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AbstratThe �rst part of this thesis is onerned with the estimation of a univariate density fnonparametrially via maximum likelihood from a given ordered sample X1; : : : ; Xnof independent and identially distributed random variables having distributionfuntion F . It is well known that suh an estimator bfn does only exist if ad-ditional assumptions are made, i.e. the maximum likelihood funtion needs someregularization. We will impose the shape onstraint of log-onavity, a naturalgeneralization of many parametri densities suh as Normal, Gamma, Laplae orGeneralized Pareto. We show that suh an estimator exists, is unique and that theestimated log-density b'n is supported by [X1; Xn℄ and pieewise linear with knots atsome of the observation points. We provide two haraterizations of the estimator,both of them involving the empirial distribution funtion of the sample. The �rstof these haraterizations is essential for the proof of our main result: a uniformrate of onvergene of bfn on a �xed ompat interval T as n goes to in�nity. Understandard assumptions this rate is of probabilisti order (log(n)=n)2=5. But we alsoprove adaptivity with respet to the unknown smoothness of the underlying densityf in terms of H�older-ontinuity.The result above, together with onsiderations about the modulus of ontinuityof a uniform empirial proess, an be used to show that the integral of bfn, thedistribution funtion estimator bFn, is asymptotially equivalent to the empirialdistribution funtion Fn of the sample. Consequently, bFn an be viewed as aneÆient smoother of the empirial distribution funtion, if the underlying densityis indeed log-onave. Log-onavity of the density funtion f immediately impliespotentially desired properties for funtions derived from it, suh as the tail funtion1 � F or the hazard rate funtion f=(1 � F ). The �rst is again log-onave andthe latter is monotone non-dereasing. As an appliation of the above theorem wegive an upper bound for the uniform rate of onvergene for a monotone hazard rateestimator.Then, methods are provided to �nd bfn numerially via iterative algorithms. To thisend, the pieewise linearity of b'n is exploited to embed the problem of minimizingthe negative log-likelihood funtional into a high- but �nite-dimensional onvex opti-mization framework. We ompare four di�erent algorithms, inluding two standard



approahes from onvex optimization. It turns out that a suitable modi�ation ofthe iterative onvex minorant algorithm is very eÆient in solving this optimizationproblem.The seond part is devoted to bump hunting, a term used for proedures to identifyregions where a density exhibits either a onvex or onave behavior. For ertainreasons we reformulate the problem in that we seek to detet regions of log-onvexityand log-onavity. First we analyze a spei� two-parameter model regarding itspower properties in a test for log-onavity vs. log-onvexity. Then we use thismodel to approximate the density on all intervals spanned by a pair of observations.All these loal tests are then ombined in a global multisale statisti, yieldingtwo sets of intervals whereon one an laim with probability at least 1 � � as ntends to in�nity that the underlying density is either log-onvex or log-onave. Wefurther introdue an additive orretion term into the global test statisti in orderto prevent it to be dominated by the loal statistis stemming from small intervals.The hosen multisale approah ensures that all statements hold simultaneously.From the olletions of the above intervals a lower bound for the number of bumpsand dips of the underlying density an be derived. To our knowledge, this is the �rstmultisale test in density estimation exhibiting all these properties (asymptotiallyholding the signi�ane level, simultaneous statements, additive orretion term)at one. However, the proposed method relies on an unproven assumption aboutthe quantiles of the limiting distribution and is therefore a �rst approah to theproblem. A detailed theoretial analysis of its properties, espeially those of thelimiting distribution of the multisale test statisti, is still laking.Assuming that a non-degenerate limiting distribution for the multisale test statistiexists we provide its quantiles, gained from numerial simulations. We also desribe aworst ase distribution to input in the statisti when doing Monte-Carlo simulations.The proedure is illustrated with some examples.
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Chapter 1Introdution
1.1 Density estimation in generalThe �rst part of this thesis is onerned with a standard problem in statistis: Theestimation of an unknown univariate probability density funtion (pdf) f . Typially,one onsiders a sampleX1; : : : ; Xn of independent, identially distributed real-valuedrandom variables with ommon density f and the aim is to get an estimatebf = bf(:;X1; : : : ; Xn)for f from the data. Denote by Fn the empirial distribution funtion of the sampleX1; : : : ; Xn. In what follows, all asymptoti statements are to be understood whenthe sample size n tends to in�nity.The following setions review some general methods in density estimation.1.2 Kernel density estimationA standard tool in nonparametri density estimation are kernel estimators bfnh,bfnh(x) := 1n nXi=1 1hk�x�Xih �; x 2 Rwhere h > 0 is the bandwidth and k : R ! R the kernel funtion. The main advan-tage of kernel estimators is that they are easy omputable, independent from theassumptions made on f . However, in general using kernels poses at least one majorproblem, namely the seletion of a kernel and an appropriate bandwidth in order to



2 1 Introdutionavoid oversmoothing (hiding relevant features of f , e.g. modes) or undersmoothing(produing artifats). Asymptoti results under standard assumptions on the kerneltypially depend on the smoothness of f . Suppose f is m-times di�erentiable andhoose the bandwidth h = h(n) in order to balane the variane and the bias termin the mean squared error. The rate of onvergene of bfnh�f at a �xed point is thenOp(n�m=(2m+1)), a rate that approahes the \parametri rate" n�1=2 (see below) asm!1. 1.3 Parametri density estimationHere and subsequently we will onentrate on methods for density estimation relyingon the maximum likelihood priniple. Therefore introdue the negative maximumlog-likelihood funtional as:Ln(f) := �n Z log f(x) dFn(x)= � nXi=1 log f(Xi):In lassial parametri estimation, f is assumed to belong to a lass F1 of densities,where F1 = fg� : � 2 �gwith a given subset � of Rd and � 7! g� a ontinuous funtion from � into L1(R).The dimension d is usually �xed and small ompared to n. Our problem of estimatingf then redues to estimate � 2 � from the data X1; : : : ; Xn, via minimizing Ln(g�)over all � 2 �: b�n := argmin�2� Ln(g�):If possible this an be done analytially, otherwise numerially. Under standardassumptions the rate of onvergene of b� to � is of order Op(n�1=2).



1.4 Roughness penalized density estimation 31.4 Roughness penalized density estimationWhen talking about nonparametri maximum likelihood estimation, it is not evi-dent how to atually get an estimator. One an make Ln(g) arbitrary small over allg 2 L1(R) that are ontinuous, i.e. the ontinuity assumption is too weak, the lassof densities over whih Ln(g) is minimized needs to be made smaller. A generalapproah to ahieve this is via penalizing. Add a penalty term R = R(g) to the neg-ative log-likelihood funtional to get a penalized version LPn (g; R) of the maximumlog-likelihood funtional: LPn (g; R; �) := Ln(g) + �R(g)where � > 0 is a Lagrange-multiplier sequene dereasing to 0. Roughness penalizeddensity estimators are then de�ned asbfn;2(R;C; �) := argming2F2(R;C)LPn (g; R; �)where F2(R;C) is the following family of funtions:F2(R;C) := ff : f is a ontinuous pdf and R(f) � Cgfor C 2 (0;1) a �xed onstant. In priniple, � may be hosen suh thatR( bfn;2(R;C; �)) = C:Sine C is usually unknown, � is often determined by other means.One of the most famous hoies for R is the �rst roughness penalty funtional byGood (1971): RG(g) := Z 1�1 ���� ddxpg(x)����2 dx;where RG(g) =1 if the derivative of pg is not square integrable on R. Aording toEggermont and LaRiia (2001), RG has remarkably good pratial and theoretialproperties. For instane, under the assumptionsR(f) <1 RR f 00(x) dx <1 RR jxjmf(x) dx <1 for some m > � > 1on the true density f , Eggermont and LaRiia (1999) prove that onvergene inthe spae L1(R) happens at a rate of Op(n�2=5), so one that is similar to that forkernel estimators under omparable assumptions.



4 1 Introdution1.5 Density estimation under qualitativeassumptionsA di�erent approah to density estimation is to assume ertain shape restritions forf , suh as monotoniity, unimodality or onvexity. These restritions are often plau-sible, sometimes even theoretially justi�ed and they share the following ommonproperty. De�ning the estimators asbfn;3 := argming2F3 Ln(g)where F3 is the family of densities satisfying the given onstraint(s), e.g.F3 = 8<: ff : f is a monotone dereasing pdf on (0;1)gff : f is a onvex dereasing pdf on (0;1)g;it an be shown that bfn;3 must be pieewise linear with the number of knots being atmost n. These properties an be used to onstrut a penalty term and to onsiderestimation under qualitative assumptions as a penalized estimation problem wherethe lass F2(R;C) is generalized to F2(R), de�ned asF2(R) := [C>0F2(R;C):To summarize, both methods, roughness penalization and shape onstraints, imposesome sort of regularization on the maximum log-likelihood funtional in order to geta meaningful estimator.Nonparametri maximum likelihood estimation of density funtions restrited byqualitative assumptions has reeived muh attention in the last deades and in thefollowing setions we briey summarize these developments.1.6 Monotone density estimationFor appliations of monotone density estimation onsult e.g. Barlow et al. (1972)or Robertson, Wright, and Dykstra (1988).Maximum likelihood estimation of a monotone density was �rst studied by Grenan-der (1956), who found that a funtion bfG is the nonparametri maximum likelihoodestimator (NPMLE) if and only if it is the left derivative of the onave majorant



1.7 Unimodal density estimation 5of the empirial umulative distribution funtion. Grenander's was ontinued byPrakasa Rao (1969) who established asymptoti distribution theory for bfn � f at a�xed point xo > 0:n1=3� bfn(xo)� f(xo)�!D 16���f(xo)f 0(xo)���1=3Z;where Z is distributed as the loation of maxima of the proess (W (t) � t2)t2(0;1)with W being Brownian Motion starting at 0. Groeneboom (1985) resumed theasymptoti distribution theory and examined the limiting distribution in great de-tail (Groeneboom, 1988) whereas Groeneboom, Hooghiemstra and Lopuha�a (1999)and Kulikov and Lopuha�a (2005a) onentrated on limit theory in the spae L1(R).The pointwise rate of onvergene, Op(n�1=3), is slow ompared e.g. to that of aregular parametri problem where one obtains Op(n�1=2). The rate of onvergenewith respet to uniform norm is further deelerated by a fator log(n). This resultis not diretly proven but a speial ase of a theorem derived by Jonker and van derVaart (2001). They assumed that f possesses a derivative that is bounded, stritlynegative and bounded away from zero. The supremum distane between the empiri-al distribution funtion Fn and its onave majorant bFG was investigated by Kieferand Wolfowitz (1976) who proved that this di�erene disappears (in probability) ata rate op((logn)5=6n�2=3). This result has reently been extended by Kulikov andLopuh�aa (2005b) in the sense that they investigated the whole proessn2=3� bFn(t)� Fn(t)�t2[0;1℄:1.7 Unimodal density estimationRemember that a density f on the real line is unimodal if there exists a numberM =M(f) suh that f is non-dereasing on (�1;M ℄ and non-inreasing on [M;1).In ase the true mode is known a priori, unimodal density estimation boils downto monotone estimation, by estimating the true underlying distribution funtion Fby the distribution funtion bFn that is the least onave majorant of Fn on theinterval [M;1) and the greatest onvex minorant on (�1;M ℄. The density f isthen estimated by the left derivative bfn of bFn. In ase none of the observationsequals M , this estimator maximizes the likelihood (but must not be ontinuous atM).



6 1 IntrodutionThe situation is ompletely di�erent if M is not known. In that ase, the likeli-hood an be maximized to 1 by plaing an arbitrary large mode at some �xedobservation, meaning that onsistent estimation of f at the mode is not possible.This phenomena is alled \spiking". Several methods were proposed to remedy thisproblem. Wegman (1970) introdued a modal interval of �xed length " on whih thedensity is assumed to be at (this estimator is inonsistent exept the true densityf also has a modal interval of at least length "), ensuring that the density an notexeed 1=". Woodroofe and Sun (1993) penalized the ordinary maximum likelihoodestimator (MLE), resulting in a onsistent density estimator. Bikel and Fan (1996)showed that estimating the mode �rst and then plug it into their smooth maximumlikelihood proedure does not hange the asymptoti behavior of this estimator. Themeaning of \smooth" here is that they optimize the maximum likelihood funtional(given the true or estimated mode) not over the lass of all unimodal densities, butover the lass of all ontinuous pieewise linear densities with mode at one of the Xito get a linear spline MLE. To irumvent the spiking problem, they further proposeto group the data before omputing their MLE. As for the spiking problem, Meyerand Woodroofe (2004) generalize Wegman's idea by introduing an estimator that isonave over an interval ontaining the mode. This interval may be hosen a priorior through an algorithm.The ombination of shape onstraints and smoothing was ontinued by Eggermontand LaRiia (2000). In order to improve the slow rate of onvergene of n�1=3 inthe spae L1(R) for arbitrary unimodal densities, they derived a Grenander typeestimator by taking the derivative of the least onave majorant of the distributionfuntion orresponding to a kernel estimator rather than the empirial distributionfuntion, yielding a rate of onvergene of Op(n�2=5). They introdued log-onavityin density estimation (see below), but instead of a shape onstraint for the densityas a property of the kernel Ah (h is the bandwidth), exploiting a key property oflog-onave density funtions ( dFo is the true density):The log-onavity is sensible sine then the onvolution Ah � dFo is uni-modal whenever fo is unimodal, by the elebrated result of Ibragimov(1956).Additionally, Ah � dFn is then ontinuous. Examples for log-onave kernels areEpanehnikov, Gaussian or two-sided Exponential. In their book of 2001, Eggermontand LaRiia treated a similar ase, replaing unimodality by log-onavity (of the



