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Abstract 
 
This text explores new ways of remotely detecting, analysing and reconstructing ancient Near Eastern 
monumental mudbrick buildings subsumed under the acronym PSDR (Predictive Site Detection and 
Reconstruction). The ultimate aim were reliable predictive reconstructions that may be used as a basis 
of highly targeted small-scale excavations. Where parts of a building are too heavily damaged to allow 
conclusive testing - which is often the case - no room was to be left for subjective speculation and a 
reconstruction was required to be able to stand convincingly on its own. Its level of detail, therefore, 
was to be dictated entirely by the data. It must be replicable, logically transparent and resistant to bias 
in favour of specific outcomes due to personal preconceptions.  
 
The main focus was on the development of simple methods for processing topographic data because 
this type of data is widely available or can be generated at resolutions ranging from kilometres (space-
borne remote sensors) to millimetres (3D-laser scanners). At the level of landscapes, fractality 
signatures defined by spatial crossover scales typical of eroded urban settlements are proposed as a 
tool for the detection of potential target sites for excavation in automated large-area scans of remotely 
sensed imagery [a]. At progressively smaller scales, methods were developed for extracting 
topographic indicators of eroded architectural features from Digital Elevation Models (DEM) of the 
chosen settlement mounds [b] and for transforming them into algorithmic complexity signatures that 
capture every geometric regularity present in potential architectural remains. Based on these signatures 
hypothetical ground-plans of the original monumental buildings are reconstructed using a 
mathematical model termed CPSR (Complexity-based Predictive Site Reconstruction) [c]. At this 
level, key predictions about the layout of buildings are to be tested by small-scale excavation and the 
results to be fed back into the reconstruction process. Preliminary field tests so far support the 
theoretical expectation that predictions are thereby forced to rapidly converge towards the original 
ground-plan at progressively higher levels of detail until the threshold of testability is reached. This 
iterative approach is demonstrated to be much more effective, both scientifically and economically, 
than traditional excavation strategies based on surface survey and large-scale excavation. 
 
The methods were developed with VHR (Very High Resolution)-data in mind but were apllied only to 
existing data from Tall al-Hamidiya, Syria. As a consequence, their degree of universality may be 
modest. [c] was successfully tested under controlled circumstances in the field in 2000, and the 
excavation strategy in 2001 was largely based on preliminary results from [b]. All relevant aspects of 
the basic structure of the northern, eastern and western parts of the Central Maittanian Palace that are 
known today were predicted in advance with high and sufficient accuracy respectively by [b] and [c] 
independently. The methods proposed at the scale of landscapes [a] are as yet purely theoretical and 
untested. I am nevertheless confident as to their potential because their implementation in 
collaboration with other researchers is progressing well (cf. Acknowledgements). 
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0. INTRODUCTION 
 
 
0.1. Scientific Backwaters 
 
0.1.1. Destructiveness and Lack of Intersubjectivity 
 
Archaeology is often jokingly referred to as a science based on unrepeatable experiments. While one 
may counter that this applies to some of the more esoteric branches of physics as well, the basic truth 
of the statement is uncontestable. Archaeological artefacts are largely defined by their context, and by 
physically recovering them from the soil the context is inevitably destroyed. Much relevant 
information survives only in the form of documentation - which is necessarily selective and all too 
often of poor quality - and therefore cannot be controlled intersubjectively by renewed observation. 
 
Under certain conditions, the dilemma of destroying contexts by studying them may be by-passed by 
geophysical prospection or other non-intrusive approaches, foremost among them predictive 
mathematical modelling. Unlike more traditional methods that distort even the raw data by 
interpretation, results obtained by either are intersubjective: a geophysical survey can be repeated and 
a mathematical model tested against new data whenever necessary.  
 
The potential of geophysical prospection is immense (Nishimura 2001), but limited geographically to 
areas with predominantly shallow sites: the maximum penetration depth achieved by current sensors is 
~3m in dry, clay-rich soils (GPR at medium frequencies around 300MHz; Conyers and Cameron 
1998), which, on a medium sized Near Eastern settlement mound (arab. tall), barely amounts to 
scratching the surface: fig.1A illustrates the relationship between slope at a given elevation and the 
area covered by GPR under perfect conditions in the corresponding horizontal section. In fig. 1B the 
poor percentage of total mound volume that can be reached using GPR in a lentil shaped tall is plotted 
against the tall's base radius for various heights. The limitations imposed by low penetration depths are 
the same for air-borne sensors targeting sub-surface features. For large talls, therefore, the potential of 
sub-surface prospection is low, regardless of sensor type. 
 
Predictive mathematical methods have no such a priori limitations. Appropriate models may 
concievably be used to minimize the destructive impact of excavations by restricting digs to very 
small target areas around probable locations of predefined objects. Applications of predictive 
modelling at the level of individual sites, however, are as yet few and far between. Archaeological 
research has so far focused on predictive models acting at the scale of landscapes. On this level, 
predictive GIS (Geographic Information Systems) have proven much more efficient than traditional 
non-mathematical methods of discovery. The latter are destructive in an indirect sense insofar as 
uncontrollable bias resulting from arbitrary search criteria and/or ineffective survey methods lead to 
artificial patterns in the archaeological record, blanking out potentially relevant sites from cultural 
resource management and protection schemes (Bettis and Mandel 2002). 
 
Near Eastern archaeology: Firmly rooted in the humanities and, thence, harbouring a deep distrust in 
all things scientific, Near Eastern archaeology as a discipline has cast a blind eye on the potential of 
mathematical modelling, even though the situation in the semi-arid plains of the Near East is 
especially grave on both the site and the landscape levels: sun-dried mudbrick, the only locally 
relevant building material in antiquity, rapidly becomes unstable when not properly maintained, and 
architectural remains recovered by excavation start disintegrating almost immediately after being 
exposed. They collapse within a very short time, often within months. Under normal circumstances the 
preservation of architectural structures is impossible. Large-scale excavations, still the norm in the 
archaeology of talls, further aggravate the problem, because - in contrast to other geographical areas - 
not only context but also the artefact itself is thus lost in its entirety to any form of re-examination.  
 
At the landscape level, a tall is usually chosen for surface surveying and later, provided that datable 
sherds point to an occupation during the target period, for excavation on the basis of its size and 
location - criteria that in practice translate into 'prestige' and 'proximity to restaurants' respectively. 
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Better search and selection criteria have so far found little foothold because talls are by far the most 
obvious landmarks and also the most frequent. Consequently, the question of where a specific type of 
settlement is most likely to be found is generally deemed futile and has - in contrast e.g. to North 
American archaeology with its strong research focus on predictive GIS (Wescott and Brandon 1999) - 
only rarely been systematically addressed (e.g. Braidwood et al. 1983, Wäfler 2001). 
 
 
0.1.2. Redundancy and Costs 
 
Redundancy at the scale of individual sites: Excavations of large connected areas are expensive and 
result in a flood of mostly redundant information: while in the course of such an excavation the costs 
per excavated unit remain constant, the probability of learning something new about the local situation 
decreases - after an initial jump - with every new unit opened. In information theory this is known as 
the learning phenomenon. A certain, low degree of redundancy is necessary statistically to compensate 
for random variation in any kind of observed data (Pierce 1980). Above this threshold redundancy has 
no significant informational value, but rather leads to a plateauing of the learning curve (Kearns and 
Vazirani 1994). Economically speaking, the high costs resulting from a low ratio of knowledge gain 
vs. investment in large-scale excavations therefore have no scientific justification.  
 
This is most apparent in very big talls containing urban architecture: Covering an area of ca. 30ha the 
Tall al-Hamidiya, for instance, rises steeply some 40m above the plain in its northern parts. Walls 
hypothesized to belong to a single Maittanian building, the so-called Central Palace, on the basis of 
their uniform orientation and regular floor elevations are distributed over much of the area (fig. 2). The 
expenses in time, labour and money necessary for excavating large connected areas of a building of 
this size cannot possibly lead to an increase in knowledge proportional to the investment: The 
argument is simple, and valid for any site with architectural remains: a single straight wall (n=1) can 
be represented in a 2-dimensional space as a graph by its two endpoints. 3 Points are needed for two 
walls forming a corner (n=2), namely the node (i.e. the intersection) and an endpoint each. Since 
buildings are - in general - closed shapes, the number of points needed to represent their groundplan 
equals the number of nodes, which, in turn equals the number of wall segments n. In practice this 
means that once the orientations of two walls are known, so is the position of the related node. The 
additional effort of prospecting or excavating the corner will therefore result in no new topological or 
positional information (cf. fig.27).  
 
There is, of course, more to architecture than geometric or topological regularities, and this reasoning 
is invalid where singular phenomena are concerned, such as the decoration of a specific orthostat or 
the position of yet another nicely carved cylinder seal. However, these are chance finds by their very 
nature, and it is a matter of taste whether one considers the low probability of finding a type of artefact 
that is not already known by the hundreds enough to justify expensive, labour-intensive excavations of 
large, connected areas. To the scientifically minded archaeologist it is a probabilistic nightmare - and a 
sign of bad taste. 
 
If, therefore, an increase in new information is to be achieved that is at least proportional to the overall 
effort invested, methods must be developed that allow highly targeted digging on very small scales 
thereby minimizing the risk of recovering redundant information. 
 
Redundancy at the scale of landscapes: Similar arguments hold for any kind of information on 
structures that exhibit some degree of regularity, such as facade decorations, the positioning of doors, 
even spatial settlement organisation at the scale of whole sites and, ultimately, at the scale of entire 
landscapes. At this latter scale uncontrollable biases introduced by inappropriate site selection criteria 
(§ 0.1.1) necessarily lead to an overrepresentation of certain types of sites, while others remain 
underrepresented. New sites selected by traditional criteria are therefore likely to no more than add to 
the redundancy of what is already known about the first group. Therefore, at the scale of landscapes as 
well, the development of targeted, predictive methods is imperative if the gaps in the archaeological 
record of the ancient Near East are eventually to be filled. 
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0.2. Predictive Site Detection and Reconstruction Strategies 
 
0.2.1. Aims and Conceptual Outline 
 
Predictive Site Detection and Reconstruction: In all probability there is no single, methodically 
homogenous solution to the problems outlined above. Rather, potential solutions may be presumed to 
be methodically diverse, i.e. to consist of different combinations of predictive, ultimately 
mathematical methods depending on the type of target site. Such sets are in the following collectively 
termed Predictive Site Detection and Reconstruction (PSDR)-strategies.  
 
Aims: The aim of this work is to validate the general idea of PSDR by presenting one such strategy in 
some detail. It is limited in scope to sites with monumental architecture and exemplified using data 
from Tall al-Hamidiya. On both the theoretical and practical levels, the focus was on the development 
of new predictive methods for processing topographic data based on simple models - newness was not 
emphasised for the sake of originality but in the hope of widening the meagre spectrum of existing 
techniques adapted to the conditions in the Near East. On all levels, the predictions were to be 
replicable, logically transparent and resistant to bias in favour of specific outcomes due to personal 
preconceptions;  their level of detail, hence, was to be dictated by data alone. 
 
Conceptual outline: The PSDR strategy envisioned here encompasses all stages from finding to 
analysing and excavating ancient monumental mudbrick architecture. It relies on techniques for 
architectural feature extraction, predictive reconstruction of ground-plans and on iterative feedback: 
from a given set of topographic data, information about the probable nature of buried architectural 
remains and about the position of specific architectural elements is to be extracted. Based on 
geometric regularities within individual elements as well as between elements, the basic structure of 
original buildings is to be reconstructed in a controlled, consistent and replicable manner. Predicted 
positions of near-surface architectural key features are hypotheses that are to be tested by excavation 
or, if feasible, geophysical prospection. The test results, finally, are to be fed back into the 
reconstruction and prediction process. In such a system, positive and negative test results have the 
same value insofar as both constitute new, non-redundant information. This is expected to guarantee 
an increase in knowledge at least proportional to the excavation effort and, hence, to force the 
reconstructions at later iterations to progressively converge towards reality. Where parts of a building 
are too heavily damaged to allow conclusive testing - which, of course, is often the case - no room is 
to be left for subjective speculation and a reconstruction is required to be able to stand convincingly on 
its own. Its level of detail, therefore, is to be dictated entirely by the data. 
 
Ideally, every step from the detection of potential targets to the prediction of promissing sample areas 
should be automated, or, at least, formalized with automation in mind. In logical order, these steps 
correspond to four procedural stages at different spatial scales. 
 
Level 4: Landscapes  Detection of sites potentially harbouring  (§ 3.1) 

monumental buildings. 
Level 3: Individual sites Prediction of probable locations of   (§§ 3.1, 3.2) 

monumental buildings. 
Level 2: Individual buildings Prediction of key features with high   (§§ 3.3, 3.4) 

information content. 
Level 1: Individual features Testing of predictions by excavation or,  (§ 3.4) 

where feasible, geophysical prospection. 
 
Methodological limitations: The choice of site type may seem ironic since monumental architecture is 
usually associated with large, urban settlements - a heavily over-represented group of sites in the Near 
East (§ 0.1.2). It was pragmatic insofar as of all Near Eastern settlement mounds, I am most intimately 
acquainted with Tall al-Hamidiya, a site dominated by Maittanian monumental architecture. In this 
particular case the risk of redundancy was considered negligible because the dimensions as well as the 
topology of the Maittanian remains were known in advance to be singular (Wäfler TH1, Wäfler TH2). 
The singularity of the site, however, is problematic itself because the exclusive use of data from Tall 
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al-Hamidiya potentially limits the degree of universality of the proposed methods. Field experiments 
at Tall al-Hamidiya during which key predictions about unknown architectural features were tested by 
excavation have so far been the only means of assessment. While this effectively controls for prior 
knowledge as a potential source of bias in favour of a specific outcome obtained by a given method, it 
cannot guarantee its applicability under different conditions. 
 
Practical limitations: Obviously, a study of this scope is heavily interdisciplinary. In the present case 
the disciplines touched upon range from two rather exotic forms of mathematics - algorithmic 
complexity theory and fractal geometry - to landscape ecology and quantitative geomorphology. My 
competence in these fields is limited to the interested layman's superficial understanding. Evidently, 
PSDR may only reach a satisfactory level of sophistication in collaboration with other researchers (see 
Acknowledgements). The present text contains the basic work done by myself, i.e. the simple concepts, 
ideas and crudely implemented methods that served as a starting point for the serious collaborative 
research.  
 
 
0.2.2. Why Topographic Data?  
 
Interdependence of Data and Methods: On the most basic level any choice of method - existing or to 
be developed - depends on the type of data that is available or can conceivably be generated.  
 
The limitations of subsurface prospection with air-borne as well as geophysical sensors (§ 0.1) do not 
apply to surface scans: satellites are unimpaired in their functionality by difficult topographic 
conditions, and the commercial availability of very high resolution (VHR) data - multispectral as well 
as photographic - at competitive prices will soon allow the generation of inexpensive Digital Elevation 
Models (DEM) at sub-meter resolution (Wheatley and Gillings 2002), i.e. far exceeding in 
measurement density any elevation map of a Near Eastern tall published to date. In combination with 
extremely high-resolution photogrammetry (McFarlane et al. 2002) or 3D medium to long-range Laser 
scanning (Langer et al. 2000, Gerber 2002, Sawyer 2002), decimetre and sub-centimetre resolutions 
respectively are feasible.  
 
Thus, active and passive sensors for remote surface prospection and reflectorless position and range 
finders, especially the latest generation of 3D long-range Laser scanners, hold the greatest potential for 
generating relevant new data. Dense topo-survey data and remotely sensed surface data are ideal in 
terms of both availability and generateability. Their potential for the detection of sub-surface 
archaeological remains has to date only been made use of unsystematically in aerial photography in 
such rather trivial cases as e.g. the mapping of earthworks or large stone-walled buildings. For remains 
made of unbaked mudbrick it has never been examined. Research on the detection of artificial features 
in 2D remote sensing data, on the other hand, is an active field. However, here as well, buried or 
eroded structures have so far largely been left out of the picture, except - by analogy - in military 
applications targeting camouflaged artificial objects (§ 3.1.). 
 
The methods proposed here were developed with this kind of remotely sensed surface imagery and 3D 
topographic data at very high resolutions in mind. However, for reasons discussed in § 0.2.3. they 
were applied exclusively to the data available to me in 1999 (§ 2.1.-2.2.). This restricted database 
consists of the 1984 toposurvey data (TH1, Steudler 1986, § 2.1.) as well as plans and sections drawn 
and digitised from 1984 -1999 (§ 2.2.). No plans drawn after 1999 were employed, and the potential of 
the new VHR-data is only theoretically discussed where its use would conceivably make a relevant 
difference. Implementations of the proposed methods designed for processing VHR-data are currently 
being explored in two PSDR spin-off projects in collaboration with other researchers and will be 
published elsewhere (§ 0.2.1.). The focus of these sub-projects is on a series of Corona satellite 
photographs and Ikonos multispectral imagery at 1-m resolution centred on Tall al-Hamidiya acquired 
in 2001 and on experimental VHR 3D-Laser scanner data from archaeological and historical sites in 
Switzerland, France and Turkey collected since 2002 (Gerber 2002; § 2.3.). 
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0.2.3. Project History and Rationale of this Text 
 
PSDR was devised as a means to tackle the logistic problems of excavating very large buildings and to 
reconstruct such buildings in the absence of obvious typological parallels. At first, in 1999, the aim 
was to find ways to go beyond the determination of minimal floor level extensions on the basis of 
linear extrapolation from the known parts of a building (Wäfler TH4: Rekonstruktion 1998). By 
extracting a complete set of building-specific geometric regularities from the known remains by 
maximally compressing their algorithmic description I intended to define characteristic construction 
rules ('complexity signatures'; § 3.4.) on the basis of which a complete three-dimensional shape could 
be reconstructed that would preserve the characteristics extant in the excavated remains. This 
approach, provisionally termed CPSR (Complexity-based Predictive Site Reconstruction), is 
conceptually related to reverse engineering (§ 3.4.1.). The resulting shape was to be used as an entirely 
data-driven prediction on the basic shape of the original building, resistent to biases due to 
preconceptions and subjective interpretation.  
 
In 2000 a primitive preliminary CPSR model was tested at Tall al-Hamidiya in the eastern and western 
parts of the Central Palace. Since all tested predictions were confirmed to a higher degree than initially 
expected (§ 4.1.), a post-hoc reconstruction was produced by Wäfler that incorporated the tested and 
untested  predictions as well as the excavation results (Wäfler TH4: Rekonstruktion 2000). 
 
The post-hoc reconstruction was problematic because, although CPSR is data-driven, this first attempt 
at an implementation was heavily influenced by interpretation on two levels: a) the data were extracted 
directly from the detailed but heavily schematised plans of the previously excavated squares. The 
schematisation represents an interpretation of the original excavation data, and in order to control its 
influence on the predictions, the positional and angular errors in the plans would have had to be 
assessed. Because the plans, i.e. what is supposed to be ‘raw data’, are updated and significantly 
changed according to the current ideas on the structure of the palace after each campaign, this was not 
possible post-hoc. b) Due to the primitive mechanism of the first model, it was necessary to asign a 
functional interpretation to individual architectural elements (§ 4.1.3.). This interpretation may or may 
not have been reasonable but it does, in any case, not follow with any logical necessity from the data. 
 
In 2000 and 2001 I concentrated on prediction methods based exclusively on topographic data that 
were by their very nature uninfluenced by interpretation (§§ 3.2. and 3.3.). Predictions based on these 
methods closely matched those obtained in the year before, and were used for planning further 
excavations in the western and eastern parts of the palace in 2001. After the campaign the post-hoc 
reconstruction of 2000 was updated with the new results, and both tested and untested predictions 
were again incorporated and elaborated on. The functional interpretation of individual elements as 
stairs was thus progated and projected on predictions that were themselves free of a subjective 
component (Wäfler TH4: Rekonstruktion 2001, Plan 2).  
 
By mixing various types of results and interpretations indiscriminately the post-hoc reconstructions of 
2000 and 2001 (last updated in 2003) have become hybrids that are methodically oblique. They may 
not count as hypotheses but merely as subjective interpretations because where they deviate from the 
CPSR/PSDR-predictions (figs. 36, 38) they are arbitrary and cannot be tested: 
 
The level of detail in the predictions obtained by CPSR/PSDR is - at least theoretically - dictated 
entirely by the data. In general it is very low. Wäfler’s post-hoc reconstructions, on the other hand, 
have become extremely elaborate. Their high level of detail is not positively supported by the data - cf. 
e.g. the representation of the western and eastern protrusions as stairs of a specific length down to the 
level of individual steps - but rather only negatively insofar as the details do not seem (sic!) to 
contradict the data. An objective assessment is impossible because sets of ‘raw data’ shown in the 
plans published in TH4 in support of specific elements of the post-hoc reconstructions exhibit 
considerable angular, positional and structural deviations from the same sets in earlier plans. With the 
exception of a scanned plan from 1999 published in Gerber 2000b (fig. 28) that may be compared to 
TH4: plan 4 (§§ 2.2. and 3.4.), these changes fall in-between TH2 and TH4 and are therefore 
undocumented and uncontrolable. 
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In order to assure data integrity within the present text I have refrained from processing any data 
extracted from plans generated after 1999. The CPSR-reconstruction of 1999 (§ 4.1.) was not - as 
originally planned - repeated under more controlled circumstances because the original data set can no 
longer be replicated, i.e. the new results would not be comparable to the older. Furthermore, in order 
to clearly separate the PSDR results after 1999 from both the CPSR results in 1999 and from the two 
published post-hoc reconstructions, I have here limited the application of the methods set forth in §§ 
3.2. and 3.3. to topographic survey data generated in 1984, i.e. before the inception of excavations at 
Tall al-Hamidiya. A synthetic reconstruction based exclusively on these results is presented in § 4.2. 
(fig. 38). This latter reconstruction would be exactly the same if it had been done in 1984. In this way 
the risk of an uncontroled interplay between different methods is eliminated and the predictive 
potential of the proposed methods of topographic analysis can be assessed objectively by comparison 
with later excavation results regardless of their reliability. 
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0.2.4. Chronology and Types of Reconstructions 1998-2002 
 
Various types and stages of reconstructions are repeatedly referred to in this text. The following chart 
is intended as a guideline through the jungle.  
 
 PSDR (Gerber)    Post-hoc (Wäfler) 
 Type   Refs.   Type              Refs. 
 (Content)      (Content) 
 Level of detail (LD)     Level of detail (LD) 
__________________________________________________________________________________ 
      
1998  --   --   Post-hoc Autonomous (Full)   TH4: Rek. 1998 
       (like 1997 but with terraced  

monumental stair in the South) 
       LD: North: low, dictated by data 
              South: higher than supported by data 
 
1999 CPSR (Full)  Gerber 2000b, 2001 Post-hoc Autonomous (Full)  TH4: Rek. 1999
    § 4.1.; fig. 36          fig. 36 (inset) 

(Predictions on the     (stair straightened, minimal  
structure and extension     length determined) 
of the eastern, northern  
and western parts of  
the Palace)  
LD: low, dictated by data    LD: North: low, dictated by data 
       extracted from the post-hoc          South: higher than supported by data 
       reconstruction of 1998   
 

2000 PSDR (Partial)  §§ 3.2., 3.3., 3.5.  Post-hoc Hybrid (Full)         TH4: Rek. 2000 
 (Analysis of topography,     (incorporates CPSR- 

Order Symmetries)    predictions of 1999 [east: 2nd monumental  
stair, west: beak shaped, odd-angled  
extrusion], and  Order  
Symmetry predictions 2000 [west:  
3rd monumental stair])  

LD: low, dictated by data    LD: much higher than supported by data 
 
 
2001 PSDR (Partial)  §§ 3.2, 3.3.  Post-hoc Hybrid (Full)         TH4: Rek. 2001,                                           
                                                                                                                                                              Plan 2 

(Analysis of topography)    (incorporates PSDR-  
 LD: low, dictated by data    predictions 2000, 2001 [west: connection of 
.        southern parts of stair with main body of 
        palace], Order Symmetry  
       predictions 2000 [East: connection of 
       northern parts of stair to main body of palace] 
       LD: much higher than supported by data 
 
2002 PSDR (Full)  § 4.2.; figs. 38, 39       
 (Synthesis of PSDR-     
 predictions 2000, 2001, 2002)        
 LD: low, dictated by data         

        
CPSR (Partial)  § 3.5    
(Construction principles,       
architectural units, error     
estimates)       

 LD: high, dictated by data     
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1. THEORETICAL FRAMEWORK 
 
 
1.1. Monumentality, Local Stochasticity and Topography  
 
1.1.1 Settlement Dynamics 
 
Relevant characteristics of urban settlements: Monumental architecture is, as a rule, associated with 
urban settlements in the ancient Near East. Such settlements are complex, hybrid entities consisting of 
artificial structures but also sharing characteristics with their natural surroundings. Understanding this 
fundamental dichotomy is essential for the development of methods for detecting the remains of 
monumental buildings. 
 
