unrectifiable if and only if ™ (Py(A)) =0 for opm-a.e. V€ G(n,m).

Equivalently, A is m-rectifiable if and only if 7™ (Py;(B)) > 0 for opm-a.e. V € G(n,m)
whenever B is an J™-measurable subset of A with ™ (B) > 0.

3.2  ABSTRACT PROJECTIONS AND DIFFERENTIABLE TRANSVERSALITY

In this section, we introduce a version of a strong projection theorem due to Peres and
Schlag [34]; see also Chapter 18 in [31] and the survey [32]. Their main result states
that if a (sufficiently regular) family of projections satisfies some sort of differentiable
transversality condition, then a set of fairly strong Marstrand-type projection theorems
hold. Unlike Theorem 3.1 from the previous chapter, all the results presented in this
chapter are formulated for families of abstract projections, in the sense that the target
space is not embedded in the domain. The notion of a family of abstract projections
will be formally defined below. Furthermore, we will recall a result due to Hovila et.
al. [20] that states that differentiable transversality yields a Besicovitch-Federer type
characterization of purely unrectifiable sets; see Theorem 3.14.

We begin by recalling the notion of Holder spaces. Let U be an open subset of R"
and 0 < § < 1 and k € Ng. We say that f : U — R™ is of class C*9 if f is k-times
continuously differentiable (i.e. f is of class C*) and its partial derivatives of order k
are locally d-Holder.

In fact, the class of C*°-mappings has many properties in common with the class of
C*-mappings. In particular, products and quotients with non-vanishing denominator
of mappings of class C*9 are themselves C*°. Also, whenever f, g are of class C*9 for
some k € N, 0 < § <1, then fog is of class cke. Furthermore, the following version of
the inverse function theorem holds for Holder spaces: Let f : U — R™ be a mapping of
class C*9 or some k > 1 and 0 < § < 1 where U C R" is an open set that contains 0.
Assume that Df(0) : R® — R” is a linear diffeomorphism, then f has a local inverse f~!
at 0 and f~! is of class C*9.

In the following subsections we will recall two versions of Peres and Schlag’s projection
theorem: one for projection families with a one-dimensional parameter space (Theo-
rem 3.7) and one for projection families with a higher-dimensional parameter space
(Theorem 3.11). As we will see, the one-dimensional case is contained in the higher
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dimensional case. However, since the notation in the setting of a one-dimensional pa-
rameter space is slimmer and the conditions seem more intuitive, we discuss this case

separately first.

3.2.1  One-dimensional parameter spaces

Let (2,d) be a compact metric space and J C R an open interval. Then, we call a

continuous mapping

M:JxQ R, (\w)— I w), (3.3)

a (one-parameter) family of abstract projections. We will actually think of II as the
family of mappings {II[\Q2 — R : A € J} where II)(w) := II(\,w) for all A € J and w € Q.
For A € J and wy,ws € 2 two distinct points, we define

H()\, wl) — H()\, WQ) '

2w, w) = d(wr,w2)

(3.4)
This makes ® a mapping J x (( x Q)\Diag) — R where Diag denotes the diagonal of
the product space £ x €.

As we shall see in Theorem 3.7, the following definition represents a sufficient condition

for certain Marstrand-type results to hold for a family II of abstract projections.

Definition 3.5. We say that a family of abstract projections I : J x 2 — R satisfies
differentiable transversality if there exists a positive integer L and some 0 < § < 1, such
that L + 0 > 1, Il is L-times continuously differentiable in the first variable, and the
following hold:

(a) for any compact interval I C J,

~foralll=1,2,...,L, $11: I x @ — R is bounded,
dL

— for all w € Q, A = 1z 1I(\, w) is 0-Holder on I with multiplicative constant

independent of w,
(b) the following transversality condition is satisfied: there exists a constant C' > 0,
such that for all pairs of distinct points wi,ws € Q and A € J, for which
[®(\, wi,wo)| < C,

d
(N, wi,wy)

>C.
dA -

(c) there exist constants C>0and C; >0, for | =1,...,L, such that: if for some
w1 # we € Q and A1, Ay € J, we have |P(A,wi,w2)| + [P(A2, w1, ws2)| < C, then
- ‘%@(Al,wl,m)‘ <Gy, foralll=1,2,.., L.

- [0 wrws) — AP0 wrw)| < Tl - Al
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Remark 3.6.

(i) The condition that L+ > 1 rules out the case where II is differentiable in the
first variable but its derivatives are not locally d-Hélder for any 6 > 0.

(ii) The constant C' appearing in (c) is the transversality constant defined in (b).

(iii) We allow the value oo for L. In this case the second conditions in (a) and (c)
should be omitted.

(iv) In case 0 = 0, the second condition in (a) as well as the second condition in (c) is
obsolete.

(v) For all L < Land 0 <6 <1, differentiable transversality with constants L and 0
implies differentiable transversality with constants L and 6.

Theorem 3.7. Let I1 : J x @ — R be a family of abstract projections that satisfies
differential transversality for constants L € N and 0 < § <1 with L + 6 > 0. Moreover,
assume that for all A € J, Il : Q@ — R is dimension non-increasing. Then, the following
hold for all Borel sets A C €.
(1) If dim A <1, then
(a) dim(II\A) = dim A for £-a.e. A € J,
(b) For 0 < a <dimA, dim({\ € J : dim(II)A) < a}) < a.
(2) Ifdim A > 1, then
(a) LTM\A) >0 for Lt-a.e. N € J,
(b) dim({\ € J : LTI, A) =0}) <2 — min{dim A4, L + §}.
(3) If dim A > 2, then
(a) TIyA C R has non-empty interior for £*-a.e. A € J,
(b) dim({X € J : (IZA)° # @}) <1 — (min{dim A, L 4 6} — 2)(1 4+ £15)7".

Remark 3.8.
(i) If we dropped the assumption of Py : Q — R being dimension non-increasing for
A € J, Theorem 3.7 still holds with (1.a) changed to: dim(IIyA) > dim A for
Llae \e J,
(ii) We will mostly apply Theorem 3.7 in settings with high regularity:
In case that L+3 > 2, (2.b) becomes: dim({\ € J : LI A) = 0}) < 2—dim A.
And in case L = 00, (3.b) becomes: dim({\ € J : (I[yA)° # 0}) < 3 — dim A.

(iii) Theorem 3.7 is a special case of Theorem 4.9 in [34].

3.2.2  Higher-dimensional parameter spaces

In this section we are going to recall the higher-dimensional version of Definitions and
Theorems from the previous section and state an additional consequence of differentiable
transversality.
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Recall that m and n are positive integers with n > m. Let K be another integer with

K>m>1.

Let (2,d) be a compact metric space and @ C R¥ an open connected set. We call a

continuous mapping

MI:QxQ—R" (\w)—II\w) (3.5)

a (higher-dimensional) family of abstract projections. As in the one dimensional case,
we indeed think of P as a family of mappings {II) : @ — R : XA € Q} where II(w) :=
II(A\,w) for all w € Q and X € Q.

For wy # w9 € Q and A € Q, define

H()\, wl) — H()\, (.UQ)

D\, wy,we) = A(or.om)

eR™ (3.6)

Let us introduce the following notation for derivatives in higher-dimensional Euclidean
space: For a function f : R™ — R™, we denote the differential of f in a point z € R"”
by Df(z). Moreover, we denote by 6%i f(z) the (first order) partial derivative of f with
respect to the i-th component in the point x. Since we will mostly consider continuously
differentiable functions f, we will not distinguish between D f(z) and the Jacobian matrix
of fin z. (i.e. the matrix whose entries are the first order partial derivatives of f).
For higher-order partial derivatives we will use the following standard notation with
multi-indices: For a multi-index o = (v, ..., ay) € N, we write |of ;= a1+ ...+ an

and for x € R™ and a continuously differentiable function f : R™ — R™, we define,

o olal
@f(ac) R, Mt J(@).

Now, we can formulate the following analog of Definition 3.5:

Definition 3.9. We say that a family of abstract projections II : @ x Q — R satisfies
differentiable transversality if there exists a positive integer L and some 0 < § < 1 such
that L + ¢ > 1, Il is L-times continuously differentiable in the first variable A € @, and
the following hold:

(a) for any compact connected subset Q' C @,

— for all a with for all |o| < L: 88%1'[ : Q' x Q — R™ is bounded,

—forallw € Qand || =L, A — %H()\,w) is §-Holder on @ with multiplicative
constant independent of w,
(b) the following transversality condition is satisfied: there exists a constant C' >
0, such that for all pairs of distinct points wqi,we € Q and A € @ for which
|P(\, wi,ws)| < C, it follows that
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det Dy® (X, wi, w2)(DA®(\, wi,w2))T| > C,

where (D\®(\, w1, w2))" denotes the transpose of the matrix Dy®(\, wy,ws).

(c) there exist constant C>0and C, > 0, for Il = 1,...,L, such that whenever
|P(A1,wi,w2)| + [P(A2, wi,we)| < C for wy # we € Q and A1, Ay € Q, then:

- |<9a%q)()‘17°~’17w2)’ < Cy, for all |a] < L,
~ e, w1 w2) — Fa Az, wi,we)| < C A = Ko, for all o] = L,

As in the one-dimensional setting in the previous section, we allow the value oo for L.

Then, the second conditions in (a) and (c¢) may be neglected.

Remark 3.10. Note that in the special case when m = n — 1, the matrix D ®(\, wy, w2)
appearing in condition (b) of Definition 3.9, is an (m x m)-matrix. Thus, by setting
C' :=min{C,+/C}, (b) is equivalent to:

(b’) There exists a constant C’ > 0, such that for all pairs of distinct points wi,ws € Q
and A € Q for which |®(\, w1, w2)| < C’, it follows that

|det Dy® (X, w1y, ws)| > C'.

The following theorem is a generalization of Theorem 3.7 to higher dimensional parameter
(and target) space:

Theorem 3.11. Let I : Q x 2 — R™ be a family of abstract projections that satisfies
differentiable transversality. Moreover, assume that for all X € @, II : Q@ — R™ s

dimension non-increasing. Then, the following statements hold for all Borel sets A C €.

(1) If dim A < m, then

(a) dim(IIyA) = dim A for £X-a.e. A € Q,

(b) For 0 < a<dimA, dim({\ € Q@ : dim(II)A) < a}) < (n—m—1)m+ a.
(2) If dim A > m, then

(a) L™(I\A) >0 for LE-a.e. A€ Q,

(b) dim({\ € Q : ZL™(I1\A) =0}) < (n—m)m +m — min{dim A, L + J}.
(3) If dim A > 2m, then

(a) TINA C R™ has non-empty interior for L% -a.e. A € Q,

(b) dim({\ € Q : (I, A)° # o7})
< (n—m)m — (min{dim A, L + §} — 2m)(1 + Li-i-&)_l

Remark 3.12.
(i) Choosing m = K =1 in Theorem 3.11 yields Theorem 3.7.
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(ii) Theorem 3.11 remains true if we drop the assumption that the projections
IT) : © — R™ are dimension non-increasing. However, in this case, (1.a) becomes:
dim(ITyA) > dim A for Z™-a.e. A € Q.

(iii) We will mostly apply Theorem 3.11 in settings with high regularity.
In case that L 4+ § > n, (2.b) becomes:

dim({A e Q : L™(I1 \A) =0}) < (n—m)m+m — dim A.
And in case L = 0o, (3.b) becomes:
dim({X € Q : (II\A)° # 0}) < (n — m)m + 2m — dim A.

(iv) Definition 3.9 and Theorem 3.11 correspond to Definitions 7.1 and 7.2, and
Theorem 7.3 in [34].

Remark 3.13. Recall from (3.1) that by P : G(n, m) xR"™ — R™ we denote the family of
Euclidean projections Py : R™ — V onto m-planes V' € G(n, m). Moreover, recall from
Section 2.3, that ¢ : Mat(,, _p)xm(R) — G(n,m) is a smooth local parameterization of

G(n,m) and that for all T € Mat ;) xm (R), the vectors el',... el form an orthonormal
basis of ¢(T') € G(n,m) that varies smoothly in 7. Furthermore, wy,...,w,, denotes

the standard basis of R™.
Let 2 C R™ be a compact set and consider the family of abstract Kuclidean projections
I : Q x Q — R™ defined by

m

5T, x) =Y (P*((T),x), e yw, (3.7)
=1

where (-, -) denote the Euclidean inner product (scalar product) in R”. Thus, the mapping
IT* is the mapping P* restricted to ¢(Mat ;) xm(R)) X 2 where V' is identified with R™
is a smooth way. It can be shown by a straight-forward calculation that the family of
abstract Euclidean projections satisfies differentiable transversality with L = oo and
hence, all conclusions from Theorem 3.7 hold for ITI¥ : Q x Q — R™ with L = co.

Furthermore, Hovila et. al. [20] have shown that in case of a slightly modified version of
differentiable transversality, one obtains a Besicovitch-Federer characterization of purely
unrectifiable sets; compare Theorem 3.4.

Theorem 3.14. Assume that I : Q x Q0 — R™ is both, a continuously differentiable map
on Q X Q and a family of abstract projections that satisfies differentiable transversality
with L =2 (and 6 =0). Then, each 7™ -measurable set A C R™ with 7" (A) < 0o is
purely m-unrectifiable if and only if ™ (1 (A)) =0 for opm-a.e. V € G(n,m).

The Euclidean version of this result is sometimes also referred to as the Besicovitch-

Federer projection theorem, see Theorem 18.1 in [30].
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3.3 COMPARISON OF METRIC AND DIFFERENTIABLE TRANSVERSALITY

In this chapter, we compare different methods of proof for Marstrand-type projection
theorems. In particular, we will discuss the two notions of transversality introduced in
Chapter 2. These are metric transversality (Definition 3.2) for a family of projections
P:G(n,m) x R" — R" P(V,z) € V, and differentiable transversality (Definitions 3.5
and 3.9) for a family of abstract projections IT: @ x © — R™ where Q C R¥ open and
Q is a compact metric space; see (3.3) and (3.5).

Intuitively spoken, in order to obtain Marstrand-type projection theorems for a family
of projections, one has to control the quantity of projections Py : R™ — V, for which
(many) pairs of distinct points get mapped to the same point or very close to each other.
Both types of transversality provide such a control; while metric transversality literally
bounds the size of the set of planes V' € G(n, m) for which an arbitrary pair of distinct
points gets mapped d-close, differentiable transversality is concerned with the ratio of
the distance of two projected points and the distance of the points themselves. Namely,
it imposes that if this ratio is small, then it grows fast (for a sufficiently large number
of directions) when the projection parameter is altered (in this direction). Thus, it is
natural to examine how these notions of transversality are related.

Let us formally relate the notion of a family of projections P : G(n,m) x R" — R"
to the notion of a family of abstract projections Il : @ x © — R™. We will do so
by locally identifying G(n,m) with Mat, ) xm(R) which again is identified with RE
where K = (n —m)m (see Section 2.3), and by identifying each m-plane V' with R™ in a
smooth way. To do so, let P : G(n,m) x R" — R™ be a family of projections such that
P(V,z) eV forall z € Q, V € G(n,m). Let Q = R"—mm — Mat (y,—m)xm (R) and let

P Mat(nfm)xm(R) - G(n7m)7 T Vr

as defined in (2.4) be a local parameterization of G(n,m). Moreover, by el ... el

denote the orthonormal basis of Vi defined in (2.5) and recall that the vectors e vary

smoothly in 7. Recall that by ws, ..., w,, we denote the standard (orthonormal) basis
of R™. Let Q C R" be a large ball centered at the origin and set @ = Mat ,, ) xm (R).
Recall that (-,-) denotes the Euclidean inner product (scalar product) in R™. We define
the family of abstract projections II” : Mat () e (R) x  — R™ by

m

I7(T,2) ==Y (P(Vr,x),e] yw;. (3.8)
=1

for all z € Q2 and A € Mat ;) xm(R). In other words, II7(T, ) is the a vector in R™
with entries (II(T, z)); = (P(Vr, ), el). Note that this makes TI¥ a family of abstract
projections in the sense of (3.6) and (3.3).

In case n = 2 and m = 1, the parameter space R(®~™™ — R is one-dimensional. Hence,
in this case, every matrix T' € Mat(n_m)xm(R) is a number ¢t € R. Moreover, a connected
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subset () of the parameter space R is an interval and will be denoted by I.

The following lemma is a direct consequence of the fact that the mapping Vr — R™
given by u — Y (u, el )w; is 1-bi-Lipschitz, for every T € Mat (y,—m)xm (R).

Lemma 3.15. For all Borel sets A C Q CR™ and all parameters T' € Mat (,,_ ) xm (R),
- [U(T,2) = I°(T,y)| = |P(Vy,x) = P(Vp,y)l, for all z,y € Q,
— H5(NIE(A)) = 25(Py(A)), for all s >0,
-~ dim(I1E(A)) = dim(Py (4)).

The following proposition is an immediate consequence of Lemma 3.15 and Remark 2.1.