1.8 Convex density estimation 7density f) and they presumed, whether smoothing with the log-onave kernel Ahis really neessary to get a \good" rate of onvergene in the spae L1(R) and howto atually ompute a log-onave density estimator. The seond of these questionsis answered in Chapter 4 of this thesis.Renouning on a ontinuity assumption on f , Van der Vaart and Van der Laan(2003) omplemented the work by investigating the interplay of isotonization andkernel estimation, showing that the limit distribution at a �xed point is more on-entrated for the isotonized kernel than using either isotonization or smoothingexlusively (but the rate of onvergene is not improved).For a disussion of other approahes than maximum likelihood onsult e.g. Hall andHuang (2002) and the referenes therein.1.8 Convex density estimationConvex density estimation was pioneered by Anevski (1994) (later published asAnevski, 2003). The problem arose in a study of migrating birds disussed byHampel (1987). Jongbloed (1995) established lower bounds for minimax rates ofonvergene and rates of onvergene for a \sieved MLE". Groeneboom, Jongbloed,and Wellner (2001b) almost ompletely leaned up the situation providing a har-aterization of the estimator as well as onsisteny and limiting behavior at a �xedpoint of positive urvature of the funtion to be estimated. They do this not onlyfor maximum likelihood but also for least squares density estimation and the orre-sponding regression problems as well. They found that in all ases the estimatorshave to be pieewise linear with knots between the observation points. They showfor the (resaled) distane between the maximum likelihood estimator bfn and thetrue density at a �xed point xo > 0 thatn2=5� bfn(xo)� f(xo)�!D (1=24)5�f 2(xo)f 00(xo)�1=5H00(0)where H is a stohasti proess onneted to Brownian Motion and further de-tailed in Groeneboom, Jongbloed, and Wellner (2001a). Apparently, they assumedexistene and positivity of the true density's seond derivative f 00, what togetherwith the onvexity assumption enables one to estimate f at a fairly better rate ofOp(n�2=5) than that in the non-smoothed monotone and unimodal ase. Preisely,they assumed that the true density f is twie ontinuously di�erentiable, onvex,



8 1 Introdutionand dereasing on [0;1). Note that here again the estimator is inonsistent at 0(whih orresponds to the mode in the given situation).It would be of great surprise if the rate of onvergene with respet to uniform normwas not (log(n)=n)2=5, but to our knowledge no proof for this result has ever beenpublished.Balabdaoui and Wellner (2004a-d) treated a unifying and extending approah. Letk be a non-negative integer and G be a distribution funtion on (0;1). Thenf(x) = Z 10 kyk (y � x)k�1+ dG(y); x � 0is monotone (dereasing) if k = 1 and onvex and dereasing if k = 2. They �guredout the details for all �nite k, with the �nal aim to solve the ase k =1 (ompletelymonotone densities).Although a haraterization of bfn in the onvex ase exists (but is not as simple asthe least onave majorant in the monotone ase), atual alulation of bfn is notstraight-forward and has to be done numerially. Several attaks to the problemwere made. Jongbloed (1998) proposed an algorithm to minimize a smooth onvex(likelihood-) funtion over a onvex one in Rn , well appliable to onvex densityestimation. Another suessful approah was hosen by Terlaky and Vial (1998),using interior point methods. D�umbgen, Freitag, and Jongbloed (2006) presented anew method speially tailored to �nd pieewise linear funtions with only a few knotpoints. They examined unimodal distribution funtion estimation with ensoreddata, but the methods should be appliable in the onvex density ase as well.1.9 Log-onavityIn this thesis we will impose a quite natural shape onstraint on the density f tobe estimated: log-onavity, meaning that the density f to be estimated an berepresented as f(x) = exp'(x); x 2 Rfor some onave funtion ' : R ! [�1;1). This lass is rather exible in thesense that it generalizes many densities of ommon parametri distributions, suhas Normal, Uniform, Logisti, �2 or Laplae. Many other distributions have log-onave densities for broad ranges of the parameter values: Gamma, Beta, Weibull



1.9 Log-onavity 9or the Generalized Pareto distribution. Tables detailing these issues an be foundin Setion 2.4 and in Bagnoli and Bergstrom (1989, later published as Bagnoli andBergstrom, 2005). The latter paper also o�ers a onise summary of the main prop-erties of log-onave density funtions, their orresponding distribution funtions,and their appliations in reliability and many �elds of eonomi theory. Furtherappliations of log-onavity in reliability an be found in the standard book byBarlow and Proshan (1975). The book by Devroye (1986) o�ers a whole hapterabout random number generation for random variables having a log-onave density.Voting theory and the theory of imperfet ompetition is the �eld of appliation ina pair of papers by Caplin and Nalebu� (1991a, 1991b). A nie disussion of (multi-variate) log-onavity, log-onvexity and the di�erenes between both is provided byAn (1995, 1998). He further details the onnetion between log-onavity/-onvexityand the properties inherited by funtions derived from suh densities under moregeneral assumptions than Bagnoli and Bergstrom (1989, 2005). We will exploit theonnetion between a log-onave density and the orresponding hazard funtion �in Setion 3.6 to derive a new onsistent estimator of �.In his �rst paper, An also desribes an indiret goodness-of-�t test for log-onavity,based on the hazard rate.A key referene in onnetion with log-onavity of funtions is the book by Kar-lin (1968) about total positivity, a onept generalizing log-onavity (log-onavefuntions orrespond to totally positive funtions of order 2).Note that every log-onave density is automatially unimodal. Although ertainlythe lass of log-onave densities is muh smaller than that of unimodal, if ever onean estimate a log-onave density one gets a method to irumvent the problemsdesribed in Setion 1.7 of either trying out many modes or spiking at a knownmode.Although being very exible and an apparent generalization of several parametrimodels, not muh on log-onave density estimation has been published. So far onlyWalther (2000) attaked the problem and used the iterative onvex minorant algo-rithm (as introdued by Jongbloed, 1998 for the estimation of a onvex dereasingdensity on (0;1)) for estimation of a logarithmially onave density.



10 1 IntrodutionWalther further onjetures:The theoretial properties of a log-onave MLE are similar to those ofthe MLE of a onave density, and the arguments in Groeneboom, Jong-bloed, and Wellner (2001b) suggest that the uniform rate of onvergeneis Op((log(n)=n)2=5.One of our results is indeed the veri�ation of this onjetured rate of onvergene,see Setion 3.3. Walther desribes the MLE bf under the assumption that the truedensity is of the formf(x) = exp��(x) + jxj2�; x 2 [0; 1℄for some onave funtion � and  � 0. He suggests a bootstrap test to assesslog-onavity based on ( bf)2C, where C is some �nite set of nonnegative numbers.Absene of log-onavity indiated by the test is interpreted as a mixture of severallog-onave distributions. In Walther (2001), testing for log-onavity is transformedin testing for monotoniity, enabling the appliation of the monotone estimationdevie desribed in Setion 1.6. The prie to pay for this indiret proedure is thatdeviations of log-onavity an only hardly be loalized and visualized. In Part 2 ofthis thesis we present a new method to make possible this visualization.As pointed out by Bagnoli and Bergstrom (1989, 2005), a distribution funtion re-eived from a log-onave density funtion is again log-onave, the onverse beingnot true. Sengupta and Paul (2004) onsidered testing for log-onavity of a dis-tribution funtion versus the alternative that it is not, where they need to restrittheir attention to suh distribution funtions having a point mass at 0. Aording tothe above mentioned authors, diret maximum likelihood estimation of a log-onavedistribution funtion is not possible without further restritions, most likely beausethis lass is simply too big.Note that by imposing log-onavity on the density, two of the major problemsarising in monotone and onvex density estimation, namely spiking (both) resultingin non-onsisteny points and disontinuity of the estimator (only monotone), donot ome up. Together with the fat that many parametri models are automatiallylog-onave, an in-depth analysis of log-onave density estimation is overdue andone step in this diretion is the aim of this thesis.



1.10 Bump hunting 111.10 Bump huntingThe seond part of this thesis leaves the �eld of density estimation and is onernedwith what has been named \bump hunting".In the analysis of univariate data, researhers often want to infer qualitative hara-teristis of the density funtion of their data. Examples for suh harateristis areloal extrema, inetion points or regions where the density funtion is monotone(mode hunting) or onvex (bump hunting). Kernel density estimates, pioneeredby Silverman (1981), prevail in problems of this type. Silverman's method is on-struted suh that the number of modes of the underlying density f is a dereasingfuntion of the bandwidth of a normal kernel (the only admissible in this spei�ase). Critial values to test the null hypothesis whether f has, say, k modes ver-sus the alternative of having more than k modes are then found through a simplebootstrap proedure. This priniple an be generalized in various ways, one of thembeing SiZer (Chaudhuri and Marron, 1999; 2000). This method goes further in thesense that it ombines kernels using a broad range of bandwidths. However, in thisapproah it is not lear how to ombine onlusions from kernel estimates at di�erentsales. Furthermore, the orretion term for small sales derived by D�umbgen andSpokoiny (2001) is not applied, meaning that the global view is possibly dominatedby the tests stemming from short intervals. Instead, Chaudhuri and Marron restrittheir attention to kernel bandwidths h suh that h � " > 0 for a �xed positive ".Other approahes are exess masses, see e.g. Cheng and Hall (1998) and the refer-enes therein, maximum likelihood as in Walther (2001) or the \dip test", proposedby Hartigan and Hartigan (1985).For mode hunting, D�umbgen and Walther (2006) proposed a proedure that si-multaneously provides on�dene statements with guaranteed signi�ane level forarbitrary sample size (i.e. also for �nite n, not only asymptotially). They applieda multisale approah in the spirit of D�umbgen and Spokoiny (2001) and D�umbgen(2002) by introduing a test statisti derived from a simple parametri model. Thisstatisti is evaluated on loal spaings (i.e. on every interval spanned by two ob-servations) and all these test statistis are then ombined to get a multisale test.To reah signi�ane, even for �nite n, D�umbgen and Walther (2006) provided aquite remarkable deterministi inequality (Proposition 1 in their paper). They alsoderived the limiting distribution for their global test statisti as the sample size in-reases, by extending results from D�umbgen and Spokoiny (2001) to a more general



12 1 Introdutionlass of stohasti proesses. However, ritial values are generated via Monte Carlosimulations.In Part 2 we propose a bump hunting method in the same spirit. We equallyintrodue a relatively simple loal parametri model and ombine all test statistisalulated on loal spaings to get a global multisale test. Commonly, to \huntbumps" means to identify intervals where the density f is either onvex or onave,at best with a ertain on�dene. However, our fous here is on log-onavityand log-onvexity. Beneath better mathematial tratability observe that by takingthe logarithm non-onave densities with only one bump, e.g. the gaussian density,beome purely onave, meaning that the region of the sole bump ould possiblybe deteted easier beause it is not \ontaminated" by non-onave regions. Tothe best of our knowledge, no one has up to now hosen suh an approah to theproblem.However, ompared to the mode hunting ase, at least one major di�erene has to beasertained. D�umbgen and Walther (2006) reeived their loal test statistis usingthe general parametri modelf�(x) = 1 + �(x� 1=2); x 2 [0; 1℄;for � 2 R. Their test statisti is then the Neyman-Pearson loally most powerful testin this model for the null hypothesis � � 0 versus the alternative � > 0. Evidenefor a non-derease, say, is then simply reeived from testing this null hypothesis� � 0. To detet log-onavity we propose the following parametri model:f�;�(x) := C(�; �) exp��x+ �x2=2�; x 2 [0; 1℄ (1.1)for � 2 R; � 2 R, where C(�; �) is a normalizing onstant. Log-onavity is thenpostulated if a statistial test deides on � < 0. Unfortunately, in this model one hassomehow to deal with the nuisane parameter �: Either by onsidering a test statistiusing \the worst" of all possible � 2 R, resulting probably in a onsiderable loss ofpower, or to estimate �. This approah presumably yields more power, however onlywith the major drawbak that all results are only asymptotially valid.We motivate a test statisti to perform a test for � in (1.1) and give some furtheronsisteny justi�ations for the spei� test statisti. That the method works isillustrated with some examples.
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Chapter 2Log-onave densities
In this short hapter, we introdue some fundamental properties of log-onavedensities. Parametri examples for log-onave densities are given.2.1 Log-onave densities and unimodalityThroughout the �rst part of this thesis X will denote a random variable havingdistribution funtion F . If we talk about densities they are always meant to bede�ned with respet to Lebesgue measure. We assume that F possesses a density fsuh that f(x) = exp'(x)for some onave funtion ' : R ! [�1;1) . Suh densities f are given the namelog-onave and we will use this term also for the random variable X itself. Thefollowing lemmas summarize three key properties of log-onave densities.Lemma 2.1.1. Suppose the random variable X has a log-onave density funtionf on R. Then f is also unimodal, i.e. there exists a number m 2 R suh that f isnon-dereasing on (�1; m℄ and non-inreasing on [m;1).To be able to state the following results properly, de�ne the onvolution a � b of twodensity funtions a; b 2 L1(R) at x 2 R as(a � b)(x) := ZR a(t)b(x � t) dt:Lemma 2.1.2. The onvolution l1 � l2 of two log-onave densities l1 and l2 is againlog-onave.