The problems encountered in the analysis of probabilistic surveys in settlement contexts may serve to 
illustrate this point: probabilistic sampling requires that the elements recovered from a totality of 
interest be distributed stochastically, thus allowing statistical estimates of this totality based on 
samples (Shennon 1997). This is usually the case where human impact on the examined area is low, 
which makes probabilistic sampling an ideal tool for planning regional-scale surveys, e.g. of artefact 
scatter. At smaller scales and higher resolutions sampling designs have to be used that minimize 
distortions to expected distributions caused by the clustering of settlement sites (Nance 1983) or 
violations of the stochasticity criterion by the periodic behaviour of sample elements, often caused by 
a buried building's grid-structure (Wilkinson 2001). The progressively lower degree of stochasticity at 
smaller scales - groups of settlements and buildings respectively - is a direct reflection of the artificial 
component that gets more pronounced at higher resolutions; this component cannot be satisfactorily 
dealt with in a purely statistical framework.  
 
Furthermore, on a more practical level, the uneven vertical stratification of many settlement sites poses 
a serious problem to sampling approaches in general: information obtained from one sample area may 
not be stratigraphically relatable to information from an other. The heterogeneity thus introduced in 
the data frequently renders the interpretation of results obtained by sampling uncontrollable (Barker 
1993).  
 
The ineffectiveness of probabilistic sampling strategies as tools for the investigation of a settlement's 
internal structure is due to an underlying model of reality that is thoroughly stochastic. Though trivial, 
this nevertheless shows that a method is only as good as the assumptions it is based on. The 
effectiveness of detection methods for monumental buildings will therefore depend critically on a 
thorough understanding of potential topographical manifestations of the hybrid character of ancient 
urban settlements. 
 
Settlement dynamics: Quantitative models for the internal dynamics of settlement structure have 
become increasingly sophisticated in recent years (Schweitzer 1997); their time horizon, however, is 
usually in the range of decades or, at best, a few centuries, and the model parameters are chosen so as 
to be measurable in a modern, living environment. For this reason, they cannot be adapted telquel to 
archaeological contexts. In order to check their validity for ancient Near Eastern settlements, 
archaeological proxies for the relevant parameters have to be found.  
 
The structure of a settlement at a specific point in time can be viewed as the result of a multitude of 
differential processes of guided - i.e. deterministic - and chaotic growth, local collapse and continuous 
reorganisation of parts (Makse et al. 1995, Weidlich 1997). In large urban settlements, one or many 
relatively stable and ordered cores surrounded by more dynamic and less organized areas are the rule. 
The distribution of elements within a settlement, be it lane segments, buildings, elements of buildings 
or small artefacts, can therefore be expected to have a stochastic component that gets more 
pronounced towards the periphery of the relatively more stable cores (O'Neill et al. 1988, Shiner 
1997). It seems intuitively reasonable to assume that after a settlement is abandoned, these differences 
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in local stochasticity will be reflected - and hence remain detectable - in the topographic structure of 
the site that results from subsequent collapse and erosion. If this assumption is correct, it should be 
derivable from an appropriate model of ancient settlement dynamics. 
 
Looking at the extremes and disregarding the complexities in between, modern buildings in very 
stable zones tend to be large, to have regular shapes and a complex interior organisation whereas in the 
highly dynamic border zones they tend to be small, less regularly shaped and to have a simple interior 
organisation. The financial districts of large cities and the slums bordering them provide visual 
examples of this contrast. For modern settlements an arbitrary model for local stochasticity s might 
consist of the following parameters: 
 
s(a): f(P, L, S, R, T, ..)    (Eq. 1) 
 
where P is the mean change in position of the outer walls of buildings in area a relative to the 
buildings preceding them, and L is the mean lifetime of buildings in a. (P/L), then, is a measure for 
structural instability. For central areas L is in the range of decades or even centuries, and both L and P 
are usually well-documented; for slums the rate of change is so fast that it can be determined within 
years or even months by comparing satellite images or ground survey data. Size (S) is directly 
measured by volume if multi-storied buildings like skyscrapers are present, otherwise by area. R 
denotes the regularity of shapes; this can, for example, be expressed statistically as the goodness of fit 
of the actual outline of buildings to sets of geometrical primitives (Roth and Levine 1993), by the 
degree to which buildings exhibit mathematical symmetry (Weyl 1989, Zabrodsky et al. 1995), or by 
their algorithmic complexity C (§ 3.4.). T is the topological complexity of the interior organisation, 
quantifiable, for instance, by the minimum number of loops (West 2001) containing other loops in a 
path through all its doors. This number equals the number of embedded room systems, i.e. room 
systems accessible through a single door.  
 
The expected correlations between the discussed parameters are summarized in the matrix 
   
R (+) 
T (+) (+) 
P/L (-) (-) (-) 
 S R T  
 
 
1.1.2 Modelling the Dynamics of Ancient Urban Settlement Structure 
 
With the exception of R, quantification is less straightforward in ancient settlements: lifetimes cannot 
usually be determined even where wood is present in sufficient quantities for dendrochronological 
dating, and size as well as topology are just as problematic because buildings are frequently not 
preserved in their entirety. Also, where they are tightly clustered, the boundaries between individual 
houses are often a matter of speculation. 
 
Definition of archaeological proxy parameters: Possible archaeological proxies (') for P, L, S and R 
were found by analogy and are explained in the following by reference to data from Tall Asmar and 
Khafajah. T was excluded for lack of sufficient data. The resulting model was applied to sections 
through the area between the Temple Oval and the Sin temple in Khafajah as an example. A statistical 
determination of its near or non-equivalence respectively with the original model based on a 
representative sample of ancient urban settlements was not attempted. Near Eastern archaeology has 
always had a penchant towards neglecting private quarters in favour of official parts of settlements, 
and far too little material has been published to date.  
  
L': Lifetimes can be assigned to archaeological structures by reference to some measurable quantity A 
with a clear relative chronological component instead of years. In a reliable stratigraphic framework, 
mean lifetime might, for instance, be expressed as the number of sequential building phases B of 
structures in area x relative to the number of sequential building phases A of structures in area y in the 
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overlapping parts of the sequences in x and y, where y is the sequence with the highest number of 
building phases, i.e. the best temporal resolution. For Khafajah, A denotes the house levels while B 
denotes building phases of the Temple Oval, the Small Temple and the Sin Temple respectively (table 
1:A-A, adapted from Delougaz et al. 1967: "table at end".).  
 
P': Mean positional change per building level is the sum of horizontal differences of the mass centres 
of walls from successive building periods (table 1: A-B) divided by the number of building levels of 
the sequence (table 1:B-B). The rate of change, i.e. a measure of instability, determined from sections 
is therefore (P'/L') (table 1:C-B). The section 8-8' (Delougaz 1940: Plate 8) and the cross section 
through houses, Temple Oval, and Sin temple (Delougaz 1940: Plate 12) were taken as examples; the 
coding used in table 1:A-B is explained in fig.3. 
 
S': Wall thickness (table 1:D-B) is a proxy for building size. In large official buildings, such as palaces 
and large temples, walls usually make up  a quarter to a third of the covered area (H.-J. Schmied, 
personal communication; and Wäfler TH4); smaller buildings like private dwellings and small temples 
generally have thinner walls in relation to their size. Wall thickness, then, is correlated with building 
size via room size. Since this cannot be shown in vertical sections, a brief demonstration using plans 
from Tall Asmar shall be given here: for those buildings of which the spatial extension is known 
(Delougaz et al. 1967: plate 23), the correlation (Spearman rank-order) is strong at c=0.833, the only 
outlier being the overly thick-walled Gimilsin temple: 
 
 
Size (rank) 
 
8. Southern building        7 
7. Northern Palace       6 
6. Palace of the Rulers      5 
5. Gimilsin Temple         8 
4. Azuzum Building    3 
3. Audience Hall of Naramsin    4 
2. Snake Shrine    2 
1. Private Houses  1 
     

Wall thickness (rank) 
  
 
R': Regularity of shape cannot be determined from sections either. For Tall Asmar (Delougaz et al. 
1967: plate 23) visual grading of the linearity and orthogonality of a building demonstrates a strong 
correlation of geometric regularity and wall thickness, i.e. one of the parameters measurable in vertical 
sections (a better definition of geometric regularity based on algorithmic complexity is given in §3.4.). 
The correlation (Spearman rank-order) is nearly functional at c=0.929: 
 
 
Geometric regularity (rank) 
 
8. Gimilsin Temple         8 
7. Southern building        7  
6. Palace of the Rulers      5 
5. Audience Hall of Naramsin    4 
4. Northern Palace       6 
3. Azuzum Building    3 
2. Snake Shrine    2 
1. Private Houses  1 
     

Wall thickness (rank) 
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Khafajah: Calculation of the correlations (continuous values: Pearson, graded values: Spearman) 
between the proxy parameters (P',L', S',R') when applied to the data from Khafajah (Table 1) yields: 
  
L'  0.259     
S'     0.401    0.937   
R'    -0.090  0.782  0.745   
P'/L'   -0.043   -0.354   

P' L' S' R'   
 
Where comparable (bold print) this is in accordance with the original model. The extremely weak size 
(S')-instability (P'/L') correlation may be due to the short distance covered by the sections and the 
stabilizing influence of the two important and long-lived official buildings framing the area, the 
Temple Oval and the Sin temple. Within this small area, however, a clear dependence of instability on 
the distance D (table 1: H-B) to the nearest official building is apparent (bold print): 
 
D   0.242   -0.488   -0.501   -0.837  0.548   

P' L' S' R' P'/L' 
 
Thus, the correlation of local stochasticity s(a) and distance to stable cores observed in modern urban 
settlements can be demonstrated in Khafajah as well. The replicability, coherence and robustness of 
this specific data structure were not tested on a representative number of additional sites for lack of 
data. The proposed proxy model will faute de mieux serve as a theoretical basis for further discussion. 
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1.2. Topographic Indicators of Buried Monumental Buildings and Individual 
Architectural Features 
 
Definition of  Monumentality: Monumentality is an often discussed but rather ill-defined concept that 
has seldom received other than philosophical treatment emphasizing its symbolic and metaphoric 
aspects (Ockman 1993). Trigger (1990), as the probably most often cited recent voice, sees as the 
principal defining feature of monumental architecture that its scale and elaboration exceed the 
requirements of any practical functions that a building is intended to perform. Superficially more 
formal are definitions focussing on the combination of scale, order, repetition and unity (e.g. Safdie 
1984). Intentions, functions, unity etc., however, are themselves rather flimsy terms that are hard to 
translate into an archaeological context. If automated detection is the ultimate aim, an intuitively 
fitting definition - however provisional - based on measurable observables is needed. 
 
Judging by the way the word and its derivatives are used in Near Eastern archaeology, 
"monumentality" may be attributed to buildings as diverse as the palaces of Mari (Heinrich 1984), the 
Anu Ziqqurrat (Heinrich 1982), the Gimilsin temple at Tall Asmar (Delougaz et al. 1967), the 
"Monumental Palace" at Tall Brak (Oates et al. 1998), possibly even the early temples at Eridu (Safar 
1981). Size alone, therefore, does not make a building monumental. The context of a building would 
seem to play an important role: the small Eridu temples might be considered monumental because of a 
pronounced contrast to their proto-urban surroundings. In the setting of Eana, these temples would not 
be counted as monumental. The closest thing to a common denominator may be an impression of 
weight and static detachedness from a contrastingly lighter, more dynamic urban environment (e.g. a 
stone building surrounded by wooden huts, or the heavy-walled house of a rich merchant vis-à-vis of 
houses in a poor quarter).  
 
In the framework of the proposed model, monumentality may be defined by high S' and R' relative to 
the average in a given area. Great wall thickness and high geometric regularity, then, are the hallmarks 
of monumentality, while size counts only by implication via its strong correlation with wall thickness. 
Large buildings, then, are not necessarily monumental, but monumental buildings tend to be large.  
 
Stability and topographic signatures of buried monumental buildings: S' and R' are both negatively 
correlated with D, which in turn is positively correlated with instability (P'/L'). On the scale of entire 
settlements, high S' and R' are therefore to be expected in areas of relative stability. The vertical 
structure of such areas is characterized by sequences of successive walls (table 1: G-B) that stay in 
place through a comparatively high number of strata, as implied by the strong negative correlation 
(Spearman rank-order: c= -0.783) between L(seq) and D. In the plane, the outline of monumental 
buildings is therefore less prone to change over time than the outline of less regular or less thick-
walled buildings.  
 
Intact parts of walls and the debris-filled spaces between walls have different physical properties, and 
can be expected to be subject to erosion at different rates. Because of the greater average depth of 
homogenous material over several strata, the probability that a buried monumental mudbrick building 
will manifest itself by a distinct topographic signature is higher than in the case of a non-monumental 
building of the same size.  
 
Thus, the empirically well-corroborated observation of variations in local stochasticity in regard to 
both modern settlement structure (O'Neill et al. 1988) and artefact distribution in ancient settlements 
(Wilkinson 2001), may be assumed to manifest itself in the topography of highly stratified settlement 
mounds. The higher the tall, the better. 
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2. DATA 
 
 
2.1. The DEM based on the 1984 Topo-survey 
 
2.1.1. Survey Data 
 
The 1984 topo-survey was conducted by D. Steudler using a DKM-2AE theodolyte and a DM 501 
range finder with reflectors. A total of 720 reflector positions was measured within an area of ca. 
700x600m. A summary of the measurements relevant for establishing the basic survey grid as well as 
a list of control measurements was published in TH1:77-86, and a more narrative account of the 
survey and the post-processing of the data was given in Steudler (1985). The complete, so far 
unpublished, set of measurements used for generating the contour map published in TH1 as "Plan 1" 
may be found in table 2 (available in electronic form [ASCII-coordinates] on request). In the present 
text, a new DEM based on the QuickGrid-Algorithm (QUICKGRID 2001) was used as a basis for all 
calculations. A comparison with the original DEM showed the differences to be negligible. 
 
In fig.5B, the xy-point layer is projected onto the original contour map. The very uneven spacing of 
measurements is typical of traditional surveys using reflectors: areas that appear featureless to the 
surveyor are loosely sampled and inaccessible parts of the terrain that cannot be reached with 
reflectors necessarily remain unsampled. Within the area defined by the 355msl elevation line the 
average measurement density is 0.25points/100sqm (100 sqm=1 square), which corresponds to a mean 
resolution of 20m. Local variation, however, is very high, and while in some areas the density exceeds 
4points/100sqm, in large parts of the DEM it may not reach the density thresholds required for 
computing a DEM with appropriate grid size, potentially leading to misrepresentations of topography 
(Zang and Montgomery 1994). In order to at least roughly assess the applicability of a method to 
specific parts of the DEM, an easily interpretable mode of representing local resolutions was needed.  
 
 
2.1.2 Local Measurement Density 
 
Kernel density: Local resolution, i.e. measurement density, can be determined in various ways. From 
the xy-point layer a simple density grid can be created, for example: a circular search area is defined 
around each point. The total number of points is calculated within the search radius, and is then 
divided by the search area size, resulting in a density value for each grid cell. A density map generated 
in this way is basically a trivariate histogram with discontinuous values between grid intervals and 
holes in loosely sampled areas. A much better, continuous representation of local densities can be 
achieved by estimating kernel densities (Silverman 1986, Beardah and Baxter 1996, Baxter et al. 1997, 
Bowmann and Azalini 1997): a kernel is a known probability density function. Averaged across the 
observed data points it creates a continuous density curve (univariate) or surface (bivariate); kernels in 
higher dimensions can be calculated as well. Except for a uniform distribution, points lying near the 
centre of the search are weighted more heavily according to the type of kernel (gaussian, triangular, 
etc.). The smoothness of the resulting curve or surface, however, depends mainly on the kernel 
bandwidth and not so much on the chosen distribution (Beardah and Baxter 1996). Whereas well-
established methods for determining appropriate bandwidths exist for univariate kernel density 
estimates, the multivariate case is a matter of little theoretical consensus and, until recently, complete 
computational intractability in practice. Only at the time of writing have transparent, universally 
applicable algorithms for this task been published (Gray and Moore 2002, 2003); too late for being 
incorporated here.  
 
Measurement density map: fig.5A is a colour-coded xy-kernel density map of the original survey data. 
The kernel is a bivariate gaussian (normal) distribution with a bandwidth t=0.25 of the data range in x 
and in y. The bandwidth was chosen interactively so as to conform to my subjective visual impression 
of measurement density in fig.5B.  



 21

 
 
2.2. Plans and Sections  
 
The methods set forth in §§ 3.4.-3.5. were applied only to data extracted from plans and sections 
completed until 1999. These plans represent an unpublished stage in between TH2 and TH4; they no 
longer exist and cannot be reconstructed from the plans published in TH4 (§ 0.2.3.). 
 
The drafts for the plans and sections published since 1984 (TH1, TH2, TH4) were drawn by hand in 
the field on the basis of measurements taken by different people using various types of theodolytes and 
levels, but also, within squares, measurement tape and plummet. This conforms to the standard 
procedure in most excavation projects. It is problematic insofar as measurement errors vary locally and 
are difficult or impossible to determine post-hoc.  
 
From 1990 onwards, 2D-CAD post-processing was done by D. Dallagnolo and, between 1997 and 
2001, myself. The level of schematisation is high in large brick layers. Only bricks close to wall faces 
or layer boundaries were drawn individually; the same applies to areas with irregular brick packing. 
Where packing was regular within a layer, dividing the total area of the layer by the number of bricks 
averaged the dimensions of bricks as well as joints. In vertical sections, small deviations of individual 
layers from the horizontal within large compact wall sections were ignored. For individual bricks this 
results in centre-point deviations from measured horizontal position of probably not more than a 
decimetre in the centre of large layers. In the vicinity of layer boundaries, where the plans are 
ziegelgerecht, positional and angular accuracy may in most cases be assumed to be in the range of the 
- unknown - measurement errors.  
 
Plans 3, 4 and 5 (TH4) were generated in 2002-2003 by merging and updating the original CAD 
drawings of individual squares. These new plans do no longer accurately represent excavation data. 
They were repeatedly adjusted according to the changing ideas on the structure of the Palace derived 
from my hypothetical predictions. As a consequence, they exhibit considerable positional as well as 
angular deviations from the plans used in the present text. In at least one case, a relevant  architectural 
element appearing in the plans of 1999 was removed entirely (§ 0.2.3., 3.4). Results based on 
excavation data up to and including 1999 can therefore not be replicated using data from these later 
plans.  
 
 
2.3. Satellite Imagery and 3D Laser Scanner Data 
 
VHR-remote sensing data (Wheatley and Gillings 2002) and ultra-dense 3D point clouds acquired by 
Laser scanning (Langer et al. 2000, Sawyer 2002) are occasionally referred to in the theoretical 
sections of this text (§ 0.2.2). These two kinds of data are the potentially richest, as yet almost 
untapped sources of topographic data for PSDR.  
 
Corona and Ikonos data: In 2001 various Corona b/w-images of the surroundings of Tall al-Hamidiya 
were acquired (CORONA 2002) as well as Ikonos multispectral VHR-imagery (1m and 4m-
resolutions) of a 11x11km square centred on the tall (IKONOS 2002; cf. fig. 2). Classification, 
analysis and feature extraction from 2D remote sensing data is being conducted in collaboration with 
other researchers (Gerber and Wunderle). 
 
3D Laser scanners: In 2001 the Institute of Ancient Near Eastern Archaeology and Languages, 
University of Berne, together with three partner institutes, acquired a Cyrax 2500 Laser Scanner 
(Cyrax/Cyclone 2002). This device determines the position of ca. 1000 points per second within a 
field of view of 40x40deg (max.) over a distance of up to 100m. It uses a pulsed laser beam and 
records the time-of-flight from emission to return of the pulse to remotely capture 3D surfaces. 
Resolutions in the sub-centimetre range are possible (≥2mm point-to-point spacing @ 50m), and the 
accuracy is 6mm (1σ @ 50m) for individual points and 2mm for modelled surfaces (data courtesy of 
Leica Geosystems, Switzerland). Comparable devices based on continuous wave emission emit a 
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beam with constantly changing amplitude. Each reflection from a point has a specific amplitude 
signature that also reveals the time of flight. Such continuous wave scanners are much faster and 
usually have a wider field of view than pulsed Laser scanners. The current model of the Quantapoint 
scanner, for instance, scans at 150'000pts/sec in a window of 360x320deg (QUANTAPOINT 2002, 
Sawyer 2002), exceeded only by the iQsun system, which reaches 200'000pts/sec (IQSUN 2002). 
 
In both types, the finished scan results in a point cloud consisting of millions of xyz-coordinates 
requiring specialized CAD software able to handle such vast amounts of data (e.g. LASERGEN 2002), 
additionally a reflection intensity value for each coordinate is usually noted, and, if the scanner has an 
appropriate passive channel, a true colour value (RIEGL 2002, Z+F 2002). Objects are scanned from 
various positions and the individual scans registered by fixed or natural targets, i.e. well-defined points 
common to more than one scan (CYRAX/CYCLONE 2002) or by statistically finding the best fit 
between modelled surfaces (e.g. PARAFORM 2002) in order to compensate for wholes and shadows 
due to invisibility from a specific scanner position (Besl 1998, Lapointe and Mercier 2000).  
 
At Tall al-Hamidiya a Laser scanner will be used for the first time in 2004 for both topo-surveying and 
documentation of excavation results. In 2002, various tests were conducted in France and Switzerland 
in collaboration with other researchers (Gerber 2002, Hoffmann 2002, Theocharis unpublished data) 
and in Turkey (Hoffmann and Theocharis, in preparation). A database of archaeological VHR-scans is 
being planned as a research tool. 
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3. METHODOLOGY, METHODS, RESULTS 
 
 
3.1. Predictions based on Fractality Analysis at Large Scales 
 
3.1.1 Aims 
 
A multitude of different feature extraction techniques may be used to detect linearity, parellelity and 
other traces of artificiality in remote imagery (Chen 1999). Appropriate combinations of such image 
processing methods are ever more frequently employed in archaeology (e.g. Campano 2002, Pavlidis 
et al. 2002) the targets, however, normally being relatively easily recognizable structures, usually 
made of stone or other imperishable materials. Although they might conceivably be used to detect 
indicators of heavily eroded monumental mudbrick architecture within a natural environment if 
appropriately calibrated, a more direct approach based on fractality analysis that I believe to be better 
adapted to detect deviations from 'naturality' is explored theoretically in this section.  
 
Fractality is a geometric, scale-invariant property of most natural structures. Artificial objects are 
usually non-fractal and obey the simpler laws of Euclidian geometry. Since the collapse and 
subsequent erosion of buildings leads to progressively more natural shapes and, hence, an increase in 
fractality, a tall's specific fractality signature is assumed to be an indicator of its potential for 
harbouring monumental architecture.  
 
 
3.1.2 Fractality  
 
To the human eye a house in front of a mountain scenery stands out clearly even when viewed from a 
considerable distance or depicted in greyscales. The contrast between the relatively smooth surfaces 
and clear boundaries of the house and the heterogeneous surface structure and broken boundary lines 
of natural rock is apparently great enough for the brain to distinguish between the man-made object 
and its natural background. Much of the information one might intuitively consider important - details 
like windows or the shape of a roof as well as colour information - have comparatively little 
distinctive value. On a conceptual level, this contrast in perception corresponds to two fundamentally 
different geometries. Man-made objects are generally best represented within the framework of 
Euclidian geometry, and can often be modelled by combining geometrical primitives like cubes or 
cylinders. Most natural structures, on the other hand, are more adequately represented by fractal 
geometry. 
 
Fractals, in the words of Mandelbrot (1977) who coined the term, are geometric shapes that are 
equally complex in their details as in their overall form. A "perfect" fractal can be thought of as a 
shape that can be subdivided in parts, each of which is an exact copy of the whole. Such a fractal is 
self-similar and scale-invariant in the sense that its - impossible - physical realisation would appear the 
same if seen from a great distance or viewed under a microscope. Mathematical structures like the von 
Koch curve (von Koch 1906) are perfect in this sense. The von Koch curve is generated by splitting a 
line segment into three equal parts and replacing the middle one by two joined segments of the same 
length (fig.6). Iterating this procedure indefinitely results in a truly self-similar and scale-invariant 
pattern. 
 