Proposition 3.16. The conclusions of Theorem 3.11 hold for I : Mat (y,— ) xm (R) X
Q= R™ (Q = Mat(,_p)xm(R)) if and only if they hold for P : ¢(Q) x Q@ — R™ where

the term “for L% -a.e.” is replaced by "oy m-a.e.” in the statements (a).

The above proposition makes it plausible to compare the notions of transversality
formulated for families of projections P and II (resp. IT”). As the following proposition
shows, for projections families with a one-dimensional parameter space, differentiable
transversality for II” implies metric transversality for P. This matches our observation
that the conclusions of Theorem 3.3 (which follow from metric transversality) are weaker
than the conclusions of Theorem 3.7 (which follow from differentiable transversality).

Proposition 3.17. Consider a family of projections P : G(2,1) x R? — R? and the
according family of abstract projections II¥ : Rx Q — R. Suppose that ITI¥ : RxQ — R is
continuous and that it is C' in the first variable. Furthermore, assume that II¥ satisfies
condition (b) as well as the first part of condition (c) from Definition 3.5. Then, for all
compact subintervals Jc J, the restriction of P to go(j) x ) satisfies Definition 3.2.

We conjecture that this is also true in higher dimensions, however our method of proof
does not allow a generalization to higher dimensions. We will get back to this towards
the end of this section.

Proof. Let JCJbea compact subinterval. First, notice that since IT? is continuous,
also P is continuous on ¢(J) x €. This suffices for condition (a) in Definition 3.2
to hold. Towards the proof of condition (b), note that by Lemma 3.15, we have
[TIP (t,2) — TP (t,y)| = |P(Vs, ) — P(V;,y)| for t € R. Therefore, it suffices to show that

there exist constants K > 0 and ¢y > 0 such that for all 0 < € < ¢,
Lt e T | @, z,y)| < €}) < Ke, (3.9)

forallz #y € Q,t €1, and ®F(t,2,y) = W as in (3.4).
For the proof of (3.9), let C' > 0 be as in Definition 3.5 and fix x # y € Q. For 0 < € < C,
define A(e) to be the collection of open intervals I C J such that:

— forallt € I: |®P(t,z,y)| < e
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— for all t € OI: either |®F (¢, z,y)| = e or t € 8.J.

In particular, this makes A(e) a family of disjoint open intervals that cover the set
{t € J: |®F(t,2,y)| < €}. Now, for 0 < ¢ < € < C, we consider the following
statements.

(I) Each Interval I' € A(€¢') is contained in some interval I € A(e)
(II) Transversality: Each I € A(e) contains at most one I’ € A(€).

Statement (I) is obvious. We now prove that Statement (II) follows from differentiable
transversality. Let I’ € A(¢’), I € A(e) such that I’ C I. Then, by definition of A(e), it
follows that |®F(t,z,y)| < € < C for all t € I. Then, by condition (b) of Definition (3.5)
for TI7, it follows that \%@P (t,z,y)| > C for all t € I. Assume without loss of generality
that %@P(t, x,y) > 0 for all t € I (the opposite case is analogous). Thus, t — ®F(t, z,y)
is strictly increasing for ¢ € I. Hence, by definition of I’ and I, I’ sits in the left most
place within 7. Thus, there cannot exist two disjoint such intervals I’ € A(¢’) within 1.
This proves Statement (II).

Based on Statements (I) and (II), we will first give an upper bound for the length of
intervals I € A(e), for 0 < e < C, see (3.10). Then, we will give an upper bound for the
number of elements of A(%), see (3.11). The conclusion (3.12) we will draw from these
estimates, proves (3.9) and thereby the proposition follows.

Let 0 < e < C, I € Ale) and tg < t; € I. Since II¥ satisfies condition (b) from
Definition 3.5 and z,y € I € A(e) we have

11 t1 d
(t1 —tg)C = / Cdt < / afb(t,x,y)dt = P(t1,x,y) — D(to, z,y) < 2e.

to to
Therefore, we obtain the following upper bound on the length of intervals I € A(J):

2¢

length(l) < —
ength(1) < %

(3.10)
Next, let I € A(C) such that there exists I” € A(§) such that I” C I. Then, by
the above Statement (II) this interval I” is unique and there exists a unique interval
I' € A(S) such that I” C I' C 1. Let t; € I\I', tg € I" and without loss of generality
assume that ¢ty < t; (the opposite case works analogously). Notice that by boundedness
of ®7(t,z,y) on compact sets (that is, the first part of (c) from Definition 3.5 for I17),
it follows that:

t1

t1 d
< @(tl,x,y) — (I)(to,l’,y) = / a@(t,x,y)dt < Cldt = (tl — tg)cl,

to to

where C7 > 0 is the upper bound of |%<I>(t,x,y)] on J x Q x Q. Hence, we obtain that,

length(I) > —-
ength(l) > 7=
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for all I € A(C) for which there exists I” € A(S) with I” C I. Choose N € N to be
greater or equal than %length(g]~ ). Thus, the number of intervals I € A(C) for which
there exists I” € A($) with I” C I, is smaller or equal to N.

Define ¢y = % and by #.A(e) denote the number of elements in A(e). Then, by the

Statements (I) and (II) above,

gA(e) <N (3.11)
for all 0 < € < €.
Finally, for all 0 < € < €p:
~ 2e
1 : _ gl < YD <N= .
LUt e T: ot z,y) < €)) ,sf( U I)_ > LMD <NG (3.12)
T€A(e) I€A(e)
where the last inequality follows from (3.10) and (3.11). O

Remark 3.18.

(i) As we shall see in Chapter 5, Corollary 5.14, the converse of Proposition 3.17
does not hold: There exists a metrically transversal familiy of projections P :
G(n,m) x R™ — R™ such that II” fails to satisfy differentiable transversality for
all choices of compact sets 2 C R"™.

(ii) We could not adapt the above proof of Proposition 3.17 to higher dimensional
parameter space for several reasons. Here are three of them: First, condition (b)
in Theorem 3.11 does not lead to an estimate of the distance (between t; and
t1) as directly as condition (b) in Theorem 3.7 does. Second, when the analogs
of the sets I C A(e) are higher dimensional, estimating their diameter says little
about the measure of the set. Third, since the analogs of the sets I C A(e) are
not necessarily convex, we cannot bound the number of sets I’ € A(€’) for which
I' C I, as in the above proof.

Transversality has proven to be an important tool for establishing Marstrand-type
projection theorems in various types of spaces. However, there are settings where
(differentiable) transversality does not hold or leads to relatively weak results. Namely,
in Chapter 4, we will see examples of families of linear and surjective projections
(see Definition 4.1) for which differentiable transversality fails but the conclusions of
Theorem 3.11 can be proven to hold by a comparison argument; see Corollary 5.14.
Moreover, in hyperbolic space differentiable transversality holds but comparison with
Euclidean projections with less effort yields stronger projection theorems; see Chapter 6.
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Chapter 4

LINEAR PROJECTIONS IN R”

In this chapter, we will extend Marstrand-type projection theorems and transversality
properties that are known to hold for the family of Euclidean projections to families of

linear and surjective projections.

Definition 4.1. We call P : G(n,m) x R® — R™ a family of linear projections, if
for every V' € G(n,m), the mapping Py : R" — V is a linear map. If in addition
Py : R™ — V is surjective for all V € G(n,m), then we call P: G(n,m) x R" — R" a

family of linear and surjective projections in R™.

First notice that all linear maps are Lipschitz and therefore, every linear projection
Py :R? -V, V € G(n,m), is dimension non-increasing. Moreover, note that the family
of Euclidean projections P* : G(n,m) x R” — R™ is an example of a family of linear

and surjective projections.

In the first part of the chapter, we will give an (essentially sharp) condition that
guarantees Marstrand-type projection theorems for families of linear projections. Then,
in the second part, we will give a list of properties that guarantee that a given family
of linear projections satisfies differentiable transversality. Chapter 5 will provide many
concrete examples of families of linear (and surjective) projections for which the results
of this chapter apply. Moreover, in Chapter 5.4, we will construct a family of linear and

surjective projections for which Marstrand’s theorem fails.

4.1 PROJECTION THEOREMS VIA COMPARISON

In order to establish strong Marstrand-type results for families P : G(n,m) x R" — R" of
linear and surjective projections, it turns out to be useful to compare them to the family
of Euclidean projections: for all V' € G(n, m) we will choose a particular V' € G(n,m)
so that Py is comparable to the Euclidean projection Py, in terms of measure and
dimension of projected sets. Then, in order to guarantee that the desired projection
theorems hold for P we need to ensure that the mapping that associates V' to V has
good measure theoretic properties. We start by formally defining the mapping ¢ that
associates an m-plane V' to each m-plane V.

Let P : G(n,m) x R™ — R" be a family of linear and surjective projections and let
V € G(n,m). Then, P;;*({0}) = KernPy is an element of G(n, n—m).
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Define
G(V) = (P ({0})* = (Ker Py)*. (4.1)

This makes (V') an element of G(n, m) and we can view ¢ as a mapping ¢ : G(n,m) —
G(n,m); see Figure 4.1.

1 1
1’ Kel" PL I’ Kel" PL I’
1 1

Figure 4.1. The mapping ¢4 on G(2,1) and the linear projections P and PF.

The comparison of Py and PE;E(V) will lead to the following theorem.

Theorem 4.2. Assume that P : G(n,m) x R" — R™ is a family of linear and surjective
projections and that the associated mapping 4 : G(n,m) — G(n,m) is dimension non-

decreasing and has the inverse Lusin property for the measure oy, . Then, the following
hold for all Borel sets A C R™.

(1) If dim A < m, then
(o) dim(PyA) = dim A for opm-a.e. V € G(n,m),

(b) For 0 < a<dimA,
dim({V € G(n,m) : dim(PyA) < a}) < (n —m —1)m + a.

(2) If dim A > m, then

(a) ™ (PyA) >0 for opm-a.e. V€ G(n,m),

(b) dim({V € G(n,m) : #™(PyA) =0}) < (n —m)m + m — dim A.
(3) If dim A > 2m, then

(a) PyACV ~R™ has non-empty interior for o, m-a.e. V. € G(n,m),

(b) dim({V € G(n,m) : (PyA)° # @}) < (n —m)m + 2m — dim A.

The definition of the inverse Lusin property was given in Section 2.1. In order to prove
Theorem 4.2, we employ the following lemma;:

Lemma 4.3. Let f : R® — R¢ and fv: R™ — R™ be linear mappings with Ker f = Ker fv

Then, there exists a bijective linear mapping h : f(R™) — f(R™) such that for all x € R™,
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h(f(z )) = f(x). Thus, in particular, for every A CR", h(f(A)) = f(A) and hence f(A)
and f(A) ave the same Hausdorff measure and dimension.

Proof. In case V := Ker f = Ker f equals R™ or {0}, the Lemma is trivial. Therefore, we

may assume without loss of generality that 0 < k := dim(V') < n. Let vy, ..., vx be a basis
of V and extend it to a basis vy, ..., vk, w1, ..., wy_g of R™. Then, f(w1),..., f(w,_g) is
a basis of f(R™) and f(w1), ..., f(wn_p) is a basis of f(R™). Define h : f(R™) — f(R")
as follows: for y € f(R™), there is a unique choice of coefficients y;, j =1,...,n—k, such

that y = 351 y; f(w;). Set
n—=k
)= yif(w;).
j=1

Then, h is a linear bijection and for every x € R, x = Z?Zl Tiv; + Z;”;f ThtjW; We
have

n—=k n—k _ .
= (S owestw)) = X sy = fia).
j=1 Jj=1

Proof of Theorem 4.2. Let A C R"™ be a Borel set and 0 < a < dim(A) < m. We know
that (1.a) and (1.b) of Theorem 4.2 hold for Euclidean projections, that is,

oc({W € G(n,m) : dim P, (A) < a}) =0 (4.2)
dim({W € G(n,m) : dim Py (A4) < a}) < a. (4.3)
By applying Lemma 4.3 for f = Py and ]7: P;,F(V), it follows that, for all V' € G(n,m),
dim Py (A) = dim PG;E(V) (A). (4.4)
Notice that (4.2) yields

o(9{V € G(n,m) : dim PE;E(V) (A) < a})
=o({9(V) € G(n,m) : dim Py, (4) < a})
<o({W € G(n,m) : dim Py, (A) < a})

—0

Moreover, by (4.4), we know that
o({V € G(n,m) : dim P (A) < a}) = o({V € G(n,m) : dim Py, (A4) < a}).
Hence, by the fact that ¢4 has the inverse Lusin property, it follows that

o({V € G(n,m) : dim Py(A) < a}) = 0.
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This proves (1.a). Furthermore, combining (4.3) and (4.4) with the fact that ¢ is

dimension non-decreasing, yields

dim({V € G(n,m) : dim Py (A) < a}) = dim({V’ € G(n,m) : dim Py, (4) < a})
< dim(9{V € G(n,m) : dim Py, (A4) < a})
— dim({#(V) € G(n,m) : dim Py, (4) < a})
< dim({W € G(n,m) : dim P (A) < a})

< a.
This proves (1.b). The proofs of (2) and (3) are analogous. O

Notice that in the proof of Theorem 4.2, we use the assumption that the mapping
4 : G(n,m) — G(n,m) has the inverse Lusin property only for the parts (a). The
assumption that ¢ is dimension non-decreasing is used for the parts (b). Moreover,
in order for Theorem 4.2 to hold, it suffices to assume these properties (dimension
non-decreasingness and/or inverse Lusin property) for sets £ C G(n,m) that occur as
exceptional sets of the family of Euclidean projections.

It is a trivial consequence of the proof of Theorem 4.2 that there exist many families of
linear and surjective projections, for which all Marstrand-type theorems fail. For example,
whenever ¢ is constant in an open set of G(n,m), all conclusions of Theorem 4.2 fail
immediately. More generally, we can define a family of linear and surjective projections
P : G(n,m) x R"™ — R", by choosing a mapping g : G(n,m) — G(n,m) and setting
Py(x) = P;(V) (x).

Remark 4.4. Let m =n — 1 and consider a family P : G(n,n—1) x R” — R" of linear
and surjective projections. Let & : S"~1 — S"~1 be any injective mapping that satisfies

4 (v) € Ker P, (4.5)

Clearly such a mapping exists. Then, the mapping 4 can be viewed as the mapping
9 : G(n,n—1) = G(n,n — 1), as defined in (4.1), under the identification of G(n,n — 1)
with S"~!; see Section 2.3. Thus, conclusions (1) and (2) from Theorem 4.2 hold for
families of projections P : G(n,n—1) xR™ — R™ for which 4 . 5" — 571 is dimension
non-decreasing. Notice that conclusion (3) does not make sense for m =n — 1.

Note that from the proof of Theorem 4.2 one can derive that Definition 3.2 (metric
transversality) is satisfied for families of linear and surjective projections whose associated
mapping ¢ (resp. 2 ) is dimension non-decreasing. However, the projection theorems
one obtains from Theorem 3.1 by establishing metric transversality are weaker than the
conclusions of Theorem 4.2. In particular, it is not known whether a statement like (2.b)
in Theorem 4.2 can be derived from a notion such as metric transversality. Moreover,

every known proof of (3), involves Fourier analytic methods and hence differentiability
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is required. Furthermore, we will see in the following section, in the case of linear
projections, differentiable transversality only implies a weaker version of Theorem 4.2.

By the methods introduced in the proof of Theorem 4.2, we can deduce the following
version of the Besicovitch-Federer projection theorem.

Theorem 4.5. Assume that P : G(n,m) x R" — R™ is a family of linear and surjective
projections whose associated mapping 4 : G(n,m) — G(n,m) has the Lusin property as
well as the inverse Lusin property, and that oy m(G(n, m)\¥(G(n,m)) = 0.

Then, for all sets A C R™ with #™(A) < oo, A is purely m-unrectifiable if and only if
A (Py(A)) =0 for opm-a.e. V€ G(n,m).

Proof. Let A C R™ and define E, E' C G(n,m) by

E:={V € G(n,m) : #™(Py(A)) =0}
E' :={V € G(n,m) : #"(Py(A)) = 0}

As in the proof of Theorem 4.2, by Lemma 4.3, it follows that " (Py(A)) = 0 if and
only if ,%”m(PéF(V)(A)) = 0. This yield that E' = {V € G(n,m) : ffm(ng(v) (A)) =0}
and thus 4(E') C E.

Now, assume that A is purely m-unrectifiable. Then, by Theorem 3.4, o, n(E) = 0.
Then, the fact that ¢ has the inverse Lusin property implies that o, ,,(E") = 0.

For the converse, assume that A is a set for which 0, ,,(E) = 0. From the assumption
that oy m(G(n,m)\¥(G(n,m))) = 0 and the fact that ¢(E’) C E, it follows that
Onm(9(E")) = 0pm(E). And thus, since 4 has the Lusin property, we conclude that
o(E)=0. O

4.2 DIFFERENTIABLE TRANSVERSALITY FOR LINEAR PROJECTIONS

Verifying differentiable transversality (Definition 3.5 resp. 3.9) for a given family of
abstract projections is in general a non-trivial matter. It requires a lot of information of
the nature of the projections in question (often one cannot get around finding an explicit
formula for the projection) and involves verifying a number of technical conditions.
However, in case the projection family is linear, the conditions from Definition 3.5 and
3.9 can be simplified by a considerable amount.