16 2 Log-onave densitiesEven more surprising is the fat that onvolutions of unimodal and log-onavedensities remain unimodal and that this property an even be used to haraterizelog-onavity.Theorem 2.1.3. A density funtion l is log-onave if and only if its onvolutionl � u with any unimodal density funtion u is again unimodal.The latter results are both due to Ibragimov (1956), where Theorem 2.1.3 is generallyreferred to as \Ibragimov's Theorem". Historially, Ibragimov introdued the term\strongly unimodal" for densities exhibiting the property stated in the theorem andshowed that the lass of strongly unimodal and log-onave densities oinide.A survey of the onnetions between log-onavity and unimodality an be found inthe book by Barndor�-Nielsen (1978).2.2 Tail behaviorOne of the key properties of a log-onave random variable X is the existene of allof its moments. The preise, and even stronger, statement is detailed in the nextlemma.Lemma 2.2.1. There exist onstants ao 2 R and bo > 0 suh that for all x 2 R onehas: '(x) � ao � bojxj:In partiular, Z exp(toj'j) dF < 1 whenever to < 1:Moreover, for any polynomial p and any number to 2 (0; 1) there exists a onstanto > 0 suh thatZ 1r p(j'j) dF � o exp�to'(r)� andZ �r�1 p(j'j) dF � o exp�to'(�r)� for all r � 0:



2.3 Derived funtions 172.3 Derived funtionsLog-onavity of the density funtion f immediately implies the same or similarproperties for funtions derived from f suh as the distribution funtion F , tailfuntion 1� F or hazard funtion �. Suh onnetions under somewhat restritivesmoothness onditions on the density were e.g. elaborated in Bagnoli and Bergstrom(1989, 2005). An (1995) expanded their work to densities that need not neessarilybe di�erentiable. For illustrative purposes, we will pik one of these funtions derivedfrom the density, namely the hazard funtion �.Lemma 2.3.1. De�ne the hazard rate funtion � as�(x) := f(x)1� F (x)for x in the interval I := fy : F (y) < 1g. If f is log-onave, then � is monotonenon-dereasing on I.The proof of this lemma an be found in Bagnoli and Bergstrom (1989, 2005, Propo-sition 1) for smooth densities and in the more general form stated in the lemma theproof was given by An (1995, Corollary 2).2.4 Examples of parametri log-onavedensitiesThe lass of log-onave densities omprises many well-known parametri densities,see Table 2.1. In Bagnoli and Bergstrom (1989, 2005) alulations neessary to verifylog-onavity of a spei� density funtion, eventually only for ertain parametervalues, are arried out, i.e. they hek for many smooth enough parametri densitiesthat (log f)00 � 0.The Generalized Pareto distribution (GPD) appears in extreme value theory as anadequate parametri model for exeedanes, see e.g. Reiss and Thomas (2001).



18 2 Log-onave densitiesTable 2.1: Some parametri log-onave densitiesType Density funtion f(x) Support ParametersaUniform (b� a)�1 [a; b℄ a; b 2 R; a < bNormal (p2��)�1 exp (�(x� �)2=(2�)) (�1;1) � 2 R; � > 0Gamma ba�(a)�1xa�1 exp (�bx) [0;1) a � 1; b > 0Beta �(a+ b)(�(a)�(b))�1xa�1(1� x)b�1 [0; 1℄ a � 1; b � 1Fr�ehet ax�(1+a) exp (�x�a) [0;1) a � 0Gumbel exp(�x) exp (�e�x) (�1;1)GPD (1 + x)�(1+1=) [0; 1=jj) �1 �  < 0Logisti exp(�x)(1 + exp(�x))�2 (�1;1)Laplae (1=2) exp (�jxj) (�1;1)a Parameter values suh that f is log-onave2.5 ProofsProof of Lemma 2.1.1: The funtion ' is onave. Together with the fat thatf is a probability density, i.e. RR exp' = 1, it an not happen that '(x) 6! �1for jxj ! 1, implying unimodality of ', i.e. there exists a j 2 R suh that '(x)is non-dereasing in x � j and non-inreasing in x � j. The result follows viamonotoniity of the exponential funtion. 2Proof of Lemma 2.2.1. The ruial point here is that ' an be bounded fromabove by a pieewise linear funtion with one knot. Without loss of generality let 'be upper semi-ontinuous. After an aÆne transformation, if neessary, we assumew.l.o.g. (see Setion 3.2) thatmaxt2R '(t) = '(0) � 0:Then by Lemma 2.1.1 there exists a number ro > 0 suh that '(�ro) � '(0) � 1.By onavity of ', for any x � ro,'(x) � '(ro) + '(ro)� '(0)ro � 0 (x� ro) � '(0)� 1� (x� ro)ro < �jxj=ro + '(0):Analogously, '(x) < �jxj=ro + '(0) for x � �ro. Sine '(x) � '(0) � �jxj=ro +'(0) + 1 whenever jxj � ro, the �rst assertion is true with ao = '(0) + 1 and



2.5 Proofs 19bo = 1=ro. Then the seond assertion follows fromZ exp(toj'j) dF = Z exp�(1� to)'(x)� dx� Z exp�ao(1� to)� bo(1� to)jxj� dx < 1:As for the last part, note �rst thatp(j'j)f = p(j'j) exp(�j'j) � exp(o � toj'j) = exp(o) exp(to')for a suitable onstant o. Sine R p(j'j) dF is �nite, it suÆes to onsider numbersr that are greater than or equal to, say, ro above. Sine the slope of ' is not largerthan �1=ro on [ro;1),Z 1r p(j'j) dF � exp(o) Z 10 exp�to'(r + z)� dz� exp(o) Z 10 exphto�'(r)� z=ro�i dz= exp(o) Z 10 exp��(to=ro)z� dz exp�to'(r)�= exp(o)(ro=to) exp�to'(r)�:Analogously one an show that R �r�1 p(j'j) dF � exp(o)(ro=to) exp(to'(�r)). 2



20 2 Log-onave densities



Chapter 3Maximum likelihood estimation
In this hapter we introdue the maximum likelihood estimator of a log-onave den-sity. At �rst we prove its existene and uniqueness. Then we provide two harater-izations for this estimator and give some results about uniform rate of onvergene.These asymptoti results are then extended to funtions derived from the densityestimator, namely the distribution and hazard funtion.3.1 General frameworkOur goal is to estimate a univariate log-onave density funtion f based on arandom sample of size n > 1 . Let X1 < : : : < Xn be the orresponding orderstatistis. For any suh density f on R, the negative log-likelihood funtional at f ,our parameter of interest, is de�ned asLn(f) := �n Z log f(x) dFn(x)= � nXi=1 log f(Xi) (3.1)where Fn stands for the empirial distribution funtion:Fn(x) := 1n nXi=1 1fXi�xg; x 2 R:The indiator funtion 1A for a ondition A is de�ned as1A = 8<: 1 if A holds,0 else:



22 3 Maximum likelihood estimationThe NPMLE is then de�ned as the minimizer of the funtional in (3.1) over alllog-onave probability densities. In order to relax the onstraint of f being aprobability density and to get a riterion funtion to minimize over all onavefuntions in general, we fous on ' = log f and employ the standard trik of addinga Lagrange-term to the log-likelihood funtional de�ned in (3.1). This leads to	n(') = �n Z '(x) dFn(x) + n Z exp'(x) dx: (3.2)De�ne b'n as the minimizer of this funtional over the set of all onave funtions:b'n := argmin' onave 	n(')and let bfn = exp(b'n)be the orresponding maximum likelihood estimator of f . The distribution funtionbFn of bfn is given by bFn(x) := Z x�1 bfn(u) du:Sine 0 = ddt ����t=0	n(b'n + t)= �n + n Z bfn(x) dx;the Lagrange term guarantees in fat a probability density.



3.2 Basi Properties of b'n and bfn 233.2 Basi Properties of b'n and bfnExistene and uniquenessFirst of all we need to show that b'n is a meaningful estimator: Theorem 3.2.1guarantees existene and uniqueness of b'n and states an interesting key property ofit.Theorem 3.2.1. The NPMLE b'n exists and is unique. It is pieewise linear andontinuous on [X1; Xn℄ with hanges of slope only at observation points. Moreover,b'n = �1 for x 62 [X1; Xn℄.The pieewise linearity of b'n is analogous to the ase of estimating a onvex dereas-ing density, treated extensively by Groeneboom, Jongbloed, and Wellner (2001b).But in the latter ase the knots of the estimated density are situated stritly betweenthe observations. Theorem 3.2.1 further entails that bfn is ompletely determined bythe vetor b' = �b'n(Xi)�ni=1:Hene, the in�nite-dimensional problem of �nding the minimizer of 	n over all on-ave funtions boils down to a �nite (but high) dimensional task whih is elaboratedin Chapter 4. CharaterizationsWe give two haraterizations of the estimator bfn. The �rst via speial perturbationfuntions and the seond by onneting the empirial distribution funtion of thesample with the distribution funtion derived from the estimator.Theorem 3.2.2. Let ~'n be a onave pieewise linear funtion on [X1; Xn℄ withknots only at fX1; : : : ; Xng. Moreover, let ~'n = �1 on Rn[X1 ; Xn℄. Then ~'n = b'nif, and only if, Z �(x) dFn(x) � Z �(x) exp ~'n(x) dx: (3.3)for any � : R ! R suh that ~'n + t� is onave for some t > 0.For funtions � that are ontinuous, pieewise linear and have the same knots as~'n, one gets even equality in (3.3).



24 3 Maximum likelihood estimationThe haraterization in terms of distribution funtions is given in the followingtheorem. Let hn : [X1; Xn℄! R be a pieewise linear ontinuous funtion, suh thatthe knots oinide with some of the observation points X1 < : : : < Xn. The set ofknots S(hn) of hn is then de�ned as follows:S(hn) := ft 2 (X1; Xn) : h0n(t�) > h0n(t+)g [ fX1; Xng:Reall that b'n is an example for suh a funtion hn.Theorem 3.2.3. Let ~'n be as in Theorem 3.2.2 and de�ne~Fn(x) := Z x�1 exp ~'n(t) dt:In addition, it is assumed that ~Fn(Xn) = 1. Then, ~'n = b'n and thus ~Fn = bFn, ifand only if for arbitrary a < t < b with a; b 2 S( ~'n),Z ta ~Fn(r) dr � Z ta Fn(r) dr ; (3.4)Z bt ~Fn(r) dr � Z bt Fn(r) dr ; (3.5)Z ba ~Fn(r) dr = Z ba Fn(r) dr : (3.6)Note that (3.4) follows diretly from (3.5) and (3.6). In Figure 3.1 we illustrate thebehavior of the proessD(t) := Z tX1( bFn � Fn)(r) dr; t 2 [X1; Xn℄:The haraterization of bfn in Theorem 3.2.3 as the seond derivative of the integral ofthe empirial distribution funtion oinides with that of the least squares estimatorof a onvex dereasing density, spei�ed in Lemma 2.2 of Groeneboom, Jongbloed,and Wellner (2001b). The onvex ase analogue of (3.3) an be found in the itedpaper, Lemma 2.4.



3.2 Basi Properties of b'n and bfn 25
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Figure 3.1: The proess D(t) for a normal random sample of size 200.Further properties of bfnFor an arbitrary distribution funtion G on the real line let�(G) := Z u dG(u)Var(G) := Z �u� �(G)�2 dG(u)denote the mean and the variane, provided that R juj dG(u) < 1. Then the fol-lowing orollary an be derived from Theorem 3.2.2.Corollary 3.2.4. Setting �(x) = x and �(x) = �x2 in (3.3) one obtains:�( bFn) = �(Fn) and Var( bFn) � Var(Fn):



26 3 Maximum likelihood estimationThe distribution funtion estimator bFn has the highly appealing feature of beingvery lose the the empirial distribution funtion Fn at all knot points of b'n.Corollary 3.2.5. Choosing �(x) := 1fx<qg or �(x) := �1fx�qg for q 2 S(b'n)yields: bFn 2 �Fn � n�1; Fn� on S(b'n):This fat, together with Charaterization 2 in Theorem 3.2.3 �nally entails:bFn(X1) = 0 and bFn(Xn) = 1:EquivarianeFinally, let us mention that our estimators are aÆne equivariant in the follow-ing sense. To expliitly express the dependene of the log-likelihood funtion onX1; : : : ; Xn write 	n(') = 	n(';X1; : : : ; Xn):Replaing the observations X1; : : : ; Xn by �Xi := a + bXi for all i = 1; : : : :n anda 2 R and b > 0 and de�ning�'(x) = '�x� ab �� log b �Fn(x) = 1n nXi=1 1f �Xi�xg; x 2 Rwe have:	n(';X1; : : : ; Xn) = �n Z '(x) dFn(x) + n Z exp'(x) dx= �n Z � �'(x) + log b� d �Fn(x) + n Z exp�'[(y � a)=b℄�b�1 dy= 	n( �'; �X1; : : : ; �Xn) + n log b: (3.7)Consequently, minimizing the funtion 	n(';X1; : : : ; Xn) over all pieewise linearfuntions ' with knots at some of the observations yields the same solution asminimizing (3.7) w.r.t to funtions �' (where this latter funtions are also pieewiselinear with knots at some of the observation points). Beause of this equivarianewe may and do assume from now on thatmaxx2R '(x) = '(0) = �1: (3.8)This will be onvenient later on when we use j'j � 1 as a weight funtion.



3.3 Uniform onsisteny of bfn 273.3 Uniform onsisteny of bfnLet us introdue some notation. De�ne�n := (logn)=nand the uniform norm of a funtion g on an interval I bykgkI1 := supx2I jg(x)j:With T := [A;B℄ we always denote a �xed ompat interval on R, where A < B.The set of knots of b'n on an interval T � R is written as:S(b'n) \ T =: fs1; : : : ; sM(n)g:A funtion g : T ! R belongs to the H�older smoothness lassH�;L(T ) with exponent� 2 [1; 2℄ and some onstant L > 0 if for all x; y 2 T we havejg(x)� g(y)j � Ljx� yj if � = 1;jg0(x)� g0(y)j � Ljx� yj��1 if � > 1:Finally, onvergene in probability and in law are written as !p and !D (equalitylikewise).Groeneboom, Jongbloed, and Wellner (2001b) proved uniform onsisteny of theestimator of a onvex density on (0;1) as well as its rate of onvergene of n�2=5 ata �xed point xo > 0 under the following smoothness onditions on the true densityf : f 0(xo) < 0; f 00(xo) > 0, and f 00 is ontinuous in a neighborhood of xo. The key inthe proof was the expliit haraterization of the estimator bfn and a lemma aboutpointwise onsisteny.On the other hand, under similar assumptions, D�umbgen, Freitag, and Jongbloed(2004) established a rate of uniform onvergene of (log(n)=n)2=5 for onave leastsquares regression using perturbation funtions that are pieewise linear and on-tinuous.What we do here is transforming the latter result to maximum likelihood estimationof log-onave densities under some H�older smoothness onditions on the true densityfuntion f . We give theorems for uniform onvergene on a ompat interval, for thedensity estimator bfn, the distribution funtion estimator bFn derived from it (Setion3.5), and the hazard rate estimator b�n (Setion 3.6).