The rough and fragmented shapes of most natural objects, such as branches of trees, edges of clouds, 
turbulence phenomena, but also mountains, coastlines and other landscape features (Goodchild and 
Mark 1987), are fractal or partly fractal in a different sense. Their fractal elements belong to a class of 
fractals called fractional Brownian (Mandelbrot and van Ness 1968). The degree of their self-
similarity is limited by stochastic irregularities in the mapping of the whole onto the parts, and they are 
self-similar only within a certain range of scales. Algorithms adequately replicating such structures, so 
called Iterated Function Systems (Barnsley and Demko 1985, Barnsley 1988), therefore have a 
deterministic and a stochastic component: for instance, iteratively moving the middle of a line segment 
perpendicularly by a fixed distance with a normally distributed error results in a natural looking shape 
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with a strict, though not immediately obvious, underlying regularity. This procedure, the stochastic 
interpolation of a line, may be extended to two dimensions to model terrain surfaces (Clarke 1987, 
Laurini and Thompson 1992: 158). Note, however, that while the elevation coordinate relates 
statistically to the two horizontal coordinates, it has an order of magnitude which is less than the other 
two. Thus, horizontal sections of the terrain exhibit isotropic scaling, while longitudinal sections 
exhibit anisotropy. As a result, coastlines and contours are statistically self-similar while vertical 
terrain profiles are self-affine (Bindlish and Barros 1996, Turcotte 1997). 
 
No conclusive explanation of the physical universality of fractality has yet been found. Based on the 
observation that channel and hillslope adjustment by sediment transport can often be modelled by the 
diffusion equation with a diffusivity dependent on discharge, the fractal nature of topographic 
transects is believed to be due to a non-linear term introduced in the partial differential equation for 
landscape elevation by an empirically well-corroborated dependency of diffusivity on discharge 
(Pelletier 2002). 
 
Fractal Dimension: Fractal geometry thus lends itself to the algorithmic description of natural objects 
by generating adequate replications of them. The inverse problem of determining if an object is fractal, 
and to what degree, is linked to the definition of an appropriate measurement unit. Subjectively, the 
rugged outlines of natural shapes would seem to fit the space they occupy more densely than those of 
their artificial counterparts. This subjective feeling can be quantified by various numbers associated 
with fractals and referred to as fractal dimensions (Barnsley 1988: 173-182). They have in common 
that all are calculated by taking the limit of the quotient of the log change in object size and the log 
change in measurement scale as it approaches zero; in other words: fractals scale according to a power 
law. For open-curve non-stochastic fractals a special case applies insofar as this quotient is constant 
and the fractal dimension d can be obtained by the equation 

d = log N/log (1/r)     (Eq. 1) 

where N is the number of linear elements in the repeated pattern (the repetitor), and r the self-
similarity ratio (the inverse of the scaling factor s). For stochastic fractals or structures comprising of a 
combination of fractals d is determined by regressing the quotient elements against each other to 
compensate for random scatter. 
 
Having established fractal dimension as a measurement unit, a mathematical definition of fractality 
can be given: a shape is considered a fractal if its fractal dimension is larger than its topological 
("normal") dimension. Hence, if, in the simplest case, a shape made up from line segments 
(topological dimension 1) has a fractal dimension >1 it is a fractal. This is true for the von Koch curve 
in fig.6, for example, which is formed by repeatedly replacing the 3 segments of the initial line with 4 
new segments (repetitor), where each of the 4 new lines is 1/3 the length of the initial line (self-
similarity ratio): its topological dimension is 1, because scaling the line segments it consists of by a 
factor of 2 results in new segments twice as long as their originals, hence: log 2 / log 2 = 1. Linearly 
scaling the whole curve by a factor of 3, however, will result in a curve 4 times as large, and its fractal 
dimension is therefore log 4 / log 3 = 1.261. The coastline of Britain, a famous example of a typically 
fractional Brownian real-world structure, has roughly the same fractal dimension (Mandelbrot 1967). 
 
 
3.1.3. Scale vs. Resolution 
 
Problems of Scale and Resolution: Fractal dimensions are experimental observables, and under ideal 
conditions their estimation poses no problems. However, in practice, an object or a structure of interest 
can frequently not be measured directly but only via some sort of abstracted representation - in the 
case of Tall al-Hamidiya a remotely sensed 2D raster image with fixed resolution and a vector DEM 
with interpolated surfaces based on unevenly distributed measurements. In both cases, the range of 
scales available for analysis is limited by resolution (raster) or local measurement density (vector). If 
an object or a structure of interest is very big relative to the level of detail of its representation, a 
sufficiently large part of the range of scales within which it exhibits fractality remains available for 
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analysis. For smaller objects or structures the measurement errors (raster) or interpolation errors 
(vector) become relatively larger and the range of accessible scales may be too limited to allow any 
confident estimate of fractality. In other words, if the ratio of object size/pixel size (raster) or object 
size/[1/local measurement density] (vector) is below a certain threshold T, the object's self-similarity, 
if present, is not preserved through the imaging process and cannot be determined.  
 
Eq. 2 is a somewhat rubbery approximation of T for the fractal outline of an independently known 
object. It is presented only for the sake of a thought experiment intended to give an idea of the object 
sizes necessary for assessing fractality.  
 
T ≈ {K(1/r)} n     (Eq. 2) 
 
where r is the self-similarity ratio of the object's outline, and n the minimum number of sample scales 
considered sufficient for regression. K is the minimum number of pixels in an orthogonal grid 
necessary to reproduce the repetitor pattern in sufficient detail to be recognizable under a given 
definition of d. Kube and Pentland (1988, cf. McGunnigle and Chantler 2001) analysed the properties 
of images of fractal surfaces and showed that the image of a fractal Brownian surface is fractal 
Brownian - i.e. self-similar - only under certain conditions, some of which are unrelated to the 
problem discussed here. T as defined above does not explicitly take account of these conditions. 
Nevertheless, with some goodwill K can be thought of as a proxy for their combined effect on T. 
 
If, in a raster image, r=0.5 and n=3 for a given object and regression method, and K=(3*4), then the 
object has to be represented by ≥ 13824 pixels in the image. In the case of an Ikonos VHR-image with 
a pixel size of 1*1m this corresponds to a boundary line ≥470m assuming a roughly square outline, 
and side lengths ≥117.5m. Under these conditions, i.e. with only 3 scales for assessing scale-
invariance and working with the best satellite data available commercially at the time of writing, the 
fractality of a smaller object can therefore be estimated only at scales <<0.10km. Employing mixed-
pixel methods or other approaches to extract sub-pixel information would probably not lead to a 
significant reduction of this limiting scale (Blaschke et al. 2000). This illustrates that the fractality of 
structures in the size-range of most architectural objects relevant to the archaeologist cannot at present 
be assessed: VHR remote imagery is sufficient only where exceptionally large buildings are targeted, 
and elevation maps of Talls not generated by laser scanning are useless for this task.  
 
 
3.1.4. Detection of Sites Potentially Harbouring Monumental Architecture 
 
Theoretical basis of detection algorithms: Talls harbouring monumental architecture are expected to 
exhibit a fractality-signature with two crossover scales within a range that is slightly lower but 
equivalent in width to the size range of its monumental buildings (§1.4.1.). Typically, then, this range 
would be somewhere around 0.01-0.10km (fig. 4). Using state of the art VHR-satellite imagery or 
traditional topo-survey data, the lower crossover scale will therefore remain undetectable. However, 
these are purely practical limitations that may be overcome in the nearest future. Theoretically, this 
signature, if corroborated empirically, would be clearly distinguishable from the signature of non-
urban talls (1 crossover scale < ca. 0.05km) as well as from those of the surrounding landscape: the 
majority of topographic data sets cannot be adequately characterized by a single fractal dimension 
either. Rather, the behaviour of natural topography tends to be divided into scale ranges with fairly 
distinct crossovers (Brown 2000). Over scales <0.6km many of the surfaces can be modelled as 
fractional Brownian surfaces with d around 2.2 - 2.3. Over larger scales, higher dimensions around 
2.75 are noted while at still larger scales many terrestrial surfaces exhibit periodicities (Mark and 
Aronson 1984, Clarke 1987).  The surroundings of talls will often show signatures that differ 
systematically from those of natural landscapes due to more or less intensive agriculture. Field 
patterns and plough marks may lead to a region-specific signatures with a fairly low average fractality 
- in all probability lower than that of most talls, and with different crossover scales.   
 
Once the price for VHR imagery at appropriate resolutions drops to an affordable level, large-area 
searches for such differences could be conducted using techniques borrowed from landscape ecology 
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to determine local fractality (Milne 1988), or by adapting existing military image processing 
algorithms for detecting man-made structures in aerial photographs like the one initially developed by 
Stein 1987 , where the deviation from fractal behaviour over a range of scales is measured using a 
least squares model 
 
  

(Eq. 3) 
 
 
 
where M(r) is some metric property of the image such as its power spectral density or surface area, r is 
the scale of measurement, a and b are constants that minimize the residual error ε. For fractals M(r) ~ 
r ^f(D) where f(D) is some function of the fractal dimension D. As discussed sub Eq.1, log-log 
regressing r vs. M(r) yields a straight line with slope a for fractal geometries. If applied to a running 
window, ε therefore tends to be small over those portions of an image containing natural terrain 
features and large where there are artificial  structures.  
 
In areas and periods from which written sources are known, the combination of such fractality-based 
detection algorithms with predictive GIS (Wescott and Brandon 1999) or localisation techniques as 
those set forth by Wäfler (TH3) would allow targeted searches for specific sites or even buildings with 
an unprecedented degree of precision, control and replicability. Despite having been employed in 
military reconnaissance for more than two decades, these methods are not in widespread academic or 
civil use - with the notable exception of the SETI community that has adopted them eagerly in the 
search for extraterrestrial artefacts (Carlotto 1988, 1993, Carlotto and Stein 1990, Crater 2002). 
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3.2. Scale-insensitive Alternatives to Fractality Analysis at Small Scales  
 
3.2.1. Fractality at the Scale of Individual Buildings 
 
Over scales much smaller than the size of an eroded building, the fractal dimension of its contours 
may be assumed to be in the range expected for natural structures (§2.1.4.), and to depend only on the 
time of exposure to erosion and on the specific erosion behaviour of the building material, usually 
mudbrick. The shape and size of the original structure are irrelevant, and information on either may 
therefore not be deduced from the fractality of the building at such small scales.  
 
At scales approaching a building's size, fractality - if measurable, i.e. under the condition that s is 
small enough (cf. fig. 4) - will assume values typical for artificial structures, i.e. very close to its 
topological dimension. The most common estimate of the fractal dimension of natural shapes 
derivable from Eq. 1 (Brown 2000) is  
 
d = 2* s   (Eq. 4.1) 
 
where s is the slope of the regression of the log of patch perimeter versus the log of patch area 
(Lovejoy 1982, Krummel et al. 1987, O'Neill et al. 1988, Sugihara 1990). At the single scale equal to 
the building's size, finally, it cannot be measured because scale-invariance can only be assessed over a 
range of scales. In this special case,  
 
d' = log(area)/log(perimeter) (Eq. 4.2) 
 
which is a pure shape index and, as such, building specific. d', in contrast to d, is not a dimension 
estimate. Because contours resulting from building collapse and subsequent erosion preserve 
parallelity (§3.3.2.), a significant change in the shape index from one contour (n) to the next (n-1) may 
be assumed to point to a change in shape at elevation n-1.  
 
 
3.2.2. Scale-independent Proxis 
 
Proxies for Fractal Dimension: Over the past two decades, quantitative landscape ecology as a 
discipline concerned with finding correlations between changes in landscape patterns and ecological 
processes has developed a wealth of spatial metrics appropriate for automated analysis of remote 
sensing imagery. Under the empirically well-founded assumption that the overall fractality of a 
landscape is negatively correlated with human impact, various of these indices quantify the average 
fractality of the patches (clusters of pixels with identical or similar attributes) of a specific area in 
order to allow comparisons between different regions (Turner and Gardner 1991). There is much 
debate as to the techniques of estimating fractal dimensions where no direct measurements are 
possible (Russ 1994); judging by the methods implemented in two widely used software packages, 
APACK (2001) and FRAGSTATS (McGarigal and Marks 1995) the most common estimates are by 
log-log regressing box size in a specific area versus the number of boxes required to cover the area 
(Loehle 1990) or by applying Eq. 4.1. The latter estimate is commonly known as the Shape 
Complexity Index (SCI).  
 
The consistency of the SCI between sets of images of different resolution has been scrutinized 
repeatedly. The results, however, are inconclusive: in some cases the index was consistent over 
various scales (Rami 1997) in others not (Gasper and Menz 2002). Since the assumptions underlying 
the SCI are well grounded theoretically and empirically, a low object size/pixel size ratio (§3.1.3.) in 
some of the images used for testing may account for much of the inconsistency: the sensors noted by 
Gasper and Menz (2002) are CORINE (30m), REKLIP (30m) and, without further specifications, 
NOAA (1000-1100m).  In the same study, a variant index (Durchschnittliche Normierte Fläche = 
DNF) is proposed as a scale-insensitive alternative. The correlation between the two indices applied to 
the same data was not very high at c=0.5.  
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Shape indices: Because DNF as an alternative metric is scale-insensitive, it might also be used at 
lower scales as a pure shape index. As such, it contains no information on the actual shape of a 
building but only on the degree of elongatedness and, thus, ruggedness of its outline. While possibly 
appropriate to detect boundaries between buildings, it cannot be used to determine the type of a 
building. For the latter task, more shape-sensitive methods are currently being investigated, such as 
shape indexing using histograms of cumulative distances from points within the shape to points on the 
shape boundary (Tetik and Wymann 1997, Ankerst et al. 1999) or using exact distributions of the 
average of the two distances from a point a running along the shape boundary to the points b and c on 
the boundary line defined by its intersection with a straight line starting from a at 90deg and 45deg to 
the local tangent respectively (Gerber and Tetik, in preparation). 
 
 
3.2.3. Implementation and Results 
 
Detecting changes in shape between contours at Tall al-Hamidiya: The following simple variant of 
DNF was used to detect changes in shape of buried structures between contours of different elevation 
at Tall al-Hamidiya:  
 
B= SQR(area)/ perimeter   (Eq. 5) 
 
Obviously, B is also a shape index, not a measure of fractal dimension. Its sensitivity to changes in 
shape between objects built of identical elements and, thus, with identical surface areas, but different 
outlines is illustrated in fig.7: The index is highest for the compact shapes 1 and 3 and much lower for 
shape 2 which is the most rugged and, therefore, has the highest degree of elongatedness. B can only 
be determined for closed shapes, in this case whole contours. This is problematic because a) a contour 
may represent the merged shapes of more than one eroded architectural structure, and b) a contour 
may include areas with insufficient measurement densities. For Tall al-Hamidiya, calculation of B 
therefore only makes sense within blocks that can reasonably be assumed to represent a constant 
number of structures, and an assessment is possible only through comparison with results obtained by 
other methods. Fig.8A is a hierarchical tree of such blocks at Tall al-Hamidiya: the nodes are defined 
by mergers of two contours at 1m-intervals and correspond topographically to saddle-shaped 
watersheds (fig.8B). The lower in the hierarchy a block is located, the more likely it is to be a 
conglomerate of various structures, and the smaller the likely influence of individual buildings on a 
contour.  
 
In fig. 9 the B-values of the contours from a single branch of the hierarchical tree (blocks 2-8-9-11-14-
15) are plotted against elevation.  Between blocks, large but meaningless differences in B-values are 
apparent. Within individual blocks the relative differences between the values of B may be meaningful 
insofar as B gets smaller the more elongated a shape. For the generally rounded shapes exhibited by 
the tall contours, B increases over decreasing elevations if the buried shape exhibits broad protrusions, 
i.e. one or many convex corners below this specific elevation, and decreases in the case of one or 
many concave corners. However, within very slim blocks, the potentially relevant differences in B 
may well be within the range of stochastic noise or - in areas with insufficient measurement densities - 
interpolation errors.   
 
Basic shapes: Only blocks 8 and 15 extend over a relevant number of contours. Block 8 (387-367msl) 
shows a fairly continuous series of values with two platforms at 386-379msl and 373-370msl 
respectively (red caps). It overlaps to a fair extent with the area having the greatest measurement 
density (bold line in fig. 5A), and since B decreases from the higher platform to the lower, one or 
many concave corners not present in the shape represented by the higher platform are to be expected in 
the larger shape represented by the lower platform, obviously located in one or both of the areas 
defined by the wadis cutting into block 8 from NE and SW (black arrows in fig. 8). At 370-367msl, 
the steep increase towards values of B comparable to those at 386-379msl may suggest a shape hidden 
in the northern part of block 9 that is similar to the one represented by the higher platform.  
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Block 15 (360-355msl) exhibits a very stable increase in B and no platforms. The increase is caused 
by two large wadis (blue arrows in fig. 8) getting shallower towards the plain, which results in more 
rounded contours at lower elevations. 
 
Assessment: the shape index (Eq. 5) is unspecific in all aspects of shape except general elongatedness 
or ruggedness. By itself it is therefore only useful for comparing shapes and determining changes in 
shape within blocks. It has to be supplemented by visual interpretation when the influence on B of 
localized attributes of shape is to be assessed. For automation the histogram methods mentioned in 
§3.2.2 would have to be implemented.  
 
Vertically, the B-values in block 8 would seem to point to a sandwich structure with two sets of 
contours of similar shape separated by a set of contours of different shape exhibiting two broad 
incisions, i.e. concave corners. The upper and middle sets are well-defined by constant B-values 
whereas the lowest can only be guessed on the basis of the direction of change in B in the transitional 
zone before blocks 8 and 4 merge into 9, and of the specific value of B at the block boundary.  
 
The small variation in B values within the two platforms excludes the presence of multiple structures 
at the relevant elevations. Otherwise, one would expect B to scatter more widely around a constant 
running mean. The contours defining these platforms, therefore, correspond most probably to the 
debris cone of a single terraced structure extending over the whole area of block 8. 
 
 
 
 
 
 
 
 
 
 



 30

3.3. Predictions based on Topographic Analysis 
 
3.3.1. Topographic Effects of Erosion  
 
Early models of natural hillslope development were mostly qualitative-dispositional and based on 
philosophical inference rather than representative empirical data (Parsons 1988, Kienholz 1993). In the 
1970s more mathematical approaches were nourished with ever more abundant quantitative data, and 
rapidly developed into sophisticated process-response models employing numerical simulation 
techniques (e.g. Kirkby 1971, 1976, 1990, Armstrong 1976). The exponential increase in computing 
power during the past two decades soon allowed numerical modelling on the particle level and has led 
to a rapid generalization of models and a deeper understanding of the interacting physical processes 
underlying hillslope evolution (Jaeger and Nagel 1992, Ritter et al. 1995, Tucker et al. 1997, Favis-
Mortlok et al. 1998, Tucker et al. 2000, Harmon and Doe 2001, et multa alia).  
 
Artificial and semi-artificial slopes: Far less thoroughly researched are artificial and semi-artificial 
slopes. Only occasionally have erosional changes in slope form of recent artificial mounds been 
monitored and modelled (Haigh 1979, Goodman and Haigh 1981, Evans et al.1992). For semi-arid 
archaeological sites the situation is even worse. Although various aspects of erosion have been 
investigated in depth (e.g. Bell and Boardman 1992, Wainwright 1994, Christopherson and Guertin 
1995, Peterson et al. 2002), only very few studies employed quantitative models to simulate the 
morphological/topographic evolution of individual sites (Kirkby and Kirkby 1976, Haita 2001).  
 
Determination of initial states: Most erosion processes exhibit non-linear behaviour to a certain degree 
(Favis-Mortlok et al. 1998, Martin 2000, Tucker et al. 2000, Istanbullouglu et al. 2002) and are on the 
whole unidirectional in the sense that from a specific outcome - e.g. the modern shape of a tall - a 
specific initial state - its shape in 2000 BCE - cannot be determined by simply running a process 
model backwards. Sophisticated models like CHILD (2002) or the concept-stage Geobot-model (Haff 
2002) might, in an appropriate probabilistic framework, allow a narrowing down of the range of likely 
initial states by retro-calculation below the threshold of the obvious, but to my knowledge, this has 
never been attempted.  
 
The approach advocated here is much less ambitious: using very simple models the preservation of 
shape attributes of specific types of initial states was investigated. These attributes were viewed as 
signals in the form of topographic markers containing mainly relative positional and orientational 
information.  They deteriorate in strength and specificity over time and, at some point, are irretrievably 
lost in the increasing noise of progressive fractalisation caused by non-linearities in the erosion 
process. Of interest are only a signal's detectability and systematic changes in specificity. An attribute 
A initially representing the precise position of an architectural element (x,y), for example, may at the 
time of detection only contain information on the upslope or downslope direction in which the element 
was originally located resulting in statements of the form A( x',y' | x'</>x, y'</>y). The total of such 
signals retrieved from the modern topography of a tall only illustrates what must minimally have been 
present originally, and in which areas the elements associated with detected signals were most likely 
located.  
 
Assumptions concerning shape development in Near Eastern talls: In order to compensate for the lack 
of empirical data on the erosion behaviour of different materials potentially present in talls, it was 
assumed throughout the following sections that talls are relatively homogenous in respect to material, 
specifically, that they consist exclusively of sun-dried mudbrick or mudbrick debris. The influence of 
wind-borne sediments, the occasional stone etc. was consciously ignored in order to exclude material-
dependent differential impacts of erosion processes from the models, as e.g. the differential 
sedimentation of particles according to size or changing friction coefficients between soil layers of 
different material composition. Additionally, the following simplifying assumptions were made: 
 
a) If not intentionally levelled, unused mudbrick structures on the surface of a settlement mound 
collapse within a very short time after their abandonment. The tallus-like debris slopes that result from 
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this initial collapse have a predictable angle of repose that is slightly lower than the stability threshold 
gradient for material of this kind.  
 
b) The post-collapse changes in form of the debris slope are continuous and may be modelled using 
diffusion equations. Creep, i.e. gravity-driven particle transport without significant mass loss, is 
considered the only relevant physical process at this level. Mass loss by sheet flow, wind erosion, 
rainstorm events etc. is only implicitly present in the models in the form of unrealistically high creep 
rates .  
 
c) Incisions and cuts formed by running water are viewed as effects of a separate process that acts 
independently on the eroding slope. The local loss of mass effected by channelled water is assumed to 
be dependent on the density of the near-surface material. 
 
The relevant attributes of a,b and c are summarized in the following chart: 
 
 
Time       a  →     b   →     → 
        →      c 
________________________________________________________ 
 
Process type  catastrophic continuous continuous 
   rapid  slow  slow 
Effects   permanent permanent impermanent 
 
 
 
The actual processes involved are not only much more complicated but also highly interdependent 
(Ritter et al. 1995). However, even though inaccurate as a physical description, the relative temporal 
succession and mutual independence of a, b and c agrees reasonably well with the succession of most 
of the relevant, topographically visible effects of erosion over time.  
 
Measurement density: It was argued in § 1.2. that the shape of monumental buildings is likely to be 
preserved to some degree through collapse and subsequent erosion, but also that both processes 
necessarily lead to progressively more natural, i.e. fractal, shapes (§ 3.1.). Characteristic elements of a 
building are signals of its artificiality insofar as they can usually be described using Euclidian 
geometry. The progressive fractalisation resulting from erosion, then, necessarily leads to an increase 
in noise hiding that signal.  
 
Noise is the limiting factor for the information content of a signal. It manifests itself in the form of 
random variation around the local signal mean and can often be reduced by simple averaging if 
sufficiently dense measurements are available (Pierce 1980). Because, in this particular case, the 
degree of noise is a function of time, a generally valid statement on limiting measurement densities for 
detecting eroded elements of mudbrick buildings cannot be given at present. Even if the relevant 
material properties of mudbrick were known, the increase of noise over time could only be quantified 
on the basis of fractality measurements on a large number of dated Near Eastern sites. The resolution 
required for such measurements on the scale of buildings can only be achieved by using 3D laser 
scanners (§ 3.1.3.); such a device will not be in use at Tall al-Hamidiya before 2004, however. For 
lack of objective criteria, the topographic analyses in this section are largely restricted to areas of 
medium to high local (Kernel) density (denoted by broken lines in fig.5B). 
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3.3.2. Slope and Gully Formation 
 
3.3.2.1. Collapse of Mudbrick Walls 
 
If particulate or granular matter is poured from a point (x,y,z) on a flat surface in the (x,y)-plane at 
z=0, it accumulates in the form of a cone spreading from its centre at (x,y,0) with a fixed slope α, the 
so-called angle of repose. Tilting the plane will not affect the settled cone until a specific angle 
β>α −the threshold gradient of stability - is reached at its underside. At this point the straight cone 
surface collapses causing an avalanche to cascade downslope in a thin moving layer until it is again 
stopped by an obstacle and the angle of repose is restored (Jaeger and Nagel 1992, Möller et al. 2002). 
Unconsolidated heterogeneous material of any kind acts in the same way as long as the mean particle 
or lump size is relatively small as in the case of thoroughly weathered mudbrick. In abandoned 
mudbrick buildings, weathering sets in immediately on exposed wall surfaces. Rapidly progressing 
inward it causes the walls to become unstable and, eventually, to collapse. On flat ground, the 
unconsolidated debris then forms a talus-shaped cone at the wall base, which protects the lower parts 
of the original wall (fig. 10). This process stops when the debris cone reaches the height h2 of the 
remaining wall. 
 