Let © C R™ be a closed ball in R™ with radius R > 1 and center at 0 € R". Moreover,
let Q C RX open and connected, and

MI:QxQ—=R" (\z)—II\z). (4.6)

a family of projections as defined in (3.5).

Definition 4.6. We call IT : Q x 2 — R" a family of linear projections, if for every
A € @, the mapping II(A, -) : Q@ — R™ is the restriction of a linear mapping.
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Proposition 4.7. Let I1: Q x Q — R™ be a family of linear projections that satisfies
the following properties:

(P1) II: Q x Q — R™ is continuously differentiable in the first variable.
(P2) For any compact connected subset Q' C Q,
— for all o with for all || < L: a/\aH Q' x Q — R™ s bounded,

~ forallx € Q and |a| = L, A — 68)\0:1 (A, x) is 0-Holder on Q" with multiplicative
constant independent of x.

(P3) Whenever II(\,x) = 0 for some x €  and X\ € Q, then
)det (D,\H(/\ 2)(DAIL(A, 2) )‘ £0.

Let R € RE be an open and connected set such that R C Q is compactly contained.
Then, the family of projections Il : R x  — R™ satisfies differentiable transversality for
L =1 and >0 (see Definition 3.9).

Proof. By Definition 4.6, we may assume that for every A € @, I, is a linear mapping
R™ — R™ and thus C*°. In particular, II can be considered a mapping @ x R* — R™
that is linear in the second variable. Moreover, by property (P1), it is C! in the first
variable. Thus, II : Q x R® — R™ is a C'-mapping and in particular, the mapping
DyP : Q x R* — R™™(=m) (X z) s DyP()\, z) is continuous.

Obviously, property (P2) in Proposition 4.7 implies condition (a) of Definition 3.9 for
IT: RxQ — R™. By linearity of x — II(\, x), it follows that, for all A € @ and
1, T € R™ with 1 # x9,

S(\ 1, 1y) = TAT) ZHAT) _ gy <>\ B > (4.7)

|z1 — 22 ETE

(see (3.4) for the definition of ®). Hence, condition (c) of Definition 3.9 follows from
property (P2) as well.

Note that by (4.7) and the fact that |;1 ”32‘ € S"7L, in order to prove condition (b)
from Definition 3.9 for the family II : R x @ — R™, it suffices to show that: There
exists a constant C' > 0, such that whenever |II()\,z)| < C for some z € S"~! and
A € R, then |det (DAII(A, z)(DII(A,2))7)| > C. Assume for a contradiction that
this is false. Then, for every n € N, there exists a parameter A\, € R and a point
zn € 5™ such that [II(An,2,)| < 2 and |det (DAII(An, 2) (DAIL(Ap, 2,,)) 7)) | < L.
Since R x  is compact, the sequence (A, T, )nen admits a convergent subsequence
with limit (\g,z9) € R x S"1. Then, by continuity of II and D,II, it follows that

ITI(Xo, zo)| = 0 and |det (DAII(Ag, z)(DAIL(Xo, 20))T)| = 0 which contradicts (P3). O
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Chapter 5

PROJECTIONS INDUCED BY A NORM

5.1 STRICTLY CONVEX NORMS AND PROJECTIONS

This section starts with a short introduction to convexity, the Gauss map of hyper-
surfaces, and norms in R™. Moreover, we will define families of closest-point projections
with respect to strictly convex norms and establish some of their basic properties.

Let ||| be a norm on R™. We will denote spheres and (closed) balls with respect to ||- ||

as follows.

St @) ={y eR": [l —y|| =7},
(5.1)
B (z,r)={y e R": |lz —y| < r}.

We will often abbreviate S|;' = 5];'(0,1) and B}, = B} (0,1). Furthermore, we will
denote the distance of two sets A, B C R™ with respect to ||-|| by

diSt””(A, B) = 1nf{||a — b” rac A,b S B}

Recall that we use the symbol |-| for the Euclidean norm on R™. We will write S"~* for
the Euclidean unit sphere S‘",‘_l(O, 1), and B" for the closed Euclidean unit ball B} (0,1).
We wish to recall the well-known fact that any two norms ||-||; and [|-|]2 on R™ are
bi-Lipschitz equivalent, that is, there exists a constant L > 0 such that for all z,y € R",

1
7llz =yl < flz = yll2 < Lllz — gl

This could be equivalently formulated as either of the following statements:

(a) The identity map R™ — R™ is a bi-Lipschitz map (R™,||-]1) = (R™,][|2)-

(b) The map x ﬁ is a bi-Lipschitz map from (S™~1,|-|) onto (Sl’lh‘];l, |-])-
Recall that a closed set F' C R™ is called convex (resp. strictly convex), if for all z,y € F
and t € [0,1], the point (1 — ¢)x + ty is contained in F' (resp. the interior of F'). For a
convex set U C R", a function f : U — R is called convex if for all points z,y € U and
parameters t € [0, 1],

fA =tz +ty) < (1 =) f(x) +1f(y).

The function f is called strictly convex, in case the inequality above is strict.
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Since every norm is a convex and continuous function R" — [0, 00), B, is a compact
and convex set with non-empty interior. Moreover, since every norm is symmetric (i.e.
|z]| = [|-=|| for z € R"), the ball B} is antipodally symmetric (i.e., if v € R" is
contained in BY |, then so is —v). If in addition, [|-|| is strictly convex (i.e., the function
-] : R™ = [0, 00) is strictly convex), then Bf  is a strictly convex set. Conversely, it is
known that every compact, (strictly) convex and antipodally symmetric set B € R™ with
non-empty interior, defines a (strictly convex) norm ||-||p on R™, by setting ||z||p = |¢|
where t € R with tx € 0B.

The following proposition is a simple consequence of the definitions above.

Proposition 5.1. Let ||-|| be a strictly convex norm on R™ and let A CR"™ be a closed
and convex set. Then, there exists a unique closest point ¢ € A to x, that is, there exists
a unique g € A such that ||z — q|| = dist|.(z, A).

Consider a strictly convex norm ||-|| on R™ and note that m-planes in R™ are convex
sets. Thus, for every z € R™ and V' € G(n, m), there exists a unique ¢ € V' that realizes
the distance between x and V/, that is, ||¢ — z|| = dist . (x, V). We denote this point ¢
by P&'H(x) and we define the family of closest-point projections for ||-||,

Pl G(n,m) x R — R™ (5.2)

by PI'l(V,z) = P}z, for all V € G(n,m) and = € R™. Notice that thus Py (z) is the
unique point in the intersection B (,dist(z,V))NV/, or equivalently, in the intersection
Sml(x, dist(z, V')) N'V; see left-hand side of Figure 5.1.

unique point segment

Figure 5.1. The set of closest points on L from x given as the intersection of
the sphere Sﬁ]l(x, d) with L (d = dist. (z, L)) for two different norms.

We will often call PII'l the family of projections induced by |- ||. Note that the family
of projections P!l induced by the Euclidean norm |-| equals the family of Euclidean
orthogonal projections PF.
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If a norm || || fails to be strictly convex, then the family of projections induced by ||-|| is
not well-defined for some planes V' € G(n, m). To see this, first notice that the boundary
of every closed convex but not strictly convex set contains a line segment. Thus, if || -|| is
not strictly convex, S’ﬁl contains a line segment. Let V' € G(n, m) contain the direction
of this line segment. Then, for all z € R™, there does not exist a unique point ¢ € V' that
realizes the distance between V and x; see right-hand side of Figure 5.1 for an example.

One can equivalently define (strict) convexity of closed sets in R™ in terms of supportive
hyperplanes. Namely, a closed set F' C R™ with non-empty interior is convex if and only
if every point in its boundary admits a supportive hyperplane, i.e., for all x € 9F, there
exists an affine (n—1)-plane H C R™ that contains x so that F' is contained in the closed
half-space on one side of H. Moreover, F is strictly convex if in addition F N H = {z}.
Notice that if the boundary OF of a non-empty, closed and convex set F' C R™ with
non-empty interior is an embedded (n—1)-dimensional differentiable manifold, then
for each = the unique supportive hyperplane of F' at x is H = x 4+ T,0F where T, 0F
denotes the tangent plane of OF at x. Whenever the boundary of a non-empty open set
F C R™ admits a tangent plane T, 0F at a point z, the unit outward normal of OF at
x is well-defined, i.e., there exists a unique v € S~ ! orthogonal to T, 0F such that for
all 7 > 0, we have rv ¢ F. The mapping G : OF — S"~! that maps = € OF to the unit
outward normal v of OF at z, is called the Gauss map of OF.

Now, we apply these concepts to norms and their unit balls and spheres. Let ||| be
a C*9-norm on R", i.e., the restriction ||-|| : R®\{0} — [0, 00) is of class C* for some
k € N and § > 0. Note that S’ﬁl is the preimage of the value 1 under the mapping
|- : R™ — [0,00). Therefore, STﬁl is an (n—1)-dimensional compact C*-manifold in

R™ and hence, the Gauss map G of S’lﬁl is a continuous mapping given by

V|
G(z) = (5.3)

V][]
where V| z| denotes the gradient of the mapping ||-|| : R — [0,00) at x € R™\{0}.
We will often refer to G': ST — S™ as the Gauss map of ||-||. Recall that S| is the

boundary of the set B and that Bf  is closed and convex, and has non-empty interior.

The following lemma lists some useful properties of the Gauss map G.

Lemma 5.2. Let ||-|| be C*-norm on R™. Then,
(i) (v,G(v)) >0 for allv € Sml,
(ii) there exist two vectors vy,ve € Sﬁ]l, v] # tva, such that G(vy) is collinear with
v and G(va) is collinear with vy
(and hence, by symmetry, G(—v;) is collinear with v;, fori=1,2),
(i1i) G : STﬁl — 8" is surjective,
(iv) G is injective if and only if ||-|| is strictly convez,
(v) if ||| is strictly convezx, the Gauss map G : S’ﬁl — S"~1 is a homeomorphism.

37



Proof. We begin by establishing (ii). Let vy € S| - ! be a point that either maxi-
mizes or minimizes the Euclidean distance to the origin among all v € ST H H . Let
v (—€€) — Sﬁ‘ll be a Cl-curve for which v(0) = vo. Thus, ¥(0) € TvoSH | > and by
choice of vy and the product rule for derivations, it follows that 0 = £ (y(2),v(¢)) [i=0 =
2(%(0),~(0)). Since G(vp) is orthogonal to all T,,,S" ! it follows that G(vg) = 1%

- Too|

Moreover, since G(vg) points outward of Sﬁ? at v, hence G(vg) = W This proves (ii).

In order to prove (i), let v € STﬂl and consider V = G(v)* € G(n,n — 1). Then, the
supportive hyperplane of Sﬁﬁl at visz+V = {z € R" : (z —v,G(v)) = 0}. Now,
assume for a contradiction that (v,G(v)) =0. Then, 0 € x+ V. However, since x4V is a
supportive hyperplane of S ", ! this contradicts the fact that S il ! bounds an antipodally
symmetric set of non-empty interior. Thus, (v, G(v )> # 0, for all v € S H . Recall from
the proof of (ii) that there exists a point vg € S| ! such that G(vp) = | o~ Therefore,

(vo, G(vg)) > 0. Hence, (i) follows from continuity of G and the mean value theorem.

Now, consider a direction v € S"~! and let V be its orthogonal complement. Since
Sml is compact, the set {t > 0: S| 'n (tv + V) # &} has a maximum ¢y > 0. Thus,
H :=tyv + V is the tangent plane of S|'7 i 1 at the point = where S’ﬁl intersects the line
L, = {tv : t € R}. Moreover, since H was chosen to be orthogonal to v, it follows that

G(z) = v. This proves (iii).

Assume that G is injective and let x € Sﬁ]l and by H denote the unique supportive
hyperplane of S” ;. at x. Lety € HN SH | - Now, we will deduce that z = y
from the assumptlon that G is strictly convex. Since, z,y € H N Sml, we have that
H = a:+TSH = y+TS’H"”T‘1 and G(z) = £G(y), hence © = +y. Assume for a
contradiction that y = —z. Then, it follows that x + T, S” = —c+1I- SH | and, since

xShl = ,ﬁSml € G(n,n — 1), we have x = —z. However, this implies that x = 0

which contradicts the fact that = € Sﬁ_ﬁl. This proves one direction of (iv).

For the converse, assume that |-| is strictly convex and let z,y € S| H so that
G(z) = G(y). Thus, it follows that P := TIST“,HI = TySH~H . Assume without loss
of generality that x and y lie on the same side of P (if they do not lie on the same side,
replace x by —z). In case that  + P = y + P, strict convexity implies that = y. Now,
consider the case when x + P # y + P. Then, P, x + P and y + P are three parallel
hyperplanes in R™ and (by the assumption that = and y lie on the same side of P) P is
not the middle one. Assume that x + P is the middle one (the other case is analogous).
Then, z + P intersects the interior of B which is a continuum connecting 0 to y. This

proves (iv).

For the proof of (v), assume that ||-|| is a strictly convex C*-norm on R™. Thus, by (ii)
and (i), G : S ”1 — 8"~1 is a bijection. Moreover, by (5.3) and the fact that |- | is C*,
if follows that G is continuous. Thus, since : S and S™~1 are both compact, G is a

homeomorphism. O
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Remark 5.3. For a C?>%-norm |[-|| on R", G : STﬁl — S"1is a CM-mapping.

Hence, if the Jacobian determinant of G does not vanish, and by the inverse function

theorem and Lemma 5.2, G : S’”l — S" 1 is a locally injective surjection. Since
-

H<H1 is homeomorphic to S”~!, from a topological argument it follows that G is a

homeomorphism. This makes G : Sﬁﬁl — S 1 o C1O-diffeomorphism. In particular,
by Lemma 5.2, the norm ||-|| is strictly convex.

Denote the derivative of G : Sﬁﬁl — 8" 1 at a point by DG(z). The Jacobian
determinant of G at x is det DG(z). In the case where n = 2, SM is a closed C2-curve
and det DG(x) # 0 if and only if the curvature of the curve S IlHI does not vanish at z.
In R3, the equivalent statement holds for the Gauss curvature of the C?-surface S ﬁ»\l‘
The Gauss curvature of Sﬁ,u C R? at a point z is defined to be the determinant of the
derivative of the Gauss map. In higher dimensions the analog of the Gauss curvature is
called Gauss-Kronecker curvature. It is a fact that in R™ the determinant det DG does
not vanish in a point if and only if the Gauss-Kronecker curvature does not vanish in
this point. Since Sml is convex this is equivalent to requiring all sectional curvatures
in all points on S’”l to be positive; see Chapter 6 in [10]. This discussion yields the
following result.

Lemma 5.4. For a C?>°-norm ||-|| on R", G : S’ml — S"=1is a C1O-diffeomorphism
if and only if the curvature of Sﬁ]l does not vanish. (Here by curvature we mean the
curvature of a C?-curve if n = 2, the Gauss curvature of a surface if n = 3, and the

Gauss-Kronecker or, equivalently, the sectional curvatures if n > 3.)

5.2  PROJECTION THEOREMS FOR CODIMENSION ONE

In this section we will verify that given a sufficiently regular norm || -|| on R", the family
of projections onto hyperplanes V' € G(n,n—1) induced by ||-|| is a family of linear
and surjective projections. Moreover, its associated map ¢ : G(n,n—1) — G(n,n—1)
(see (4.1) and Remark 4.4), can be expressed in terms of the inverse Gauss map of ||-||.
This will allow us to prove the following theorem.

Theorem 5.5. Let ||-|| be a strictly convex C*-norm on R™. If the Gauss map G is
dimension non-increasing and has the Lusin property, then conclusions (1) and (2) of
Theorem 4.2 hold for PI'l : G(n,n—1) x R™ — R™.

Note that we do not mention conclusion (3) of Theorem 4.2 in Theorem 5.5 since
m =n — 1 and conclusion (3) only makes sense when 2m < n.

We will prove Theorem 5.5 by applying Theorem 4.2. For this, first, we need to establish
that families of projections P!'ll that meet the conditions of Theorem 5.5 are families
of linear and surjective projections. Moreover, we want to find an injective mapping
@ : §n=1 — 571 for which ¢(v) € Ker PU‘[H for all v € S"~1; see Remark 4.4.
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Lemma 5.6. For a strictly conver Ct-norm ||-||, the map PI'l : G(n,n—1) x R* — R"
is a family of linear and surjective projections. Moreover, the map 4 : S"~1 — gn—1
defined by

for all w € S™Y, is an injective mapping for which 4(v) € Ker P,1 for all v € S"71.

Proof. Let V € G(n,n—1). First, recall that for all z € R™\V, P&‘”(az) is the unique
point in the intersection Sfﬁl(a:, dist . (z,V)) N V. Therefore, V must be the tangent

plane of Sml(aﬁ,dist Lz, V) at PY().