28 3 Maximum likelihood estimationTo onlude, we point out the di�erene to the general approah of van de Geer(2000) to derive onsisteny and rates. While she uses entropy numbers for the fam-ily of all potential density funtions we onsider a muh smaller lass of \ariatures"for the di�erene between estimated and true density. Namely, our ariatures inthe proof of Theorem 3.3.1 are pieewise linear funtions with at most three knots.Theorem 3.3.1. Assume for the log-density ' = log f that ' 2 H�;L(T ) for someexponent � 2 [1; 2℄ and T a ompat subinterval of ff > 0g. Then,maxt2T ( bfn � f)(t) = Op ���=(2�+1)n � ;maxt2hA+�1=(2�+1)n ;B��1=(2�+1)n i (f � bfn)(t) = Op ���=(2�+1)n � : (3.9)Note that a onave funtion ' is automatially Lipshitz-ontinuous (i.e. H�older-ontinuous with exponent � = 1) on any interval T = [A;B℄ with A > inff' > �1gand B < supf' > �1g. This entails:Corollary 3.3.2. For any ontinuous log-onave density f ,k bfn � fkR1 !p 0 and k bFn � FkR1 !p 0:In the onvex density ase treated by Groeneboom, Jongbloed, and Wellner (2001b),the rate of onvergene of bfn to f at a �xed point (under the assumption � = 2)is Op(n�2=5). It would therefore be no surprise if the uniform rate in that situationwould be equal to the log-onave ase, as generally the rate of onvergene is sloweddown by a log-fator when onsidering uniform instead of pointwise onvergene.Furthermore, our proof for a uniform rate of onvergene should be adaptable toonvex density estimation (where this result is still laking).3.4 Distane between onseutive knotsof b'n: the gap problemThe next lemma about the maximal distane of two onseutive knots of b'n plays aruial role in the proof of Theorem 3.5.1. However, it also deserves its own merits,as it spei�es how fast two onseutive knot points of b'n are approahing eah other.



3.4 Distane between onseutive knots of b'n: the gap problem 29Theorem 3.4.1. Let si�1; si 2 S(b'n) be two arbitrary onseutive knots of b'n onT := [A;B℄ where ' 2 H�;L(T ) for some � 2 (1; 2℄. Assume '0(x)�'0(y) � C(y�x)for C > 0 and A � x < y � B. Then:supi=2;:::;M(n)(si � si�1) = Op���=(4�+2)n �:This result ompletely orresponds to onvex density estimation, as the rate ofonvergene of two onseutive knots is of order root of the pointwise rate of thedensity estimator (antiipating the log-onave pointwise rate from the uniform ratein Theorem 3.3.1). However, there the knots are between observation points whatmakes it muh more diÆult to reeive a result that ompares to Theorem 3.4.1. Infat, in proving the result about the pointwise limiting distribution in Groeneboom,Jongbloed, and Wellner (2001b), the distane about the distane of two onseutiveknots is the key result in the whole proof.The situation is di�erent for density estimation under a monotoniity onstraint.The Grenander density estimator bfG is the left-sided derivative of the least onavemajorant bFG of the empirial distribution funtion, implying that the jumps of theestimator are at observation points. In Jonker and van der Vaart (2001) appearsa uniform rate of onvergene for bfG together with the distane between two on-seutive hanges of slope of bFG as a orollary of a more general statement aboutmonotone estimation with ensored data. These two rates of onvergene are equal,up to a log-fator for the uniform rate, namely Op(n�1=3).In estimation of k-monotone densities, Balabdaoui and Wellner (2004d) derived therate of onvergene of the di�erene between two onseutive knots in a neighbor-hood of a �xed point xo > 0 only assuming that a ertain unproven onjeture aboutthe upper bound on the error in a partiular Hermite interpolation problem holdstrue. Clearly, as k-monotone densities are a generalization of onvex dereasing den-sities, the whole limiting distribution theory again relies on the solution of the gapproblem and therefore on the abovementioned onjeture. Note that Balabdaouiand Wellner introdued the term \gap problem".Theorem 3.4.1 solves a gap problem in log-onave density estimation, via somerelatively fundamental geometrial onsiderations (see the proof of the theorem onp. 57). However, the ruial point in our ase is that the knot points of the estimatorb'n are at some of the observationsXi, and not stritly inbetween as in all k-monotoneases for k � 2.



30 3 Maximum likelihood estimation3.5 Uniform onsisteny of bFnNote that log-onavity is preserved under integration, see Bagnoli and Bergstrom(1989 and 2005, Theorem 1). Using Theorem 3.3.1 together with Theorem 3.4.1 anda theorem elaborated in Stute (1982) about the modulus of ontinuity of a uniformempirial proess, one an dedue an at least rate of onvergene for the di�erenebetween the integrated density estimator bFn and the empirial distribution funtionFn . Two things are important to note. First, the proof of the theorem revealswhy the ase � = 1 has to be exluded. Seond, additionally to the onditionsin Theorem 3.3.1, the derivative of the log-density, whih is well-de�ned (beause� > 1), has to be bounded from below.Theorem 3.5.1. Assume '0(x)�'0(y) � C(y�x) for C > 0 and A � x < y � B.Suppose that ' 2 H�;L(T ) for some � 2 (1; 2℄. Then,maxt2T ( bFn � Fn)(t) = op (n�1=2);maxt2[A+��=(4�+2)n ;B���=(4�+2)n ℄ (Fn � bFn)(t) = op (n�1=2): (3.10)The interval in (3.10) is slightly shorter (for �nite n) than that in (3.9). This ensuresthat we have at least one knot between A and the plae where the maximum ours(same for B).Using Theorem 3.5.1 together with the well known Dvoretzky-Kiefer-Wolfowitz in-equality (Theorem A.3.1) we easily get the following orollary.Corollary 3.5.2. Under the same assumptions as in Theorem 3.5.1 we have:maxt2[A+��=(4�+2)n ;B���=(4�+2)n ℄ j( bFn � F )(t)j = Op (n�1=2):In most simulations we looked at, the estimator bFn satis�ed the inequalityk bFn � FnkR1 � kF � FnkR1: (3.11)However, one an onstrut ounterexamples showing that (3.11) may be violated,even if the right hand side is multiplied with any �xed onstant C > 1. The latter�ndings are in ontrast to \Marshall's Lemma" about the Grenander estimator bFG.



3.5 Uniform onsisteny of bFn 31Lemma 3.5.3 (Marshall (1970)). Suppose that F is onave on [0;1) suh thatF (0) = 0. The least onave majorant bFG of Fn then satis�es:k bFG � Fk[0;1)1 � kFn � Fk[0;1)1 :Note that the distribution funtion estimator bfG orresponding to bFG is a pieewiseonstant monotone dereasing funtion. Kiefer and Wolfowitz (1976) showed thatk bFG � Fnk[0;1)1 = op(n�2=3(logn)5=6):Kulikov and Lopuha�a (2005b) derived the limiting proess ofGn(t) := n2=3� bFG(t)� Fn(t)�t2[0;1℄:Note that bFG is quite well aessible through its haraterization as onave majorantof Fn . However, to derive similar results in the log-onave (and onvex) ase onehas presumably to rely on the haraterization of the estimator given in Theorem3.2.3.Theorem 3.5.1 assures that essentially the empirial distribution funtion and theestimator bFn are equivalent up to a fast rate, at least on a �xed ompat interval T .Together with Theorem 3.5.4 this reveals a remarkable advantage of the log-onavedensity estimator over kernel estimators. If the latter are onstruted with a non-negative even kernel and a bandwidth of optimal order O(n�1=5), then the uniformdistane between integrated density estimator bFn;h and the true distribution funtionF is only of order Op(n�2=5), i.e. even worse than the simple empirial distributionfuntion while in the log-onave ase the parametri rate Op(n�1=2) is attained.



32 3 Maximum likelihood estimationTheorem 3.5.4. Let k be a nonnegative and symmetri kernel and K its normalizedintegral: K(r) := Z r�1 k(x) dx suh that K(1) = 1:For a bandwidth h = h(n) suh that h # 0 and nh!1, the integrated kernel densityestimator is de�ned as bFn;h(x) := ZRK(x� y) dFn(y)for any x 2 R. Then, if the true density f has bounded derivative f 0 at any �xedxo 2 R, bFn;h(xo) = F (xo) +Op(n�1=2) + Op(h2f 0(xo)): (3.12)If f 0 is stritly positive at xo, hoosing h = Op(n�1=5) in (3.12) yields:bFn;h(xo) = F (xo) +Op(n�2=5):3.6 A monotone hazard rate estimatorThe estimation of a monotone hazard rate is already desribed in the book byRobertson, Wright, and Dykstra (1988). They diretly solve an isotoni estimationproblem similar to that for the Grenander density estimator.Reently, there has again grown some interest in the estimation of a monotone hazardrate, see Hall et al. (2001) and Hall and van Keilegom (2005). Methods used thererelied upon suitable modi�ations of kernel estimators and Silverman's \inreasingbandwidth" approah, proposed in 1981. However, with the aid of Lemma 2.3.1 andde�ning b�n(x) = bfn(x)1� bFn(x) for x < Xnyields a simple plug-in monotone hazard rate estimator and gives raise to the fol-lowing theorem.



3.6 A monotone hazard rate estimator 33Theorem 3.6.1. Under the same assumptions as in Theorem 3.3.1 we have that b�nis a non-dereasing funtion on (�1; Xn). Furthermore,maxt2T (b�n � �)(t) = Op ���=(2�+1)n � ;maxt2hA+�1=(2�+1)n ;B��1=(2�+1)n i (�� b�n)(t) = Op ���=(2�+1)n � :Find graphial illustrations for all the estimators bfn; b'n; bFn and b�n in Chapter 4.



34 3 Maximum likelihood estimation3.7 ProofsBefore oming to the proofs let us mention that vetors in Rn are written asx = (x1; : : : ; xn) and that the L2-norm for a vetor x 2 Rn is de�ned askxk2 := � nXi=1 x2i�1=2:Existene and uniquenessProof of Theorem 3.2.1. We start with proving pieewise linearity of b'n. Fixan arbitrary onave funtion ' with 	n(') < 1, and de�ne �' by requiring that�'(Xi) = '(Xi) for all i = 1; : : : ; n, while �' is linear between suessive observations.Further let �' � �1 outside [X1; Xn℄. The onavity of ' then entails that ' � �'.Consequently, 	n( �') � 	n(') (3.13)with strit inequality unless �' = '. Thus minimizers of 	n must have the form of�'.In order to prove existene of b'n, we only onsider onave funtions ' satisfy-ing the onstraints just derived. Moreover it suÆes to onsider the ase thatR exp'(x) dx = 1. For if ' = 'o + t with exp('o) being a probability densityand some number t 6= 0, it follows from (3.2) that	n(') = 	n('o) + n�exp(t)� t� 1� > 	n('o):For the remainder of this proof, any suh funtion ' is identi�ed with the vetor' := �'(Xi)�ni=1 2 Rn :Note that the funtional ' 7! 	n(') is ontinuous. Thus for the existene of aminimizer it suÆes to show that	n(') ! 1whenever k'k2 !1. For that purpose, let ('(k))1k=1 be a sequene of suh vetorssatisfying k'(k)k2 ! 1



3.7 Proofs 35and '(k)i ! i 2 [�1;1℄ for i = 1; : : : ; n:Suppose �rst that i <1 for all i. Then i = �1 for at least one index i, so that	n('(k)) = �Pni=1 '(k)i + n tends to in�nity.Seondly, suppose there exists an index j with j = 1. Let j > 1. The pieewiselinearity of the funtion '(k) entails that1 � Z XjXj�1 exp�'(k)(x)� dx= (Xj �Xj�1) exp ('(k)j )1� exp (�Æk)Æk� (Xj �Xj�1) exp ('(k)j )(1 + Æk)�1;where Æk := '(k)j � '(k)j�1. The latter inequality is a onsequene of1� e�xx � 11 + x for x � 0:Thus Æk is bounded from below by (Xj�Xj�1) exp('(k)j )�1. Consequently, j =1entails that �'(k)j � '(k)j�1 = �2'(k)j + Æk� �2'(k)j + (Xj �Xj�1) exp('(k)j )� 1! 1:Analogously, if j < n, then �'(k)j � '(k)j+1 tends to in�nity. These onsiderationsshow that 	n('(k))!1.For uniqueness observe that 	n is a stritly onvex funtional in ' in the sense that	n�(1� �)'1 + �'2� < (1� �)	n('1) + �	n('2)for � 2 (0; 1) and onave funtions '1; '2 : R 7! [�1;1) suh that R exp'i <1 and Lebf'1 6= '2g > 0. This is a onsequene of the strit onvexity of theexponential funtion. 2



36 3 Maximum likelihood estimationCharaterizationsTo simplify notation in the following proofs, let us introdue three funtion lasses.For a onave funtion gn : [X1; Xn℄! R, let D1(gn) be the lass of all funtions �suh that gn+t� is onave for some t > 0. De�ne D2(gn) as the family of pieewiselinear (not neessarily ontinuous) funtions � suh that any knot q of � has oneof the two following properties:q 2 S(gn) and �(q) = lim infr!q �(r); (3.14)�(q) = limr!q�(r) and �0(q�) � �0(q+): (3.15)Finally, D3(gn) shall be the subset of D2(gn) onsisting of all ontinuous and piee-wise linear funtions with knots only in S(gn). See Figure 3.2 for two examples ofadmissible perturbation funtions in D2(gn).
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Figure 3.2: Two examples for admissible perturbation funtions � 2 D2(gn).In Theorem 3.2.2 perturbation funtions � 2 D1(b'n) are used to haraterize theestimator b'n. We an generalize and speify inequality (3.3) to the even more generallasses D2(b'n) and D3(b'n), see the following lemma.Lemma 3.7.1. Inequality (3.3) is also valid for funtions � 2 D2( ~'n). For fun-tions � 2 D3( ~'n), we even get an equality.