Debris cones resulting from building collapse are traditionally said to have an angle of repose 
α ≈ 30deg (Kirkby and Kirkby 1976, Schmid, personal communication). Field studies as well as 
experiments under standardized conditions have, however, shown this angle to vary considerably 
between 20-40deg for loose, unconsolidated soils as well as different types of debris (Young 1961, 
Brethoud 2001, Möller et al. 2002). Because it falls well within the uncertainty of the accepted 
traditional estimate of α, the slight systematic difference between α and the consistently steeper 
threshold angle of stability β has, to my knowledge, so far been neglected in archaeology.  
 
Fig. 11A demonstrates the effect of ignoring the threshold gradient β in favour of a simplistic angle of 
repose model assuming α = 30deg: In complex situations, where multiple buildings located close to 
each other collapse at different elevations, all slopes tend towards the stable angle of repose. Steps 
with a ratio of basen /(hn+1+hn) <1 are therefore covered completely by a featureless slope surface.  
 
In a more realistic setting as shown in fig. 11B, the stability threshold gradient - arbitrarily set at β = 
35deg - is observable at the boundary between the remains of a wall and its associated debris cone (red 
arrows). Where the latter extends below the wall base it may itself be stabilized by a plateau formed by 
the difference of α and β in the debris of a lower wall. After collapse, i.e. when stability is reached, 
slight bumps in the otherwise even slope surface will therefore coincide positionally with original 
walls - even where basen /(hn+1+hn) <1. 
 
 
3.3.2.2. Post-Collapse Slope Development 
 
Mudbrick buildings usually start collapsing within a few months after abandonment. Compared to the 
erosion processes changing the shape of the debris mound after it has reached stability, collapse is 
extremely rapid, and the two types of processes may therefore be modelled as acting in sequence and 
independently from each other. 
 
Simple shapes: Under lab conditions a settled cone of particulate or granular matter with a constant 
slope α will be subject to very slow acting processes roughly corresponding in their effect on the 
cone's shape to the combined effects of non-catastrophic mass wasting by soil creep, rain splash etc. in 
a natural environment. On the cone surface the random Bownian motion of particles is uninhibited in 
all directions away from the cone, resulting in individual particles tumbling downslope and 
accumulating at the base. The linear longitudinal profile (red line in fig. 12A) of the original cone is 
thereby transformed into an S-shaped slope that flattens progressively over time (blue curves in fig. 
12A). 
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Due to the pull of gravity the average direction of these particle movements is perpendicular to the 
local orientation of the cone contour, i.e. the parallelity of original contour segments is preserved in 
the corresponding segments of the new shape. 
 
This process can be modelled in one dimension (Fig. 12A) as a diffusion process by invoking a 
transport rule 
 
 
S = -D(∆E/∆x)    (Eq. 6.1) 
 
and a rule of mass continuity 
 
 
∆S/∆x + ∆E/∆t = 0   (Eq. 6.2) 
 
 
where x is the horizontal distance from the cone centre, E is the elevation above the plain and t is the 
time elapsed since the process onset (initial shape). S is the average rate of mass transport, which is 
proportional to the tangent of the local slope angle (∆E/∆x), and D (diffusivity) is the constant of 
proportionality. 
 
Elevation (E) can then be expressed as a function of distance (x) at a given time (t) by 
 
 
E = {A/SQR(4πDt)} EXP[-x2/aDt]  (Eq. 7) 
 
 
where A is the cross-sectional area of the shape.  
 
Obviously, Eq.7 is a variant of a normal density function, and the resulting shapes therefore are 
normal (Gaussian) curves (blue in fig. 12A). Such diffusion equations accurately represent changes in 
shape under lab conditions and may be used in isolation to describe a 'general case' of natural slope 
development if the influence of channelled water and non-continuous, catastrophic events like storms 
and landslides is ignored (Martin and Church 1997). They are thoroughly deterministic and can 
therefore not be used to accurately model the behaviour through time of a specific mound. However, 
as stated in § 3.3.1. the interest here was in determining generally applicable topographic markers for 
specific types of eroded artificial structures; for this task these simple, economic models are ideally 
suited. 
   
Complex, composite shapes: Targeting large, urban talls, the expected slopes are more likely to have 
resulted from the erosion of complex, composite structures than from single walls collapsing on a 
horizontal plane. Fig. 12B illustrates the use of a slightly modified equation in such a complex setting. 
The slope (blue curve) tends towards developing convex and concave segments; only where the space 
between the two initial peaks is filled up does a fairly straight segment appear as a transitional shape 
before concavity is re-established by mass flowing unhindered into the plain at the base. The slope 
therefore may be described by a series of segments that are either convex (A), straight (B) or concave 
(C). At iteration 9 a second run was initiated by adding a small square block to the mound profile (red 
curves) in order to simulate occasional changes in mound form by re-settlement. 
 
From this encoding of local attributes alone the boundary conditions at the base of a mound may be 
inferred directly from a DEM (fig. 13A): 
 
1) If mass flow into the plain is unhindered, the series will necessarily terminate in a C-segment.  

 
2) B-segments at the end imply the constant removal of mass by water running along a tangent to the 
base, i.e. a river that does not cut into the mound.  
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3) If the slope is convex at the base (A) more mass is removed by running water than is supplied by 
downslope transport. In latter case a river necessarily cuts into the mound. Parts above a straight line 
at β from the intersection of the slope with the water level are bound to collapse. 
 
Segmentation Analysis: Mass loss by slope collapse causes the profile curve to move backwards. In 
case 3, therefore, attributes of the initial mound shape are a priori unlikely to be preserved. In cases 1 
and 2 initial attributes may be preserved. Their detection depends on the vertical resolution of the 
DEM. In Fig. 13B the detectability of the turning points in the original shape to the left is illustrated. If 
the slope is represented at a relatively high resolution (red) both turning points are detected and their 
positioning is fairly accurate. At half this resolution (blue) the sensitivity is too low: the first turning 
point can no longer be detected and the double-convex upper part of the mound shows as a single A-
segment with a turning point positioned too low in the slope. Obviously, the vertical resolution Rv 
required for a sufficiently detailed and accurate representation is < the height hm of the markers of 
interest, which, themselves, are necessarily < than the height of the artificial elements they have 
evolved from. Concave as well as convex curve segments and the position of turning points in the 
transition zone are defined unequivocally by 5 points; as a rule of thumb, I therefore suggest using 
Rv=0.2hm as the minimum vertical resolution; turning points detected at this resolution are off-target 
by 0.1 hm max.  
 
Decimation: The opposite problem, oversensitivity, is encountered where the vertical resolution of a 
DEM is Rv << hm. In this case small random bumps caused by the vagaries of weather, by trampling, 
temporary surface rilling etc. will by their presence in the encoded description hide the relevant shape 
attributes at the scale of hm. I propose a robust, flexible decimation scheme that allows to filter 
unwanted noise at scales below hm of the expected attributes (fig. 13C): assume a very high-resolution 
slope profile (smooth black line). Encoding yields 15 segments, each of which is evidently much 
smaller than hm. By decimating all points except the turning points (red) the number of segments is 
lowered to 5, and, by repeating this procedure, to 3 (green), effectively cancelling out noise. At both 
levels of decimation the general form of the slope is preserved. At level 2 the segment height roughly 
equals hm. B-segments resulting from decimation usually have no real world pendant; they have to be 
classified as A or C depending on the position above or below the new slope line of the majority of 
original turning points. 
 
It goes without saying that this decimation scheme is robust only within a range of vertical resolutions 
(in a contour map = equidistance) limited by the local density of the topo-survey data underlying the 
DEM (Zhang and Montgomery 1994). The threshold is reached where local interpolation errors 
exceed 0.5Rv, because below this value of Rv turing points may be purely artefactual. 
 
Horizontal and vertical movements of slope attributes: Fig. 14 shows the development over time of the 
composite shape from fig. 11B. After the first iteration (I=1) he elevation of the encoded attributes at 
5m-resolution corresponds well with the vertical position of the floor levels in the non-eroded post-
collapse shape (initial state, I=0). The progressive levelling at later iterations causes the turning points 
defining the C-segments to move distinctly in the horizontal. Turning points at higher elevations 
become less distinct over time and eventually become undetectable. Their horizontal movement is 
slight . Upslope segments merged in this way preserve the original elevations of their upper and lower 
boundaries to a satisfactory degree. In the middle parts of the slope a slight downward movement is 
apparent whereas in its lower parts the accumulating debris moves the upper boundary of the terminal 
C-segment upwards. These vertical movements of the turning points are shown in fig. 15. 
 
Automation: The proposed segmentation analysis can easily be automated because it relies exclusively 
on turning points directly extractable from profiles. Even though not quantifiable precisely due to a 
lack of empirical values for the necessary parameters (including time!), the known directions of both 
horizontal and vertical movements may be taken account of in the automatic classification of the 
results:  
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In a given longitudinal profile, markers Mn detected at (xn,En) 
 
a) indicate that the relative original horizontal position xn original lies slightly upslope from xn observed in A-
segments and downslope in C-segments at the base of the slope. 
 
b) indicate relative original vertical positions En original ≥ En observed if the turning points defining the 
relevant M belong exclusively to A-segments. If an A and a C-segment are included then En original ≤ En 

observed.  
 
c) do not exclude the presence of additional markers in the intervals [Em-1,Em(m|m<n)] at earlier states. 
 
 
3.3.2.3. Gullies and Wadis 
 
Gully formation criteria: The formation of rills and gullies is still imperfectly understood in its details. 
Early models and their contemporary successors were deterministic and focused on quantifying 
average soil loss (e.g. RUSLE 2002). Today the formation processes themselves are more often dealt 
with in probabilistic models using 3D topographic data and including non-linear, non-deterministic 
components (Favis-Mortlok et al. 1998, Tucker et al. 2000, Brethour 2001, Haff 2001, Istanbullouglu 
et al. 2002). The processes of rill and gully formation are largely unidirectional, i.e. it is possible to 
some degree to predict how channels evolve if the initial topographic situation for the relevant area is 
known, but not the reverse. For the purpose of extracting indicators of eroded artificial structures from 
the topography of talls, four points are especially relevant: 
 
a) Water follows the path of least resistance and its flow is more turbulent if channelled. In other 
words, less material is removed by sheet flow than by concentrated flow. If mass removal and 
sedimentation are not in equilibrium, for example in the steep parts of a hillslope, a small initial 
incision may become trapped in a positive feedback loop in which the increased mass removal leads to 
a progressive deepening of the incision, thereby further concentrating water flow and turbulence. In 
this manner a small rill may become a gully or even a large wadi.  
 
b) Rills may form temporarily on any surface if the underlying soil is saturated. Most are rapidly 
destroyed  by wind-borne sediment, raindrop impacts, soil creep and other predominantly stochastic 
processes. Only on relatively steep slopes with a flat or concave surface can some rills grow into 
gullies. On convex surfaces gully formation is very unlikely. 
 
c) Gullies trapped in a growth cycle not only deepen but also expand in width because particle 
movement on both faces of the V-shaped incision is oriented towards the locally steepest slope angle, 
i.e. towards the gully axis.  
 
d) Sediment transport rates are positively correlated with slope gradient and catchment area.  
 
Extracting original wall orientations and positions of corners: From a and b it follows that in the early 
stages of tall erosion gullies are likely to form on steep slopes preserving original linearity or resulting 
from the erosion of concave corners. Because of their much larger contributing area, the latter will 
generally be deeper and wider from the beginning and are likely to grow into large wadis. 
 
From c and d it follows, that the general flattening of a slope over time will reduce the impact of 
secondary formations in local concavities resulting from progressing random fractalisation of the 
mound surface. Primary gullies are less strongly affected by flattening because once trapped in a 
feedback-loop the gully gradient constantly remains steeper than the surrounding mound surface until 
a threshold is reached below which the flow velocity is too low to maintain a rate of sediment 
transport exceeding sedimentation. At this point both primary and secondary gullies will start to fill up 
from the base.   
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Therefore, regardless of changes in the mound contours large gullies may be assumed to have been 
caused by the last major change in local mound shape due to building collapse, and to have preserved 
their original orientation.  
 
Fig. 16A is a schematic representation of these processes. In (1) the outline of a massive mudbrick 
structure before its collapse is shown. The arrows along the border point in the direction of least 
resistance towards the border of the structure, their length correlates with the extension of the 
contributing area of the point where the border intersects with the arrow. The relative size of the 
contributing area is taken as a proxy for the likelihood of a specific zone to cause gullying after 
collapse. Its is small for convex corners and largest for concave corners. In (2) gullies and a wadi are 
forming on the post-collapse surface, and (3) shows the deepening of the initial channels and the 
formation of secondary gullies in small concavities caused by random small-scale changes in shape.  
 
The proposition that primary channels retain their original orientation implies that the direction of flow 
in gullies is approximately perpendicular to the original orientation of linear building elements, 
whereas in the larger wadis caused by concave corners the latter is likely to be located on or close to 
the line defined by the channel. In both cases, however, the channels may at a certain depth cut into 
older material below the collapsed walls. Differences in material composition or shallow buried wall 
remains might potentially alter the course of the channel bed while leaving the upper borders of the 
incision unaffected for some time.  
 
In fig. 16B a simple way to determine the channel type (primary or secondary; caused by a corner or 
by a linear wall segment) and orientation is presented that by-passes the problem of deviating channel 
beds: In horizontal sections, the progressive flattening of a mound will lead to rounded forms in the 
vicinity of original corners. Since the number of convex corners along the outer hull of a building 
necessarily exceeds the number of concave corners, the shape of a contour becomes more convex as a 
whole.  
 
Therefore, in originally straight parts of the mound surface there should always be a tangent to the 
contour that touches both borders of a channel incision (first order tangents; red lines). In primary 
gullies several approximately parallel tangents will be found in neighbouring contours; their mean 
orientation is an estimate for the orientation of the eroded wall (dotted red lines). Secondary gullies 
may be expected to consistently produce smaller numbers of parallel tangents.  
 
No tangent to a contour touching both borders of the incision caused by large gullies or wadis 
representing concave corners will normally exist because the original concavity is preserved in the 
contour. In such cases any tangent touching a point on the contour to each side of the incision (blue) 
will define an area (light grey) that includes the smaller gully incisions in the linear parts of the 
contour (dark grey). These second order tangents do not coincide systematically with any original wall 
orientations; they may, however, be used to objectively distinguish wadis from gullies.  
 
Automation: The distinction between first and second order tangents is relevant in view of automation 
because only first order tangents may be used as indicators of original local wall orientations: An 
algorithm GT ('Gully-Terminator') smoothing the contours of a DEM by replacing local concavities 
coinciding with drainage channels regardless of incision width by their first order tangent where such 
a tangent exists but leaving those concavities in place that can only be bridged by second order 
tangents, will create a new shape that is on the whole more linear than the mother contour and 
approximates the pre-collapse shape of the eroded structure in those contour segments whose first 
order tangents exhibit a near-uniform orientation over several (n) vertically adjacent contours (dotted 
red lines in fig. 16B). The relative likelihood of a good orientation fit for individual segments may be 
assessed by n-ranking. Local concavities that only have a second order tangent remain in the contour, 
thereby acting as rough indicators of original concave corners 
 
Eliminating all local concavities by running existing smoothers, like e.g. a Pivoting-Ball (PB) 
algorithm  (Bernardini 1999), along the contours of the same DEM is much less efficient: while PB 
will restore approximate parallelity relative to the original wall orientations in highly linear parts of 
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the contour - provided the ball perimeter d >> average gully width - it will also eliminate 
indiscriminately those concavities representing original corners. The number of eliminated concavities 
depends on the value of d. If d is too small there will be no significant smoothing effect, i.e. no 
information on original orientations, and if it is too large the number of 'false' eliminations, i.e. 
incisions representing original concavities, increases. In order to work well in the present setting, PB 
and comparable smoothing methods known to me would require a lot of interactivity. Because they 
cannot automatically discriminate between different types of local concavities the parameter 
representing sensitivity - d in the case of PB - would have to be changed according to subjective 
judgements for each contour segment. Results obtained in this way would not be replicable. 
 
GT, on the other hand, discriminates automatically between incisions caused by concave corners and 
primary concavities by the order of existing tangents, and in the latter group discriminates between 
primary and secondary incisions by n-ranking. For the artificial situation shown in fig. 16B applying 
GT yields 
 
 
n-Rank  Case n Orientation 
 
  2  1 4 ~90deg 
  2  4 4 ~0 deg 
  2  7 4 ~90deg 
  5  2 2 ~100deg 
  5  3 2 ~175deg 
  5  5 2 ~25deg 
  6.5  6 1 ~50deg 
  6.5  8 1 ~105deg 
 
 
for first order tangents.  
 
The ranking correctly mirrors the succession of primary gullies preserving original wall orientations 
(90, 0 deg) and secondary gullies at random angles. The original concave corner is correctly 
characterized - and, thus, located - by its second order tangents. 
 
Expected exceptions: A special case (Fig. 17) occurs where secondary gullies develop on the lateral 
slopes of primary gully walls or of wadis cutting into originally straight contour segments in areas 
below saddle watersheds, i.e. at the boundaries of individual blocks (§ 3.2.). In the first case such 
secondary incisions may at some point become large enough to be detected (dark grey in fig. 17), 
thereby changing the tangent of the primary channel from first to second order. To provide for this 
possibility the GT algorithm must be extended by the following rule: If in a sequence of connected 
first order tangents a second order tangent shows up that shares their common orientation and fits the 
sequence in incision width, then it is to be included in the sequence. In the second case, it cannot be 
decided whether or not the concavity was present in the original state or not.  
 
Another situation to be accounted for separately is case 3 in fig. 13A, where a river cuts into the 
mound base. In the area of highest impact at the base, a local concavity extending over all contours of 
the lowest A-segment of the slope in this part of the tall may develop (Fig. 18). Due to constant slope 
instability and local small-scale collapse the slower processes of channel incision cannot lead to the 
formation of detectable secondary gullies in this area. If the impact of the river is restricted to the 
edges of an originally straight wall segment (fig. 18B), first order tangents touching both sides of the 
resulting incision do not correspond to the original wall orientation. They do, however, if the impact 
zone is located near the middle of the original walls (fig. 18C). In order to take advantage of the 
second case, GT should not only be run in the areas defined by the drainage network but also in the 
vicinity of A-slope segments devoid of gullies at the base of the mound. 
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3.3.3. Implementation and Results 
 
3.3.3.1. Extracting Slope Information 
 
Sample profiles: Figs. 19A and B show four sample profiles extracted from the DEM in order to 
illustrate the points made in § 3.3.2.2. For each profile, level 1 and 2 decimations are shown. 
Assuming an original wall height of hm=3-5m, level 1 is sufficient in all four cases to filter out the 
noise caused by random bumps at a resolution of 1m.  
 
a-a': in this profile first order tangents to the contour incisions of the only large gully on the northern 
flank of the mound were measured. The decimated segment sequence is A-A-A indicating the recent 
action of a river cutting lightly into the base and affecting only the lower parts of the slope; its bed is 
still visible in the Ikonos image in fig.2. The instability of the terminal A-segment precludes secondary 
gully formation in this area after the river course started colliding with the tall. The gully, therefore, 
may be assumed to be more ancient, and the average orientation of its first order tangents to be 
representative of original wall orientations in this area. For block 8 (§ 3.2.3.; fig. 8) the average is 
−4.2deg from horizontal in the survey grid. 
 
Plateaus/floor levels indicated by level 1 turning points in a-a' (§ 3.3.2.2.):  ≥381msl;  ≥372msl. 
 
d-d': The decimated segment sequence here is A-A-C indicating the unhindered flow of material onto 
the plateau formed by block 11 between blocks 9 and 10 (fig. 8). The terminal C-segment extends 
from 364-376msl; in this area, therefore, potential indicators of eroded architectural elements are 
covered by debris in this range of elevations and cannot be detected.  
 
Plateaus/floor levels indicated by level 1 turning points in d-d':  ≥381msl; <376msl. 
 
b-b': this profile consists of a single A-segment at level 1, pointing to severe recent loss of mass due to 
a river cutting into the base. Here as well the meandering riverbed is clearly visible in fig.2. Because 
the instable A-segment extends over the whole profile, no information on original plateaus may be 
extracted. 
 
Plateaus/floor levels indicated by level 1 turning points in b-b':  none. 
 
c-c': the information lost in b-b' may be retrieved on the north-western flank of the mound by 
measuring the first order tangents bridging the incision cut by river. The situation is comparable to the 
one shown in fig. 18C, where the main impact zone is located near the centre of a flank. The segment 
sequence is A-A-C, and the average orientation of first order tangents belonging to block 8 is 61.8deg. 
 
Plateaus/floor levels indicated by level 1 turning points in c-c':  ≥381msl; <376msl. 
 
Assessment of indicators extracted from sample profiles: the sample profiles extracted from the 
northern, western and eastern sides of the main mound at Tall al-Hamidiya independently point to two 
major plateaus located at E1 ≥381msl and 376msl>E2 ≥372msl, respectively. Though the sample size is 
too small to be statistically relevant, this is accordance with Wäfler's (TH1) hypothesis of a single vast 
building extending over much of the mound area published already in 1985. Profiles b-b' and d-d' 
correspond to areas of low measurement densities in the DEM (fig. 5), and may therefore be of minor 
quality. In order to increase the amount of profiles from high measurement density areas, a series of 
profiles oriented S-N were examined along the northern flank at 10m-intervals. 
 
Profiles from the northern flank: Fig 20A shows the positions of the 16 additional profiles extracted 
from the northern flank of the mound (black lines, bold print). The distribution of turning points (blue 
Kernel curves) is shown in fig. 20B for the undecimated profiles and for the level 1 decimation. The 
difference is most apparent at elevations between 370-380 were the undecimated curve is very noisy 
and indistinct while the decimated curve exhibits pronounced peaks. There are five clearly 
distinguishable clusters of level 1 turning points; the upper four are vertically spaced at 5m-intervals 
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and consist of points joining A-segments whereas the lowest consists of points at A-C intersections; 
thus: 
 
Plateaus/floor levels indicated by profiles 360-510:  ≥382msl; ≥377msl;  ≥372msl;  ≥367msl; 
<359msl. 
 
The turning points of all clusters are distributed evenly over those profiles that include the relevant 
elevations, i.e. the detected plateaus extend over the whole length of the examined part of the northern 
flank. The contour segments corresponding to the found plateau elevation minima and maxima are 
coloured blue in fig. 20A. 
 
 
3.3.3.2. Extracting Wall Orientations and Positions 
 
'Gully Termination': in fig. 21 the areas defined by first (red) and second (blue) order tangents to gully 
and wadi incisions in 5m-contours are shown. The first order tangents to the western flank of the main 
mound - discussed in § 3.3.3.1. - are indicated by red lines. The numbers are referred to below as 'N 
upslope', i.e. including all upslope contributors of the numbered channel, or as 'N downslope', meaning 
only the numbered flow. 'N+M' refers to the point of confluence. 
 
The extraction of the drainage network as well as the exclusion of irrelevant secondary channels (≤ 5 
1m-contours in sequence) were done manually in the 1m-contour map (not shown) according to the 
rules proposed in § 3.3.2.3. and controlled through visual comparison with the Ikonos image (cf. fig. 
2).; in an automated survey of satellite imagery, algorithms for automatic drainage network extraction 
would have to be implemented (e.g. Mark 1984).  
 