0y
Figure 5.2. Gauss map and projections (u By @z d r=dist (@, V))

—_v
1Py () ]|

However, this implies that the unit outward normal of STﬂl(w, dist . (z,V)) at P (x)
is orthogonal to V, or, equivalently (see Figure 5.2),

TR
1Py (z) - x| '

Let w = w(V) € S"! be a direction that is orthogonal to V, then

PH'H _
G W2 A,
1Py () — =]
where A € {—1,1}. Using the fact that G is invertible and antipodally symmetric, this
yields that

P‘ﬂ‘ I () —x

—V " AG Hw). 5.4
1P (@) ] () 54
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Thus, for every x € R", the vector P“,"H(x) — x is collinear with G~ (w). Moreover,
by (i) and (v) of Lemma 5.2, G~'(w) is not contained in V. Hence, P,/(z) is the
unique intersection point of the line z + Lg-1(,) with the m-plane V' (recall that
L, := {rv : r € R} for all v € R"\{0}). This proves that P! : R* — V a linear
map. To see this, choose a basis {b1,...,b,} or R” where b; is collinear with La—1(w)
and the vectors bo, ..., b, form a basis of V. Then, Py : R" — V is given by Py (z) =
Tobo+. ..+ bz, for all z € R™ where the x; are the coefficients of x in the basis by, . .., b,
ie. x =x1b1 + ... + zpby,. Furthermore, it follows that (PJ‘”)_l({O}) = Lg-1(w), and

thus, @(V) = (G~ (w))* = (;Gred)*. O

Proof of Theorem 5.5. By Lemma 5.6, Theorem 4.2, and Remark 4.4, it suffices to
check that the mapping & : 5" ' — S"~1 defined by ¥ (w) = é:% is dimension
non-decreasing and has the inverse Lusin property. From the fact that any two norms
on R"™ are bi-Lipschitz equivalent, in particular, it follows that

he St = St =81

given by h(x) = ﬁ for all x € Sﬁﬁl is a bi-Lipschitz mapping.
Note that ¢ = ho G~! and hence, ¢ is dimension non-decreasing and has the inverse
Lusin property, if and only if G~! is dimension non-decreasing and has the inverse
Lusin property. However, this is guaranteed by the assumption that G is dimension
non-increasing and has the Lusin property. O

The following corollary is a simple consequence of the proof of Theorem 5.5 and the fact
that Lipschitz mappings are dimension non-increasing.

Corollary 5.7. If ||-|| is a strictly convex CY1-Norm on R™, then conclusions (1)
and (2) of Theorem 4.2 hold.

Moreover, from Theorem 4.5 and the proof of Theorem 5.5 one immediately deduces the

following corollary.

Corollary 5.8. Let ||-|| be a strictly convex Ct-norm on R™ such that its Gauss map
G has the Lusin property as well as the inverse Lusin property. Then, a set A C R™
with ™ (A) < oo is purely (n—1)-unrectifiable if and only if e%””*l(P‘ﬂ‘ l(4)) =0 for
On (n—1)-a-€. V € G(n,m).

5.3 TRANSVERSALITY FOR CODIMENSION ONE

In this section, we will basically reprove Theorem 5.5 for sufficiently regular norms by
establishing differentiable transversality; see Definition 3.9 and Theorem 3.11. These
results can also be found in [3] for the case n = 2. We think that this proof is worth being
included in this thesis for several reasons. First, it provides an insightful example of how
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differentiable transversality can be proven in a specific setting. Second, it illustrates the
limits of transversality as a method of proof for Marstrand-type projection theorems
as we will see that the Marstrand-type results that we obtain here will be weaker than
Theorem 5.5 obtained by comparison. Third, it shows that metric transversality and
differentiable transversality are not equivalent; see Corollary 5.14. And last, as pointed
out in the introduction, differentiable transversality is a notion studied for many families
of mappings (not a priori families of projections in a geometric sense) in different areas
of mathematics. This makes it a property of independent interest.

Let ||| be a strictly convex norm on R™ and by PI'l : G(n,n — 1) x R" — R™ denote
the family of closest-point projections with respect to ||| as defined in (5.2). Let
I Q x © — R™! be the associated family of abstract projections onto R*~! with
Q = Mat; . (,—1)(R) and 2 C R" a large ball centered at the origin; see (3.8).

Theorem 5.9. Let 6 > 0 and consider a C*%-norm ||-|| on R™ for which det DG(v) # 0
for all v € STHI. Then, the family of projections III'l : Q x Q — R ! satisfies
differentiable transversality for L = 1 and § > 0 and therefore the conclusions of
Theorem 3.11 hold for TII'l with L = 1.

Recall from Section 5.1 that the assumption det DG(v) # 0 for all v € S’ﬁl guarantees
that |- || is strictly convex and thus the family TII'l : Q@ x © — R"~! is well-defined.

The following corollary is a straight-forward consequence of Theorem 5.9 and Lemma 5.4.

Corollary 5.10. Let § > 0 and consider a C*°-norm ||-|| on R™ such that Sﬁﬁl has
non-zero sectional curvature. Then, the family of projections TII'l : Q x Q@ — R that
satisfies differentiable transversality with constants L =1 and § > 0, and therefore the
conclusions of Theorem 3.11 hold for I1I'l for L = 1 and the respective § > 0.

The proof of Theorem 5.9, will be divided into a sequence of lemmas. For the sake
of generality, we will state and prove some of these lemmas under slightly weaker
assumptions than necessary for the proof of Theorem 5.9. In the first lemma, we exploit
the arguments from the proof of Lemma 5.6 in order to obtain an explicit formula for
the projection P‘ﬂ'” :R*" —» V.

Lemma 5.11. Let ||-|| be a strictly conver C'-norm and G : S”ﬂl — 8" the Gauss
map associated with ||-||. Then for every x € R™ and V € G(n,n—1)

PH(V,2) =g — 5% g1 5.5

(Va) =2 = s G (), (5.5

where w = w(V) € S"~! is orthogonal to V.

Proof. Consider V € G(n,m) and w € S~ ! a direction orthogonal to V. Then, by (5.4),
it follows that
P‘ﬂ‘” () =2+ HP&'” (z) — z|| G (w), (5.6)
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for all z € R™ where A € {—1,1} depends on the position of x. More precisely, A = 1 if
(x,w) <0, and A = =1 if (x,w) > 0.
On the other hand, by choice of w and the fact that P)(z) € V for all z € R”,

(P} (x), w) = 0. (5.7)
Then, by (5.6) and (5.7), it follows that

(z, w)

pl _ — < - _ )
A TV T B (I CORT) %
Finally, combining (5.6) with (5.8) yields the desired projection formula
s {zw) 1 oz 1
e = et M T T e ¢
O

Notice that Lemma 5.6 is a trivial consequence of Lemma 5.11. However, we decided not
to prove Lemma 5.11 in Section 5.2 in order to stress that the explicit formula for the
family of projections given in Lemma 5.11 is not required for the proof of Theorem 5.5.
However, for our proof of Theorem 5.9, Lemma 5.11 will be essential.

The following lemma is the key tool in order to establish property (P3) from Proposi-
tion 4.7 for the family of projections ITl'l : Q x Q — R"~1,

Lemma 5.12. Let ||-|| be a C?- norm on R™ such that det DG(x) # 0 for all x € Sﬂl_ﬂl.
Let © € R™\{0} and Vh € G(n,n—1) such that PI"\(Vy,z) = 0. Then, the differential
Dy PII(Vy, z) : Ty, G(n,n—1) = Vj is an isomorphism.

Proof. Tt suffices to show that Dy PI'l(Vy, z)(u) C (Vo\{0}) for all tangent vectors
u € Ty,G(n,n—1)\{0}. Let u € Ty,G(n,n—1)\{0} and v : (—¢,¢) - G(n,n—1) a
smooth curve such that ~v(0) = Vg, §(0) = u. Now, choose 3 : (—¢,¢) — S""! to be a
smooth curve such that 3(s) € S"~! is orthogonal to v(s) € G(n,n—1) for all s € (—e, ).
Without loss of generality, we assume that § is parameterized by arc-length. Recall
from Remark 5.3 that the assumption that det DG(x) # 0 for all = € S’ml, implies that
the Gauss map G : Sﬂﬁl — S"~1is a C'-diffeomorphism, and in particular, ||| is C*.
Define the mapping ¢ : (—¢,¢) — R by

Then, by (5.5), it follows that

PI(y(s), ) = = —(s) G (B(s)) (5.9)

and thus
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S PIG(5),2)]om0

= (<966 BE) — v DETHEE)EE)) |y 10
= —(0)G7H(B(0)) — ¥(0) DG(B(0))(5(0)).

DVP”'H(VO,QT)( )

Note that DG~ (w) denotes the differential of the inverse Gauss map G~1: $"~! — Sﬁ]l
at a point w € S"!; see Figure 5.3.

Gt
R TN grot DG (w)(v)
g ' T G (w) f—
v ; w
"
_____ . .\,\..--““_- _""‘ n—1
T, 871 Te-1(w)ST)

Figure 5.3. The derivative of the inverse Gauss map.

Thus, by definition, DG~(8(0))(8(0)) € TG*(B(O))SFLT- However, by definition of the
Gauss map G, 5(0) is orthogonal to TG71(5(0))S7H1]1 and hence, Vy = TGfl(ﬁ(o))STﬂl-
Moreover, by the assumption that G~ is a C'-diffeomorphism and the fact that ﬂ(O) #0,
it follows that

DG (5(0))(5(0)) € Vo\{0}. (5.11)
Now, by (5.10) and (5.11), it suffices to check that 1(0) # 0 and (0) =

Since x # 0 and PI'I(5(0),z) = 0, by (5.9), 1)(0) # 0. Now, for s € (—¢, €), ¥(s) equals

(B(s),2)(B(s), G (B(s))—(B(s),z) |(B(s), G (B(s)))+(B(s), DG~ (B(s))(B(s)))
(B(s), G=1(B(s)))

Since DG~1(B(s))(B(s)) € chl(ﬂ(s))STml and ((s) is orthogonal to Tg-1(5(s)) S ”1, for
all s, it follows that 5(s)-DG~(5(s))(8(s)) = 0, and hence

(B(s), 2)(B(s), G (B(s
(B(s)

) = (B(s), ) (B(s), G-1(B(s))) (5.12)

GT(3(5)))?

for all s € (—¢,¢).
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Recall that PI'l(y(0),x) =  — ¥ (0)G~(8(0)) and that (0) # 0. Thus, it follows that
G1(B(0)) = ﬁx. Finally, plugging this into (5.12) yields 4)(0) = 0. O
Lemma 5.13. Let ||-|| be a C?-norm on R™ such that det DG(v) # 0 for all v € Sfml.
Then, the family of projections Il : @ x Q — R"~! satisfies properties (P1), (P2)
and (P3).

Proof. Define T'+— w7 to be a smooth mapping Mat;, (,,_1)(R) — S™~1 such that wr is
orthogonal to Vp for all T' € Matlx(n_l)(R). (For this, we combine the parameterization
¢ : Q — G(n,n—1), o(T) = Vp, with the identification of G(n,n—1) with S"~!;
see Section 2.3.) Moreover, by Remark 5.3, the Gauss map G : Sﬁﬁl — 8" lis a
C'9-diffeomorphism. Thus, by (5.5),

P”'”(VT,x) - r —

for all T' € Maty (,—1)(R) and x € R™.

Recall from (3.8) that, for T' € Mat;(,—1)(R) and = € €,

n—1

(T, z) = Z (PI\(Vp, ), eiT> w;.
i=1

Thus, since G is a C'-diffeomorphism, 7'+ IT1I"I(T, z) is of class C* for all x € Q. This
proves (P1).

Now, from continuity of II"l and DII!'l, it follows that IT!'l and D7III'l are bounded
on Q' x Q for all Q' C Mat;  (n—1)(R) compact. Then, since G is a C10_diffeomorphism,
G~ is a C19-mapping and thus, T+ III'I(T, z) is of class C1. Recall from (2.3) that
here T' = (t1,...,ty—1). Thus, forall j=1,...,n—1, T — %H”‘”(T, ) is 6-Holder on
Q' x Q for all Q' C @ compact. This proves (P2).

For the proof (P3), fix some compact and connected set Q" in @, and let x € R" and
Ty € Q' such that ITI'/(Ty, ) = 0. The product rule for derivations yields that the 7, j-th
entry [DpIIl'I(Ty, z)]; ; of the matrix DpITI'I(Tp, ) is

[DTH”'H (To,x')]z’,j = £ <PH‘H(QP(T)’ x)? e;_l‘> ”T:To

= (Dv P (). 2) (G olTo). o) + (P el 2), el

However, by assumption P!I'l(x(Tp), ) = 0 and hence

DI (Ty, 2))i; = <DvP“'” (sO(To),m) (;w(To)),eiT°>,

t
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Recall the following fact from linear algebra: Let A be an invertible m x m-matrix over
R, {w;}I", a basis of R™, and let {v;}I"; be an orthonormal basis of R™. By A denote
the (m x m)-matrix whose (i, j)-th entry equals (Aw;,v;). Then, the rows of A are the

vectors Aw;, i =1,...,m, represented in the basis {v;}*, and thus, A is invertible.

Hence, since the vectors el-TO form an orthonormal basis of V7, (see Section 2.3), it follows
that DpIII(Ty, x) is invertible and det DpII(Tp, z) # 0. O

Proof of Theorem 5.9. Let § > 0 and consider a C?9-regular norm ||-|| on R™ whose
Gauss map G : STﬁl — S"7! satisfies det DG(v) # 0 for all v € S’ml. Recall from
Section 5.1 that this makes G : Sﬁﬁl — S"=1 a C19_diffeomorphism.

Now, we apply Lemmas 5.11, 5.12 and 5.13, as well as Proposition 4.7. This yields that
for all R C @ open and compactly contained in @, the family ITI'l : R x Q — R™ satisfies
differentiable transversality with constants L = 1 and § > 0. Thus, since G(n,n—1) is
compact, all the constants in Definition 3.9 can be chosen independently of R. Thus,
I @ x Q — R™ satisfies differentiable transversality with L = 1 and § > 0. O

There are two aspects in which Theorem 5.9 is weaker than Theorem 5.5. First,
Theorem 5.5 implies that the conclusions of Theorem 3.11 hold for IIl'l with L = oo,
while Theorem 5.9 only implies the conclusions for L = 1. Second, Theorem 5.9 requires
the norm to be a C?%-norm while Theorem 5.5 requires C™! only. It is obvious from
Definition 3.9 and Lemma 5.11 that any weaker regularity than C*9 will not suffice for
the proof of Theorem 5.9.

The following corollary is a direct consequence of Theorem 5.5 and (the proof of)
Theorem 5.9.

Corollary 5.14. For a norm |- || that is C%! but not C2, the conclusions of Theorem 3.11
as well as metric transversality (Definition 3.2) hold, however, III'l does not satisfy
differentiable transversality (Definition 3.9).

Combining Theorem 5.9 with Theorem 3.14 immediately implies the following: Let || -||
be a C3%-norm on R" for which det DG(v) # 0 for all v € STﬂl and let A C Q with
A" (A) < oo. Then, A is purely (n—1)-unrectifiable if and only if 2"~ (IL).'(A)) = 0
for A" tae. T € Matlx(n_l)(R). However, this is not the strongest possible version
of a Besicovich-Federer projection theorem in this setting. Namely, by combining

Theorem 4.5 and Remark 5.3, we obtain the following corollary.

Corollary 5.15. Let |- || be a C*'-norm on R™ for which det DG(v) # 0 for allv € S’ﬂl
and let A C Q with #™(A) < co. Then, A is purely (n—1)-unrectifiable if and only if
t%”"*l(ﬂrl‘p‘” (A)) =0 for " t-a.e. T € Matyy(,_1)(R).
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54 A NORM FOR WHICH PROJECTION THEOREMS FAIL

As described in Section 5.5.3, it is easy to generate families of linear and surjective
projections for which Marstrand-type projection theorem fails. Similar examples are
obtained from norms for which the Gauss map is not defined or multivalued for some
points; see Figures 4 and 6 in [3]. This raises the natural question, whether there exists
a C'-norm on R™ for which Marstrand-type projection theorems fail. In this section, we
will construct such a norm on R?; see Theorem 5.16.

The following theorem states that there exist C'-norms on R? for which Marstrand-
type projection theorems fail. This result underlines the relevance of Theorem 5.5 and
Corollary 5.7.

Theorem 5.16. There exists a strictly convexr Ct-norm on R? such that conclusion (1)
of Theorem 4.2 fails for the family of projections PI'l : G(2,1) x R? — R2.

For the proof of Theorem 5.16 we will explicitly construct a norm for which conclusion (1)
of Theorem 4.2 fails. Furthermore, we will see that by an analogous construction one
obtains a norm for which conclusion (2) of Theorem 4.2 does not hold; see the remarks
after the proof of Theorem 5.16 for this.