3.7 Proofs 37Proof of Lemma 3.7.1. Suppose that � 2 D2(b'n). In this ase there are ontin-uous, pieewise linear funtions �k for k 2 N onverging pointwise isotonially to �and having the following property: Any knot point q of �k either belongs to S(b'n),or �0k(q�) > �0k(q+); see Figure 3.3.
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Figure 3.3: An example for an admissible perturbation funtion � and some approxima-tions �k.Thus b'n + t�k is onave for suÆiently small t > 0. Consequently, sine �1 ��k � � for all k, it follows from dominated onvergene (Theorem A.1.1) and (3.3)thatZ � dFn = limk!1Z �k dFn � limk!1Z �k(x) bfn(x) dx = Z �(x) bfn(x) dx:Finally, if � 2 D3(b'n), one may apply (3.3) to �� and obtains equality in (3.3). 2Proof of Theorem 3.2.2. First suppose ~'n is a minimizer of 	n. This entails forany funtion � 2 D1( ~'n) that the orresponding diretional derivative of 	n mustbe non-negative: 0 � limt#0 	n( ~'n + t�)� 	n( ~'n)t= n�� Z �dFn + Z �(x) exp ~'n(x) dx�:



38 3 Maximum likelihood estimationAs for the other diretion let g be a onave funtion suh that 	n(g) < 1 andde�ne g(r)� ~'n(r) = 0 for r 2 f�1;1g. Then:n�1�	n(g)�	n( ~'n)� == Z exp g(x) dx� Z �g(x)� ~'n(x)� dFn(x)� Z ~fn(x) dx= Z exp �g(x)� ~'n(x)� ~fn(x) dx� Z �g(x)� ~'n(x)� dFn(x)� Z ~fn(x) dx� Z �1 + g(x)� ~'n(x)� ~fn(x) dx� Z �g(x)� ~'n(x)� dFn(x)� Z ~fn(x) dx= Z �g(x)� ~'n(x)� ~fn(x) dx� Z �g(x)� ~'n(x)� dFn(x) (3.16)by the inequality exp(x) � 1 + x for x 2 R. But the lass of funtionsfg � ~'n; g onavegis equivalent to the lass D1( ~'n), so (3.16) is only positive if (3.3) holds for allfuntions in D1( ~'n), entailing that ~'n is e�etively the minimizer of 	n. 2Proof of Theorem 3.2.3. First, we provide a formula about integration of a speiallass of funtions. Assume G to be an arbitrary distribution funtion. Suppose� : R ! R an be written as follows.�(x) = �o + Z x�1�0(t) dtwhere �0 is a bounded and measurable funtion with bounded support. Then, usingFubini's Theorem:ZR�dG(x) = �o + ZR ZR�0(t)1ft<xg dt dG(x)= �o + ZR�0(t)�ZR 1ft<xg dG(x)� dt= �o + ZR�0(t)[1�G(t)℄ dt: (3.17)Equality (3.17) is spei�ally valid for pieewise linear and ontinuous funtions �with bounded support.



3.7 Proofs 39Suppose ~'n is a minimizer of 	n. Then inequalities (3.4)-(3.6) follow from Theorem3.2.2 applied to �1(x) = min f(b� x)+; b� tg= (b� t) + Z x�1�1ft�r�bg drand �2(x) = min f(x� a)+; t� ag= Z x�1 1fa�r�tg drand remembering that a; b 2 S( ~'n).As for the other diretion let us just ontinue alulations in (3.16) as follows. Reallfrom the proof of Theorem 3.2.1 the funtion �g whih is onave and pieewise linearwith knots only at the observations X1; : : : ; Xn. Using inequalities (3.13), (3.16),the assumption ~Fn(Xn) = 1, and (3.17) then yields:n�1�	n(g)� 	n( ~'n)� � n�1�	n(�g)� 	n( ~'n)�� Z �g(x)� ~'n(x)� ~fn(x) dx� Z �g(x)� ~'n(x)� dFn(x)= ZR�Fn(x)� ~Fn(x)���g0(x)� ~'0n(x)� dx= � Z XnX1 Z tX1�Fn(x)� ~Fn(x)� dx d��g0(t)� ~'0n(t)�using integration by parts where �g0 and ~'0n an be interpreted as left-sided deriva-tives. Note that the outer integration over d(�g0(t) � ~'0n(t)) is just a sum over theknot points. The assumption on ~'n entails thatZ XnX1 Z tX1�Fn(x)� ~Fn(x)� dx d ~'0n(t) == Xs2S( ~'n)( ~'0(s+)� '0(s)) Z sX1�Fn(x)� ~Fn(x)� dx= 0by (3.6). De�ne for i = 2; : : : ; n the right-most knot of ~'n left of Xi assi = maxj fsj 2 S( ~'n) : sj < Xig:



40 3 Maximum likelihood estimationIntrodue �g00i = �g0(Xi+)� �g0(Xi) < 0 and use the alulations from above to get:n�1�	n(g)� 	n( ~'n)�� � Z XnX1 Z tX1�Fn(x)� ~Fn(x)� dx d�g0(t)= nXi=2 (��g00i )hZ siX1 �Fn(x)� ~Fn(x)� dx + Z Xisi �Fn(x)� ~Fn(x)� dxi� 0by (3.4) and (3.6). 2Uniform onsisteny of bfnProof of Theorem 3.3.1: The proof onsists of several lemmas. To lift the fogspread by the tehnial details, we summarize the ingredients. First, de�ne Dm asthe family of all pieewise linear funtions on R with at most m knots. Seond,verify that the lass Dm indeed ontains useful perturbation funtions (for a �xedm, Lemma 3.7.3) in the sense of providing suÆiently aurate \ariatures" forthe di�erene b'n � '. Finally, bound the moment generating funtion of a randomvariable spei�ed there (Lemma 3.7.5) to show that the supremum norm of a suitablyweighted empirial proess (wn(�) R �d(Fn � F ))�2Dm is bounded in probability(Lemma 3.7.4). This last step is done by approximating elements of Dm by linearfuntions from a �nite family (Lemma 3.7.6) to be followed by some braketingargument. Finally, to prove the theorem, use Lemma 3.7.2. This laim aboutthe di�erene of two onave funtions (one of whih is suÆiently smooth) wasintrodued in slightly di�erent form in D�umbgen (1998, Lemma 5.2) and readoptedin D�umbgen, Freitag, and Jongbloed (2004, Lemma 2). For ompleteness, we alsogive a proof of this lemma.It is important to note that thanks to inequality (3.3) we an onentrate our at-tention in Lemma 3.7.4 on the resaled supremum of the standard empirial proess(F (t) � Fn(t))t2R rather than having to deal with (F (t) � bFn(t))t2R, what in fatwould be a muh more diÆult task.Reall that, aording to (3.8), ' is assumed to satisfy ' � �1. In order to be ableto state the following results rigorously we de�ne two auxiliary quantities for any



3.7 Proofs 41funtion h on the real line:W (h) := kh='kR1 �(h) := �ZR h(x)2 dF (x)�1=2 :The �rst key ingredient in the proof of Theorem 3.3.1 is a statement about thedi�erene of two onave funtions, one of whih is suÆiently smooth.Lemma 3.7.2. For any � 2 [1; 2℄ and L > 0 there exists a positive onstantK = K(�; L) with the following property: Suppose that g and bg are onave andreal-valued funtions on a ompat interval T = [A;B℄, where g 2 H�;L(T ). For any" > 0 let Æ := KminfB � A; "1=�g. Thensupt2T (bg � g) � " or supt2[A+Æ;B�Æ℄(g � bg) � "implies that inft2[;+Æ℄ (bg � g)(t) � "=4 or inft2[;+Æ℄ (g � bg)(t) � "=4for some  2 [A;B � Æ℄.This is followed by the spei�ation of \useful" perturbation funtions �.Lemma 3.7.3. Let '� b'n � " or b'n � ' � " on some interval [;  + Æ℄ � T withlength Æ > 0. Then there exists a funtion � 2 D3 eah knot of whih satis�esondition (3.14) or (3.15) and a positive onstant K = K(f; T ) suh thatb'n � ' � �"� if '� b'n � " on [; + Æ℄b'n � ' � �"� if b'n � ' � " on [; + Æ℄, (3.18)sign(�) = sign('� b'n) on fx : �(x) 6= 0g ; (3.19)� � 1 on R (3.20)Z +Æ �2(x) dx � Æ=3; (3.21)W (�) � K(f; T )maxf1; Æ�1=2g�(�): (3.22)



42 3 Maximum likelihood estimationLemma 3.7.4 shows that Fn is lose to F uniformly over the funtion lass Dm.Lemma 3.7.4. For any � 2 [2=3; 1) there exists a onstant B = B(�; f) suh thatSn(m) := sup�2Dm ��R �d(Fn � F )���(�)m1=2�1=2n +W (�)m��n � Bwith probability tending to one as n!1.The additional term W (�)m��n in the denominator is neessary to prevent Sn(m)from beoming \too big" in ase �(�) is very small. This latter problem an ourwhen the perturbation funtion � has small support.Proof of Theorem 3.3.1Now, to prove the theorem let G = G(�; f; T ) > 0 be a generi onstant whosevalue may be di�erent in di�erent expressions. Sine the exponential funtion isLipshitz{ontinuous on any haline (�1; m℄, we may and do replae (f; bfn) with('; b'n). Suppose that supt2T (b'n � ')(t) � C"nor supt2[A+Æn;B�Æn℄ ('� b'n)(t) � C"nfor some C > 0, where "n := ��=(2�+1)n and Æn := �1=(2�+1)n = "1=�n . It followsfrom Lemma 3.7.2 with " := C"n that for suÆiently large n and C � K(f; T )��,there is a (random) interval [n; n + Æn℄ � T on whih either b'n � ' � (C=4)"nor ' � b'n � (C=4)"n. But then by Lemma 3.7.3 there is a (random) funtion�n 2 D3 � D2(b'n) ful�lling (3.18)-(3.22). For this �n we have by (3.3)ZR�n(x) d(F � Fn)(x) � ZR�n(x)(f � bfn)(x) dx= ZR�n(x)f(x)�1� exp[b'n(x)� '(x)℄� dx (3.23)From (3.18) and the assumption above we get on the interval [n; n + Æn℄b'n � ' � �(C=4)"n�n



3.7 Proofs 43if b'n � ' � (C=4)"n and b'n � ' � �(C=4)"n�nif ' � b'n � (C=4)"n. This together with (3.19) and the fat that the funtion1� exp(x) is dereasing for x 2 R implies that (3.23) is not smaller thanZR�n(x)f(x)�1� exp[�(C=4)"n�n(x)℄� dx =4(C"n)�1 ZR ~�n(x)f(x)�1� exp[� ~�n(x)℄� dxwith ~�n := (C=4)"n�n. Using Taylor expansion one an verify the inequalitiesx[1� exp(�x)℄ � 8<: x2 if x � 0x2=(1 + x) if x > 0:Combining this with the above derivations yieldsZR�n(x) d(F � Fn)(x) �4(C"n)�1 Zf ~�n�0g ~�2n(x)f(x) dx + 4(C"n)�1 Zf ~�n>0g ~�2n(x)f(x)1 + ~�n(x) dx� (C=4)"n Zf�n�0g�2n(x)f(x) dx+ (C=4)"n1 + (C=4)"n Zf�n>0g�2n(x)f(x) dx� (C=4)"n1 + (C=4)"n�2(�n)by (3.20). This entails, together with (3.21) and (3.22),Sn(3) � RR�n(x) d(F � Fn)(x)31=2�(�n)�1=2n + 3W (�n)��n� (C=4)"n�2(�n)(31=2�(�n)�1=2n +GÆ�1=2�(�n)��n)(1 + (C=4)"n)= GC"n�(�n)(�1=2n + Æ�1=2n ��n)(1 + (C=4)"n)� CG"nÆ1=2n(�1=2n + Æ�1=2n ��n)(1 + (C=4)"n) :



44 3 Maximum likelihood estimationConsequently, the fat that Sn(3) � B(�; f) impliesC � G(�1=2n + Æ�1=2n ��n)"�1n Æ�1=2n (1 + (C=4)"n)wherefrom we dedueC � G(1 + ���(�+1)=(2�+1)n )(1�G��=(2�+1)n �G���1=(2�+1)n )�1= O(1):Now the assertion follows from Lemma 3.7.4. 2Proof of Lemma 3.7.3. Again, the proof of this Lemma is very muh inspired bythat of Lemma 3 in D�umbgen, Freitag, and Jongbloed (2004). It is worth notingthat here we are also inorporating non-ontinuous funtions, what brings down thenumber of knots whih are neessary for the �'s from 6 to 3. The ruial point inall the ases we have to distinguish is to onstrut a � 2 D3 satisfying (3.18).Case 1: Let b'n � ' � " on [;  + Æ℄. Then a funtion � 2 D3 will do. FromTheorem 3.2.1 we know that b'n is pieewise linear.Case 1a: Suppose [; + Æ℄\S(b'n) ontains (at least) one point Xo. Then wefore � 2 D3 to have knots at ;Xo; +Æ, where � = 0 on the set (�1; ℄[[+Æ;1),and �(Xo) = �1. Requirements (3.18), (3.19), and (3.21) are readily veri�ed. Toestablish (3.22) note that W (�) � k�kR1 � 1.Case 1b: Suppose [; + Æ℄ \ S(b'n) = ;. Let (o; do) � (; + Æ) be the maximalopen interval on whih ' � b'n is onave. Then there exists a linear funtion~� < 0 suh that ~� � ' � b'n on (o; do) and ~� � �" on [;  + Æ℄. Next let(1; d1) := fe� < 0g \ (o; do). Now we de�ne � 2 D2 via�(x) := 8<: 0 if x 2 (�1; 1) [ (d1;1);e�=" if x 2 [1; d1℄:This funtion � satis�es ' � b'n � "� � 0 on [X1; Xn℄, what establishes (3.18)and (3.19). As for (3.21) note that j�j � 1 on [;  + Æ℄. In order to verify (3.22)introdue P, the lass of pieewise linear funtions suh that for every element of Pthe interval [; + Æ℄ is fully ontained in its support. Let us assume for the momentthat supÆ>0;�2Pminf1; Æg1=2W (�)�(�) (3.24)