 
N     up/downslope 1st order tangents   2nd order tangents  
  
1 up  oo, sequence of 7 (5m-contours) none 
2 down  oo, sequence of 3   oo, fits 1st order sequence 
3 down  none     corner, no defined restrictions apply 
4 down  oo, sequence of 3   none 
2+3+4 down  none     oo, sequence of 2 
5 down  oo, sequence of 5   none 
6 down  ??, variation too large?   none 
7  down  oo; sequence of 2   none 
8 up  excl., contributors channelled by watersheds (blocks 4+8; 11+13) 
9 up  excl., watersheds (blocks 11+13; 10+9) 
10 down  oo, sequence of 2   none 
11 up  excl., watersheds (blocks 9+10; 11+12) 
12 down  oo, sequence of 3   corner, no defined restrictions apply 
   
   
oo: small variation in orientations; average of sequence ≈ original wall orientation 
??: large variation in orientations; no defined interpretation 
corner: 2nd order tangent bridges original concave corner 
excl.: excluded; no defined interpretation 
italics: reason 
 
 
Applying the GT-method, two original concave corners in the areas marked by black arrows in fig. 8 
have been detected as well as  a series of averaged orientations that may be assumed to correspond to 
the original orientation of walls in the respective parts of the mound. (6) was excluded because, 
subjectively, the angular and positional variation respectively between tangents on consecutive 
contours seemed too large. In a fully automated implementation such cases would require a clear 
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definition of the maximum angular and positional spread considered acceptable in a sequence of 
tangents to be counted as an indicator. 
 
Testing the validity of 1st order tangents as indicators of original wall orientations: If - as argued here 
- first order tangents to primary gullies are valid indicators of original wall orientations, one would 
expect the orientations extracted from an eroded ancient settlement to reflect the basic orthogonality of 
the individual buildings or building elements by clustering in groups of paired angles separated by 
90deg. If the underlying theory is wrong and first order tangents found by GT are not representative of 
original wall orientations, the distribution of angles should be uniform over the whole 180deg-range in 
large samples whereas in small samples clusters should be spaced randomly. 
 
In fig.22A the kernel density distribution (t=0.15) of the unaveraged orientations normalized to 
180deg is plotted; orientations extracted from block 8 are shown separately from those found in the 
rest of the mound. The four most obvious peaks form two pairs of orientations at right angles 
(∆=90deg) with local maxima at 61/151deg (group 1) and 85/176deg (group 2) respectively. This 
distinctly non-random spacing of clusters in a pattern clearly mirroring basic orthogonality 
corroborates the validity of first order tangents as indicators of original wall orientations. 
 
Completing the circle: While the overall distribution of angles points to an interconnection of 
individually orthogonal building elements with at least two major orientations, the unequal densities of 
the paired orientations within groups indicate that not all walls were detected by GT. In order to fill 
the gaps between areas of known original orientation along the DEM contours, i.e. areas uninfluenced 
by the drainage network of a tall, areas of high linearity need to be identified. Such areas are by 
definition less fractal than those exhibiting rugged outlines (§ 3.1.) and original signals of artificiality 
like linearity and parallelity may therefore be assumed to have deteriorated less severely relative to the 
local increase in fractal noise. Original orientations are therefore likely to be better preserved, and, in 
cases where the average orientation of the contour segments within an area of high linearity closely 
fits one of the averaged angles extracted by GT, the latter is likely to approximate the original 
orientation best because, judging by Occam's razor, the number of elements - here:  assumed original 
angles - is thus kept at the minimum. 
 
Defining areas of high linearity: In order to define areas of high linearity within block 8, relative 
directional change between points spaced 10m apart on 1m-contours was measured. In Fig 23 these 
changes are plotted vs. the clockwise percentage of the contour perimeter measured from the starting 
point indicated in the map for the 375msl elevation. The threshold for high linearity was arbitrarily set 
at 1sd (dashed line in the lower plot). For an area to count as highly linear (shaded blue) at least six 
steps in a row with changes <1sd were required in order to bridge the known gullies and wadis. The 
map indicates those areas of block 8 meeting the requirements of high linearity by blue shading (data 
for other elevations not shown individually). Within these areas, segments corresponding in 
orientation to one of the main groups found by GT were coloured accordingly in fig. 22B. The grey 
area in the south-eastern part of block 8 could not be assigned to a defined group.  
 
Original wall orientations: Fig. 24 shows all original wall orientations extractable directly from the 
DEM in block 8 at 3m intervals. For the grey area of high linearity wall orientations were assumed to 
conform to the mean orientation of its contour segments (46.5deg). Blue and red denote groups 1 and 
2 respectively. The lines correspond only to the orientation of walls at a given elevation; their position 
is defined independently by the relevant turning points extracted in § 3.3.3.1.   
 
A basic change in the overall shape is apparent on the eastern and western sides of the mound between 
376-373, which independently confirms the predictions concerning block 8 in § 3.2.3. The rugged 
lower part of the southern flank of block 8 cannot be assigned any original orientations. The mean 
orientation of the contour segments in this area changes continuously in clockwise direction from 
roughly horizontal (~group 2) at higher elevations to orientations clearly belonging to group 1 at 
365msl. Subjectively, one should think that this change is largely due to the wide incision separating 
blocks 8 and 4 (8 upslope in fig.21), and that, therefore, the whole area originally corresponded to 
group 2.  
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3.3.4. Symmetries  
 
3.3.4.1. Quantification of Symmetries and Symmetric Regularities 
 
Symmetry: Symmetry is encountered in many forms in natural as well as artificial objects (Washburn 
and Crowe 1988, Weyl 1989).  Perfect geometric symmetry - as achieved, for instance, by flipping or 
rotating an object - is often associated with artificial shapes, while natural shapes are more likely to 
exhibit degrees of symmetry: Fractals scale according to a power law (§ 3.1.), and are therefore 
symmetric in an elementary sense in regard to scale; for stochastic fractals this symmetry - analogous 
to its fractality - is approximate, a property that artificial objects generally lack. Approximations to 
perfect geometric symmetries are frequently used in reverse engineering for the reconstruction of 
complex shapes (Mitsumoto et al. 1992, Mills et al. 2001). CPSR (§§ 3.4.) implicitly encompasses the 
detection and quantification of such geometric symmetries because they are highly regular in terms of 
algorithmic complexity: in a maximally compressed algorithm symmetries are reproduced from a 
subset of the data by symmetric transformation. In this section, therefore, the focus is on non-
geometric or only partly-geometric symmetries that might potentially be present in the overall 
ordering of architectural elements detected by the techniques set forth in the preceding sections. For 
lack of a better term, I refer to such symmetries as 'order symmetries'. 
 
Isometric symmetries: Perfect geometric symmetries are isometric, i.e. they may be represented by 
contortions or movements of a space or an object that preserve distances between its points. The result 
of an isometric transformation is a congruent space or object. Mirror symmetry occurs when an axis 
passes through a given shape such that the two sides thus defined are mirror images of each other. The 
degree of mirror symmetry of a given object can be measured as the normalized difference between 
the image of an object and its reflection about a hypothetical axis of symmetry (Marola 1989). Values 
may range from zero (no symmetry) to one (perfect symmetry). If a(i,j) is an image, the Marola 
symmetry in the horizontal and vertical directions is  
 
�h(m) = 1 - 1/2 �i,j [a(i,j) - a(m-i,j)] ^2 / � i,j a2(i,j) (Eq. 8.1) 
 
�v(n) = 1 - 1/2 �i,j [a(i,j) - a(i,n-j)] 2 / � i,j a2(i,j)  (Eq. 8.2) 
 
where 0 � � � 1 . For a given window the axes of symmetry coincide with the maxima of (m, n); their 
absolute value is the degree of isometric mirror symmetry within the examined window. Methods 
similar to but more generally applicable than Marola's exist for detecting and describing reflexive 
symmetries both in 2D and 3D shapes (e.g. Kazhdan et al. 2002). For rotational symmetries a very 
flexible approach implemented in many commercial image analysis software packages was first 
proposed by Bigün (1988) who modelled symmetry in the Fourier domain, but used convolutions in 
the spatial domain for detection. All these techniques, however, use a symmetry descriptor that 
essentially depends on distances between points in space comparable to Eqs. 8.1 and 8.2. 
 
Non-isometric symmetries: If the search space is restricted to isometric or approximately isometric 
symmetries topographic manifestations of artificial structures that are heavily skewed or distorted or 
only exhibit order symmetry can neither be detected nor used as a compatible input for CPSR models 
(§ 3.4.). Obviously, techniques operating in the frequency domain are conceptually closer to the idea 
of non-geometric order symmetries than distance-based models. In the sense of an unsophisticated 
general test of their applicability to the problem at hand, the potential of autocorrelation for the 
detection of traces of order symmetry in two dimensions is in the following examined.   
 
Autocorrelation of 2D-slices: The autocorrelation of a data series of length n - usually but not 
necessarily a time-series - is the correlation of the series with itself measured at all lags 1, 2, 3..m..n. A 
high correlation at lag m means that the series resembles itself with a period of length m. Since 
elevation lines are closed shapes that can be encoded by listing relative directional changes along their 
border at specific intervals, periodicities detected in this way in a horizontal slice through a tall would 
point to rotational symmetric behaviour of the shape.  
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If regular distance intervals were used, isometric rotational symmetry would show up in the 
autocorrelation plot by a peak at lag [m*interval] equalling the distance along the contour between 
segments resembling each other. The same basic regularity in a contour representing an original form 
that may have been skewed or stretched by its builders to fit specific needs or that was heavily affected 
by erosion can, however, not be detected in this way, because such distortions differentially affect the 
length of the contour segments representing the period and thus destroy autocorrelation. This is 
illustrated in fig. 25A, which shows the autocorrelation plot of the 375msl elevation line of Block 8 
(blue) encoded by the sequence of directional changes (deg) between points spaced 10m apart on the 
contour. As expected there is no interpretable pattern. 
 
One possibility to compensate for both original non-isometry and noise consists in using an encoding 
scheme in which angular changes measured at fixed distance intervals are substituted by changes in 
probable original orientations along the contour at intervals defined by the changes themselves. In 
other words, the sequence to be examined consists of an essentially topological description of a 
contour where corners are nodes and walls are undirected graphs. If each node is classified according 
to whether it connects graphs belonging to same group (1) or belonging to different groups (2), the 
relationships between architectural elements can be described without reference to distances and may 
be examined as a sequence. 
 
Encoded in this way, the description of a contour preserves the order and type of the segments relevant 
to the original shape of the mound, but contains no information on the distance between the nodes. It is 
therefore robust in regard to non-isometric behaviour due to skewing, partial scaling etc. It is robust in 
regard to erosion only to the degree that the employed techniques for extracting wall orientations 
compensate its effects. 
 
 
3.3.4.2. Implementation and Results 
  
It was shown in § 3.3.3.2. that the most likely original wall orientations in block 8 cluster in three 
groups of angles. In fig. 25B block 8 is divided into zones of known original orientation (blue, red, 
grey) and zones of unknown original orientation (green) (cf. fig. 22B). Because there is  only one 
detectable change in shape occurring at 376-373msl (§§ 3.2.3. and fig. 24), the contours need not be 
examined individually but may rather be represented by a composite schematic shape with the same 
attributes consisting of 7 sectors with an upper and a lower element each (shape 1). Segment sides 
correspond to nodes; sides adjacent to green segments cannot be classified. They appear as missing 
values (.) in the encoding. For shape 1 the encoded sequence starting from the upper side of the sector 
indicated by the arrow in counter-clockwise direction is: [1. 22 21 12 1. 2. 2.] 
 
Because the values for the sector sides are paired, only the even numbered steps (solid blue) 
correspond to a lag of n+1 in the autocorrelation plot. There are two pronounced positive peaks at lags 
4 and 7 indicating rotational order symmetry between sector sides spaced four sectors apart in 
clockwise direction. The incomplete shape therefore is strongly symmetric in terms of order 
symmetry. By projecting the node attributes of the symmetric parts back onto the segments of 
unknown orientation the autocorrelation pattern is preserved (shapes 2 and 3).  
 
The resulting wall orientations are shown in fig. 26 (dashed lines). Obviously, the strong order 
symmetry does not translate into a detectable geometric symmetry. The rotational aspect is visible 
mainly in the eastern and western protrusions from the otherwise heavily skewed main body. 
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3.4. CPSR: Complexity-based Predictive Reconstruction of Buildings 
 
3.4.1. Rationale and Outline of CPSR  
 
Traditional approaches to architectural reconstruction: For every set y of known architectural 
remains of a destroyed building x there exist an infinite number of possible reconstructions x' within a 
given area S. From among this infinitely large class X' only one realisation x'∈X' is congruent with x. 
Every attempt at reconstructing x can therefore be seen as a choice of one particular reconstruction out 
of X'. In order to be intersubjectively verifiable, i.e. to be scientifically valid, the criteria for this choice 
have to be known completely.  
 
Trivial cases excluded - e.g. where disrupted wall lines are interpolated - traditional, non-mathematical 
approaches to architectural reconstruction suffer from a non-fundamental deficit insofar as the criteria 
leading to a specific choice of x' are not usually clearly exposed, and a fundamental deficit insofar as 
these criteria are ultimately based on typological similarities, i.e. based on prior knowledge or 
conditioning (Heinrich 1982, 1984). The possibility of innovations or singularity in architecture is 
ignored in such reconstruction schemes, because regularities in y that have no known precedents 
cannot be classified, and extrapolation beyond y based on typical features exhibited by its class is not 
possible. The only way to deal with innovation or singularity in such a conceptual framework is by 
letting intuition or random, uncontrollable insight guide the reconstruction process. Many attempts at 
reconstructing the geometric principles and units underlying ground-plans fall into this category 
(Allinger-Csollich 1997). The arbitrariness of most architectural typologies - where classification 
criteria are a matter of individual taste rather than the result of exploratory data analysis - is a separate 
but no less important problem. 
 
Complexity-based Predictive Site Reconstruction (CPSR): CPSR is a mathematical reconstruction 
technique largely developed in early 1999 as an alternative to traditional approaches to architectural 
reconstruction in cases where the remains of a building do not conform to any known building type 
(Gerber 2000b, 2001). In the framework of the envisioned PSDR-strategy it represents stage 4. It 
differs fundamentally from traditional approaches insofar as the information utilized for reconstructing 
a building stems entirely from its known remains. Because this information consists of the complete 
set of geometric regularities (trivial and non-trivial) inherent in any set y of known remains, the 
number of possible reconstructions is always finite within S and independent of any prior knowledge. 
 
Algorithmic Complexity: The supposed high degree of geometric order in monumental buildings can 
conceivably be exploited for predictions: by definition, any geometric shape can be described by an 
algorithm, i.e. a series of instructions that replicates it. Such algorithms can be compressed by 
substituting regularities in the series, i.e. its redundant parts, with short sets of rules. At some point, 
every regularity will be encoded by rules and the algorithm cannot be compressed further. The length 
of this maximally compressed algorithm is independent of the description language up to an additive 
constant; it can be determined and it is by definition a measure of the algorithmic complexity (C) of 
the object it represents (Li and Vitani 1999).   
 
Architectural identity and building-specific complexity signatures: the trained eye can often associate 
the archaeological remains of a building with a certain period or culture or "style" on the basis of its 
incomplete ground-plan alone. This means that the regularities defining its architectural identity are 
imprinted to some degree in the parts as well as in the whole. Therefore, because it captures every 
regularity inherent in the elements, a complete, maximally compressed description of the architectural 
elements y found by extracting topographical indicators from a DEM - or, at stage 4, by excavation - 
defines a part of the architectural identity of the original building x, both quantitatively by its length 
and qualitatively by the rules encoding the regularities in the algorithm.  
 
Using these rules to connect the individual elements to a single shape, then, results in a number of new 
wholes x' with an architectural identity that is necessarily similar to the original x. The degree of 
similarity depends on the percentage of relevant regularities in x represented by the known elements y, 
and on the way the complexity C of y relates to different parts of y: information i that can be encoded 



 44

in rules is not necessarily evenly distributed over the elements comprising y, and eliminating different 
elements from y will therefore lead to different values of C(y). However, the observation that the 
whole is reflected to some degree in its parts suggests a certain scalability of C relative to the amount 
of relevant information |i| available in y. One would therefore expect C(y) to exhibit a building-specific 
slope S if regressed against |i| for all possible combinations of elements in y, with actual values 
scattered more widely for small samples y than for large ones. An experimental corroboration of this is 
planned using a turtle graphics generator suited for the task (Blattner, Bieri, Gerber, in preparation); at 
present, it is but a reasonable assumption.  
 
S (or some other variable s defined by the relationship between C and the shape area), therefore, is a 
building-specific complexity signature of x apparent in y. Among all reconstructions x' based on a 
specific number of elements |y| those preserving s will therefore have the highest degree of similarity 
to x.  
 
CPSR as a form of reverse engineering: CPSR may be seen as a special form of reverse engineering: 
the ancient architects or, more generally, the builders of a monument partly retrieved by excavation, at 
some point converted a concept, i.e. the plan, into an artefact, i.e. the building. In the course of 
construction random errors occurred and the resulting artefact deviates in an essentially random 
fashion from the plan. After its abandonment the exposed parts of the building are subject to structural 
collapse and erosion; in extreme cases also to permanent skewing in the wake of earthquakes or other 
tectonic processes. The excavated parts of a building therefore never mirror the original design intent 
one-to-one.  
 
After excavation the accumulation of errors continues when to monument is surveyed and 
documented. The use of a variety of measurement instruments - from measuring tape to median-
seeking theodolytes or laser scanners - and, in most cases, insufficient documentation of topo-survey 
methods prohibits the quantitative determination of these errors. As if this was not enough, further 
deviations from the original structure are introduced during the drawing and CAD post-processing of 
plans. In reality, the documentation will be further affected to various degrees by selective 
interpretation of excavation results.  
 
Reconstructions that do not take these potential errors into account (§ 3.5.1.-3.5.3.) run a high risk of 
becoming trapped in circularity because they may merely propagate preconcieved notions hidden in 
data compromised by interpretation. 
 
In contrast to traditional approaches to reconstruction, CPSR - at least theoretically - takes account of 
the various levels of conceptualisation as well as of the sources of random and systematic errors. It 
converts an artefact back into a concept that has a specific probability of accurately representing the 
original design intent. Its goal is to reconstruct an ideal model of a physical object with intended 
geometric regularities in a manner that conforms to the basic scientific standards of intersubjective 
controllability. The result is neither a simple copy nor a representation of modern ideas. 
 
 
3.4.2. Definitions and Propositions  
 
An object's Algorithmic (Kolmogorov) Complexity C is defined as the length of the shortest 
algorithm replicating its complete description. C thus measures the amount of an object's inherent 
regularity. I propose an analogous measurement unit CR (Restricted Descriptional Complexity) 
appropriate for the special case of buildings. From the regularities encoded in the algorithms 
defining CR a building-specific set of constants can be derived, namely an algorithmic complexity 
signature that is expected to effectively capture a building's architectural identity. All possible 
reconstructions of a partly destroyed building that preserve the algorithmic complexity signature 
extracted from its known parts are then to be generated by exhaustive searching. In contrast to 
traditional strategies, excavation in the CPSR framework is limited to testing predictions about 
architectural key structures close to the present site surface. The newly gained information is to be 
fed back into the model. Whereas non-predictive methods necessarily yield a less than proportional 
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information gain relative to the total excavated area (§0.2.), hypotheses generated iteratively by 
CPSR should theoretically exhibit rapid asymptotic convergence towards the original ground-plan.  
 
 
Algorithmic complexity (Kolmogorov complexity C): Intuitively, one would say that an object that can 
be described precisely in a few words is less complex than an object which requires a very long 
description. In the theory of Algorithmic complexity this intuitive notion is formalized by defining the 
complexity C of an object as the length |p| of the shortest program p0 that generates the binary string x 
representing the object (Li and Vitáni 1997:93-96). More precisely: the Algorithmic (Kolmogorov) 
complexity C(.) of a binary string x with respect to a partial recursive function φ : Σ* → Σ* is defined 
as  
 
Cφ(x) = min{|p| : φ(p) = x}  (Eq. 9) 
 
where |p| is the length in bits of a string p. |p|, and thus C, are negatively correlated with the regularity 
inherent in the described object, and positively correlated with its inherent randomness. Take, for 
example, two numerical strings X: 3.40957715... and π: 3.14159265... Both strings are infinite and 
aperiodic, i.e. they share the same surface properties. However, assuming X is truly random, its 
description cannot be shorter than |X| because no rule can be utilised to predict its individual digits, 
thus p0(X)=X. The description of π (i.e. the algorithm generating π), on the other hand, can be 
compressed almost to the length of its definition: π=c/d in any circle. Regularity is extremely high in 
π and extremely low in X, thus, C(π)<<C(X). In colloquial terms, C measures the amount of regularity, 
and p0 captures regularity itself in the form of algorithmic rules. While C(.) is the same for a class of 
objects of equal complexity, p0(.) is object-specific because the program it represents replicates exactly 
one object.  
 
Architectural identity and building-specific complexity signatures: The trained eye can often associate 
the archaeological remains of a building with a certain period or culture or "style" on the basis of its 
incomplete ground-plan alone. This means that the regularities defining its architectural identity are 
imprinted to some degree in the parts as well as in the whole. Therefore, because it captures every 
regularity inherent in the elements, a complete, maximally compressed description of the architectural 
elements y found by extracting topographical indicators from a DEM - or, at stage 4, by excavation - 
defines a part of the architectural identity of the original building x, both quantitatively by its length 
and qualitatively by the rules encoding the regularities in the algorithm.  
 
Complexity of fragmentary architectural structures: Theoretically, p0 of a complete building x 
captures every regularity in x, and thus its 'architectural identity'. In order to reconstruct the original 
state of x long after its destruction, information about these specific regularities can therefore be 
gained from the remains y whose p0(y) partly consists of elements of p0(x). Using elements of y 
obtained by topographic feature extraction (§3.3.), this poses no practical problem. If, however, at 
stage 4, excavation data is used indiscriminately, the regularities encoded in p0(y) may be drowned 
beneath large amounts of randomness introduced by fragmentation, erosion and other shape-changing 
factors, leading to odd situations where p0(y)>>p0(x). In practice, this has to be avoided by using only 
the geometrically or topologically relevant parts of the remains in the feedback loop, such as wall 
surfaces and floors that were found intact. At stage 4, it is furthermore imperative that modern 
measurement errors and, if the excavation data are extracted from plans, the precision of the drawings 
be estimated statistically (§ 3.5.). The quantified errors have to be included in the model as tolerance 
terms.  
 
'Restricted Descriptional complexity' CR: For the purpose of reconstructing a monumental building 
like the Central Palace, the definition of C given above is too general. It is valid for any type of 
mathematical object and any language chosen for the description. However,  a building is a real-world 
object which cannot itself be used in complexity calculations; only its description is relevant, and the 
way the building is described determines the type of regularities that can be found by compressing the 
original algorithm. Individual elements of p0(y), then, should not encode arbitrary mathematical 
regularities, but rather only those that conceivably mirror the architectural identity of x. In order to 
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clearly differentiate between the general and the special case, C if restricted to types of descriptions 
appropriate for buildings is, in the following, provisionally termed 'Restricted Descriptional 
complexity' CR. 
 
The architectural identity of x may be viewed as the result of a process of geometrical construction in 
the plane, aimed at optimally using the available space. The remains y of x can, for example, be 
represented and described by a series of ruler-and-compass constructions, by square grid constructions 
or by descriptions that differ depending on their starting point (see § 3.4.3.). The first two types of 
description are static in the sense that the starting point of the description has no impact on the result, 
i.e. there is no historical error to be dealt with (§ 3.4.3.).  
 
CR and building specific complexity signatures for ruler-and-compass constructions: In the first case, 
the construction process is modelled by a series of ruler-and-compass constructions without 
measurements: A construction resulting in a wall line is called a step ψ. Each ψ consists of a number 
of operations ω. Each ω generates exactly one constructor. Starting from an arbitrary point in y (y 
being the known parts of ground-plan x), two operations ω are possible: a) the drawing of a straight 
line, or b) the drawing of a circle.  
 
Let the restricted p0(y) (i.e. the shortest description of y) be a two-part code, its first part describing an 
appropriate Turing machine and its second part describing the program that interpreted by the Turing 
machine replicates y; the second part may contain only ψ-elements, which themselves consist of ω-
elements. And let CR(y) = |p0(y)|, where |p| is the number of operations ω explicit in p (instead of its 
length in bits). In this form, p0(y) encodes only the specific information of interest, namely the rules 
guiding the ruler-and-compass construction of the target building's basic layout. The separate coding 
of ψ- and ω-elements facilitates the definition of a complexity signature (§ 3.4.1.) appropriate for this 
specific case. Because of this coding format and the definition of |p|, CR is completely language 
independent. C is language independent only up to an additive constant (Li and Vitáni 1997:103-104). 
The different cumulative effect of new vs. redundant information (I) on C and CR is illustrated in the 
schematic plot in fig.27: moving from left to right, the 100g-corner A1 contains new information; 
replicating it requires all this information. Corner B1 is mathematically more difficult to describe 
(≠100g) and therefore contains more new information than A1. B2 and A2 are copies of B1 and A1, their 
information is redundant and replicating them has little (C) or no (CR) effect on the structure's 
complexity. This difference between C and CR arises because the additional information required to 
generate these redundant parts is located in the Turing machine: CR  is not defined as the length of po 
but by the number of ω explicit in its second part and therefore remains unaffected.  
 