Recall from the proofs of Theorems 4.2 and 5.5 that given a Borel set A C R™, if the
Gauss map of a norm ||-|| does not blow up the #!-measure and dimension of the
exceptional set E C "1 of the family of Euclidean projections, then conclusion (1) of
Theorem 4.2 holds. By the same argument, one can see that if dim £ < 1 and the Gauss
map of a norm does blow up E to a set of positive #!-measure, then conclusion (1) of
Theorem 4.2 fails. Therefore, in order to prove Theorem 5.16, we need to construct a
norm |- || on R? that blows up some small exceptional set F of the family of Euclidean
projections to a set of positive J#'-measure. As pointed out in the introduction, very
little is known about the structure of the exceptional sets E and it is therefore not
sufficient to find a norm whose Gauss map fails to not increase Hausdorff measure
and dimension in general. We need the Gauss map to increase the dimension of an
exceptional set. This makes the proof of Theorem 5.16 a non-trivial matter.

The following lemmas will be used in the proof of Theorem 5.16.

Lemma 5.17. Consider an interval I C R and two continuous curves o : I — R™ and
B : 1 — R™. Suppose that there exists a constant M > 0 for which

B(s) = B(s')| < Mla(s) — a(s)], (5.13)
for all s,s" € I. Then, for all Borel sets F' C [0,1] and for all t > 0,
A (B(F)) < (2M)' A" (o F)). (5.14)

In particular, if follows that if 1 (B(F)) > 0, then 7 (a(F)) > 0.
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We prove Lemma 5.17 and applying a simple covering argument using the definition of
the Hausdorff t-measure 7.

Proof. Let t >0 and F C I a Borel set. In the case when ! (a(F)) = oo, (5.14) holds
trivially. Therefore, we assume that J#!(«(F)) = ¢ where 0 < ¢ < co. Let § > 0. Then,
there exists an open covering A := {4;}Y; of a(F) where N € NU {00} for which
diam A; <9, foralli=1,..., N and Zf\; , diam A! < ¢+ 6. Without loss of generality,
assume that A, N«a(F) # @ foralli=1,...,N. Let s; € I such that a(s;) € 4; N a(F).
Then, by (5.13), the family of closed balls B; with center 3(s;) and radius M diam A;
covers $(F) and diam B; = 2M diam A; < 2M¢ for all i = 1,..., N. This yields

N N
Hhs(B(F)) < Z diam B;) tz diam A;)" < (2M)*(c + 6),
=1 =1

and hence S ((B(I)) < (2M)tc. O

The following lemma is an application of Lemma 5.17.

Lemma 5.18. Let b € (0,00] and let f,g:[0,b] — [0,00) be two strictly increasing
functions . Define h(t) :== f(t)g(t) for allt € [0,b]. Then, for all Borel sets F C [0,b], if
HHf(F)) >0, then ' (h(F)) > 0.

Proof. Let F C [0,b] be a Borel set with 51 (f(F)) > 0. Then, by sub-additivity of J#*
and the fact that f is increasing, there exists a number n € N with n > %, such that for
F, == FN[L,0b], we have 1 (f(F,)) > 0. For s < s’ € [1,b], we have

Applying Lemma 5.17 for v = f : [2,b] — [0,00), B =h: [£,b] — [0,00), and M =

n’

yields s (h(F)) > #(h(F},)) > 0. O

Furthermore, the proof of Theorem 5.16 uses an adapted version of the devil’s staircase

function that we introduce in the following remark.

Remark 5.19. Let K be the triadic Cantor set, i.e. the set that is obtained by removing
the middle third of the interval [0, 1] and then inductively removing the middle third of
each remaining interval. More formally, K is the invariant set of the iterated function
system S = {51, 52} where S; : R — R given by Si(t) = é and Sa(t) = % + %; see [30].

iggg g and 0 < #°(K) < oo.

Set M = °(K) > 0 and define the triadic Cantor function ¢ : [0,1] — [0,1] by
g(t) = ﬁ,%”s(K N [0, 1]); see left-hand side of Figure 5.4. Then, g is non-decreasing
and, since J#° does not assign mass to single points, g is continuous and surjective.

Then, K is a set of Hausdorff dimension s :

Moreover the image of [0, 1]\ K under g consists of countably many points and hence
A (g([0, 1\K)) = 0 and 7 (g(K)) = 1.
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In the sequel, we will need a function f that has similar measure theoretic properties
as ¢g but is strictly increasing. We can construct such a function as follows. Let
f:[0,1] = [0, 1] be defined by f(t) := 3(g(t) + t); see right-hand side of Figure 5.4.

Figure 5.4. The triadic Cantor function and an injective variant.

Then, f is strictly increasing, continuous and surjective, and hence a homeomorphism.
Since g is constant on each interval I that is contained in [0, 1]\ K, ¢ maps this interval
to an interval of half its length. Then, since [0, 1]\ K consists of countably many open
intervals, J#1(f([0,1]\K)) = 1, and hence J#1(f(K)) = 3.
Proof of Theorem 5.16. Notice that in order to prove Theorem 5.16, it suffices to con-
struct a norm |- || on R? and a Borel set A C R? with dim A = d < 1 for which

H'({we S :dimP!(A) < d}) > 0. (5.15)
Namely, if (5.15) holds, then conclusion (1) of Theorem 4.2 fails for a = dim A.

We begin with an outline of our strategy. Let 0 < d < 1 and consider the exceptional set
E C 8! for some (suitable) d-dimensional Borel set A C R? with respect to the Euclidean
projection P®. Then, by Theorem 3.1, FE is a set of dimension < d. We construct the
norm | -|| such that the Gauss map for ||-|| blows up the exceptional set E to a set of
positive ./ '-measure. This construction will roughly go as follows. Identify S with the
interval [0,2). This identification will be denoted by a~! : St — [0,27). We consider a
suitable subset K C o~ '(FE) and construct a strictly increasing function f that blows up
the set K to a set of positive length. Then, the integral F' of f will be strictly convex and
C'. Now, we roll the graph of I back up with « (resp. its extension h); see Figure 5.5.
Thus, the image I" of the graph of F' will be a piece of the boundary of a strictly convex
set which defines a norm || || on R?, see Figure 5.8. We will show that the Gauss map
of this norm restricted to I, will still behave like the function f in terms of its measure
theoretic properties. Finally, we will apply arguments from the proof of Theorem 4.2 to
conclude (5.15).
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Now, we start with the formal proof. Let 0 < d < 1. As established in [25], there exists
a compact set A C R? of dimension d such that dim(F) = d where

E:={we S':dim(PE, (A)) < d}.

Moreover, E is a Borel set (see [24]) and ##!(E) = 0 (see Theorem 3.1). Consider the
parameterization « : [0,27) — S! given by a(t) := (cos(t),sin(t)). Then, since « is
locally bi-Lipschitz, it follows that dim(a~!(E)) = d. Let 0 < s < d. Then, by definition
of the Hausdorff dimension, 5#°(a~!(E)) = oo. Thus, by Theorem 8.13 in [30], there
exists a compact set K C o !(E) with 0 < #°(K) < co. We assume without loss of
generality that K C [0, 1]. In particular, this yields

K C ({t € [0,1] : dim P%, . (A) < dim A}). (5.16)
Now, define f : [0,1] — [0, 1] by
£(t) = % <%81(K)%5([0,t] NEK)+ t) . (5.17)

We have seen this exact construction when K is the triadic Cantor set in Remark 5.19.
Since K is compact, [0,1]\K consists of countably many (relatively) open intervals
in [0,1]. Therefore, we can conclude by the same arguments as in Remark 5.19 that
f:[0,1] = [0,1] is a strictly increasing homeomorphism and .Z!(f(K)) = § > 0. Next,
we define the mapping F : [0,1] — [0, 1] by

Flu) = % /0 " fat.

Then, F : [0,1] — [0,1] is an injective and strictly convex C'-mapping with F(1) < %.
Let S := {r (Z?;’((g) :t€[0,1], r > 0} C R%. Moreover, we define h : [0,1] x [0,1] — S

by h(z,y) := (1 —y) <COS($)), and the curve 7 : [0,1] — S by ~(¢) := h(t, F(t)). Thus,

sin(x)

the curve v parameterizes h(Graph(F')), see Figure 5.5.

1o 1 | —
h 3
™ 4 ‘\\\\\
1l Graph(F)
S t,E(t L
Ve L K
1 t 1 1

Figure 5.5. Construction of the curve v from F : [0,1] — [0, 1].
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Observe that for all ¢ € [0,1],

_ )
alt) = ok (5.18)
Moreover, v is a regular C''-curve and % is given by
. [~ = F(t))sin(t) —cos(t) 1
W) = ( (1— F(t)cos(t) — sin(t)) (}1 f(t)) (5.19)
B B cos(t+5) —sin(t+ 3) 1
= PO G+ 1) cos(t+2) > <4(1_1F(t)) f(t))h (5.20)

Notice that since 0 < F(t) < 1, it follows that 4(1 — F(t)) > 3 and ;7570 <

1
1-F() = 3

Consider the curve 3 : [0,1] — S, defined by B(t) := % We will now establish the

following properties for 5.

(i) B:[0,1] — S! is an injective curve that travels in S in counterclockwise direction
from B(0) = (9) to B(1) where B(1) = (cos(s),sin(s)), with s € (5, ).

(i) 2 (B(K)) > 0.

Let us begin by defining shorter notations for the objects appearing in (5.20). For

t € [0,1], we write
M(t) = Cf)S(t +5) —sin(t+3)
sin(t+5) cos(t+ 3)

1
1= (mlmnf(t>>.

Hence, M(t) € O(2), v(t) € ({1} x [0,3]) C R? and #(t) = (1 — F(t))M (t)v(t), for all
t €[0,1]. Set w(t) := ﬁjg% for ¢t € [0,1]. Then, by (5.20), and the fact that M (t) € O(2)
for all t € [0, 1], it follows that 8(t) = M (t)w(t).

and

Recall that the functions f : [0,1] — [0,1] as well as F : [0,1] — [0, ;] are strictly
increasing. Thus, in particular, ¢t — m is strictly increasing. Also, recall that

AV (f(K)) > 0. Hence, ¢ : [0,1] — [0, 1], defined by

1

Y0 = T Fwy

f(t)

also is strictly increasing, and, by Lemma 5.18, 21 (1)(K)) > 0.
Note that R — ({1} x R) C R?, 2 ~ (1) is an isometric embedding (i.e. a 1-bi-Lipschitz

mapping) and v(t) = (w%w)' Therefore, v : [0,1] — {1} x [0,3] is injective with

0(0) = (§) and v(1) = (1yaa ray) )» and 21 (v(K)) > 0.
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Recall that w(t) = |v8‘, for t € [0,1]. Thus, w : [0,1] — S! is an injective curve that

v
travels from w(0) = v(0) = ({) to w(1), see Figure 5.6.

St
zes 1 T T\\.\ ..... o
wo) oy T w(l)
0 1
’ w(0) = v(0) |
1

Figure 5.6. Construction of v and w from .

For t € [0, 1], denote by 6(¢t) € [0,27) the counterclockwise angle from the x-axis to w(t),

thus
[ cos(0(t))
w(t) = (Smw(t))) . (5.21)

Recall that v(1) = <1/4(1_1F(1)))) and notice that

1 B B cos(5 — 1)
aa-ray)) W) =8> Gy

Therefore, it follows that w(1) = o) — (Z?j((g((;))D with 6(1) € (0,5 — 1). Moreover,

from the fact that ({1} x [0,3]) — ST, 2 +— é—| is a bi-Lipschitz mapping, it follows that
AN (w(K)) > 0.

Figure 5.7. From w(t) to 5(t) by left multiplication with M(¢t), t € [0, 1].
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Now, consider the curve 3 : [0,1] — S, ¢+ M(¢t)w(t). The matrix M (t) is the matrix
of the counterclockwise rotation about the angle ¢ + 7.

Thus, it follows that
~ [cos(t+ 5 +0(t))
b = (sin(t + I+ 0(t))> ' (5-22)

This makes 3 : [0,1] — S* an injective curve that travels in S! in counterclockwise

direction from £(0) = (9) to (1) = (Z?jg), where s := 14 5 + 0(1) and thus
s € (1+ 5, m). See Figure 5.7. This proves property (i). Moreover, it follows from (5.21)
and (5.22) that |5(t) — B(t')] > |w(t) — w(t')], for all t,¢' € [0,1]. Thus, by Lemma
5.17 and the fact that #!(w(K)) > 0, it follows that ##*(3(K)) > 0. This proves

property (ii).

Denote the image of [0, 1] under v by I'. From our bounds for the values of g at t =0
and t = 1 (see property (i)), it follows that we can extend the union I U (—I") to the
image of a closed C'-curve I, by gluing arcs R and —R to I and —TI', such that the
tangential directions at the gluing points agree, as illustrated in Figure 5.8.

Figure 5.8. Normal sphere that contains the arc I'.

Observe that by injectivity of 3, see property (i), ' is a simply closed curve that bounds
a strictly convex, antipodally symmetric subset of R? with non-empty interior. Hence, T
defines a norm |[|- || on R? by setting S|, := I'. Moreover, since 3(t) is tangential to I at
y(t) € T for t € [0,1], the Gauss map G : S|, — S* of the norm ||-|| in such points is
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given by

G(v(t) = Rz B(1), (5.23)
where R% denotes the counterclockwise rotation about the angle 7.
We will now prove that the family PlI'l : G(2,1) x R? — R? of closest-point projections

with respect to ||| satisfies (5.15). For this, first, recall from (4.4) and Lemma 5.6

that dim PUM'(A) = dimP{}(w)L(A) where &(w) = éjigzg‘, for all w € S'. Thus,

g_l(v) = G(1Y%), for all v € S*. Using this, as well as the fact that norms in R? are

[[]

bi-Lipschitz equivalent (see (b) in Section 5.1), it follows that,

A ({w e 8" : dim P} (A) < dim A})

="' ({ue S': dim P (A) < dim A})

= A (G (u) s u e S, dim PE (A) < dim A}) (5.24)
= " ({G(7%) 1w € S, dim PE (A) < dim A})

[l

="' ({G(v) :v € S|, dim P (A) < dim A}).
On the other hand, employing the fact that I' C .S M as well as equation (5.23) yields

A {G(v) v € S|, dim P (A) < dim A})

> A ({G(v) v €T, dim PF (A) < dim A}) 5.25)
5.25

= A ({G(y(t) : t € [0,1], dim PF (A) < dim A})

=M ({B(t) : t € [0,1], dim PF, (A) < dim A}).

Moreover, by (5.16) and the fact that s#1(8(K)) > 0, it follows that
A {B(t) : t € [0,1], dim PE (A) < dim A}) > #1(B(K)) > 0. (5.26)
Observe that (5.15) now follows from (5.24), (5.25) and (5.26). O
Notice that the Gauss map G : S‘l‘,H — S1 of the norm || -|| constructed in the proof above

may be a 6-Holder mapping for some § > 0, depending on the geometry of K. This would
imply that there exists a C™%-norm for which conclusions (1) and (2) of Theorem 4.2
fail. For example, if K was the triadic cantor set, the mapping f : [0,1] — [0, 1] defined

in (5.17) (and thus also the Gauss map G) would be }zggg—Hélder. As pointed out in

the introduction, the study of the geometry of the exceptional sets is an independent

domain of research and so far, little is known about the geometry of the exceptional
sets for the family of Euclidean projections (in the case n = 2 as well as in general). In
particular, we do not know, whether a set like the triadic Cantor set appears as a subset
of such exceptional sets.
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Assume that we replaced the set A in the proof of Theorem 5.16 by a set A C R? of
dimension d > 1 whose exceptional set E = {w € S : dim(P,.(A) < 1} is a set of
dimension d; the existence of such a set A is addressed in [13]. Then, it follows that
there exists a norm |- || on R?, for which (2) of Theorem 4.2 fails.

In order to generalize the construction in the proof of Theorem 5.16 to families of
projections P : G(n,n — 1) x R™ — R" onto (n—1)-planes, one would have to find a
suitable analog of the function f (see (5.17)) on an (n—1)-dimensional cube. We do not
know how one could define such a function, given the fact that the structure of (compact
subsets of) the exceptional sets of the family of Euclidean projections is unknown.

On the other hand, one could generalize Theorem 5.16 to families of projections onto
lines by taking products and looking at the surface of revolution of SM as the norm
sphere in R™. However, such a result currently is not of great relevance since for most
norms it is not known if the conclusions of Theorem 4.2 hold. This issue will be addressed

in the subsequent section.

5.5 PROJECTIONS WITH CODIMENSION GREATER THAN ONE

In this section we address the case of projections onto m-planes induced by a norm for
the cases when m < n — 1. It turns out that our methods developed in the previous
sections do in general not apply when m < n — 1. Moreover, we will see that norms
induced by an inner product represent an exception. Finally, we will outline that there
exist many families of linear and surjective projections that are not induced by norms.
This underlines the relevance of Theorem 4.2 independently of Theorem 5.5.

5.5.1  Non-linearity for codimension greater than one

As pointed out in Section 5.1, for every strictly convex norm ||-|| in R™ and for every
0 < m < n, the family PI'l : G(n,m) x R" — R" of closest-point projections with
respect to ||-|| is well-defined. Nevertheless, our results in Sections 5.2 and 5.3 only
cover the case when || -|| is sufficiently regular and m = n — 1. Both these restrictions
are necessary for our methods of proof to work. In the case when m = n — 1, our main
tool for describing the projections Py : R™ — V, V € G(n,m) is the Gauss map. The
regularity of ||-|| in the first place guarantees the existence and regularity of the Gauss
map. Once the Gauss map is known to be well-behaved it basically suffices to establish
and exploit the fact that the projections Py are linear maps, when m = n — 1. However,
in general projections P : R™ — V onto m-planes V' € G(n,m), with m < n — 1, fail to
be linear.