3.7 Proofs 45is unbounded. But then there exist sequenes Æn and �n suh thatminf1; Æng1=2W (�n)�(�n) ! 1as n!1. Furthermore, assume w.l.o.g. that �n an be written as�n(x) = �ndn � n (x� n)1fn�x�dngfor sequenes �n; n and dn. Sine W and � are both semi-norms, �n an be set to1 for all n. As for the other sequenes we have Æn ! Æ 2 [0; 1℄, n ! 1 2 [�1; B℄,and dn ! d1 2 [A;1℄. Elementary alulations yield:Z dnn �2n(x)f(x) dx � 3�1minx2T f(x)(dn � n)= G(dn � n):Sine by Lemma 2.2.1 and equivariane (see Setion 3.2) for x 2 Rj'(x)j � maxf1;�ao + bojxjg (3.25)we an write:minf1; Æng1=2W (�n)�(�n) � Gminf1; Æng1=2(dn � n)1=2 supx2[n;dn℄ x� nmaxf1;�ao + bojxjg(dn � n)=: R1(f; T; Æn; n; dn):Note that this latter funtion is ontinuous in its last three arguments. Now, assum-ing that n ! 1; dn ! 1 for 1 2 T immediately entails that Æn ! 0. But then, asn!1, R1(f; T; Æn; n; dn) � Gmaxf1;�ao + boj1jg= G:If one onsiders either the ase n ! �1; dn ! d1 2 [A;1); Æn ! Æ 2 [0; 1℄ orn ! 1 2 (�1; B℄; dn !1; Æn ! Æ 2 [0; 1℄ one even gets thatR1(f; T; Æn; n; dn) = R1(f; T )! 0:



46 3 Maximum likelihood estimationBut these onsiderations imply thatminf1; Æng1=2W (�n)�(�n)is at least bounded, what ontradits assumption (3.24). This establishes (3.22).For an illustration onsult Figure 3.4.

Figure 3.4: The perturbation funtion � in Case 1b.

0 � '� b'no 1  + Æ d1 = do
b'n '

Case 2: Let '� b'n � " on [; + Æ℄. Let [o; ℄ and [+ Æ; do℄ be maximal intervalson whih b'n is linear. Then de�ne�(x) := 8>>><>>>: 0 if x 2 (�1; o) [ (do;1);1 + �1(x� xo) if x 2 [o; xo℄1 + �2(x� xo) if x 2 [xo; do℄;where xo := + Æ=2 and �1 � 0 is hosen suh that either�(o) = 0 and ('� b'n)(o) � 0 or('� b'n)(o) < 0 and sign(�) = sign('� b'n) on [o; xo℄:



3.7 Proofs 47Analogously, �2 � 0 is hosen suh that�(do) = 0 and ('� b'n)(do) � 0 or('� b'n)(do) < 0 and sign(�) = sign('� b'n) on [xo; do℄:By onstrution (3.18) and (3.21) are ensured. Moreover, R +Æ �(x)2 dx � Æ=3.Figure 3.5 gives an example. In order to verify (3.22) one an now apply the samereasoning as in Case 1b. Suppose thatsupÆ>0;�2Pminf1; Æg1=2W (�)�(�) (3.26)is unbounded. Then there exist sequenes Æn and �n suh thatminf1; Æng1=2W (�n)�(�n) ! 1as n!1. For sequenes n; xn; dn; �1;n; �2;n write�n(x) = [1 + �1;n(x� xn)℄1fn�x�xng + [1 + �2;n(x� xn)℄1fxn�x�dng=: �1;n(x) + �2;n(x)where Æn ! Æ 2 [0; 1℄; n ! o 2 [�1; B℄; xn ! o + Æ; dn ! do 2 [A;1℄; �1;n ! �1,and �2;n ! �2. De�ne the funtion R2 as follows, again using (3.25),minf1; Æng1=2W (�1;n)�(�1;n)� minf1; Æng1=2k�1;n='kR1�RR�21;n(x)f(x) dx�1=2� Gminf1; Æng1=2 supx2[n;xn℄[(1 + �1;n(x� xn))=maxf1;�ao + bojxjg℄�(xn � n) + �1;n(xn � n)2 + �21;n(xn � n)3=3)�1=2=: R2(f; T; Æn; �1;n; n; xn):Again, R2(f; �1; o; xo) is ontinuous in its latter four arguments. The �rst ase tolook at is the following: n ! o; xn ! o (immediately implying Æn ! 0) and



48 3 Maximum likelihood estimation�1;n !1. But then R2(f; T; Æn; �1;n; n; xn) is not bigger thanGÆ1=2n supx2[n;xn℄[(1 + �1;nÆn)=maxf1;�ao + bojxjg℄�(xn � n) + �1;n(xn � n)2 + �21;n(xn � n)3=3)�1=2� GÆ1=2n +GÆ3=2n �1;n(Æn + �1;nÆ2n + �21;nÆ3n=3)1=2= G(1 + �1;nÆn + �21;nÆ2n=3)1=2 + G(��21;nÆ�2n + ��11;nÆ�1n + 1=3)1=2� Gas n!1. If on the other hand �1;n ! 0, thenR2(f; T; Æn; �1;n; n; xn) = GÆ1=2n (1 + o(1))Æ1=2n (1 + �1;nÆn + �21;nÆ2n=3)1=2= Gas n ! 1. Finally, if �1;n ! �1 2 (0;1), then R2(f; T; Æn; �1;n; n; xn) = G.Similarly one an deal with the settings n ! �1; xn ! xo and n ! o; xn !1,both these ases analyzed as above regarding the behavior of the sequene �1;n. Allthis ases together yield that the funtion R2(f; T; Æn; �1;n; n; xn) is either boundedby a onstant only depending on f and T or going to 0 as n ! 1, ontraditing(3.26). As in Case 1b this implies thatminf1; Æng1=2W (�1;n)�(�1;n)is bounded by a onstant only depending on f and T . As a onsequene we getW (�1;n) � Gmaxf1; Æng�1=2�(�1;n):Similar onsiderations apply to �2;n. Noting thatW (�n) = maxfW (�1;n);W (�2;n)g� Gmaxf1; Æng�1=2maxf�(�1;n); �(�2;n)g� Gmaxf1; Æng�1=2�(�n)veri�es (3.22). 2



3.7 Proofs 49

Figure 3.5: The perturbation funtion � in Case 2.

0 � '� b'n
o  xo + Æ do
' b'n

1

In order to prove Lemma 3.7.4 we derive �rst an auxiliary inequality for the momentgenerating funtion of a random variable with bounded exponential moment.Lemma 3.7.5. Let Y be a random variable suh that IE(Y ) = 0, IE(Y 2) = �2 andIE exp(jY j) � 1 + C. Then for arbitrary � 2 (0; 1) and t 2 R,IE exp(tY ) � 1 + �2t22 + �2�C1��e1��jtj3(1� �)2(1� �� jtj)+ :This entails the following result for �nite families of funtions:Lemma 3.7.6. Let Hn be a �nite family of funtions h with 0 < W (h) < 1suh that #Hn = O(np) for some p > 0. Then for any �xed � 2 [0; 1), � :=(2� �)=(3� 2�) 2 [2=3; 1) and suÆiently large D,limn!1 IP0�maxh2Hn ���R h d(Fn � F )����(h)�1=2n +W (h)��n � D1A = 0:



50 3 Maximum likelihood estimationProof of Lemma 3.7.4. At �rst we onsider the family H of all funtions h of theform h(x) = 1fx2Jg(a+ bx)with any interval J � R and real onstants a; b suh that h is nonnegative. Given thisfamily H we show now that for eah � 2 [2=3; 1) there exists a onstant C = C(Æ; f)suh that suph2H ��R h d(Fn � F )���(h)�1=2n +W (h)��n � C (3.27)with probability tending to one as n ! 1. Again, sine W (�) and �(�) are semi-norms, we may replae H with the subfamily Ho of all funtions h 2 H suh thatW (h) = 1.Now we use a braketing argument. Let�1 = tn;0 < tn;1 < � � � < tn;m(n) =1;and de�ne In;j := (tn;j�1; tn;j℄ for 1 � j � m(n). Here the points tn;j are hosen suhthat Z tn;jtn;j�1 '(x)2f(x) dx � n�1with equality for j = 1 and j = m(n). Aording to Lemma 2.2.1, the integral of'2f is �nite. Thus we may and do assume that m(n) = O(n). Moreover the lasttwo inequalities in Lemma 2.2.1 imply thatmax1�j<m(n) j'(tn;j)j = O(logn):For any h 2 Ho we de�ne funtions hn;`; hn;u as follows: Let fj; : : : ; kg be the set ofall indies i 2 f1; : : : ; m(n)g suh that fh > 0g \ In;i 6= ;. Then we de�nehn;`(x) := 1ftn;j<x�tn;k�1g(+ dx)and hn;u(x) := 1fx2In;j[In;kg(1 + jxj)+ 1ftn;j<x�tn;k�1gmin(+ dx+ n�1=2; 1 + j'(x)j);where ; d 2 fzn�1=2 : z = 0; 1; 2; : : :g are hosen as large as possible suh thathn;` � h. Figure 3.6 illustrates the situation.
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���������������������h
( ℄In;j ( ℄In;k

                  
���� ����

                  

1 + jxj

hn;uhn;lFigure 3.6: Constrution of the brakets for h.
One easily veri�es that 0 � hn;` � h � hn;u, W (hn;u) = 1 and�(hn;u � hn;`)2 � 3n�1:Moreover, the set Hn := fhn;`; hn;u : h 2 Hog onsists of O(m(n)2n log(n)2) = o(n4)di�erent funtions. For there are less than m(n)2 possibilities for the index pair(j; k) and at most (n1=2maxj j'(tn;j)j+ 1)2 possibilities for the pair (; d).It follows from Lemma 3.7.6 that for some suitable onstant D = D(�; f),suph2Hn ��R h d(Fn � F )���(h)�1=2n + ��n � D (3.28)with probability tending to one as n!1. But for any h 2 Ho the inequality (3.28)



52 3 Maximum likelihood estimationentails thatZ h d(Fn � F ) � Z hn;u dFn � Z hn;` dF= Z hn;u d(Fn � F ) + Z (hn;u � hn;`) dF� D��(hn;u)�1=2n + ��n� + 31=2n�1=2� D�(�(h) + 31=2n�1=2)�1=2n + ��n�+ 31=2n�1=2� (D + 1)(�(h)�1=2n + ��n)for suÆiently large n. Thus we may take C = D+1 in (3.27). In order to ompletethe proof of Lemma 3.7.4, onsider any � 2 Dm. There are m0 � 2m + 2 disjointintervals on whih � is linear and either nonnegative or nonpositive. Thus we maywrite � = m0Xj=1 �jhjwith funtions hj 2 H having disjoint support and numbers �j 2 f�1; 1g. Conse-quently, �(�)2 = m0Xj=1 �(hj)2;W (�) = maxj=1;:::;m0W (hj):Thus (3.28), together with the Cauhy-Shwarz inequality, entails that���Z �d(Fn � F )��� � m0Xj=1 ���Z hj d(Fn � F )���� m0Xj=1 C��(hj)�1=2n +W (hj)��n�� C� m0Xj=1 �(hj)�1=2n +W (�)m0��n�� C��(�)m01=2�1=2n +W (�)m0��n�� 4C��(�)m1=2�1=2n +W (�)m��n�what onludes the proof. 2



3.7 Proofs 53Proof of Lemma 3.7.5. Note �rst thatIE exp(tY ) = 1Xk=0 tkk! IE(Y k) � 1 + �2t22 + 1Xk=3 jtjkk! IE(jY jk):It follows from H�older's inequality thatIE(jY jk) = IE(jY j�jY jk��) (for 0 < � < k)� IE(jY j�=�)� IE(jY j(k��)=(1��))1��= �2� IE(jY j(k�2�)=(1��))1�� (if � = 2�):Moreover, for ` � 1,IE(jY j`) = IE�(exp(jY j)� 1) jY j`exp(jY j)� 1� � C maxy>0 y`ey � 1 � C ``e1�`:For ddy y`ey � 1 = `y`�1(ey � 1� yey=`)(ey � 1)2is stritly positive on (0; z) and stritly negative on (z;1), where z satis�es theequality ez � 1 = zez=`. Hene the maximum of y`=(ey � 1) over all y > 0 is notgreater than the maximum of `z`�1e�z over all z > 0, and the latter maximumequals `(`� 1)`�1e1�` � ``e1�`. Consequently,IE exp(tY ) � 1 + �2t22 + �2�C1��e1�� 1Xk=3 jtjkk! �k � 2�1� � �k�2�ek�2�= 1 + �2t22 + �2�C1��e1+� 1Xk=3 jtjkk! �k � 2�1� � �k�2�e�k� 1 + �2t22 + �2�C1��e1+� 1Xk=3 jtjkk! 3�2�� k1� ��ke�k< 1 + �2t22 + �2�C1��e1�� 1Xk=3� jtj1� ��k kke�kk!� 1 + �2t22 + �2�C1��e1�� 1Xk=3� jtj1� ��k= 1 + �2t22 + �2�C1��e1��jtj3(1� �)2(1� �� jtj) : 2