The odd-angled corner in 43/37: The first attempt at applying these concepts in 1999 was the 
replication of the odd-angled corner in square 43/37 at Tall al-Hamidiya (fig.28). The surface of the 
wall pointing north-eastwards was well preserved, if only on a very short distance of ca. 1.4m. (The 
filling shown in the original drawing between the protruding bricks was removed from TH4: Plan 4, 
generated in 2002). The wall's angle relative to the Central Palace's southern facade ('baseline' in 
fig.28) was determined by repeated measurements to be α=62.75g. In the absence of error estimates at 
that time, an angular error of ± 0.25g was assumed in accordance with manufacturer specifications. In 
hindsight, this was naïve: the 1σ-precision of wall alignments in this part of the palace was later 
established to be ±1.45deg, i.e. ±1.61g (§ 3.5.1.), making the measurement error negligible and 
completely changing the conditions for replicating α. Because the reconstruction presented in § 4.1 is 
uninfluenced by the way α is replicated, the original solution is repeated below for its theoretical 
interest.  
 
The majority of angles cannot be constructed; every angle, however, can be approximated by 
continuous bisection starting from a constructible angle like 100g or 66.67/33.33g. Given the baseline, 
the approximation of α by continuous bisection requiring the least operations ω starts from 100g (4ω) 
and reaches a value β=62.5g in the assumed error range of α after 4 bisections (3ω each). If the corner 
43/37 is considered in isolation from the rest of the fragmentary ground-plan y, this solution (A) is the 
shortest description p0(corner) with |ψ|=16. 
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If, however, the corner in 43/37 is treated in the context of y, a slightly more complex solution B 
(documented in fig.29) resulting in an angle β=62.72g with |ψ|=22 is favoured because many of its 
constructors coincide with constructors that can be used to generate other parts of y (bold type in 
fig.29): Scaled to the dimensions measured in the field (fig.30), A, for example, corresponds in width 
to the main ascent structure a extending southwards from the baseline (r=81.85m, thus A=r(ω17)(1- 
SIN[90-β])= 34.49m; a= 34.70m), the three walls b, c and d are tangents to the circle ω17, and line ω4 
through the centre of ω17 corresponds to the axis of structure a. The ψ-elements responsible for the 
replication of a, b, c and d in the uncompressed p(y) thus contain information already present in 
solution B. This redundancy in the description of y with solution B results in a decrease of |p(y)| after 
compression that is greater than the difference of 6ω between solutions A and B. Therefore, solution B 
is contained in p0(y), while solution A must be rejected.  

 
Algorithmic complexity signatures: Let x be the palace's ground-plan in its original state, y the known 
fragments of x after its destruction, and x' the best hypothetical reconstruction of x from y. How can 
regularities found by compressing the information in y to p0(y) be used to generate x'? The special 
properties of CR and restricted p0 allow for the definition of an architectural signature, which 
transforms the regularities found in y into a site-specific set of constants. Reconstructions with the 
same signature, i.e. the same 'architectural identity', can then be generated by simulation, ideally by 
exhaustive searches. Further restrictions like optimal use of terrain or exclusion of certain areas etc. 
can be introduced at will to narrow down the number of possibilities to the desired level.  

 
Assuming a certain degree of scalability and a general decrease of variance at higher |i|, a combination 
of two proxies (s1,s2) for |i| was used as a signature in the first experimental implementation using data 
from Tall al-Hamidiya as discussed in § 4.1. The first part of this signature is defined by  
 
s1=CR /|ψ|  ≈ const.     (Eq. 10.1)  
 
Since CR=|p0|, i.e. the number of explicit ω-elements in p0, this number encodes the complexity of a 
typical construction step ψ. The second part of s(.) is  
 
s2=|p|/A ≈ const.    (Eq. 10.2) 
 
where |p| is |p0(y)| for y and |p0(y)' | (sic!) for x'. It specifies the typical amount of 'construction effort' 
per area. A(rea) would have to be substituted by V(olume) if complex constructions in the z-axis are 
expected as would be the case, for instance, in the reconstruction of a Gothic cathedral. This is 
unnecessary for mudbrick architecture, which does not allow for much 3d-extravagance beyond simple 
projection along z. The signature used in 1999 has the advantage that both its elements s1 and s2 have a 
straightforward interpretation; because of problems encountered during the first trial implementations, 
other types of signatures are currently being investigated (§ 3.4.3.). 
 
 
3.4.3. Other Forms of Encoding y  
 
Historical errors: somewhat ironically, ruler-and-compass constructions as a basis for encoding y 
were initially chosen despite their obvious historical inaccuracy precisely in order to avoid 'historical' 
errors. Historical errors are deviations in results obtained by methods whose outcome depends on the 
starting point of calculations. Such errors are stable up to an additive constant for a specific method 
and a specific set of data, and Monte Carlo runs with a large number of different starting points or 
other simulation methods are commonly used to determine them. When CPSR was developed in 1999, 
devising a sophisticated simulation-dependent model on my own would have been both too time-
consuming and error-prone, and work on potential non-static encoding methods was discontinued until 
2001 (Blattner, Bieri, Gerber, in preparation). 
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Square grid constructions: A second static (and historically much more likely) method was suggested 
to me by H. Bieri (personal communication), namely square grid constructions. In an infinite grid of 
identical squares, every angle can theoretically be constructed by connecting grid intersections (fig. 
31). In practice, of course, a finite grid with a finite number of constructible angles would have to be 
used, its minimal number of squares in the x and y-direction depending on the specific angles to be 
constructed. In a CPSR-model two types of grids might be used:  
 
Type A: a small grid consisting of a sufficient number of squares for constructing all relative angles 
between actual or extrapolated intersecting wall segments in y. Such a grid may be much smaller than 
the plan of y, because distances can be bridged using a ruler once an angle has been constructed. The 
uncompressed description algorithm for a type A grid-based reconstruction would therefore consist of 
a starting-point invariant series of two commands (pseudo code) draw [nx, ny, d] and bridge [nx, ny, d] 
where positive n is the number of grid intersections to be moved upwards and the right-hand side 
respectively from an arbitrary starting point or from the point defined by the previous command, and 
negative n for movements in the inverse directions. d is the distance to be moved. 
 
Type B: a large grid covering the whole plan of the building such that a grid intersection coincides 
with each known or extrapolated intersection of two linear wall segments in y. In contrast to a type A 
grid, distances result directly from the construction of angles. The uncompressed description algorithm 
would therefore consist of two more economic commands: draw [nx, ny] and bridge [nx, ny]. 
 
When choosing a grid type for implementation its plausibility as a tool used by the architects of the 
building to be reconstructed should be considered: A small type A grid is useless for calculations. It 
may, however, be used for drawing relative angles in conjunction with a ruler. In this case, the grid has 
to be realigned after each constructed angle. Each reorientation necessarily results in a random 
imprecision leading to a cumulative error that, if an open shape is drawn, increases proportionally to 
the number of construction steps. In closed shapes the targeted coincidence of starting and endpoints 
can be used as a corrective for the last construction steps. Since the basic plan of a building is usually 
a closed shape, the cumulative error may be kept slightly below proportional. If, on the other hand, a 
large type B grid is used for drawing, there is no cumulative error because it need not be realigned 
during the construction process. A ground-plan designed in this way may be assumed to be much more 
precise than one drawn with a type A grid. However, a 'virtual' type B grid may be used as a planning 
tool in conjunction with a rough sketch. Every angle on the sketch may then be defined by a two-digit 
code [nx, ny] naming the number of squares to be moved in the x and y direction respectively. If the 
grid includes nodes that coincide with a reference system set up in advance in the building area, then 
such a sketch would provide a perfectly sufficient basis for triangulating of the building's corner 
coordinates in the field, as well as during construction.  
 
While large deviations from parallelity or from the mean of recurring angles in the known parts of an 
excavated building need not be a reflection of imprecise planning - who would blame the architect for 
the mistakes of a drunk mason? -, very small deviations in the actual building would seem to imply 
careful planning and a good translation mechanism between a plan containing ideal, intended distances 
and the positioning of discrete points in the field. Although a clear threshold error cannot be 
determined, the possible use of a type B grid should be considered in buildings with a low degree of 
measurable imprecision. 
 
In cases where the number of elements in y is high, the side length of a grid square is likely to coincide 
with the main architectural unit used by the original builders. Such a unit could be used as an 
empirical restriction in the turtle graphics generator presented in Blattner, Bieri, Gerber (in 
preparation) to narrow down the number of possible reconstructions to be examined. In § 3.5.1. the 
grid type, grid unit and grid size necessary for encoding y in the case of the Central Palace is 
determined and the plausibility of the resulting square length as an architectural unit discussed. 
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3.5. Extracting Additional Information from Excavated Structures 
 
3.5.1.  Construction Grids, Error Estimates 
 
Determination of grid type: In § 3.4.3. square grid constructions were introduced as a potentially 
interesting basis for encoding y in a CPSR-model and - assuming that such grids were actually used - 
as a means of determining the main architectural unit used by the builders of a given architectural 
structure. The type of grid most likely to have been used by the original builders depends on the 
estimated precision of the original wall orientations. Very high precision tips the balance in favour of a 
type B grid. Because wall orientations have to be extracted from available modern plans any precision 
and accuracy estimates can only be approximate (§ 2.2.).  
 
Precision: Fig. 32 shows the distribution (Kernel density, bandwidth=0.4) of wall or brick patch 
orientations extracted from the plans available in 1999. Orientations are given in degrees relative to 
the survey grid and were normalized to values < 90deg in order to make them comparable. In the area 
defined by 32/23-48/51, then assumed to roughly represent the Palace's main body, only preserved 
wall faces were included. In the isolated patches 49-51/45 no wall faces were preserved; here the 
average brick orientation was noted for each square.  
 
The extracted values show two clear clusters centred around ca. 52deg and 83deg respectively. The 
larger cluster (cluster 1) includes all extracted wall faces of the southern façade and the southern 
ascent structure (group 1) and those of the Palace's known rooms (group 2). Cluster 2 consists of the 
odd-angled outer wall segment excavated in 43/37 and the values from the isolated patches in 49-
51/45.: 
 
 

                    Cluster 1                       Cluster 2  
             

                      Group 1           Group 2                 Group 3      
              
  N of cases        7  21           |  5 
  Minimum        82.0  79.0           |  48.5 
  Maximum        86.0  87.0           |  56.0 
  Median           83.5  82.0           |  54.0 
  Mean               83.6  82.9           |  52.5 
  sd            1.492  2.330           |  3.500 
  
 
Taking into account the long distances between extracted façade angles in group 1 (max. ca. 150m: 
34/25-41/37), the precision (sd) of the measured wall orientations is extremely high at  ∼1.5deg. In 
group 2, consisting exclusively of measurements taken in rooms, precision is lower at comparable 
distances (max. ca. 140m: 41/38-42/50). Group 3, which includes the interiors of massive walls, 
exhibits by far the lowest degree of angular precision at the shortest distances (max. ca. 90m: 43/37-
51/45). 
 
While not conclusive, the high precision in group 1 points to triangulation as the original means for 
determining the position of the corners and walls to be built, and thus to the availability of a very 
detailed plan prior to the start of the construction works. If the reference system had been set up in the 
field by distance measurements using ropes, one would expect much wider angular spread over such 
long distances in group 1 as well as in group 2. 
 
In view of this observed precision, the use of a type B grid as a basis for planning and on-site 
measurements is a distinct possibility: It cannot be decided whether a drawn plan or a sketch 
supplemented by calculated angles and distances was used. Judging by the rare representations of 
ground-plans extant in the cuneiform record, the latter appears more plausible. However, the function 
of these tablets is not known with any certainty. Some may be field notes or school exercises, others 
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may represent volume and area calculations for construction logistics, conceivably even retrofits. The 
possibility of precisely drawn plans should therefore not be discarded entirely. 
 
Square grid orientation: In the following it is assumed that a type B grid with squares of minimal side 
length u (=unit distance) was used. On a scaled plan, the known corner coordinates of the building are 
supposed to coincide with grid nodes, and the grid itself may then be treated as a 2D Cartesian 
coordinate system. Determining optimal grid orientations in building remains without any clear 
preference for specific angles would require computation-intensive numerical models. At Tall al-
Hamidiya the matter is more straightforward because a narrower search space is defined by two main 
wall orientations known in 1999 for outer walls (facades), 83.6deg (mean group 1) and 48.5deg (single 
façade segment in 43/37), as well as their angular precision, sd=1.492 (group 1). Fig. 33 shows the 
positions of the 5 discrete points defined by the known corners in 1999 and their relative distances at 
fixed angles corresponding to the two main wall orientations.  
 
Determination of minimal grid size: If a grid G oriented at a given angle α has nodes coinciding with 
the known corners of an incompletely known building, then, ideally, the distances measured in the 
direction of α between the corners are integer multiples of the side length u of a grid square. u,  
therefore, in this ideal case, is the Greatest Common Divisor (GCD) of the measured distances. The 
minimal grid size expressed in u is the minimal extension of the plan in x and y divided by u, i.e. 
G[|x(min)|/u, |y(min)|/u]. However, in reality these distances represent a combination of ancient 
measurements - on the basis of which the palace was built - and modern field measurements. The data 
therefore have an unquantified error (§ 3.4.1.). A distance d measured in y is therefore not a precise 
scaled equivalent of the "true" distance D in the Maittanian architect's plan. For this reason, the prime 
factorisation required for determining the GCD cannot be computed.  
 
The solution presented here is a best-fit estimate based on a resampling method: Within an initial 
search space defined by a preliminary estimate δ of the - unknown - true distance precision ∆ of d, the 
range of scaling factors between the possible values of the unknown true distances D(1..m..n) was 
determined as the largest value of d(x) ± δ divided by the lowest of all d(m|m<x≤n) ± δ. Of all integer 
scaling factors within this range the three lowest intermediate or adjacent integer fractions were then 
multiplied with the actual measurements d(1..m..n). In this way, the actual - absolute - deviation from 
the unknown D(x) in each individual measurement d(x) was propagated towards all other d, thereby 
creating a cloud of artificial equivalents d' of repeated measurements around each d that is 
representative of the actual, absolute distance errors in the data. The mean of each cloud around d(x) 
therefore is an estimate of D(x); its sd equals the true distance precision ∆, and - as a nice side effect - 
the standard error of mean is the distance accuracy ε. Together with the known angular precision 
sd(group 1) these values quantify the overall positional uncertainty to be expected between the 
Maittanian plan and the built structures observable today as they appear in modern plans 
 
This resampling procedure is iterated with the newly gained estimates D(n), D'(n) etc. instead of d(n) 
until only one set of consistent integer scaling factors or integer fractions is left, or, until the spread of 
resampled values falls below the chosen precision threshold (here: first decimal). Dividing all values 
D(')(n) by the remaining scaling factors results in a series of estimates of the grid unit distance u. The 
mean of these estimes is the best-fit solution for u. 
 
In a last step, multiples of u can be used to calculate the final values of D, i.e. the precise distances 
intended by the Maittanian architects, and the minimal grid size in x and y respectively can be 
determined. 
 
Determination of δ(.): Assume that distance measurements in the field prior to the construction of the 
palace were obtained by triangulation within a fixed reference system. If a distance d(A) were 
determined by crossing two sight lines A and B at right angles (fig. 33A), then the angular precision of  

A and B (1σ=1.6deg) results in a spread of possible intersections AxB in two dimensions (red area). 
This positional uncertainty has a distance component δ(A) in the direction of A dependent only on 
d(B): δ(A) is the angular precision of B expressed as a percentage of |B| at d(B), thus: δ(Α) ≈ 2.6% 
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(max.) of d(B). δ is a maximum value because cross-checking from other reference points reduces the 
positional spread even if d(B)>>d(A); for the same reason, angles << 90deg need not be considered 
(fig. 33B).  
 
The initial search space: The field variates d(m|m≤n) ± δ(max), where δ(max)=2.6%, for the two main 
wall orientations (fig. 34) are 
 
 

             Ø: 83.6°                       Ø: 48.5°  
          

   -δδδδ            d(m)                         +δδδδ                    -δδδδ         d(m)                              +δδδδ    
                                                                                                                                                 

d(m) [~% of D(m)]              102.6%   100%  100%  100%  100%       97.4%                  102.6%    100%   100%   100%   100%         97.4% 
                                                                                                                                                 

 
~1σ-range for D  105.5   108.3    111.1    81.8    84.0      86.2 
bold=measured [meters] 39.9   41.0    42.1    32.1    33.0      33.9 

 20.7   21.3    21.9    23.2    23.8      24.4 
 6.2    6.4     6.6    22.0    22.6      23.2 
         16.3    16.7      17.1 

          8.6    8.8      9. 
   4.8    4.9      5.0 
   3.8    3.9      4.0 

 
 
In the following, intermediate steps are shown only for the smaller group (83.6deg). 
 
Resampling: Dividing the largest and lowest value in d(m) ± δ(max.) with the lowest and largest 
respectively for all d(x|x<m≤n) yields  

 
      

  d ± δδδδ   [lowest-measured-highest] 
 

  108.3 ± δδδδ [16.0-16.92-17.9] [4.8-5.09-5.4]  [2.5-2.64-2.8]   
  41.0 ± δδδδ [6.0-6.64-6.8]  [1.8-1.92-2.0]    - 
  21.3 ± δδδδ [3.1-3.33-3.5]       -     
  6.4 ± δδδδ    -            
  6.4 ± δδδδ      21.3 ± δδδδ  41.0 ± δδδδ  
 
 
The integers and/or the lowest intermediate or adjacent integer fractions within the range of possible 
scaling factors are 
 
 
  d 
 
  108.3  [16, 16.5,17,17.5] [5,5.34]   [2.66] 
  41.0  [6,6.5]   [2,1.8]   -   
  21.3  [3.2,3.25,3.34,3.5] -           
  6.4  -          
  6.4   21.3   41.0   
 
 
Fig. 35 plots the values for each d(m) obtained by resampling, i.e. by multiplying each d(x|x<m≤n) or 
dividing each d(x|x>m<n) respectively by the these factors. The relevant statistics for each group are 
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108.3  41.0  21.3  6.4  
 
  N of 'repeats'    8  5  8  10 
  Min.       102.40  38.30  20.30  6.09 
  Max.         113.60  43.30  22.80  6.83 
  Median           107.65  41.10  21.05  6.47 
  Mean              107.58  40.80  21.29  6.46 
  Std. Error  (abs.) 1.451  0.860  0.331  0.075 
   (εεεε = % of mean) 1.35  2.11  1.55  1.16 
  sd             4.105  2.106  0.937  0.238 
  
  
The means are statistical estimates D(x) of the true distance intended by the architects. The standard 
error of mean is a measure for distance accuracy ε. Accuracy is relatively high at an average 1.54% 
and its percentage is uncorrelated with distance at c(pearson)>0.005, i.e. there are no additive errors. 
This strengthens the assumption of sophisticated triangulation techniques but also excludes 
measurement tape as a means of determining large distances, because the latter inevitably leads to 
additive percentage errors highly correlated with distance (§ 3.5.2.).  
 
Determination of u and minimal grid size: Repeating the resampling procedure with D(m) yields the 
ranges 
 
 
  D ± St. Error (not shown) 
  
  107.6  [16.07-17.04] [4.91-5.19] [2.50-2.63] 
  40.8  [6.04-6.51] [1.85-2.0] -  
  21.3  [3.18-3.36] -  
  6.5   - 
  6.5  21.3  40.8 
 
 
as well as the integer factors and smallest integer fractions 
 
  D 
  
  107.6   [16.5, 17] [5]  [2.5] 
  40.8   [6.5]  [2]  [1]  
  21.3  [3.25, 3.34] [1]  
  6.5   [1] 
  6.5  21.3  40.8 
 
 
Further iterations lead to changes in the estimate D below first decimal precision and are therefore 
meaningless. For all cases except 107.6:6.5 and 21.3:6.5 only one scaling factor remains. For each 
case at least one fraction can be made integer through multiplication by 6 or 4. Under the condition 
that square side length is to be maximized (GCD), the latter is more consistent with the rest, meaning 
that division of D by the quadrupled scaling factors times the scaling factor necessary to reach D = 6.5 
in the matrix, results in a series of approximations to the grid unit distance u. The mean of these values 
is a best-fit estimate of u. 
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  107.6m         /     ( [67, 68]*1) = 1.63, 1.58m  /    ([20]*3.25)  = 1.66m          /  ([10]*6.5) = 1.66m 
  40.8m           /            ([26]*1) = 1.56m  /      ([8]*3.25)  = 1.60m        /  ([4]*6.5)   = 1.57m 
  21.3m           /            ([13]*1) = 1.63m  /      ([4]*3.25) = 1.63m   
  6.5m             /              ([4]*1)  = 1.63m       
                    
  u = mean                   1.615m 
  Std. Error (% of mean)  0.667 
  sd           0.036            
 
All distances can now be expressed as integer multiples of u. Retranslation to the metric scale yields 
what may be considered the best-fit estimate of the ideal values D'' for the distances as intended by the 
Maittanian architects: 
 
 
 d; δ=2.6% → D; ε=1.54% → D'' (supposed ideal; no error) 
 
 108.3m  107.6m   108.2m     (67u) 
 41.0m   40.8m   42.0m     (26u) 
 21.3m   21.3m   21.0m       (13u) 
 6.4m   6.5m   6.45m      (4u) 
 
 
Thus, at the scale of the building, the grid unit u has an ideal length of 1.615m (Salve Fibonacci!). At 
this scale, the current reconstructions of the palace cover a square area of 320x320m. The minimal size 
of grids to be used in future implementations of CPSR for encoding the geometry of the known 
building remains, is 200x200 u. 
 
For the 48.5deg group, there is no solution for u >0.5m. Therefore, if a grid was used, it was oriented 
in the direction of the southern façade, i.e. the most prominent view of the palace. 
 
 
3.5.2. Reference Systems and Measurement Techniques  
 
The low angular and distance errors apparent in the outer walls of the Central Palace (§ 3.5.1.)  are not 
only evidence for a very precise triangulation of the positions of the palace's outer corners preceding 
the actual construction works, but also, in a somewhat wider context, for separate reference systems 
used at each floor level, and for the exclusive use of optical alignment devices over long distances:  
 
Marking the position of rooms on the ground prior to the start of the construction works makes no 
sense in a terraced building with massive substructions; rather, room positions had to be determined 
after the substruction was built and their position marked on a platform at the height of the planned 
floor level. The necessary measurements must therefore have been taken from new reference points. 
At a mean difference between floor levels of ca. 6m only the outermost of these new points on each 
platform can be controlled by triangulation from the original reference points on the ground. The 
majority of new points, however, is necessarily below the line of sight and therefore had to be 
triangulated on the basis of independent reference systems. This is in accordance with the difference of 
1.5deg in the medians of groups 1 and 2. 
 
The precision of a triangulation depends inter alia on the number of reference points that can be used 
to cross-check measurements and on the distance between the reference points. The first criterion is 
independent of the type of measuring device, but not the second: if an optical device is used, positional 
accuracy (ε [%]) is uninfluenced by distance, and positional errors furthermore translate into smaller 
angular deviations from mean the longer the distance. If tape or rope is used the opposite is true 
because the material is stretched and bended by its own weight leading to a cumulative error 
increasing with distance.    
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The observed decrease in angular precision from group 1 to group 2, then, points to the use optical 
triangulation devices: precision is high in the orientation of walls visible from the ground where 
reference points may be spaced far apart (group 1), and low in the rooms located in the upper stories of 
the palace where the spacing is tight (group 2). If tape or rope had been used for triangulation, the 
smaller distances between reference points on the platforms would have resulted in more precise 
measurements than on the ground.  
 
The low precision in group 3 results from the inclusion of the interior parts of massive walls, in which, 
as a rule, the bricks are much less carefully aligned than in zones closer to the wall face (cf. TH4: Plan 
5; Waefler TH4). 
 