To see this consider the p-norm || -||, on R" for 2 < p < oo, defined by

1
lllp = <Z !ivil”) (5.27)
i=1
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for x = (x1,...,2y,) € R™ Then, ||-||2 equals the Euclidean norm on R".

Notice that |- |, is k-times continuously differentiable in R™\{0} if and only if its p-th
power |||/} is k-times continuously differentiable in R™\{0}. The map t — [¢|? is k-times
continuously differentiable in R, whenever p > k. Moreover, the k-th differential at
t € R then equals c(k, p)|t|P~* and the constant c(k, p) depends on k and p only. Hence,
we can conclude that |- ||, is C*9 for some § > 0 whenever k < p. Then, since |- |2 is
known to be C'°°, we may conclude that, for all 2 < p < oo, Theorem 5.5 applies and so
does Theorem 5.9 for L = K — 1 and some § > 0.

Let 2 < p < oo and by P : G(n,m) x R® — R" denote the family of closest-point
projections Py : R — V, V € G(n,m) with respect to || -||,.

Proposition 5.20. Let 2 < p < co. Thus, P: G(n,1) x R™ — R" is a family of linear
projections if and only if p = 2.

Notice that it suffices to prove Proposition 5.20 for the case when n = 3. The proof is a
straight-forward calculation.

Proof. By e1, es, e3 denote the standard basis of R3. Define e = e; + e + e3 and define
L € G(3,1) by L = {te : t € R}. Then, for all i = 1,2,3, the projection of e; onto
L with respect to |- ||, is given by Pr(e;) = tie where ¢t = t; minimizes |le; — te||,, or
equivalently, ¢ = t; minimizes h;(t) := ||e; — te|lb = |1 — t|P + 2|¢|P.

Assume that 0 < ¢ < 1, then hi(t) = (1 — t)P + 2tP. Thus, setting h;(t) = 0, yields
—(1 —=t)P~1 4 2tP71 =0, and hence, t = (2711 + 1)L If we proceed in the same way,

assuming ¢ < 0 or ¢t > 1, we arrive at a contradiction. Thus, since we know that Pf(e;)

1
and thus a minimizing ¢; exists, it follows that ¢; = (27-1 +1)~! and
1
Piles) = (277 +1) e,
for all ¢ = 1,2,3. By an analogous argument, one can show that
1,1 1
Pr(e; +ej) =2p-1(2p-1 +1) "€

for all ¢ # j. Then, Pr(e;) + Pr(ej) = Pr(e; + ¢;) if and only if p = 2. Hence, since the
Euclidean projection PE = P? is known to be linear for all L € G(3,1), this completes
the proof. O

Notice that the p-norm can also be defined for 1 < p < 2. A discussion of projections
theorems for p-norms with 1 < p < 2 in the case when n = 2 can be found in [3].

5.5.2  Projections induced by an inner product

We say that a norm |- || is induced by an inner product < -, - » on R”, if ||z]|?> =<z, x>
for all z € R™. It is a well known fact that a norm R" is induced by some inner product
if and only if S’ﬁl is the surface of an n-dimensional ellipsoid.
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Recall that we denote the Euclidean inner product (the scalar product) in R” by (-, -). Let
e1,...,en be the standard basis of R” which is an orthonormal basis with respect to (-, -).
Moreover, let < -, - » be an inner product on R™ and €1, ..., €, an orthonormal basis of R"
with respect to < -, - ». Then, the linear mapping ¥ : (R",< -, - ») — (R™, (-, -)) defined
by ¥(e;) =e; for all i =1,...,n, is an isometry in the sense that <z,y > = (¥ (z), U(y))
for all x,y € R™. Hence, it follows that

Pl (@) = ¢~ o Py 0 U(a), (5.28)

for all z € R™ and V € G(n,m). To see this, let x € R™ and V' € G(n,m), then by
definition of PI'l, we have ||z — P)!(z)| = dist, (V,2). Since ¥ is an isometry, this
implies that |¥(x) — \II(PJJ” ()| = distg(¥(x), ¥(V)), and hence, by definition of the
Euclidean projection, Py, (¥(x)) = W(Py)(«)) which implies (5.28).

Therefore, in particular, the projection P‘w : R™ — V is linear and surjective for all
V € G(n,m). Moreover, the mapping ¢ associated with the family PI'l : G(n, m)xR"™ —
R™ is given by W. Since, ¥ is a linear bijection, 4 : G(n,m) — G(n,m) is a smooth
diffeomorphism of manifolds and thus preserves measure and dimension. Therefore,
Theorem 5.5 applies and Definition 3.9 holds with L = cc.

5.5.3  Linear projections that are not induced by a norm

In this section, we wish to point out that families of projections induced by norms
represent a rather small part among all families of linear and surjective projection that
satisfy the conditions of Theorem 4.2.

In the spirit of the methods from Section 5.2, every mapping g : G(n,m) — G(n,m)
defines a family of linear and surjective projections P : G(n,m) x R™ — R™ by setting
Py(x) = PgE(V) (z). The mapping ¢ associated with this family of projections P as
defined in (4.1), equals g. Thus, if g is dimension non-decreasing and has the inverse
Lusin property for o,,, (see Section 2.1), then Theorem 4.2 applies to the family
P:G(n,m) x R" — R".

In order for a mapping ¢ : G(n,m) — G(n,m) to be dimension non-decreasing and
possessing the inverse Lusin property, properties such as continuity or injectivity are
not required. However, for families of linear projections that are induced by a strictly
convex C''-norm it is known that ¢ is given by the inverse Gauss map G~!. Recall from
Lemma 5.2 that G~! is known to be a homeomorphism in this setting. Moreover, if 4 is
given in terms of the inverse Gauss map of a strictly convex C''-norm, by conclusion (ii)

of Lemma 5.2, & possesses at least two fixed points.

This allows the construction of many families of linear and surjective projections that
are not induced by a norm and for which Theorem 4.2 holds. In particular, it is easy to
explicitly define and illustrate such examples in R2.
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For all angles 6 € [0,27), let vy = (gfrfg) € St and Ly = fuj. Consider a mapping
a:[0,27) — (0,7) for which
a(f) = a(@+ ) (5.29)

for all § € [0, 7). We define wg € S! to be
W — cos(9—%+a(0))
07 sin(0-Z+a(0)) 7

see left-hand side of Figure 5.9. Define a family of projections P* : G(2,1) x R? — R?
as follows. For 6 € [0,7) and = € R?, let PP (x) be the intersection point of the line
Lo = vi with the affine line {z + rwy : r € R}; see right-hand side of Figure 5.9.

Figure 5.9. Construction of the projection Py .

Then, for all Ly, 6 € [0,27), we obtain Ker pPp = {z 4+ rwy : r € R}. Thus, the mapping
¢ :G(2,1) — G(2,1) for the family P® is given by 4 (vy) = wy. Thus, by identification
of G(2,1) with S!, and S* with [0, 27), the mapping ¢ can be viewed as the mapping
4 : 0,27) — [0,27) given by

G(0) =0+ a(0),

where angles ¢(0) that are greater than 27 are identified with ¢ (6) — 2w. Assume that
there exists a strictly convex C'-norm |- || on R? such that the family of projections
induced by || -|| equals the family P®. By the considerations above, ¢ is a homeomorphism
with at least four fixed points (where always two and two correspond to antipodal
directions in S'). Thus, every mapping « : [0,27) — (0,7) such that 6 — 0 + «(6) is
dimension non-decreasing and has the inverse Lusin property, but is not a homeomorphism
with at least four fixed points, yields a family of linear and surjective projections that
is not induced by a norm and satisfies Theorem 4.2. For example, consider the case
when « : [0,27) — (0, 7) is constant, i.e., a(f) = ¢, for all § € [0,27), where ¢ € (0,7)
a constant. Then, P® is induced by a strictly convex C'-norm if and only if ¢ = 0.
Moreover, in this case the norm is the Euclidean norm. However, for any choice of
¢ € (0,7), Theorem 4.2 applies to P?.
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Chapter 6
RIEMANNIAN MANIFOLDS
OF CONSTANT SECTIONAL CURVATURE

6.1 HYPERBOLIC PLANE AND TWO-SPHERE

In this section, we establish Marstrand-type projection theorems for the family of
orthogonal projections in the hyperbolic 2-plane as well as in an open half-sphere
of S2. For this, we will prove that a slightly adapted version of the respective family
of projections satisfies differentiable transversality in the sense of Definition 3.5. Our
proofs are based on standard tools from hyperbolic and spherical trigonometry that can

be found in [6], [8], and [10].

The content of this section was published in [4].

6.1.1  Hyperbolic plane

By H? denote the hyperbolic 2-plane and by d the hyperbolic metric on H?. We fix a base
point p € H? and identify the tangent plane TpH2 with R? and consider the exponential
mapping exp,, : R? — H? of p for H?. Let L € G(2,1). Then exp, (L) is a geodesic line in
H? and thus a geodesically convex subspace of H?. Since H? is simply connected and of
non-positive sectional curvature, it follows that for all € H?, there exists a unique point
y € exp,(L), such that dist(z,exp,(L)) = d(z,y). We call this point y € exp,(L) the
projection of z to exp,(L) and denote it by Pr(z). We will therefore call the mapping

P:G(2,1) x H? — H?, (6.1)

defined by P(L, x) := Pr(z) for x € H? and L € G(2, 1), the family of closest-point projec-
tions in H2. Moreover, Proposition 2.4 in [8] implies that the mappings Py, : H? — exp, (L)
are 1-Lipschitz and that for all 2 € H? and L € G(2,1) the geodesic segment [z, Pp(x)]
intersects exp,,(L) orthogonally in the point P (x). Therefore, we will sometimes also
refer to P : G(2,1) x H? — H? as the family of orthogonal projections (along geodesics)
in H2. In particular, it follows that for all A C H?, dim P (A) < dim A.

In order to establish differentiable transversality for the family of orthogonal projections
in H2, we define a family of abstract projections associated with P : G(2,1) x H? — H?

as follows.
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For § € R, define vg := (¢%§) € S* and Ly € G(2,1) to be the line

sin 0
Ly :={rvg:r e R} (6.2)
Define the family of abstract projections II : R x H? — R by
I1(0, z) := +d(p, Pr,(x)), (6.3)

where = is to be interpreted as follows: II(0, z) = d(p, Pr,(x)), if Pr,(z) = rve for r > 0,
and I11(0, x) = —d(p, Pr,(z)), if Pr,(z) = rvg for r < 0. Notice that from this definition,
it immediately follows that IT : R x H? — R is continuous and that for all z,y € H?,
0 € R,

d(Pry(x), PL,(y)) = 10, z) — I1(6, )|, (6.4)

and

1160 + 7, z) =11(0, x). (6.5)

Hence, by (6.4) and the fact that the projections Py, : H? — exp,(L) are 1-Lipschitz,
it follows that the abstract projections Iy : H? — R, given by mg(x) := II(6, x), are
1-Lipschitz, and thus dimension non-increasing.

In order to express Ily in a way that allows us to study its transversality and regularity
properties, we will employ some basic facts from hyperbolic trigonometry.

Consider a geodesic triangle in H? with side lengths a, b, ¢ and opposite angles o, 3, .
It holds that

cosh a = cosh b cosh ¢ — sinh bsinh c cos a. (6.6)

This formula is called the hyperbolic law of cosines. A proof can be found in [8]. Now, con-

sider a geodesic triangle as with v = 5. From (6.6), we obtain cosh ¢ = cosh bcosha and

cosh a = cosh b cosh ¢ — sinh bsinh ¢ cos . Thus, ggzﬁg = cosh b cosh ¢ — sinh bsinh ¢ cos a
which implies — %ﬁg sinh?b = — sinh bsinh ccos a. In consequence, for geodesic triangles
with v = 5:

tanh b = tanh ccos a. (6.7)

Now, for each point € H and every angle # € R, denote by a,y € [0,27) the
counterclockwise angle from vg to the geodesic segment connecting the base point p
to . Let # € R and x € H? such that 0 < ay9 < 5. Then, Pr,(x) = rvg where
r = d(Pr,(z),p) > 0 and the three points p, z and Pr,(x) span a geodesic triangle with
side lengths a = d(z, Pr,(x)), b = d(p, Pr,(x)), ¢ = d(p, x) and opposite angles o = a g,
B,v=7%. By (6.7), it follows that tanh d(p, Pr,(x)) = tanh d(p, x) cos(a, ). Hence, by
the definition of Il and the fact that Pr,(z) = rvy, with r = d(Pr,(x),p) > 0, it follows
that tanh I1(0, x) = tanh d(p, z) cos(a.g), for all € R and all z € H2. The other cases

can be treated similarly. Hence, for all § € R and all x € H?,
tanh I1(#, x) = tanh d(p, x) cos(ag,). (6.8)

60



For each point x € H?, let a(z) € R, denote the counterclockwise angle from vy to the
geodesic segment connecting the base point p to x, by a(x) € [0,2r). It is easy to check
that cos(agp) = cos(fd — a(x)) for all € (0, 7). In conclusion:

tanh d(p, Pr,(z)) = tanh d(p, ) cos(f — a(z)), (6.9)

for all z € H? and § € R. Motivated by (6.8), we introduce a new family of abstract
projections IT : R x H? — R by

I1(6, z) := tanh d(p, ) cos(a(z) — 6). (6.10)
Note that thus, for all # € R and z € H?,
I1(6, z) = tanh(I1(6, z). (6.11)

Therefore, II: R x H2 — R is continuous with respect to d. Moreover, note that tanh is
a 1-Lipschitz function on R and recall that for all § € R, Ily is 1-Lipschitz. Therefore,
Iy : H2 — R is 1-Lipschitz for all 8 € R.

Let € be a closed ball with center p and a large radius R > 0 in H? and consider the
restricted family of projections I : R x 2 — R. We will now prove the following main
result of this section.

Theorem 6.1. The family of abstract projections I:RxQ—R satisfies differentiable

transversality with L = oo.

Since tanh is locally bi-Lipschitz on R, as a consequence of Theorem 3.7, Theorem 6.1
and (6.10), the conclusions of Theorem 3.7 as well as Theorem 3.14 hold for the family
II: RxQ — R of abstract orthogonal projections on the hyperbolic plane with parameter
L = oco. This can be formulated equivalently for the family P : G(2,1) x H? — H?,
defined in (6.1), as follows.

Corollary 6.2. For all Borel sets A C H2, the following hold.
(1) If dim A < 1, then
(a) dim(PrA) = dim A for oo1-a.e. L € G(2,1),
(b) For 0 < a<dimA, dim({L € G(2,1) : dim(PrA) < a}) < .
(2) Ifdim A > 1, then
(a) 1 (PLA) >0 for oa1-a.e. L € G(2,1),
(b) dim({L € G(n,m) : (P, A) =0}) < 2 — dim A.
Moreover, a set A C H? with e%”l(g) < oo is purely 1-unrectifiable if and only if

HY(PL(A)) =0 for og1-a.e. L € G(2,1).
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Consider the mapping ® : R x ((Q x Q)\Diag), (6, z,y) — ®(6, z,v), given by

ﬁ(ga l’) — ﬁ(ev y)
dlz,y)

(0, x,y) = (6.12)

where Diag denotes the diagonal of Q x €. The following lemma will be crucial for the
proof of Theorem 6.1.

Lemma 6.3. There exists a mapping D : (2 x Q)\Diag — [0,00) and a mapping

0 : (Q x Q)\Diag — [0,27) such that
(1) for all (z,y) € (2 x Q)\Diag and all angles § € R,
(0, ) — I1(0,y) = D(x,y) cos( — O(z, 1)),
(2) there exist constants ¢ > 0 and C > 0, such that for all (z,y) € (2 x Q)\Diag,

D(z,y)

c <
~ d(z,y)

<C.

Proof. Let (z,y) € (2 x )\Diag. Throughout this proof, we will use the following
notation.
di = d(p,z), d2 =d(p,y), d=d(z,y),

N - (6.13)
dy = tanhd(x,p), do = tanhd(y,p).

By (6.9), we can thus write II(6, z) = d cos(d — a(x)) and II(0,y) = dy cos(d — a(y)),
for all # € R. In order to make the calculations clearer, write @« = 6 — a(y) and
ap = a(z) — a(y). Thus, we obtain

I1(A, z) = dy cos(a — ),

N N (6.14)
I1(0, y) = da cos(av),
and by an elementary calculation,
110, z) — I1(0,y) = (dy cos o — da) cos a + dj sin ap sin a. (6.15)
Define
A= d~1 cos g — (172,
(6.16)

B = d1 sin Q.