54 3 Maximum likelihood estimationProof of Lemma 3.7.6. Sine W (h) = W (h) and �(h) = �(h) for any h 2Hn and arbitrary onstants  > 0, we may assume without loss of generality thatW (h) = 1 for all h 2 Hn. Note that now jh(x)j � j'(x)j. Hene it follows fromLemma 2.2.1 thatIE exp�tojh(X)� IE h(X)j� � Co := exp(to IE j'(X)j) IE exp(toj'(X)j);whih is �nite for 0 < to < 1. Thus Lemma 3.7.5, applied to Y := to(h(X)�IE h(X)),implies thatIE expht�h(X)� IE h(X)�i = IE�(t=to)Y � � 1 + �(h)2t22 + C1�(h)2�jtj3(1� C2jtj)+for arbitrary h 2 Hn, t 2 R and onstants C1; C2 depending on �; to; Co. Conse-quently, IE exp�t Z h d(Fn � F )� = IE exp�(t=n) nXi=1 (h(Xi)� IE h(X))�= �IE exp�(t=n)(h(X)� IE h(X))��n� �1 + �(h)2t22n2 + C1�(h)2�jtj3n3(1� C2jtj=n)+�n� exp��(h)2t22n + C1�(h)2�jtj3n2(1� C2jtj=n)+� :Now it follows from Markov's inequality thatIP����Z h d(Fn � F )��� � �� � 2 exp��(h)2t22n + C1�(h)2�t3n2(1� C2t=n)+ � t�� (3.29)for arbitrary t; � > 0. Spei�ally let � = D(�(h)�1=2n + ��n) and sett := n�1=2n�(h) + ���1=2n � n�1��n = o(n):Then the bound (3.29) is not greater than2 exp �(h)2 logn2(�(h) + ���1=2n )2 + C1�(h)2��1=2n logn(�(h) + ���1=2n )3(1� C2�1��n )+ �D logn!� 2 exph�12 + C1(1� C2�1��n )+ �D� logni = 2 exp�(O(1)�D) logn�:



3.7 Proofs 55Consequently,IP0�maxh2Hn ���R h d(Fn � F )����(h)�1=2n +W (h)��n � D1A� #Hn2 exp�(O(1)�D) logn� = O(1) exp�(O(1) + p�D) logn� ! 0as n!1, provided that D is suÆiently large. 2Proof of Lemma 3.7.2: De�ne the linear approximation to g at to for t 2 T as:eg(t) := 8<: g(to) if � = 1;g(to) + g0(to)(t� to) if � > 1:The assumption that g 2 H�;L(T ) then implies for � = 1j(eg � g)(t)j = jg(to)� g(t)j � Ljt� toj (3.30)and for � > 1 j(eg � g)(t)j = jg(to)� g(t) + g0(to)(t� to)j� Z tot jg0(u)� g0(to)j du� L Z tot ju� toj��1 du� (L=�)jt� toj�: (3.31)Case 1: Suppose that one has (bg � g)(to) � " for a to 2 T suh that, without lossof generality, to � (A +B)=2. Let 0 < Æ � (B � A)=8.Case 1a: Assume that (bg�eg)(to+Æ) � "=2. Sine bg�eg is onave with (bg�eg)(to) =(bg � g)(to) � ", it follows that (bg � eg)(t) � "=2 for all t 2 [to; to + Æ℄.Case 1b: On the other hand, let (bg � eg)(to + Æ) � "=2. The slope of bg � eg right ofto+ Æ is then at most that of the line through (bg�eg)(to) and (bg�eg)(to+ Æ), namely�"=(2Æ). This means that (bg � eg)(t) � �"=2 if only t � to + 3Æ.Summarizing Cases 1a and 1b, we learn that there exists an interval J � [to; to+4Æ℄of length Æ suh that for all t 2 J we have jeg � bgj � "=2. By the triangle inequality



56 3 Maximum likelihood estimationwe get "=2 � jbg�gj+ jg�egj. Using Inequalities (3.30) and (3.31) this �nally entailsthat jbg � gj � "=2� (L=�)(4Æ)�:The expression on the right is at least "=4 ifÆ � (�=L)1=�4�1�1=�"1=� =: K1(�; L)"1=�:Case 2: Now assume (g�bg)(to) � " for a to 2 [A+Æ; B�Æ℄ where Æ 2 (0; (B�A)=2℄.Thus, from (3.30) or (3.31) it follows the existene of �1 suh thatg(t)� g(to) � �1(t� to)� (L=�)jt� toj�and from the onavity of bg that of �2 with bg(t)� bg(to) � �2(t� to). Together thisyields (g � bg)(t) � "+ (�1 � �2)(t� to)� (L=�)jt� toj� � "� LÆ�for all t either in [to; to+Æ℄ or [to�Æ; to℄, depending on sign(�1��2). Finally, "�LÆ� �"=4 if Æ � (3"=(4L))1=� =: K2(�; L)"1=�. Note that K1(�; L) � K2(�; L) uniformlyin � and L, so that we de�ne K(�; L) := minfK1(�; L); K2(�; L)g = K1(�; L). 2With the veri�ation of this last lemma the proof of Theorem 3.3.1 is omplete. 2Before oming to the proofs for bFn, we still owe that for Corollary 3.3.2.Proof of Corollary 3.3.2: First, note that the statements are trivial outside[X1; Xn℄, by Theorem 3.2.1. The onave funtion ' : (a; b) ! R is automatiallyLipshitz-ontinuous on any ompat subinterval [; d℄ of (a; b), beause'(d)� '()d� is, due to onavity of ', uniformly bounded for any ; d. This fat, together withTheorem 3.3.1 and ontinuity of f entails uniform onsisteny of bfn. For the inte-grated density estimator bFn, write j bFn � F j � R jf � bfnj asZ ( bfn � f)+ + Z ( bfn � f)� = 2 Z (f � bfn)+ � �Z f � Z bfn�:On the right-hand side, the �rst term tends to zero by dominated onvergene(Theorem A.1.1) applied to f � (f � bfn)+ !p 0. The seond term equals zero.Atually, this is solely an appliation of what is known as She��e's Theorem. 2



3.7 Proofs 57The gap problemProof of Theorem 3.4.1. To simplify things introdue a new oordinate systemwith origin (si�1; '(si�1)). Suppose that for Æ = �si and " = K��=(2�+1)n we have:'(Æ=2)� '(Æ)=2 � 2": (3.32)Then the assumption about '0 together with (3.8) yields:2" � '(Æ=2)� '(Æ)=2� 2�1�Z Æ=20 '0(u) du� Z ÆÆ=2 '0(u) du�= 2�1hZ Æ=20 �'0(u)� '0(u+ Æ=2)�dui� C(Æ2=8):So we an onlude: Æ � 2C�1=2"1=2:To prove assertion (3.32) reapitulate from Theorem 3.3.1 thatj('� b'n)(x)j � ": (3.33)Introdue for x 2 [0; Æ℄ the auxiliary funtions �(x) := ('(Æ)=Æ)x and a parallelwisetranslated �(x): De�ne xo as the left-most point in [0; Æ℄ where b'0n(x) = '(Æ)=Æ andusing this �(x) := �(x) + ('(xo) � �(xo)). Then distint three ases, depending onthe number of intersetions of ' and b'n in (0; Æ).Case 1: Let #fx 2 (0; Æ) : b'n(x) = '(x)g = 2. Then geometri onsiderationsreveal that (' � �)(x)=2 � " for x 2 [0; Æ℄ whenever (3.33) is true (and equalityholds whenever (b'n � �)(x) = 2�1(�� �)(x) for all x 2 [0; Æ℄). Set x = Æ=2. For anillustration onsult Figure 3.7.Case 2: Let #fx 2 (0; Æ) : b'n(x) = '(x)g = 1. Again, ('��)(x)=2 � " for x 2 [0; Æ℄but here ('� �)(x)=2 = " e.g. in ase b'n(0) = �(0), b'n(Æ) = �(Æ), '0(Æ=2) = �(Æ=2)and x = Æ=2. Figure 3.8 details the situation.Case 3: Let #fx 2 (0; Æ) : b'n(x) = '(x)g = 0. In this last situation, we havew.l.o.g. that (�� �)(x) � " for all x 2 [0; Æ=2℄ (otherwise mirror the situation) withequality whenever b'n(x) = �(x) for all x 2 [0; Æ℄. This entails that (' � �)(x) � "and with x = Æ=2 we get the assertion. 2
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0 Æ=2 Æ(0,0) (Æ; '(Æ))b'n
' �

�

Figure 3.7: Illustration of Case 1 in the proof of Theorem 3.4.1.

0 Æ=2 Æ
(Æ; '(Æ))b'n '��

Figure 3.8: Illustration of Case 2.

0 Æ=2 Æ(0,0) (Æ; '(Æ))b'n
' �

�
Figure 3.9: Illustration of Case 3.



3.7 Proofs 59Uniform onsisteny of bFnProof of Theorem 3.5.1: To simplify notation introdue:rn := ��=(4�+2)n!(g; d) := supx2[A+rn;B�rn�d℄ supjhj�d jg(x+ h)� g(x)jfor d > 0 and funtions g bounded on [A;B℄. The uniform empirial distributionfuntion is denoted by G n and Un stands for a uniform empirial proess. Then notethat !(F; rn) � rnkfkR1:Consequently, together with!(Un ; rn) =p2rn log(r�1n )(1 + op(1))guaranteed by Theorem A.2.1, we have (let id(x) := x)!(Fn � F; rn) =D !�G n(F )� id; !(F; rn)�=D n�1=2kfkR1!(Un ; rn)=D n�1=2Op�q(logn)(5�+2)=(4�+2)n��=(4�+2)�=D op(n�1=2):The onditions on rn imposed in the theorem are learly ful�lled sinenrn = n(3�+2)=(4�+2)(logn)�=(4�+2) !1log(r�1n )= log logn = �(logn)�=(4�+2) � (log logn)�=(4�+2)�= log logn!1log(r�1n )=(nrn) = (1� o(1))n�(3�+2)=(4�+2) ! 0:



60 3 Maximum likelihood estimationTogether with Lemma 3.7.1 and Theorems 3.4.1 and 3.3.1 we have:supx2[A+rn;B�rn℄ j( bFn � Fn)(x)j� supi=2;:::;M supx2(si�1;si℄�j( bFn � F )(x) + (F � Fn)(x)� ( bFn � F )(si�1)�(F � Fn)(si�1)j+ j( bFn � Fn)(si�1)j�� supi=2;:::;M supx2(si�1;si℄�j Z xsi�1( bfn � f)(t) dtj+ j(F � Fn)(x)�(F � Fn)(si�1)j�+ n�1� Op(rn) supi=2;:::;M� supx2(si�1;si℄ j( bfn � f)(x)j� + !(F � Fn ; rn) + n�1= Op��3�=(4�+2)n � + op(n�1=2) + n�1 (3.34)= op(n�1=2): 2Note that for � = 1 the exponent of the �rst term in (3.34) equals 1/2, so it isthe logarithmi term in the nominator together with the assumption in Theorem3.4.1 that prevents the expression to be of probabilisti order smaller than n�1=2.However, Corollary 3.3.2 gives at least uniform onsisteny also for � = 1.Integrated kernel estimatorProof of Theorem 3.5.4: Write for xo 2 RbFn;h(xo) = � bFh(xo)� IE bFh(X1)� + �IE bFh(X1)� F (xo)� + F (xo):= T1(xo) + T2(xo) + F (xo):



3.7 Proofs 61Introdue a random variable Z independent of X1; : : : ; Xn and having density fun-tion k. Then:T1(xo) = 1n nXi=1 hK�xo �Xih �� IEK�xo �X1h �i= 1n nXi=1 hP�Z � xo �Xih jX1; : : : ; Xn�� P�Z � xo �X1h �i= 1n nXi=1�P (Xi � xo � hZjX1; : : : ; Xn)� P (X1 � xo � hZ)�= 1n nXi=1 Z �P (Xi � xo � hzjX1; : : : ; Xn)� P (X1 � xo � hz)�k(z) dz= 1n nXi=1 hZ �1fXi�xo�hzg � F (xo � hz)�k(z) dzi= Z �Fn(xo � hz)� F (xo � hz)�k(z) dz= Op(n�1=2)by Theorem A.3.1. On the other hand for T2(xo) one has:T2(xo) = Z K�xo � yh �f(y) dy� F (xo)= ZR�Z (xo�y)=h�1 k(t) dt�f(y) dy � F (xo)= ZR�ZR 1fy�xo�htgk(t) dt�f(y) dy � F (xo)= ZR k(t)�Z xo�ht�1 f(y) dy�dt� F (xo)= ZR k(t)�F (xo � ht)� F (xo)� dt= h2 ZR k(t)h(t2=2)�f 0(xo) + o(1)�idt= O(h2f 0(xo)):



62 3 Maximum likelihood estimationIt is important to note that this rate annot be improved in the sense that the fatorh2 always appears. As a summary, hoosing a bandwidth of optimal order O(n�1=5):bFn;h(xo) = F (xo) +Op(n�1=2) +O(h2f 0(xo))= F (xo) +Op(n�1=2) +O(n�2=5)= F (xo) +O(n�2=5)as stated in the theorem. 2Proof of Theorem 3.6.1. The Theorem is in fat a orollary of Theorems 3.3.1and 3.5.1 ombined with Lemma 2.3.1. 2



Chapter 4Algorithms to find the density estimator
In this hapter, we desribe several algorithms performing well in �nding the log-onave density estimator bfn of the true density f analyzed in Chapter 3. Someomparisons between the algorithms are reported.4.1 IntrodutionSuppose we want to estimate b'n introdued in Chapter 3 based on ordered observa-tions X1 < X2 < : : : < Xn. We show that this an be ahieved through numerialminimization of the log-likelihood funtional (3.2) over all onave funtions ', wherewe use that, aording to Theorem 3.2.1, we only have to onsider funtions ' thatare pieewise linear and have knots at some of the observation points.The above task is typial for many estimation problems in statistis as it demandsfor the optimization of a (high-dimensional) objetive funtion, the log-likelihood inour ase. We show that, within a linearly onstrained optimization framework, b'nand therewith the density estimator bfn an be found.In Walther (2002), maximum likelihood log-onave density estimation is desribedfor the �rst time, in a multisale ontext. He proposes the iterative onvex minorantalgorithm (ICMA) introdued by Groeneboom and Wellner (1992) to solve the max-imization problem and onsiders it to perform better than interior point methods,in terms of speed and stability. We show that the interior point methods used foronvex density estimation in Terlaky and Vial (1998) work in log-onave densityestimation as well and give some simulation results omparing them to the ICMAand a new algorithm, reently proposed in D�umbgen, Freitag, and Jongbloed (2006).