 
3.5.3. Estimation of the Modern Component  in Angular Errors 
 
The potential relevance of the modern component in the errors determined in § 3.5.1. was repeatedly 
mentioned in the course of this text. This component is itself a mixture of unquantifiable field 
measurement errors and positional as well as angular errors introduced into the plans during the 
documentation process (§ 2.2.). 
 
The angular and distance errors determined in § 3.5.1. are of a type that excludes any kind of 
measurement device except optical alignment instruments for long distance triangulation (§ 3.5.2.).  
 
Comparison with other sites: There are very few instances where the type of measurement device used 
by the builders of an archaeological monument can be determined with any certainty, and therefore the 
angular precision achievable with optical devices in antiquity is difficult to estimate. One such 
instance, however, is the Giza pyramids, conclusively proven by Spence (2000) to be astronomically 
aligned due North by using the simultaneous transit of two circumpolar stars, which, of course, implies 
the use of optical alignment devices by the original builders. Spence i.a. used high-precision 
measurements of the orientation of the eastern and western sides of the pyramids of Khufu and Khafre 
and the bent pyramid of Snofru taken with a meridian-seeking theodolite (Dorner 1981). The angular 
error in these measurements is ±0.2 arcminutes, i.e. 0.003deg. The 1σ-deviation between the eastern 
and western sides of these three pyramids is ±3.017 arcminutes, i.e. 0.050deg. This - trustworthy - 
value is extremely low compared to the error determined in the outer walls of the Central Palace. Even 
if an angular precision lower by a factor of ten is assumed for the Maittanian builders, this still leaves 
two thirds of the error unexplained. In other words: the modern component of the angular precision 
sd(group 1)= ±1.46deg is at least twice as important as the actual error exhibited by the excavated 
remains. 
 
 
3.5.4. Architectural Units 
 
Importance of quantified errors: Architectural units are commonly determined in two steps: first, 
arbitrary distance ratios are extracted from ground plans or - worse - from 'random-insight-
reconstructions' of the geometrical principles underlying ground-plans (§ 3.4.1.). For reasons not 
usually made explicit, the hypothetical units are then expressed as multiples of a standard brick size or 
arbitrary units known from texts; a recent worst-case example of such clumsy arbitrariness being 
Allinger-Csollich (1997). This procedure is absurd both on the conceptual level and on the level of 
metrics because it ignores the impact of errors accumulating both in the translation of an original plan 
into an actual building and in the reverse translation of modern field measurements into the modern 
plan available for reconstruction (§ 3.4.1.). To my knowledge, the separate components of this type of 
combined error have never been analysed quantitatively for any archaeological monument before. The 
example of Tall al-Hamidiya shows that on the conceptual level an approximate ratio of 2:5 (108.3m : 
41.0m) extracted from a modern plan may, viewed through the lens of error analysis, translate into a 
much less trivial ratio of 67:26. The geometrical framework necessitated by this second ratio cannot be 
established by traditional means. On the level of metrics, the established distance error ε=1.54% in the 
modern plans leads to a variation of ±4 standard bricks (0.365m side length including joints) per 
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100m, excluding brick size as a possible unit used by the ancient builders for all but relatively short 
distances. 
 
Architectural units at Tall al-Hamidiya: The grid unit u apparently is the only architectural unit used 
in the basic layout of the palace. The assumption of a square grid system actually being used matches 
the independent evidence for triangulation as the only means employed for determining long distances 
at Tall al-Hamidiya because any angle encoded in the plan by its grid components in x and y can 
easily be translated into any given reference system set up previously in the construction area. A 
basically identical modern technique frequently employed before the advent of total stations was the 
tangent-encoding of angles in combination with conversion-tables within orthogonal reference grids. 
 
At the dimensions of the Central Palace the square grid system in conjunction with field triangulation 
are the only plausible tools for precisely orienting long straight wall lines, and, thus, for transforming 
the discrete corner points in the plan into field coordinates. However, their usefulness both for the 
planning and building of smaller architectural elements like regularly spaced niches or other façade 
decorations is very limited for two reasons:  
 
a) Once the main wall lines are established in the field, it is easier and much faster to use tape 
measurements along these lines than to triangulate the position of each small element separately. The 
additive distance error specific to tape measurements can be compensated between discrete 
triangulated points by measuring from both directions and averaging the two measurements obtained 
for each target point. 
 
b) While brick size is irrelevant when building walls over long distances, it is a plausible unit for small 
architectural elements because the production of custom-made bricks for each element in order to fit 
the exact metrics of a non-conforming unit system would be uneconomical and impractical. Also, and 
perhaps more importantly, during the actual construction of walls the simple counting of bricks is less 
error prone than calculating their number from distances. 
 
This reasoning is corroborated in Tall al-Hamidiya by the spacing of the half-pillars along the façade 
of the southern ascent structure in 36/35-37 and 39/27-29, the only preserved decorative elements on 
outer walls (the spacing and width of the niches in 38/33-36 and 37/40-42 indicated in TH4: Plan 2 is 
purely conjectural): the distance between half-pillars is exactly 6 bricks and each protrusion carrying a 
half-pillar is itself 3 bricks wide. 
 
In the plans of 1999 brick size is uniformly represented as 0.34m, except where deviations were 
considered relevant at the time of drawing. The mean brick size can therefore not be calculated. 
However, as stated in § 2.2 the number of bricks within large excavated brick layers is correctly 
represented in the plans as are the bricks in the vicinity of layer boundaries. From an arbitrary sample 
of such patches, the mean side length of the square formed by a brick and the joints on two of its 
adjacent sides was determined to be 0.365m ± 0.005 (1σ). While the mean is not affected by the 
normalization of individual brick orientations within these patches, the true spread is certainly wider. 
 
The scaling factor between u=1.615m and the rough estimate of brick size 0.365m is 4.4. Since a unit 
below the size of a brick, i.e. the smallest building element, is meaningless, the two are mutually 
independent units. ninda (ell), a building unit widely attested in ancient Near Eastern texts, fits the bill 
somewhat bettter at 0.50+ m, i.e. ca. 1/3 of u. However, there is no evidence whatsoever of it being 
used in the Central Palace.  
 
The 28 half-pillars preserved in 36/35-37 and 39/27-29 are spaced at 2.17m ±0.11 from each other 
(measured center-to-center). If expressed in u, the best-fit is 1.34 u, i.e. 3 decorations equal 4u. The 
protrusions carrying the half-pillars are themselves exactly half as wide as the total distance, i.e. 0.67 
u. Both ratios 4/3u and 2/3u are impractical for calculating distances compared to the simple sequence 
of 2x3 bricks for each segment of the decoration.   
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Hence, the ground-plan of the Central Palace contains evidence for two mutually independent 
architectural units. The less obvious of the two was used in the design of the palace's basic layout and 
as a basis for determining major wall lines in the construction area. It has a  metric equivalent of 
u=1.615m. The second architectural unit is the brick. It does not have a metric equivalent but was 
apparently used for positioning small building elements over short distances without measurement by 
the simple counting of elements.  
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4. EXPERIMENTAL RECONSTRUCTIONS OF THE CENTRAL PALACE  
AT TALL AL-HAMIDIYA 

 
 
4.1. The CPSR-Reconstruction of 1999 
 
4.1.1. Problems of Implementation 
 
A universal computational framework for algorithmic complexity calculations was developed only in 
1996 (Chaitin 1996). When CPSR was theoretically conceived in 1999 hardly any practical 
applications based on algorithmic complexity had yet been published outside of information science 
proper concerned with noise/signal optimisation and algorithm optimisation (Li and Vitany 1999). 
Although the spectrum of applications has since been widening rapidly (Hemaspaandra and Ogihara 
2002, Rogers 2002), CPSR still stands out as a comparatively exotic idea and has no precedents on 
which the early attempts at predicting architectural structures discussed in this section might have 
built. Before specialized mathematicians joined the project in 2001 (§ 1.4.), a full implementation of 
the concept was therefore not feasible, and the experiments reported here consequently rely on a 
number of simplifying assumptions. Although inelegant and unsophisticated, they have nevertheless 
allowed a preliminary assessment of the method's potential by testing its predictions in the field, and 
have lead to a more thorough understanding of some of the intricacies of the basic mathematical 
problems to be solved in the future (Blattner, Bieri, Gerber, in preparation).  
 
 
4.1.2.  Data 
 
Five types of data recorded between 1984 and 1999 were distinguished (Fig. 36 and fig. 2; cf. also 
Gerber 2000b):  
 
Type A: Excavated brick structures and quantified surface observations in the form of (x,y,z)-
coordinates of all measured elevations, these data define the minimal spatial extension of the 
reconstruction.  
Type B: Angles of the mean brick orientation in each square; where two or more clusters of differing 
brick orientation could be distinguished in the same square, each was assigned a relative angle. This 
information also served as a post-hoc control: predicted wall surfaces must have the same orientation 
as the bricks in the area they delimit.  
Type C: Known averaged floor elevations were recorded as sets of (x,y,z)-coordinates, these 
coordinates define relative minimum/maximum spatial extensions for each level.  
Type D: Known facades, defined by their endpoints (x1,y1) and (x2,y2), constitute the fragmentary 
ground-plan y. Pillars, niches and other decorative elements were ignored.  
Type E: The maximum space to be filled by the reconstruction was arbitrarily defined as the 350msl 
elevation line. 
 
 
4.1.2. A Simple Model  
 
Let s(.), as defined in § 3.4., be constant, so that s(y)=s(x'). Reconstructions x(.) meeting this criterion 
define a class B within the infinite number of possible reconstructions A that contain y. Thus, B⊂A.  
 
Simplifications: In order to bypass computationally difficult complexity calculations and exhaustive 
searches necessary to determine elements of B, the first set of predictions was restricted to a small 
class E⊂B of reconstructions that would necessarily preserve the original signature s(y) and that could 
be generated by hand: 
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x'∈E if  
 
a) x(.) consists only of ω-elements present in y, and if the number of repetitions in x(.) of the total 
amount of identical ω-elements in y is equal for all types of ω-elements. The reconstructions with the 
smallest repetition factor define a class C⊂B⊂A. 
 
b) x(.), represented by a set of polygons that may not intersect with the relevant parts of y (i.e. Type D 
data), is among those reconstructions in C that require the smallest number of different polygons. The 
remaining x(.) define a class D⊂C⊂B⊂A. In cases where y allows solutions that consist of two sets of 
the original ψ-elements, D necessarily consists of these solutions.  
 
c) DNF, or the variant defined by Eq. 4, is constant, so that DNF(y) = DNF (x[.]), where, in y, 'area' is 
the sum of all areas delimited by straight lines from the endpoints of the known outermost walls of 
each known level in y to each x(.)'s relative mass centre, and 'perimeter' is the total length of the said 
outermost walls. The remaining x(.) define a class E⊂D⊂C⊂B⊂A. 
 
 
Expected results: Obviously, these simplifications severely limit the potential power of CPSR and 
very likely exclude many interesting solutions present in B: only the basic structure of the Palace, i.e. 
its outer walls, is taken into account by (c), and overhangs were considered impossible because (b) 
implies that wall material either present in the original data or predicted in x(.) excludes unbuilt spaces 
below its known or predicted elevation. Additionally, by applying (a) and (b) highly symmetric 
reconstructions x(.) were artificially favoured.  
 
However, in cases where B contains a high number of x(.), Occam's razor would have to be applied in 
order to determine a sub-class F of likely candidates for x': within the framework outlined in § 3.4. this 
might only be achieved by including in the signature the length, i.e. complexity, of that part of the x(.)-
algorithm that encodes the Turing machine. In the case discussed sub (b), F would necessarily be 
restricted to solutions that consist of two sets of the original ψ-elements, i.e. those with the least 
complex Turing machine. Therefore, if such solutions are at all possible for a given y, then F=D. From 
this it follows that if such a solution can be found by trial-and-error, then the classes A, B and C may 
be ignored from the start, making exhaustive searches and difficult complexity calculations 
unnecessary.  
 
While convenient, this also points to a serious flaw in the original encoding scheme that results from 
the separation of ψ-elements and a Turing machine (§ 3.4) insofar as it automatically favours heavily 
symmetric solutions. At Tall al-Hamidiya this was of no consequence initially, because 
reconstructions satisfying the requirements (a) and (b) consisting of 2 sets of ψ-elements were found 
by trial-and-error with comparatively little effort, and although it was already clear at that time that the 
model's bias towards symmetrical reconstructions was an artefact of the encoding scheme, it was 
decided that the predictions should be tested in the field anyway, because a fairly high degree of 
symmetry had already been observed in the Maittanian structures excavated earlier. For other places 
and periods, this bias might be inappropriate and the results obtained misleading; currently, therefore, 
CR as defined in § 3.4., has been substituted by encoding methods that do not rely on the separation of 
Turing machines and operations (Blattner, Bieri, Gerber, in preparation; § 3.4.2. and 3.5.). 
 
Inclusion of a shape index: All reconstructions in D found by trial and error were - by definition (twice 
the same set of ψ-elements) - variants of each other. In 1999, a simple brand of Occam's razor was 
chosen for determining the most promising candidates for x' in D, namely those that used the available 
space optimally, in other words, those that had the shortest overall length if measured along the 
outermost walls. Requirement (c) was inserted post-hoc as a less arbitrary alternative, and in order to 
provide an objective means of comparing rivalling hypothetical reconstructions in D: if DNF(y) ≅ 
DNF (x[.]) then x(.) has the same type of shape as y because it exhibits the same overall 
elongatedness, i.e. ruggedness as y, or - in other words - the same degree of deviation from a 
geometrical primitive like, for instance, a circle. 
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4.1.3. The Hypothetical Reconstruction x'1999  
 
Figs.36 (main window) shows the two reconstructions x' of the Central Palace's basic layout that met 
the simplified model's requirements best. The resemblance to two sets of tangrams thrown together is 
no coincidence; the search process can indeed be seen as a search for tangram pieces constructed 
exclusively from the ψ-elements in y and fitting in three dimensions such that no piece includes 
coordinates of more than one floor level. In tangram terms, the favoured reconstructions are the 
solutions with the smallest amount of different piece types (9) and the smallest number of pieces of 
each type (2).  
 
Effects of archaeological interpretation on the reconstruction: A problematic consequence of the 
simplification is immediately apparent: the long structure extending to the south can only be included 
if it is given no z-dimension, because it extends over several floor levels (indicated by transparency). 
By its construction, it belongs to the 383.5msl floor level. It is repeated in the east on the next lower 
level at 377.5msl (transparent yellow). In order to make sense of these two incomplete predictions, a 
brief look at the squares 34-40/25-38 is necessary: The corresponding excavated structure is delimited 
to the East and West by two facades partly excavated in the years before 1999 over a distance of 
140m. It was hypothesised by Wäfler to be a monumental flight of stairs and appears as such in the 
post-hoc reconstruction of 1998. If this assumption is correct, its northern end must have connected to 
the 383.5msl floor level, because a tilted plane connecting to the 372.4msl or 377.5msl levels conflicts 
with the measured elevations at several points regardless of its tilting angle. The minimal total length 
of the protrusion was calculated by Wäfler in 1999 under the condition that it is a stair rather than a 
ramp. This prediction was tested and confirmed by excavation in 2000 (Wäfler TH4). 
 
The interpretation as a flight of stairs was assumed to be correct in the CPSR reconstruction 1999.  
This eliminated the need to disregard the z-dimension of the two predicted extrusions from the main 
body of the palace: If both are treated as ascent structures with the same inclination, however, the 
eastern one's surface (A) cuts through two areas (B and C) differing in brick orientation which violates 
the requirement that a wall face correspond in orientation to the bricks in the adjacent area. The 
reconstruction must therefore be adapted by rubber-sheeting the eastern ascent structure where it 
touches the 372.40msl floor level, i.e. the 366.6msl roof level. In 1999 the variant pointing south-
eastwards (yellow) was chosen arbitrarily as x'1999.  
 
Comparison with the present tall topography and determination of target structures: The shape of the 
reconstructed ground-plan x'1999 is unusual to say the least. However, it fits the tall's topography 
remarkably well. The two entities have a similar distribution of their main masses, and many of the 
larger wadis cut into the tall where the model predicted the most prominent corners of the palace. 
Hence, despite the theoretical reservations regarding the crudely simplified model, its predictions were 
considered a promising hypothesis to be tested in the campaign of 2000. The selection criterion was 
simple. It was decided to dig where the most unexpected architectural structures should, according to 
x'1999, be found close to the present surface. 
 
 
4.1.4. Field Test 2000: Excavation Results  
 
(Wäfler et al. 2000, Gerber 2000b, Wäfler TH4). Erosion has long cut away the northern limits of the 
palace making the predictions concerning its extension in this direction difficult to test. Easily testable 
predictions existed for three key areas indicated by unbroken red circles in fig. 36:  
 
In the east, massive brick structures conforming in position, elevation and wall orientation to the 
predicted second monumental ascent structure were found. Contrary to x'1999, however, it appeared to 
point NE-wards. In the west the predicted odd-angled retaining walls could only be partly recovered 
due to erosion below the level of the foundations at many points. The brick direction was found to 
change where expected, but since only the lowest brick layers were preserved this information only 
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securely confirmed the presence of massive retaining walls in this area, not their precise orientation. 
The western corner of the southern façade was of interest because at this point the post-hoc  
reconstruction 1999 and the 1999 CPSR-reconstruction could conceivably be tested at the same time. 
The results were inconclusive because the walls in this area were not preserved to the required height. 
 
 
4.1.5. Assessment 
 
The 1999 CPSR-reconstruction and Wäfler’s post-hoc reconstruction of 1999 (TH4: Rekonstruktion 
1999) were based on exactly the same data. The differences are obvious: the older reconstruction was 
an attempt at determining the minimal extent of the terraces known in 1998 in the context of the 
excavated structures. The walls known in the vicinity of 45/50 were not included because the drastic 
change in brick orientation necessary if the structure was to be incorporated into the main building was 
considered improbable. This shows how counter-intuitive the first model predictions were and 
demonstrates their independence of prior expectations.  
 
Despite reservations concerning the encoding method presented in § 3.4, the first set of predictions 
tested in the field in 2000 was astonishingly successfull. While the confirmed minimal length of the 
southern ascent structure is independent of the CPSR predictions, the excavations in the two test areas 
in the eastern and western part of the main mound conclusively confirmed the presence of a second 
large structure at the predicted height and orientation in the East as well as the presence and 
approximate orientation of the predicted outer walls in the West.  
 
In retrospect, the inclusion into the model of subjective interpretations at a level of detail not 
supported by the data was a mistake (§ 0.2.3.). By assuming that the southern extension of the palace 
is an ascent structure - an assumption I still believe to be reasonable - an untestable element was 
introduced into the post-hoc reconstructions that resulted in the interpretation of the predicted 
structures in the East and West of the mound as further monumental stairs - a solution, it must be 
stressed, of almost hypnotic aesthetic appeal. 
 
The field test 2000 proved CPSR to be an effective tool for predictions that could not conceivably 
have been achieved with traditional reconstruction methods. Its positional accuracy can, however, not 
be established with any certainty because the excavation data employed for input had, at the time, not 
yet undergone a critical error assessment (§ 3.4.1.. and 3.5.). Such an estimate is impossible post-hoc 
because the data used in 1999 cannot be replicated from the published plans in TH4 (§ 0.2.3. and 2.2.) 
and this first CPSR experiment is no longer replicable one-to-one. This, however, is a drawback of the 
data acquisition and post-processing methods, not of CPSR itself. 
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4.2. The PSDR-Reconstruction 2002  
 
4.2.1. Predictions 2000-2002  
 
Following the first field test, the excavation strategy for the main body of the Central Palace during the 
campaign 2001 was based largely on subjective refinements of the initial CPSR-predictions but also 
on preliminary results obtained by topographic PSDR analysis (§§ 0.2.4. and 3.2.-3.3.). In this section, 
the unmixed results obtained exclusively by topographic analysis in the PSDR-framework (§§ 3.2. and 
3.3.) are briefly summarized. In § 4.2.2.2. a synthetic reconstruction based on these predictions is 
presented and compared to the parts of the Central Palace excavated until 2002. In contrast to the 
CPSR- reconstruction of 1999, which was based on previous excavation results and, hence, was prone 
to the propagation of potential errors of interpretation present in the data, the new reconstruction 
depends only on topographic survey data (§ 2.1.). In other words: using the methods set forth in § 3.1.-
3.3. it could have been done already in 1984, before the inception of excavations. It corresponds to 
level 3  in the envisioned PSDR-strategy (§ .0.2.1.). 
 
 
4.2.2. Results  
 
4.2.2.1. Synopsis of Predicted Architectural Features  
 
For the areas referred to in this section see fig. 37, for the reconstruction see fig. 38. 
 
 
 
A. Basic Changes in Shape (§ 3.2.) 
 
Date:  late 2001 - mid-2002 
 
 

Block 8 
 
No indication of  of non-uniform planning within block , i.e. of buildings from different periods 

or of contemporary buildings that were planned independently.      
  

 Attributes 
Shape 1:   >379msl (min. vertical extension) 
Change: 379-373msl (cf. wall orientations) 
Shape 2: 373-370msl (min. vertical extension) at least 1 concave corner more than  

shape 1 
Change: 370-367msl 
 
Block 9+ 

 
 Shape 3:  <367msl (min. vertical extension) upper northern parts similar to  

shape 1? 
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B. Plateaus/Floor levels (§ 3.3.3.1.) 
 
Date:   early 2000 - early 2001 
 

Block 8 (and northern parts of 9+)   
  
 Regular intervals of 5m indicate a single building. 
   
 North:  ≥382msl ≥377msl ≥372msl ≥367msl <359msl 
 Northwest: ≥381msl --  <376msl      --      --  

East:  ≥381msl --  <376msl      --      -- 
 

'≥': turning points connecting A-A-segments; local contour segments define max. horizontal extension. 
'<': turning points connecting A-C-segments; local contour segments define min. horizontal extension. 
-- : no indicators, possibly present 

 
 
C. Wall Orientations and Order Symmetry (§ 3.3.3.2. and 3.3.4.2.) 
 
Date:  Symmetry mid-2000; orientations: early 2000 - late 2001 
 

Block 8 (and northern parts of 9+) 
 

Basic changes in wall directions only  at 376-373msl (cf. Basic Changes in Shape). 
 

          Sector: 1 2 3 4 5 6 7 
 

≥≥≥≥ 376msl  2 1 2 2 2 3 2 [group] 
  

≤≤≤≤ 373msl  2 1 1 2 1 3 3 [group] 
 

group 1: 61/151deg 
group 2: 85/176deg 
group 3: 47/137deg 

 
 
 
4.2.2.2. The Reconstruction 2002: Synthesis of Predictions based on Topography 
 
Fig. 38 is a synthesis of the results summarized in § 4.2.2.1. This full reconstruction, x'2002, is based 
exclusively on the analysis of topographic data as they were available in 1984. It is independent of any 
excavation results as well as of the CPSR-reconstruction 1999 (§ 4.1.). The general resemblance of the 
two reconstructions - from the horizontally stepped structure in the eastern part of the northern flank, 
to the beak-shaped extrusion in the east and the orientation and structure of the western part - is all the 
more striking. In contrast to the CPSR-reconstruction, where the position of the walls themselves was 
predicted precisely (though not necessarily accurately!), x'2002 consists of predictions on the local 
orientation and maximum extension of the original walls and the minimum elevation of 
platforms/floor levels. It contains no information on their precise position; the latter may, however, be 
estimated roughly (§ 3.3.2.2.): within A-shaped slope segments the deviation between the observed 
horizontal position of a topographic indicator (i.e. the maximum extension of the original architectural 
element) and its original position is expected to be very slight. In flattened C-segments at the base of a 
mound it must be presumed to be much more important. Once tested by excavation a small number of 
quantified deviations may be used to calibrate the predictions, and thus to compensate for slope 
gradient-dependent differences in the accuracy of the predictions.  
 
Sector 1 (North): The horizontally stepped structure in this part of the building was already apparent in 
the determination of areas of high linearity (cf. fig. 22B). There is no indication of wall orientations 
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other than group 2. The maxima of individual walls oriented generally E-W at the same elevation were 
therefore connected by walls at right angles where the relevant contours intersect with the areas of 
high linearity. The position of N-S pointing walls is therefore a maximum in the eastern direction. In 
the northern direction the original wall positions may be assumed to coincide approximately with the 
predictions due to the relatively steep slope. The walls indicated by broken lines belong to block 9 and 
are not predicted by the topographic indicators examined here; they merely represent possibilities. 
Their elevation was extrapolated from the series of turning points at regular intervals of 5m.  
 