Thus, in particular, A and B cannot both be 0, since (z,y) ¢ Diag. This allows us to
make the following definition.
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Let & € (0,27) be the angle that satisfies

A B
cosG¢ = —— and sinad = ——— (6.17)

VAT B2 VAT B2,

From (6.15) it follows that II(6, z) — IL(0,y) = v/A2 4+ B2 cos(ox — &). Set 6 := a(y) + é
and D := /A2 + B2. Observe that by their definition, both D and 0 are independent
of . Thus, D = D(z,y) and 6 = 0(x,y) are well-defined functions on (€ x Q)\Diag.
Moreover, by definition of a;, & and é, we conclude

I1(9, z) — I1(0,y) = D cos(6 — 6).

This completes the proof of Claim (1) in Lemma 6.3.

In order to prove, it suffices to show that ¢ < g((f’;’)) < C for constants ¢ > 0 and C > 0

independent of x and .

By the hyperbolic law of cosines (6.6), applied to the geodesic triangle spanned by p,
and y, it holds that cosh d = cosh d; cosh do — sinh d; sinh ds cos arg. This implies

hd
— 2tanh dq tanh ds cos o = 2 ( cos > .

_— - 6.18
cosh dj cosh dsy ( )

Applying (6.16) and (6.18), as well as elementary product-to-sum identities for hyperbolic
and trigonometric functions, yields

2 cosh d cosh dq cosh dy — cosh? dy — cosh? ds

A2+ B? =
cosh? d cosh? ds

(6.19)

Note that the product cosh dj cosh ds is greater than 1 and is bounded from above since
z,y € Q and Q is compact. So we can derive the following upper bound for A% + B?:

1 1
_|_
cosh?d;  cosh?d;

A* 4+ B? < ( > (coshd — 1) < 2(coshd — 1).

Hence, we conclude that

VA2 4+ B2 < \/ix/coshd —1
d - d )

Note that d — 7vcosdhd*1 is a continuous function in d > 0 and that the limit towards 0 is

lim vcoshd — 1 1

— = —F= < o0
d—0+ d V2
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Thus, by the compactness of €2, it follows that
VA% + B?
— < C
d <
for some constant C' > 0 only depending on the diameter of 2. This proves the right-hand
inequality in (2). Now, let us prove the left-hand inequality.
Using the notation from (6.13), we define p = d; — do. By the triangle inequality

p € [—d,d], i.e., |d| > |p| and therefore coshd > cosh p. The following calculation only
uses the definition of p and elementary calculation rules for cosh.

2 cosh d cosh dy cosh dy — cosh? dy — cosh? do
= 2coshdcosh(dy + p) cosh dy — cosh?(dy + p) — cosh? dy

1 1
= coshd(cosh(2ds + p) + cosh p) — §(cosh(2(d2 +p)+1)— i(cosh(Qd,g) +1)

1
= coshd(cosh(2ds + p) + cosh p) — §(cosh(2(d2 + p) + cosh(2dsz)) — 1

cosh d(cosh(2da + p) + cosh p) — cosh(2da + p) coshp — 1
= coshdcosh p — 1+ (coshd — cosh p) cosh(2dz + p)
> coshdcoshp —1 > coshd — 1.

Note that from the Taylor series representation of cosh, it follows that coshd — 1 > %d2.
Thus, the estimate,

1
2 cosh d cosh dy cosh dy — cosh? dy — cosh? dy > idz, (6.20)

follows. Now, since z,y € Q and  compact, there exists a constant ¢ > 0 (only

depending on 2) such that > ¢. Consequently, by (6.19) and (6.20), it

1
cosh? dq cosh? ds

follows that 7“4?]32 > cfor c = \/g which completes the proof. O

Proof of Theorem 6.1. By (6.10), it follows that 6 — ﬁ(@, x) is C*° and that the map-
dl
dor
compact, the first condition in (a) in Definition 3.5 is satisfied (for L = 0o0). By (ii) in

pings (6,z) — ;0 — ﬁ(@,x), for all I € N, are continuous. Then, since © and S! are

Remark 3.6 we may neglect the second condition in (a).

From Lemma 6.3, it follows that

l

%@(9, z,y) € {il(;((i’;)) sin(0 — O(z,9)), 25 o560 — b(a, y))} (6.21)

for all z,y € (2 x 2)\Diag, § € R and [ € NUO0. Thus, as in the proof of (a) above, the
family II : R x Q — R satisfies (¢) in Definition 3.5 with L = oo and & = 0.

Now, let ¢/ > 0 such that ¢ < {5 for the constant ¢ from Lemma 6.3. Assume that
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|®(0,z,y)| <. Applying Lemma 6.3, yields

| cos(6 — O, y)| < ¢

d D
— - _
de (97$7y)

and thus it follows that ‘%@(9, z,y)| > 5. Hence, (b) from Definition 3.5 is satisfied as
well. O

6.1.2  Two-sphere

Consider the Euclidean two-sphere S? embedded in R?, equipped with the angular metric
d. Fix a base point p € S?. Identify the tangent plane TpS2 with R? and consider the
exponential mapping exp,, : R? — S2. Let L € G(2,1), then exp, (L) is a (simply closed)
geodesic line in S2. Let Q C S? be the closed ball in $? with radius 0 < R < 5 and
center p.

Observe that due to the restriction R < § for the radius of {2 the orthogonal projection
of Q onto each geodesic line through p is well defined. Namely, for all x € € and
L € G(2,1), there exists a unique point ¢ € exp,(L), such that d(z, q) = dist(z,exp,(L));
see [8], pages 176-178. Denote g by Pr(z). Moreover, by the same argument as in the
hyperbolic plane, the geodesic segment connecting x to P () is orthogonal to exp,(L).
Therefore, we call the mapping P : G(2,1) x Q — Q defined by P(L,x) = Pp(z), for
all z € Q and L € G(2,1) the family of orthogonal projections. In contrast to the
previous section (hyperbolic plane), Pr, is not 1-Lipschitz. However, for all L € G(2,1),
Pr, is M-Lipschitz for some constant M > 0 that only depends on R, and moreover,
Pr(x) € Qfor all L € G(2,1) and = € Q. In particular, it follows that for all A C Q,
dim Pp,(A) < dim A.

Let Ly € G(2,1) for § € R as in (6.2) and define the family of abstract projection
II:Rx Q2 —R by
I1(0, z) := £d(p, Pr,x). (6.22)

where the notation =+ is interpreted as in (6.3). It is immediate from this definition that
d(Pyz, Ppy) = [11(6, z) — 11(6, y)|. (6.23)

The following formula is called the spherical law of cosines, a proof can be found in [8].
For a geodesic triangle with side lengths a, b, ¢, each < 7, and opposite angles «, 3, ~, it
holds that

cos a = cos b cos ¢ + sin bsin ¢ cos a. (6.24)
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Applying the spherical law of cosines twice, yields
tanb = tan ccos «, (6.25)

where v = . The proof of (6.25) is analogous to the proof of (6.7).

For each point z € Q and every angle § € R, let us denote by a,g € [0,27) the
counterclockwise angle from vy to the geodesic segment connecting the base point p to x.
Moreover, denote the counterclockwise angle from vy to the geodesic segment connecting
the base point p to x, by a(z) € [0,27). An argument similar to the proof of (6.8) and
(6.9) yields that

tanllgax = tan(d(p, x)) cos(ay )
(6.26)
= tan(d(p, x)) cos(f — a(x)).

Motivated by (6.26), we define a new family of abstract projections II:RxQ— R, by
I1(0, z) := tan(d(p, z)) cos(d — a(x)). (6.27)

Then, for all 8 € R and z € ), we obtain
I1(0, z) = tan(II(6, z)) . (6.28)

Thus, II is continuous with respect to the metric d, and for all § € R, ﬁg is Lipschitz for
some Lipschitz constant that only depends on the radius R of €.

Now, for all angles 6§ € R and all pairs of distinct points x,y € ) define,

16, z) — (0, y)

O(0,x,y) = A@.9)

We will now prove the following main result of this section.

Theorem 6.4. The family of abstract projections I:RxOQ—R satisfies differentiable
transversality with L = oo.

Since tan is bi-Lipschitz on [~R, R] where 0 < R < § is the radius of 2, the following
corollary is a straight-forward consequence of Theorem 3.7 and Theorem 6.4.

Corollary 6.5. Corollary 6.2 (with H? replaced by Q) holds for the family of orthogonal
projections in the half-sphere P : G(2,1) x Q@ — Q .

Consider the mapping @ : R x ((©2 x Q)\Diag), (0, z,y) — &)(0, x,y), given by

10, x) — 11(, )

(i(gax?y) - d(x,y) )

(6.29)

where Diag denotes the diagonal of Q2 x €. The following lemma will be crucial for the
proof of Theorem 6.4.
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Lemma 6.6. There exists a mapping D : (2 x Q)\Diag — [0,00) and a mapping

~

0 : (Q x Q)\Diag — [0,27) such that

(1) for all (z,y) € (2 x Q)\Diag and all angles 6 € R,
1(0, 2) — T1(0,y) = D(x,y) cos(0 — (. y)),

(2) there exist constants ¢ > 0 and C' > 0, such that for all (x,y) € (2 x Q)\Diag,

c<

<C.

Proof. Let (z,y) € (2 x Q)\Diag. Throughout this proof, we will use the following

notation:

dl = d(p,ZE), d2 = d(p7 y)a d= d(l‘ay)a

_ _ (6.30)
dy = tand(z,p), do = tand(y,p).

By (6.9), we can thus write II(6, z) = d; cos(6 — a(z)) and II(6,y) = ds cos(d — a(y)),
for all # € R. In order to make the calculations clearer, write @« = 6 — a(y) and
ap = az) — a(y). With this notation, the proof of Claim (1) is similar to the proof of
Claim (1) in Lemma 6.3.

In order to prove Claim (2), it suffices to show that ¢ < 7”‘2;32 < C, for constants
¢ >0 and C' > 0 independent of x and y. Recall that A and B are defined as

A= d~1 cos oy — c?z and B = d~1 sin ap, (6.31)

where ap = a(z) — a(y), see (6.14) and (6.16).

By the spherical law of cosines (6.24), we have
cos d = cos dy cos do + sin d; sin da cos ag.

Since dy and da are both strictly smaller than 7, cosd; cosdy # 0, and we obtain

d
— 2tand; tandacosapg =2 (1 — . (6.32)
cosdy cosdy

From (6.31), (6.32) and elementary calculation rules for trigonometric functions it follows

that

A2+ B2 = cos? dy + cos? dy — 2 cosd cos dy cosds .

6.33
cos? dy cos? dy ( )

Recall that dy,ds € (0, R] where 0 < R < §. Therefore 0 < cosd; and cosds < 1.
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Hence, we can derive the following lower bound for A% + B2:

2cosdy cosdy — 2 cosdcosd; cos dy 2(1 — cosd)
A2+ B? > = > 2(1 — cosd).
+ - cos? dj cos? ds cosdjcosdy — (1= cosd)

This implies that
VA2 + B2 V1 —cosd
y V2 —

(6.34)

The function d — 7”2;0861 is continuous on (0, 00) and limg_,q+ 7%00561 = % > 0. Since

0 < d < 2m <, it follows that there exists a constant ¢ only depending on R such that
V2¥i=cosd > ¢ This together with (6.34) proves the left-hand inequality in Claim (2).

Now, let us prove the right-hand inequality. We define p = d; — da, thus by the triangle
inequality 0 < |p| < |d| < 7 and therefore cosd < cos p. The following calculation only
uses the definition of p and elementary calculation rules for cos.

cos® dy + cos® dy — 2 cos d cos dy cos dsy

= cos®(dy + p) + cos® dg — 2 cosd cos(dy + p) cos da

= %(COS(Q(dQ +p)+1)+ %(COS(2CZ2) + 1) — cosd(cos(2dy + p) + cos p)

1
= 1+ 5(cos(2(d2 + p)) + cos(2d3)) — cos d(cos(2dz + p) + cos p)

1 4 cos(2ds + p) cos p — cos d(cos(2dy + p) + cos p)

1 — cosdcos p+ (cos p — cosd) cos(2da + p)

< 1—cosdcosp+ (cosp —cosd) < 2(1— cosd).

Note that 2(1 —cosd) < d? for 0 < d < 2R < 7. Consequently, the estimate

cos® dy + cos® dy — 2 cosdcosdy cosdy < d? (6.35)
follows. Recall that dy,ds < R. Set C = ﬁ, then m < C and hence, by
(6.33) and (6.35), we obtain YAZE® < ¢ O

6.2 HYPERBOLIC N-SPACE

By H" denote the hyperbolic n-space and by d the hyperbolic metric on H"™. As in
Section 6.1.1, we fix a base point p € H" and identify the tangent plane 7T},H" with R".
Now, consider the exponential mapping exp, : R" — H" at p. Let V € G (n,m). Then
exp,(V) is a geodesically convex m-dimensional submanifold of H" that is isometric
to H™. Recall that H" is a simply connected Riemannian manifold of constant sectional
curvature equal to —1. Thus, for all x € H", there exists a unique point ¢ € epr(V)
such that dist(z, exp,(V)) = d(x, ¢); see Proposition 2.4 in [8]. This point ¢ is called the
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projection of z onto exp, (V') and we denote it by Py (z). We call the mapping
P:G(n,m)x H" — H"

defined by P(V,z) := Py (z), for z € H" and V' € G(n,m), the family of closest-point
projections onto hyperbolic m-planes in H". Moreover, Proposition 2.4 in [8] implies
that the mappings Py : H" — exp, (V') are 1-Lipschitz, and hence dim Py (A) < dim 4,
for all A C H". The same proposition also implies that for all z € H" and V' € G(n, m)
the geodesic segment [z, Py (7)] intersects exp, (V') orthogonally in the point Py (z).
Therefore, we will refer to P : G(n, m) x H" — H" as the family of orthogonal projections

(along geodesics) onto m-planes in H".

Consider the Poincaré model of hyperbolic n-space H", that is, the metric space (D", dp)
where D" := {z € R" : |z| < 1} and for all z,y € D",

|z — |
dp(z,y) = 2atanh - . 6.36
) ((1 “ 2wy + 22 + !yl2>2> (6:39)

Let I" be a circle in R™ that intersect 0D"™ orthogonally. Then I' N D™ is a hyperbolic
geodesic in the Poincaré model (D™, dp). The same holds for L N D™ for L € G(n,1).
Conversely, every geodesic of hyperbolic space displayed in the Poincaré model is distance
minimizing with respect to dp and is either of the type I' N D™ or L N D™. Moreover, the
Poincaré model is known to be a conformal model of hyperbolic space. This means that
the angle in which two curves in hyperbolic n-space intersect equals the Euclidean angle
in which their representatives in (D", dp) intersect. This makes the Poincaré model a
natural choice for studying orthogonal projections of hyperbolic n-space.

Figure 6.1. The projection P7 : D3 — D3N V.
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Choose 0 to be the representative of the base point p € H" in the model (D", dp).
This choice is made without loss of generality since H" is homogeneous with respect
to its group of isometries. Then, for all V' € G(n,m), the hyperbolic m-plane exp, (V')
corresponds to the m-dimensional disc V' N D™ in the model (D", d). For each m-plane
V € G(n,m), define 7 : D" — V N D™ to be the closest-point projection onto V' N D"
with respect to the metric d; see Figure 6.1. By conformality of the Poincaré model
(D", dp), the family P : G(n,m) x H* — H" can be viewed as the family of projections
P?:G(n,m) x D™ — D™ defined by P”(V,z) = P} (z).

Now, consider the mapping ¥ : D" — D", defined by

B tanh($atanh(|z|))

]

U(x) : x, (6.37)

for all z € D™. Notice that ¥ is a bijection with inverse U=!: D" — D™ given by

tanh(2atanh(|y|))
= Yy

-1
) vl

Moreover, one can check that ¥ maps geodesics I' N D™ (where either I' € G(n, 1) or I’
is a circle that intersects D™ orthogonally) to the Euclidean line segment that connects
the points p1,ps € 0D™ NT'; see Figure 6.2.

Figure 6.2. The mapping ¥ : D3 — D3 where I is a geodesic in (D3, dp).

Notice that the metric space (D", dy) where dy(z,y) = dp(V~1(z), ¥~1(y)), for all
x,y € D", is often called the Klein model or the projective model of hyperbolic space;
see [6] for details.
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As we shall see, the symmetry of ¥ yields the following relation between orthogonal
projections in the Poincaré model and Euclidean orthogonal projections:

PP(x) = B(PH(T (@), (6.38)

for all V. € G(n,m) and =z € D" To see this, let z € D™ and V € G(n,m). By
I' denote the circular arc in D™ that is perpendicular to V and dD™ and contains
x. Then, by definition, P7(z) is the unique intersection point of V' and I'. Since I'
intersects V' orthogonally, the set ' M 9D™ = {p1,p2} is symmetric under the reflection
through V. Thus, the line segment W(I") connecting the two points p; and ps intersects V'
orthogonally; see Figure 6.2. By definition, ¥(x) is the unique intersection point of I
with the ray that emerges from the origin and goes through x within D™. Then, since
U(z) € ¥(TI'), and ¥(I") intersects V orthogonally, Py(x) is the point where W(T')
intersects V' N D™. On the other hand, W(P7(x)) is the intersection point of W(I")
and the ray that emerges from the origin and passes through P7(z). However, this
intersection point is exactly PJ7(¥(x)); see Figure 6.2. This proves (6.38).

The mapping ¥ : D" — D" obviously is a diffeomorphism on D™\{0} and thus locally
bi-Lipschitz on D™\{0}. Moreover, notice that also the metric d» is locally bi-Lipschitz
to the Euclidean metric on D™. Hence, the following theorem is a straight-forward
consequence of the fact that Theorem 3.11 and Theorem 3.4 hold for Euclidean projections
with L = oo; see Remark 3.13.

Theorem 6.7. For the family P : G(n,m) x H* — H" of orthogonal projections onto
m-planes in H"™ and all Borel sets A C H", the following hold.
(1) If dim A < m, then
(a) dim(PyA) =dim A for oy m-a.e. V € G(n,m),

(b) For 0 < a<dimA,
dim({V € G(n,m) : dim(PyA) < a}) < (n—m —1)m+ a.

(2) If dim A > m, then
(a) A (PyA) >0 for opm-a.e. V€ G(n,m),
(b) dim({V € G(n,m) : ™ (PyA) =0}) < (n —m)m + m — dim A.
(3) If dim A > 2m, then
(a) PyACV ~R"™ has non-empty interior for o, m-a.e. V.€ G(n,m),
(b) Aim({V € G(n,m) : (PyA)° # @}) < (n —m)m + 2m — dim A.
Moreover, a set A C H™ with HM(A) < oo is purely m-unrectifiable if and only if

HM(Py(A)) =0 for opm-a.e. V€ G(n,m).

The rest of this section is concerned with the proof of differentiable transversality for
the family of orthogonal projections onto m-planes in H". For this, let & C D™ be a
compact ball with center 0 and radius 0 < R < 1 and let ¢ : Mat(,_p)xm(R) = G(n,m)
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be the local parameterization of G(n, m) as introduced in Section 2.3. Recall that for all
T € Mat(,_m)xm(R) by ef ,... el we denote an orthonormal basis of ¢(T) € G(n, m)
that varies smoothly in 7. Define the family of abstract orthogonal projections onto

m-planes in the Poincaré model (D", d») to be I1” : Mat(;,_p)xm(R) x @ — D™ where

I7(T,z) =Y (P"(T,x), el yw, (6.39)
i=1
for all x € Q where w1, ..., w,, is the standard basis of R™.

Theorem 6.8. The family II” : Mat(,_p)xm(R) X @ — D™ of abstract orthogonal
projections onto m-planes in the Poincaré model satisfies differentiable transversality
with L = 2 and 6 = 0. Moreover, I1” : Mat(;,_m)xm(R) X @ — D™ is a C?-mapping and
thus Theorem 8.14 applies.

In order to prove Theorem 6.8, we first prove a sequence of technical lemmas. To this
end, let F': D™ — D" be given by

F(z) = p(|z|)z,
where p: [0,1) — (0,00). Moreover, denote the matrix of the identity R” — R" by I,.

Lemma 6.9. For F' and p as above, we assume that

(a) p is of class C? on (0,1),

(b) p, p and p have a continuous extension to [0, 1),

(c) p is non-decreasing and p(0) = 0.
Then, the following hold.

(i) F is C' and DF(0) = p(0)1,,

(i1) det(DF(z)) > 0 for all x € D",

(iii) F is of class C?.

The proof of Lemma 6.9 will show that parts (i) and (ii) only require p to be C! and
non-decreasing. The conditions p € C? and p(0) = 0 are only needed for part (iii).

Proof of Lemma 6.9. Notice that F is of class C1 on D™\{0} by definition. In order to
show that the differential at zero exists and equals p(0) I, it suffices to check

F(z) = F(0) = p(0)(z — 0)

lim = 0. 6.40
2|0 |z (640)
Since F'(0) = 0, equation (6.40) is equivalent to
F(z) — _
1 £ ;|)<T><x ol _, 61
x|— X
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Consider the following calculation

|F' () —f’)g‘))(w—o)\ _ \p(\x!)?x—’ p(0)z| _ |p(z]) Tx/!)(())‘ 2] _ p(2]) = p(O)].

Thus, by continuity of p, (6.41) follows and consequently DF'(0) = p(0) IL,,.

Now, let € D™ so that |z| > 0. Then, by the chain rule, F' is continuously differentiable
in z and the differential is the (n x n)-matrix

DF(z) = p(,m’; i)}y + p(J2)L (6.42)

By continuity of p,
lim p(|z[)I = p(0)In = DF(0).

xfwxlj is bounded and p is continuous, it follows that

Furthermore, since

tim p(|]) [z ]25 = 0. (6.43)

1
||

Thus, DF is continuous in zero and hence F is of class C! in D™. This proves (i).

Now, we prove (ii). First, let x = 0. As in the proof of (i), we have DF(0) = p(0) I,
and thus det DF'(0) = p(0)™ > 0. (Recall that we have chosen p to be strictly positive.)
Now, let x4 := (a,0,...,0)T for some 0 < a < 1. Then, by (6.42),

2.0 0
0 0 0
DF(zq) = p(a) p +p(a) L,
0 ... 0
and thus,
pla)+ap(a)
DF(z,) = . pla) § 0 (6.44)

Recall that p is assumed to be non-decreasing. Thus, (6.44) immediately implies,
det(DF(z4)) = (p(a) + ap(a))p(a)"~* > 0.

Now, let y € D™\{0} and set a = ||y|| and z = x,. Then, there exists A € SO(n) such
that y = Az. Since A € SO(n), by the chain rule

D(F o A)(z) =DF(Az) DA(x) =DF(y) A
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On the other hand, by definition of F'
Fo Aw) = p(|Az]) Az = p(Jz]) Az = Ap(jal)e = Ao F(a),
and thus
D(FoA)(z) =D(Ao F)(z) = (DA)(F(z)) DF(xz) = A DF(z).
Hence, it follows that
det(DF(y)) = det(A) det(DF(z)) det(A™!) = det(DF(x)) > 0.
This proves (ii).

Thus, we are left to show that DF : D® — R™" z + DF(z), is of class C!, i.e., that
each entry m; j(x) of DF(z) , i,5 € {1,...,n}, is continuously differentiable in D".

By (6.40) and (6.42), it follows that

misla) = illal)prmy + pllahd . for o € R\(0)
m;;(0) = p(0)di;

Let l,i,j € {1,...,n}. By the chain rule, m;; is of class C! in D™\{0} and for all
x € D™\{0},

0 . 1
%mi,j(x) = P(|$!)| ‘29@%%
. . . (6.45)
— p(|x]) <‘ |3;1:1;1:li z ’(512-33j + 0jxi) — 6ijmxl> .
Moreover, by the definition of partial derivatives,
0 1
%mi’j(o) = }11_1)1(1) ] (mi;((0,...,0,h,0,...,0)) —m; ;(0))
1
= lim — ( p(h)—h26;0 h)di; 0)0;;
i T (p( 7] 101+ p(h)dij — p(0) a)
VN _( p(lh] = p(0)
=1 N 506 + 65 lim | PN P
hli% (p(|h|) |h|2> 0itdji + dij h{% < 1|
h2
= tim (Al 7 ) B8+ 35000
Since p is continuous, the assumption that p(0) = 0 yields
0
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Analogously, by using the continuity of p and p, as well as the assumption that p(0) = 0,

if follows that
0

lim %mi,j(x) =0= %mi,j(o)
Thus, m; ; is continuously differentiable in D™ for all ¢,j € {1,...,n}. This proves
(i) 0

Lemma 6.10. Under the assumptions of Lemma 6.9,
IDF(z) = DF(y)| = O(lz — y|),
for all x,y € D", where O denotes the Bachmann-Landau symbol (big O).

Proof of Lemma 6.10. Recall that DF: D" — R™" 1z +s DF(x) is a C'-mapping. As
before, let m; ;(x) for i,j € {1,...,n} and x € D" be defined by [m; j(z)]};,_; :== DF(z).
Thus, m;; : D" - Risa C L_mapping. By the higher dimensional version of Taylors

theorem with qualitative estimate for the remainder term, we obtain

m; j(x) =mi;j(y) + O(|z — y|)

for all x,y € D™. Thus,

IDE(z) = DE(y)| = [[mij(@)]5 =1 = [mij(y)li=] = Oz = yl).

We now want to apply the lemmas above to a specific function 9 : [0,1) — (0, c0).
Lemma 6.11. The function ¥ : R — R defined by

b(r) = tanh(3atanh(r))

r

is a C*°-mapping and its restriction to [0,1) satisfies the assumptions of Lemma 6.9.

Notice that ¥(z) = ¢(|z|)z, for all x € D™; see (6.37). Thus, by Lemma 6.11, it follows
that Lemma 6.9 holds for F' = ¥ (for all n > 2).

Proof. From the Taylor decompositions of the hyperbolic functions tanh : R — R and
atanh : R — R, one easily deduces

tanh(Zatanh(r)) = i ﬁ + i +O(r")
nh(zatanh(r)) = 5 + = + & :
Therefore, it follows that 1) is well-defined and C'*°. Moreover, it follows that w(O) = 0 and

hence the restriction of ¢ : [0,1) — [0, c0) satisfies the assumptions of Lemma 6.9. [
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Towards the proof of Theorem 6.8, define

I7(T,z) — I7(T, z)

and

O (T,z,y) =17 (T,z) — I (T, z),

for all (z,y) € (2 xQ)\Diag and T' € Mat(;,_p,)xm (R); compare (3.6). Define (T, z,v)
analogously in terms PE. Then, trivially,

7(T,z,y)

O7(T, z,y) = 6.47
and,
(T
(p]E(T’:L"y) — ( 7x7y)
lz -y

for all (z,y) € (2 x Q)\Diag and T' € Mat(;,_py)xm (R).

Proof of Theorem 6.8. Recall from (6.39) that

0”(T,z) := Z(PP(T, ), el Yw;,
i=1

and from (6.38) that P} (z) = U(PE(¥~!(x))). Moreover, recall that ¥ : D" — D" is a
C?-mapping (Lemma 6.9 and Lemma 6.11), and that P® : G(n,m) x R® — R" is C* in
the first variable and linear in the second variable. Consequently, P® is a C°°-mapping
on G(n,m) x R", and we may conclude that IT” : Mat(,,_,)xm(R) x @ — R™ is a
C?-mapping. In particular, II” satisfies condition (a) of Definition 3.9 for L = 2 and
9 = 0. Condition (c¢) can be proven analogously for the same values of L and ¢.

Thus, we are left to prove condition (b). For this, recall that for all 7' € Mat ,, _y)xm (R),
the abstract projection II(7), ) is the projection P(¢(T), ) up to identification of
o(T') € G(n,m) with R™ by a linear isometry; see (6.39). Notice that by the symmetry
of U (see (6.37) and Figure 6.2), for all V' € G(n, m) and every linear isometry i : V. — R™,
we have W o4 =i o W. Thus, by (6.38), it follows that,

7P =TVollfo ¥t (6.48)
in the sense that II”(T, z) = W(II*(T, ¥~ (z)) for all z € Q and T € Mat (;,_)xm (R).

We claim that in order to establish condition (b) of Definition 3.9 for II”, it suffices to
establish the following variant of condition (b):
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(b") there exists C» > 0 such that for all (z,y) € (2x€)\Diag and T € Mat (1, ) xm (R),
whenever |87 (T, z,y)| < Cp, then

~ ~ T ~
| det(Dr® 7 (T, 2, 1) (DT<I>7’(T, x,y)) )| > 2. (6.49)

To see this, assume that (b’) holds with constant Cp > 0. Set Cp := Ch;;ﬁ and let
(z,y) € (2 x Q)\Diag and T' € Mat ,, _)) xmn (R) such that |7 (T, z,y)| < Cp. Then, by
(6.47), |®7(T, x,y)| < Cp. Thus, and by (b’) and the linearity of the differential Dy, it

follows that | det(Dr®” (T, z,y) (Dr®P (T, z,y))")| > ﬁ% > C2. This proves that
(b’) implies (b) for the family ®7”.

Now, we prove that (b’) holds for the family of abstract projections II” by applying the
fact that (b’) holds for the family of abstract Euclidean projections IT® with constant
Cg > 0. By the chain rule and (6.48), it follows that

DpI”(T,z) = DY(IIY(T, z)) DpIIE(T, ¥~ (z))

for all x € Q and T' € Mat (, ) xm (R).

Let (z,y) € (2 x Q)\Diag and T' € Mat (,, _;;xm (R). For the sake of readability of the
upcoming calculation, we will slightly abuse notation and abbreviate the preimages of

the points z and y under ¥ by u = ¥~!(2) and v = ¥~!(y). And we may write,

DTCfP(T,x,y) = DY( ,u)) DrIE(T, u) — DY(I*(T, v)) DpIT*(T,v)

(T
= DY(IT*(T, u)) [DrII*(T,u) — DrII*(T,v)]
— [DYI*(T,v)) — DY(II*(T, u))] DrII*(T,v)
(

= DU(U™(T, u)) Dr®(T, u,v) + A(T, z,y) DpII*(T,v)

where A(T, z,y) := DU(II*(T,v)) — DU(II*(T, u)).
Thus, it follows that
Dr®” (T, z,y)(Dr®” (T, z,y))"
= DU(I*T,u)) [DchﬂE(T,u,v) (D@ (T, u, )" | (DUIL(T, )" (6.50)
+ E(T, x,y),
where
A(T,z,y) = DUPILT,u)) Dp®=(T,u,v) (DpILT,u))" (A(T,z,y))"
+ DU(II(T,v)) AT, z,y) (Dr®*(T,u,v))" (DU(IE(T,u)))"
+ DU(IIE(T,v)) AT, z,y) (DFIE(T,0)T (AT, z,y))T.
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By Lemma 6.11, Lemma 6.10 applies for W. Therefore, it follows that A(T,z,y) =

O(|II*(T, u) — II%(T,v)|), and hence, A(T,z,y) = O(|II*(T,u) — II*(T,v)|). Recall that
we write ®*(T, z,y) = II*(T, u) — II*(T,v). Thus, this yields

A(T,2,y) = O(S(T,z,y)]). (6.51)

Furthermore, recall that

— The determinant of a matrix is a smooth function in the entries of the matrix,

— DU(q) >0 on g € D™ (see Lemma 6.9),

— Q was chosen to be a closed ball with center 0 in D™. Therefore, also ¥~1(2) is a
closed ball with center 0 in D", and hence, there exists a compact set ' C D™ such
that II*(T, U~1(Q)) = @ for all T' € Mat () xm (R).

— G(n,m) is compact.
In conclusion, there exists a constant M > 0 such that

(det [DU(TT*(T, w))])* = (det [DYATHT, ¥~ (2)))])* > M (6.52)

for all z € Q and T' € Mat(,,_p)xm (R).

Then, since (b) and thus (b’) hold for IT%, it follows that

‘det [(DT@(T, u, v)) (DT@(T,U,U))T} ‘ > Cu (6.53)

for all z,y € Q and T' € Mat (,, )« (R) satisfying );ISE(T,U,U))T‘ < Cg. Hence, (6.50)
yields

det [DTZIBP(T,:C,y)(DT&)P(T, z,y)T — &(T,x,y),}

— det [D\I/(HE(T, w)) (DTéE(T, u, v) (DTéE(T,u,v))T) (DU (IL(T, u)))T}
(6.54)

= det [DU(ITE(T, u))]? det [DT?IS]E(T,u, v) (Dp®E(T, u,v)ﬂ

> MCs

for all z,y € Q and T' € Mat(;,_,)xm(R) satisfying ‘&)E(T,u, v))T‘ < Cg. Then, again
using the fact that the determinant of a matrix is a smooth mapping in the entries of
the matrix, as well as (6.51), we may choose ¢ > 0 such that

‘det [DTéP(T,x,y)(DTép(T,x, )T — A(T, x,y)}
ME. (6.55)
2

— det DT‘,I;P(T, x, y)(DT&)P(T7 z, y))T:| ‘ <
for all z,y € Qand T € Mat(n,m)xm(]R) satisfying ’&;E(Tvua U))T‘ <ec.
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By Lemma 6.11, V¥ is a local diffeomorphism on D™ and hence a bi-Lipschitz mapping.
Moreover, recall that by definition, @E(T, z,y) = O¥(T,u) —1*(T,v) for all z,y € Q and
T € Mat(,,_pm)xm(R). Therefore, by (6.48), we may choose a sufficiently small constant
Cp > 0 such that whenever |®P(T, z,y)| < Cp then

’(5 E(T, u, v)‘ < min{c, Cx}.

Now, for all z,y € Q and T'" € Mat () xm (R) satisfying |®P(T,z,y)| < Cp, by the
choice of C'p, equations (6.54) and (6.55) hold for z,y, T and thus
MCy

[det [Dr®™ (T, 2,5)(Dr & (T, 2,9)7] | > =52

We may without loss of generality assume that 673 < Mf = and hence condition (b’) holds
for the family TT” : Mat (, ) xm (R) x © — R of abstract projections in the Poincaré

model. O
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