Sectors 2, 3 and 4: The generally steep slopes in all three sectors leave little room for deviations 
between predicted maxima and original positions. Original wall positions may be assumed to coincide 
closely with the indicated lines provided the predicted wall orientation is correct. 
 
Sector 5: The prediction of a group 1 orientation of the walls in the lower segment of this sector is 
subjectively problematic; a group 2 orientation would seem fit the topographic situation in the adjacent 
parts of block 9 better (§ 3.3.3.2.). The southward extension of the walls in this lower segment is a 
result of the very flat C-slope at the border to sector 6; the original walls must therefore be assumed to 
lie much closer to the southern maximum of the 377msl-level even if the orientation is correct. 
 
Sector 6: Because of the flat C-slope extending eastwards below 376msl, the original positions of the 
predicted walls must be assumed to lie closer to the maximum of the 377msl-level even if the 
predicted wall orientation is correct. 
 
Sector 7: Due to the initially steep slope, the 382 and 377msl levels may be assumed to be positioned 
with fair accuracy. The original position of the NW-SE pointing wall faces in the flatter part of the 
slope may be found slightly further South. Orientation has comparatively little weight because the 
distances are short. 
 
 
4.2.3. Comparison with Excavations -2002  
 
Excavated areas are referred to by the numbers indicated in fig. 39. Because the excavation data up to 
1999 are lost, plans 3, 4 and 5 (TH4) had to be used for comparison. Their errors are necessarily more 
important than those established for the plans of 1999 in § 3.5 (§ 0.2.3.). Assuming a relatively low 
accuracy of the plans distance deviations were measured to the nearest metre, and angular deviations 
to the nearest degree.  
 
Sector 1, area A: The predicted orientation deviates from the mean orientation of known wall faces by 
2deg. The line of maximum extension of the ≥382msl floor level correctly includes the room 41-42/50 
at 384.30msl and crosses the room in 44/50 at 377.50msl. The indicated maximum deviates from the 
true minimum defined by the southern wall of the room by 3m; if the angle is adjusted (red lines), this 
distance is reduced to 1m. 
 
Sector 2, area B: The small block of bricks in 28/48 has an average brick orientation that deviates from 
the predicted wall orientation by 15deg. Its elevation (355.90msl) and its location ca. 2m from the 
maximum extension of the predicted wall line at ≥357 are in accordance with the prediction. The 
angular deviation is irrelevant in this case because the excavated structure lies right behind the point 
where the tangent touches the contour. A corrected angle would not influence the prediction in this 
area. 
 
Sector 3, area C: There are no contradictions between the structures excavated in C and the predicted 
wall lines. If the small wall segment in 33/44 (362.20msl) is indeed a fragment of a wall face, it would 
conform to the maximum extension of the predicted 372msl floor level if the orientation was adjusted 
to the one found in 28/48 (red lines). 
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Sector 4, areas D, E, F, G: As in sector 1, the predicted orientation is off by 2deg. The predicted 
maximum wall line is too short by -2m (E). D(357.90msl), F(363.20msl) and G(367.90msl) do not 
contradict the prediction. 
 
Sector 5, areas G, H: In the lower segment the predicted orientation is wrong. The walls found in this 
area belong to group 2, not to group 1. The maximum southward extension of the 372 and 367msl 
floor levels would be correct (H) if the angles were adjusted (red lines).  There are no contradictory 
elevations in the excavated areas of the sectors upper segment. 
 
Sector 6, areas I, J: The predicted orientation deviates from the mean angles measured in I and J by 
1deg. The maximum extension of the 372msl floor level is 5m in excess of the measured wall line in I 
as indicated on the plan of 1999 (fig. 28). The lowest elevation measured in I is 1m below elevations; 
in J elevations are in accordance with the prediction. 
 
Sector 7, areas K, L: The extrapolated wall line K is correctly included in the predicted maximum 
extension of the 372msl floor level. If the extrapolation is correct, the true position is 8m behind the 
predicted maximum. The very small segment of a wall face L is -2m from the predicted maximum 
extension of the 377msl floor level; its orientation is off by 2deg from the prediction. If the angle is 
adjusted (red lines) this distance is reduced to 1m. 
 
 
4.2.4. Assessment 
 
The predicted angles for groups 2 and 3 are very close to the wall orientations in TH4: plans 3, 4 and 5 
at 2 and 1 deg respectively. Group 3 is grossly off target by 15deg, but was correctly identified as a 
separate group. Angles in the former groups were extracted exclusively from tangents to gullies 
whereas in the latter they were determined exclusively by the tangents to the A-slope of the north-
western face of the mound. Results obtained by the GT-method (§ 3.3.3.2.) applied to slopes that are 
heavily eroded by a river cutting into the base should therefore be used with caution. However, this 
drawback may be easily compensated by excavating in the vicinity of both points of contact between 
the tangent and the contour of interest. Even if the predicted orientation is grossly off-target, the 
probability of finding a wall at one of these points is high, and once the true orientation is known, the 
distance error of the predictions is in the 1m-range in relatively steep slopes (cf. red lines in areas A, 
C, L); in areas within a C-segment close to the base of a slope the deviation between the predicted 
maximum and the true wall positions is around 5m (cf. area I).  
 
Only in sector 5 is the reconstruction incorrect. The wall orientation predicted by the order symmetry 
within block 8 is wrong; also the reconstruction does not identify the southern ascent structure at all. 
Both miss-identifications may be artefacts of restricting the analysis to block 8 since most of the 
known parts of the monumental flight of stairs belong to block 9.  
 
On the whole, considering that only topographic data were used, the distance and angular errors are 
extremely small, and the overall shape and organisation of those parts of the Central Palace that 
belong exclusively to block 8 are predicted with a very high degree of accuracy. I therefore consider 
topographic PSDR-analysis, even in the crude form proposed here, a more than even match for both 
traditional excavation strategies and traditional methods of reconstruction: a glance at the latest - 
overly elaborate - post-hoc reconstruction in TH4: Plan 2 shows that the differences to the purely 
topographic PSDR-reconstruction in the eastern and western parts of the mound are very slight on the 
low level of detail supported by the – in parts inaccurately represented - excavation data. Since the 
relevant aspects of the basic structure of the western and eastern parts of the Central Palace as far as 
they are known today were predicted with good accuracy by purely topography-based PSDR, its 
predictions concerning the northern part of the palace may - until further testing - be assumed to be 
essentially correct. 
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5. DISCUSSION 
 
 
5.1. Hits and Misses  
 
The aim of this work as defined in the introduction (§ 0.2.1.) was to validate the general idea of PSDR 
by presenting one PSDR-strategy in some detail. This strategy was to be limited in scope to the 
detection of talls potentially harbouring monumental architecture (level 1) and to the identification 
(level 2) and reconstruction of these monumental buildings on the basis of the traces they have left in 
the topography of the chosen sites alone (level 3). Interesting buildings were to be singled out for 
excavation and mathematical methods were to be developed that would allow the extraction of 
characteristic regularities from their topographical traces and, at later stages, from preliminary 
excavation results. These regularities were to be processed in a predictive mathematical reconstruction 
model employed in alternation with targeted small-scale excavations feeding back test results into the 
model. Reconstructions were to be entirely data-driven and to be resistant to the influence of 
subjective interpretation (level 4). The expectation was a significantly higher overall gain in non-
redundant information relative to the investments in time and effort than achievable on the basis of 
traditional excavation and/or prospection strategies.  
 
Level 1; Detection of sites on the scale of landscapes: At this level the aims were clearly missed. 
Although a general theoretical framework for detection algorithms based on fractality signatures of 
urban talls in large-area scans of VHR remote imagery was presented (§ 3.2.), an implementation is 
currently beyond my possibilities. Its worth therefore remains to be tested.  
 
The progressive fractalisation of eroding mudbrick structures was argued to lead to an increase in 
random noise hiding the original low-fractality/high-artificiality signature of buildings. In an image of 
appropriate resolution,  the expected medium to low-fractality/medium to high-artificiality signature of 
the remains of the target buildings within a site should therefore stand out clearly at scales around 
0.01-0.10km and be bordered at the upper end by signatures typical of natural topographic surfaces or 
agricultural areas depending on the land use in the surroundings. Remote imagery at the necessary 
resolutions is currently becoming commercially available, and prices are dropping to levels that will 
soon allow a large scale test of the proposed type of algorithm. I consider the odds to be in favour of 
positive results because similar algorithms have been successfully employed in military 
reconnaissance for the detection of camouflaged artificial structures since the 1970ies. To my 
knowledge, comparable civil applications have so far been restricted to experiments by the SETI 
community in the search for extraterrestrial artefacts on Mars. While this does not necessarily lend 
credence to fractality-based methods, it does not lessen their potential either.  
 
Level 2; Identification of monumental structures and individual buildings: Using a very simple shape 
index based on the area/perimeter ratio of individual contours extracted from the DEM, blocks of 
contours defined by saddle-shaped watersheds were examined for changes in shape at 1m-intervals (§ 
3.2). As far as the distribution of monumental buildings on the tall is known, these buildings do indeed 
correspond to separate blocks (cf. TH4: Abb. 1): Block 13 includes the known parts of the Southwest 
Palace and block 12 corresponds to the hypothetical Eastern Building. The main body of the Central 
Palace is contained in Block 8 while the southern protrusion of the monumental flight of stairs is 
encompassed by block 9. There are no overlaps between buildings. For block 8, the shape index 
indicated the presence of at least two platforms defined by different shapes. The predicted elevations 
for these two building elements are in accordance with predictions obtained by independent methods 
discussed sub level 3 below.  
 
The shape indexing and segmentation methods employed successfully allowed a segmentation of the 
complex topography of the mound that corresponded roughly to the known distribution of individual 
monumental buildings. It did, however, not identify the southern ascent structure as belonging to the 
main body of the Central Palace.  
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Despite the crudeness of the methods the aims at this level were achieved to a satisfactory degree. The 
development of more appropriate shape indices is ongoing, and employing more sophisticated 
segmentation techniques, the southern ascent structure is likely to be attributable correctly to the 
Central Palace. 
 
Level 3; Determination of basic structure of individual buildings: Block 8, known to correspond to the 
main body of the Central Palace, was singled out for further analysis. Based on simple models for the 
collapse and subsequent erosion of complex mudbrick buildings and simple probabilistic 
considerations, topographic indicators for specific architectural elements were defined and their 
detectability over time assessed theoretically (§ 3.3.), namely the elevation of turning points between 
specific types of slope segments as indicators of original floor levels intersecting with the tall surface, 
and tangents to two points of local concavities in the contours extending over several contours, i.e. 
gullies and wadis. These tangents were separated in two types assumed to correspond to original 
orientations of straight wall faces and to large concave corners respectively.   
 
Applied to the parts of the DEM corresponding to block 8, three groups of homogenous original wall 
orientations were identified and  positioned on the mound surface. The analysis of a total of 20 slope 
profiles on the western, northern and eastern faces of the mound indicated floor levels at regular 
intervals of 5m in the north (extending into block 9) and individual floor levels at corresponding 
elevations in the west and east. The combined results of the two methods led to a segmentation of 
block 8 into 7 sectors consisting of two segments each, defined by homogenous wall orientations. Two 
such segments could not be attributed to one of the three groups.  
 
In § 3.5. rotational symmetric behaviour in the order of sectors and segments was identified by 
autocorrelating the sequence of predicted elements. The missing data for the two elements that lacked 
a group attribution were then replaced by the solution providing the best fit with the original 
autocorrelation signature.  
 
The results of the individual methods of topographic analysis were merged into the full level 3 PSDR-
reconstruction presented in § 4.2. Since this reconstruction is totally independent of any excavation 
results it could have been generated from a DEM already in 1984. It can therefore be compared to the 
later excavation results and other types of reconstruction without running the risk of circularity or the 
miss-attribution of specific result to specific methods. A comparison with the excavation results 
available in 2002 (inaccurately represented by TH4: Plans 3, 4 and 5) showed a high degree of 
accuracy on the level of detail of the predictions. Two of three groups of wall orientations were 
identified to the nearest 2deg. The third group was off-target by 15deg, but was correctly positioned on 
the mound. The maximum extensions of individual floor levels were accurate to the nearest 1-2m for 
groups 2 and 3. The reconstruction is grossly wrong only in one of 14 sector elements, where, in 
reality, the southern ascent connects to the main body of the palace. It is unclear whether or not the 
systematic inclusion of block 9 would have led to a correct prediction in this area.  
 
Judging by the limited evidence from Tall al-Hamidiya, the effectiveness of the level 3 methods 
measured by knowledge gain/investment is immense by any standards because they allow reliable 
reconstructions prior to excavations or geophysical prospection. 
  
Level 4; Iterative reconstruction of buildings on the basis of excavation results: At level 4, CPSR was 
proposed as a means to rapidly increase the level of reliably known detail (§§ 3.4.). Its full 
implementation has proved too difficult for me to undertake on my own. In 1999, therefore, I only 
devised a simple CPSR-model that could be handled using pen and paper and a PC. Its results were 
tested in the field in 2000 (§ 4.1.). The reconstruction appeared to be fairly accurate as far as could be 
assessed by the walls found on the basis of its predictions.  
 
Interestingly, the CPSR reconstruction of 1999 and the PSDR-reconstruction of 2002 agree closely in 
many relevant points. Both models were only used on a single set of data each, namely the plans of 
1999 and the topo survey data of 1984. In the envisioned PSDR-framework (§ 0.2.1.) CPSR was 
intended to be used iteratively after each field test. The close agreement at iteration one between the 
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two methodically independent models processing completely different types of data may point to an 
even higher effectiveness of CPSR than anticipated in 2000 (Gerber 2001). Basing much of the 
excavation strategies in 2000 and 2002 on predictions generated by the two models has led to an 
increase in knowledge about the Central Palace that would, I believe, not have been possible by using 
any other methods. 
 
In retrospect the effectiveness of CPSR is surprising because excavation data was processed 
uncritically and supplemented by reasonable but untestable assumptions on the nature of the southern 
protrusion of the palace (§ 4.1.3.). In § 3.5. the potential weight of modern errors introduced at various 
levels of measurement, interpretation and CAD post-processing was established, and, thus, the 
importance of thoroughly documented error estimates. Because the data used in 1999 cannot be 
replicated anymore (§ 0.2.3. and 2.2.) the effect of incorporating error estimates into the model cannot 
be assessed. 
 
Even though, therefore, CPSR cannot be considered properly tested - not even in the crude preliminary 
form of the 1999 model - I believe the theoretical concept to be valid on its own: Bannai and Miyano 
(1999) intelligently view science as the art of data compression and consequently define a good 
discovery as one that considerably compresses information. In contrast to the widespread but 
necessarily subjective notions of 'architectural style' implicit in most architectural typologies, CR(x), 
|p0(x)| and p0(x) objectively and completely capture architectural identity as far as it is reflected in 
partially known ground-plans. In principle, there is no information loss whatsoever, and the degree of 
compression is by definition maximal for the information contained in the known remains of a 
building.  
 
Provided the excavation results used for input are reliably documented and of good quality and that a 
thorough error estimation is undertaken in advance, CPSR data on a large number of buildings might 
in the future allow comprehensive quantitative intra- as well as inter-site comparisons while 
effectively eliminating subjective bias. Employing mathematical cladistics such comparisons might 
result in reliable models of long term architectural evolution in a mechanistic explanatory framework 
comparable to the one of biological evolution. This would be interesting mainly because mechanisms 
and criteria of inheritance and innovation underlying cultural change could be examined from the 
perspective of ecological fitness and selection instead of continuing to waste time, money and brains 
on pondering arbitrary, stylistic typologies. Similarly, large amounts of CPSR data might pave the way 
for meaningful synchronistic comparisons of architecture in large geographical areas using techniques 
of multivariate proximity analysis.  
 
By-products/Additional Results: in § 3.5. evidence for the use of square grid constructions by the 
builders of the Central Palace was presented. By determining the maximum square size necessary to 
match discrete points in the architectural remains known in 1999 with grid nodes, an architectural unit 
distance u=1.615m inherent in the Central Palace was established using a simple resampling strategy. 
The type of distance error determined in the course of this procedure is compatible only with the use 
of  optical triangulation devices during the construction of the palace. A comparison with high-
precision measurements of the parallelity of the eastern and western sides of Egyptian monuments 
conclusively proven to be have been aligned astronomically, i.e. necessarily with optical instruments, 
additionally allowed a rough estimate of the modern component of the errors determined in the plans 
of 1999. This component is at least twice as important as the errors accumulated at all stages between 
the planning and construction of the Central Palace. 
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5.2. Conclusion 
 
The aims formulated at the beginning of this text have only been partly achieved. It is hoped that the 
results nevertheless demonstrate the potential and effectiveness of PSDR as a concept. The methods 
set forth are simple - some to the extent of being simplistic - and the degree of their implementation is 
low. Improvements are obviously possible at every level of the envisioned strategy. Judging by the 
results, however, they do their job very well. In fact, where site reconstruction and excavation 
strategies for large buildings are concerned the methods proposed here beat every other approach 
known to me in terms of effectiveness, reliability and scientific validity - even in their current, crudely 
implemented form. 
 
Many of the problems encountered in the course of this research are directly linked to the means of 
data acquisition and the methods of documentation at Tall al-Hamidiya. The raw data extractable from 
excavation reports cannot be taken at face value, and error estimates - if they are at all possible - 
include a modern component of unknown and potentially overwhelming weight. The future of CPSR 
or other data-driven methods processing excavation results therefore critically depends on the 
introduction of new acquisition technologies like VHR 3D-Laser scanners yielding raw data resistant 
to post-hoc manipulations on the basis of subjective interpretations. 
 
These constraints.do not apply to the topography-based methods proposed at level 3. The predictions 
generated by topo-survey data from Tall al-Hamidiya were highly accurate. It is, however 
questionable, if they would work effectively if smaller buildings were to be detected and reconstructed 
using the same type of survey data. The low local measurement densities achieved by traditional topo-
surveying may well set the limit of detectability at an uncomfortably high level. Here as well, the use 
of VHR-data aquired by Laser scanning or close-range photogrammetry is imperative in the future. 
 
Because tests were conducted exclusively at Tall al-Hamidiya, the universality of the individual 
theoretical concepts remains to be investigated; the good fit between CPSR and topography-based 
predictions obtained by processing very different and mutually independent data sets may be seen as a 
preliminary indication of a satisfactory degree of general applicability.    
 
At the level of targeted site detection much additional research has to be done. While I consider the 
theoretical approach outlined herein to have a certain potential, its implementation - whether 
successful or not - also depends on the availability and quality of VHR data. 
 
The general lack of replicable methods plaguing Near Eastern archaeology will not be solved by 
PSDR or any other scientific approach as long as talls are viewed as objects of prestige instead of 
scientific inquiry. As a personal gain I may at least claim to understand the still mysterious Tall al-
Hamidiya a little better due to PSDR. In the words of my childhood mentor: 
 
 
 
 

"I think my sight's improving. Before I could only see a dark blur, now I can see a light blur." 
 

(Han Solo, in: Star Wars - The Return of the Jedi, 1983) 
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Fig. 2: Tall al-Hamidiya

Floor level: 372.40 msl

Excavated walls

Floor level: 361.70msl

Floor level: 384.50 msl

Floor level: 377.55 msl
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A: 0.455; p3: 3.032

A: 0.455; p2: 6.519

Area A: 0.455; Perimeter p1: 3.396

Fig.7: Scale-independent Shape Indexing
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Fig. 10: Wall Collapse
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α = angle of repose: ca. 30°
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Fig. 17: Secondary Channels in Lateral Walls of Primary Channels
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Fig. 18: Incisions by Rivers

First order tangent

River impact
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A: No impact

B: Impact at Edge

C: Impact near Center
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B: Local Wall Orientation

Kernel curves: Block 8 Tangents at gully incisions: group 1: 61°/151° +/- 7
Rest of window group 2: 85°/178° +/- 7

no group ( excluded)
Paired local density maxima:

61°/151° Within areas of high linearity: corresponds to group 1
85°/176° corresponds to group 2

no group (mean of contours: 46.5°)

A: Kernel Density Plot, t=0.15

1st and 2nd order tangents

at channel and river incisions

Fig. 22: Extracted Orientations
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Fig. 26: Wall Orientations Predicted by Rotational Order Symmetry (Non-isometric)
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Solution B; construction of β=α
with | |=22 given the baseline.

Successive operations ω are indicated

by numbers; bold type encodes
redundancy in the context of p(y)
(compare fig. 30).
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Fig. 37: Areas Referred to in § 4.2
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Table 1: Kafajah

Table 1: Settlement Dynamics Khafajah

A A A A A B B B B B B B B B B B B B B B B

A y:houses x(1):temple oval x(2):small temple x(3):sin temple

A o1 (8-8') o2 o3 h1 h2 h3 h4 st1 st2 h5 h6 h7 h8 h9 h10 sin

A

A 3

A 1 3 2.4 2.5 2.2

A 2 2.5 10 0.4 0.6 3.1 2.3 0.3 0.0 0.5 3.2

A 3 2 9 10 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

A 4 1 8 9 2.8 0.8 0.6 0.1 0.1 0.2 0.3 0.3 0.4 0.2 0.2

A 5 1 7 8.5 0.0 0.0 0.0 0.3 0.4 0.1 0.2 0.2 0.0 0.3 0.3

A 6 1 6 8 0.2 1.6 0.4 0.1 0.4 1.1 1.5 2.8 0.4 0.0

A 7 5 7 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.0

A 8 4 6.5 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.1

A 9 3 6 0.0 0.0 0.1 0.1 0.2 0.1 0.1 0.1 0.7 0.2 0.2

A 10 2 5.5 0.2 0.3 0.2 0.2 0.0 0.2 0.1 0.0 0.0 0.0 0.1

A 11 1 5 0.4 0.1 1.4 0.6 0.8 0.3 0.0 0.0 0.3

A 12 4

A 3

A 2

A 1

A

A

A B=Building phases overlapping with y (fat print) 3 10 7

A A=number of corresponding phases in y 6 10 10

A L':mean lifetime per building phase: A/B 2 1 1.43

B P': mean (=positional change/building level) [m] 0.30 1.30 0.25 0.49 0.74 0.94 0.23 0.14 0.24 0.05 0.42 0.73 0.31 0.49 0.14 0.30

B sd 1.556 0.212 0.889 1.328 1.009 0.287 0.135 0.442 0.100 0.721 1.061 0.470 0.970 0.160 0.300

C mean (=positional change/building level) 0.30 1.30 0.25 0.49 0.74 0.94 0.23 0.14 0.24 0.05 0.42 0.73 0.31 0.49 0.14 0.30

C 1/L 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70

C P'/L': rate of change (=mean positional change per house level) 0.15 0.65 0.13 0.49 0.74 0.94 0.23 0.14 0.24 0.05 0.42 0.73 0.31 0.49 0.14 0.21

C rank order 5 13 2 11.5 15 16 7 3.5 8 1 10 14 9 11.5 3.5 6

D S': mean wall thickness [m] 3.85 6.83 5.06 0.58 1.03 0.70 0.80 0.90 0.84 0.70 0.80 0.75 0.96 1.13 0.78 2.11

D rank order 14 16 15 1 11 2.5 6.5 9 8 2.5 6.5 4 10 12 5 13

E R': geometric regularity (visual grading in plans) 4 4 4 1 1 1 1 2 2 1 1 1 1 1 1 3

G phases [A] 5 7 5 10 6 6 5 10 10 6 12 12 10 9 9 14.3

G discontinuities 0 0 0 4 1 3 0 0 1 1 3 4 2 1 0 0

G L(seq): mean lifetime per sequence (phases/[discontinuities+1]) 5 7 5 2 3 1.5 5 10 5 3 3 2.4 3.3 4.5 9 14.3

H known function (0=private, 1=official) 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1

H D: distance to nearest official building [m] 0 0 0 5.2 9.1 8.7 2.5 0 0 4.6 8.1 10.7 14.2 7.8 2.4 0



Table 2

This file (pp. 1-11) contains the original toposurvey data from Tall al-Hamidiya 1984.

It may be ordered from the author in printed (pp. 23) or electronic form.

Data courtesy of D. Steudler, Melbourne (cf. Acknowledgements)

Data Structure:

Point

number

Break Northing

[m]

Easting [m] Elevation

[m]

Break

1204 0 377.94 312.47 369.07

1205 17 317.70 458.91 373.18 17

1034 17 300.00 400.00 357.14 17

1207 17 325.59 681.26 350.74 17

1380 0 351.18 962.52 344.34

1553 0 376.77 243.78 337.94

1726 18 402.36 525.04 331.54 18

1899 18 427.95 806.30 325.14 18
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