64 4 Algorithms to find the density estimator4.2 Framework of numerial log-onavedensity estimationWe use the notation introdued in Chapter 3. We will estimate bfn via its logarithmb'n, i.e. we show how to �nd b'n := argmin' onave 	n('):Aording to Theorem 3.2.1 it is suÆient to know b'n only at the observation pointsX := (X1; : : : ; Xn), even only at the points belonging to S(b'n), the set of knots ofb'n. However, we have a priori no idea where the estimator b'n hanges its slope. Sodenoting '(Xi) by 'i and identifying the funtion ' with the vetor' := ('i)ni=1;we reparametrize ' by the suessive slopes� = �(') := �'1;��'i�Xi�ni=2�where �Xi := Xi �Xi�1 for a vetor X 2 Rn and i = 2; : : : ; n. Note that � is justan aÆne transformation of ', therefore not a�eting the existene, uniqueness orloation of the minimum of 	n. In order to ensure onavity of ', the orrespondingvetor � 2 Rn must belong to the oneK\ := f� 2 Rn : �i�1 � �i; i = 3; : : : ; ngwhere K\ is de�ned by n�2 inequalities. In other words, (�i)ni=2 must be a dereasingsequene. The pieewise linearity now enables us to write the Lagrange term in (3.2)as n Z exp'(x) dx = n nXi=2 Z XiXi�1 exp��'i�Xi (x�Xi�1) + 'i�1� dx= ne�1 nXi=2 exp� i�1Xk=2 �Xk�k�exp(�Xi�i)� 1�i (4.1)where (exp(0)� 1)=0 is taken onventionally to be equal to one and Pjk=i qk = 0 ifj < i. Note that (4.1) is now a sum rather than an integral, both depending on '.



4.2 Framework of numerial log-onave density estimation 65The with � reparametrized log-likelihood funtion 	n de�ned in (3.2) now detailsto:	n(�) = �n nXi=1 '(Xi) + n Z exp'(x) dx= �n�n�1 + nXi=2 iXk=2 �Xk�k� + ne�1 nXi=2 exp� i�1Xk=2 �Xk�k�exp(�Xi�i)� 1�iand the estimator we seek is thenb� := argmin�2K\ 	n(�):In the ase of onvex density estimation as desribed in Terlaky and Vial (1998),the onstraint of f being a probability density an be formulated as a simple linearequation, whereas in our ase this results in the more ompliated expression in(4.1).Motivated by taking suessive di�erenes of the onditions in the de�nition of K\,we introdue the m� n matrix B with m = n� 2 as
B = 0BBBBBBB� 0 �1 1 0 0 � � � 0 00 0 �1 1 0 � � � 0 0... ...0 0 0 0 0 � � � �1 1

1CCCCCCCAand plugging in (4.1) into (3.2), the following optimization problem results:minimize 	n(�)over � 2 Rn s.t. B� � 0 (4.2)where � 2 Rn is the variable in whih the minimization is done and x � y for twovetors x;y 2 Rn means that xi � yi for all i = 1; : : : ; n. From Theorem A.4.1reapitulate the neessary and suÆient Karush-Kuhn-Tuker (KKT) onditions for



66 4 Algorithms to find the density estimatorb� to be a solution of (4.2):r�	n +B>v = 0 (4.3)Bb� + s = 0 (4.4)visi = 0 for all i = 1; : : : ; m (4.5)v � 0 (4.6)s � 0: (4.7)The vetor v 2 Rm ontains Lagrange-multipliers whereas s 2 Rm onsists of slakvariables. Furthermore, r�	n := ���	n(�)is the gradient of 	n = 	n(�) w.r.t. �. Let us introdue the feasible set F and thestritly feasible set FÆ:F := f(�; s; v) 2 Rn+2m : r�	n +B>v = 0; B� + s = 0; v � 0; s � 0gFÆ := f(�; s; v) 2 Rn+2m : r�	n +B>v = 0; B� + s = 0; v > 0; s > 0g:Note that Bb� + s = 0 for s 2 [0;1)m implies that Bb� � 0. Thus if vi > 0 fora �xed i 2 f1; : : : ; mg then si = 0 and vie versa, by (4.5). This is known as the\omplementary ondition".4.3 A primal log-barrier algorithmThe key idea of log-barrier algorithms is to introdue a barrier funtion h thatpenalizes the inequality onstraints with1 whenever the onstraints should not besatis�ed. A funtion h : R 7! (�1;1℄ is a barrier funtion for the type of problemsas in (4.2), if h is onvex, ontinuous and nondereasing and one has that h(r) =1for all r � 0. The standard hoie (induing the name \log-barrier") for h ish(r) := � log(�r);proposed by Fiao and MCormik (1968). Introduing a tradeo� parameter � > 0,we thus obtain from (4.2) a barrier problem of the form:min�2Rn�(�; �) (4.8)



4.3 A primal log-barrier algorithm 67where �(�; �) := 	n(�) + � mXi=1 h�(B�)i�= 	n(�)� � n�2Xi=1 log��(B�)i�:Similar to the inlusion of the equality onstraint in (3.2), we add a Lagrange termto the riterion funtion to aount for the inequality onstraint B� � 0. Clearlythe minimum of 	n belongs to FÆ and we an treat problem (4.2) atually as anunonstrained one. The proof of Theorem 3.2.1 together with the onvexity of hentails that the funtion �(�; �) is stritly onvex in � for all � > 0. Let b�(�)denote the unique optimal point of problem (4.8) for a �xed � > 0. Colletingall these points yields a set Cp := fb�(�) : � > 0g, alled the \entral path" ofproblem (4.8). The interior point log-barrier method roughly spoken follows thisentral path to reah an optimal solution. To aomplish this for a �xed �, it takesrepeatedly damped Newton steps in order to minimize the barrier funtion in (4.8),where a Newton step is as usual the minimizer of the loal quadrati approximationof the objetive funtion in (4.8). If for the spei� � the minimum is reahed, �is dereased in a ontrolled way. This proedure is repeated until a onvergeneriterion is met. Finally, the log-barrier algorithm almost boils down to an ordinaryappliation of the Newton proedure to the funtion � = �(�; �), the only speialitybeing the handling of �. The Newton step, denoted by p = p(�; �), is given byp = �H�1r�� (4.9)where H = H(�; �) is the Hessian matrix r2��� of the Lagrange-funtion in (4.8).To be able to measure the distane of the urrent iterate to the entral path (andso to judge the appropriateness of a andidate), we follow the approah by Terlaky(1996), introduing the norm indued by H:kpkH := qp>Hp:The rationale behind introduing k:kH is the following: ideally, we would like tomeasure the usual Eulidean di�erene between �(�) and the orresponding pointon the entral path b�(�), but we do not know b�(�). Straightforward alulationreveals, that kpk2H = (r��)>H�1(r��):



68 4 Algorithms to find the density estimatorThis implies that if b� is a minimizer of � (for a �xed �) then kpkH = 0 andkpkH > 0 otherwise. So it makes sense to minimize � for a �xed � as long as kpkHstays above a �xed onstant (whih signi�es the urrent distane to the entral path).After kpkH falling below this limit, � is dereased and the proedure of minimizingp in H-norm restarts. That this strategy is indeed suessful guarantees TheoremA.4.2.Putting all these ingredients together, a entral path-following log-barrier algorithman be desribed as follows:input:" 2 R+ : auray parameter� 2 (0; 1) : proximity parameter� 2 (0; 1) : redution parameter�o 2 R+ : initial barrier value�o : feasible point suh that kp(�o; �o)kH � � and 	n(�o) <1T1; T2 : maximal number of iterations for outer and inner loopbegin: � := �o; I1 := 0; I2 := 0;� := �owhile � > "=(4n) and I1 � T1 do (outer loop)� := (1� �)�I1 := I1 + 1I2 := 0while kpkH � � and I2 � T2 do (inner loop)p := solution of (4.9)~� := argmin0<���of�(� + �p; �) : � + �p 2 FÆg� := � + ~�pI2 := I2 + 1end (inner loop)end (outer loop)end.The start vetor �o in the Newton proedure has to be in F , i.e. the orrespondingfuntion 'o must be onave. We used a quadrati interpolation to the logarithmof a kernel density estimate of the data as a �rst guess for our algorithm. Otherapproahes, suh as a simple �t of a parametri log-onave density (e.g. Normal,Gamma) are also oneivable and work as well.



4.4 A primal-dual algorithm 69As an approximation to the Hessian of � in (4.9) we used its diagonal. It is wellknown (see Terlaky, 1996), that this redued Hessian to be inverted in equation (4.9)beomes ill-onditioned as � approahes 0. We did not enounter problems in thatdiretion.The upper bound �o in the omputation of ~� is alulated as�o := 0:99 mini2f2;:::;ng j��i=�pij;so slightly below the limit beyond that a new andidate falls o� FÆ. The step length~� of the Newton step p is found via a searh on a set of equidistant points.4.4 A primal-dual algorithmReapitulating the KKT onditions (4.3)-(4.7), one an derive another lass of al-gorithms known as \primal-dual interior point methods". Introdue the mappingF : Rn+2m 7! Rn+2m as:F 0BBB� �sv 1CCCA := 0BBB� r�	n +B>vB� + sdiag(v)s 1CCCAwhere diag(x) is a diagonal matrix having the vetor x on the diagonal. Tosee how a primal-dual algorithm works, introdue further the following system of(in-)equalities, for a �xed � > 0 and a vetor z� := (��; s�; v�):r�	n +B>v� = 0B�� + s� = 0v�i s�i = � for all i = 1; : : : ; m (4.10)v� > 0s� > 0:These onditions di�er from the original KKT onditions (4.3)-(4.7) in the term �on the right hand side of (4.10) and the requirement that z� be stritly feasible.



70 4 Algorithms to find the density estimatorThe entral path in this ase is de�ned asCpd := fz� : � > 0g:An iterate in the primal-dual algorithm solves, for a �xed �, the equationF 0BBB� ��s�v� 1CCCA = 0BBB� 00�e 1CCCA ; (4.11)where e is a vetor of all 1's in appropriate dimension. One an onjeture that, as�! 0, the orresponding vetors z� approah z� where z� is the vetor that meetsthe KKT onditions F (z�) = 0:That this strategy, implemented in the algorithm below, is indeed suessful, guar-antees Theorem 3.2 in Wright (1998). Note that (4.10) implies that z� approahesthe boundary of the feasible set F , without atually ever leaving FÆ.Looking at (4.11), we are now in the position to apply, for every �xed �, an ordinaryNewton proedure to F . For ease of simpliity, we will omit the dependene of z on�. To get the Newton diretion dz = ( d�; ds; dv), the equation we atually solveis: �F�z 0BBB� d�dsdv 1CCCA + F (z) = 0BBB� 00�e 1CCCA :Computed expliitly, using the de�nition of F , this transforms to:0BBB� r��	n 0 B>B I 00 V S 1CCCA0BBB� d�dsdv 1CCCA = �0BBB� r�	n +B>vB� + sVs� �e 1CCCA (4.12)where we introdued the abbreviationsV := diag(v), S := diag(s) and I := diag(e).The Hesse matrix of 	n w.r.t. to � is denoted by r��	n. Formula (4.12) yields the



4.4 A primal-dual algorithm 71following equations:r��	n d� +B> dv = �r	n �B>vB d� + ds = �B� � sV ds+ S dv = Vs� �e:From these equations we �nally get a losed system of formulas to alulate dziteratively:d� = �(r��	n +B>VS�1B)�1[B>(VS�1B� + v � S�1�e)�r�	n℄ds = �B� � s�Bd�dv = �S�1(Vs� �e)�VS�1 ds:The only matrix for whih inversion is not trivial is (r��	n+B>VS�1B), but thismatrix is symmetri and positive de�nite, by onvexity of 	n and omplementarity.This guarantees invertibility at every step. The detailed algorithmi proedure is asfollows.input:" 2 R+ : auray parameter�� 2 R+ : lower bound for � 2 R+ : determines redution of Newton step length via ��o : start vetor, as in Setion 4.3T1 : maximal number of Newton stepsbegin: �� := 10�5=(m+ n);  := (1� �)�1; I1 := 0; I2 := 0while � � " and I1 � I2 � T1 doI1 := I1 + 1� := max��(m; s; v; �); ���Compute dz as given in (4.13)~� := maxf� > 0 : z + � dz 2 Fgz := z + ~� dzendend.



72 4 Algorithms to find the density estimatorThe funtion � alulates a new target value for � in every iteration in the followingway (aording to Terlaky and Vial, 1998):input:m; s; v; �begin:E =: mmini=1;:::;mfvisig=(v>s)� =: �kr�	n +B>vk2 + kB� + sk2�1=2if: E � � then:S =: �=(v>s + �)else: S =: 1� =: S (v>s=m)end.The lower bound �� for � is introdued to prevent � from getting too small, i.e. toavoid that the urrent iterate is too lose to the boundary of F . If S = 1 then thenew � is simply the average of all pairwise produts visi. Otherwise, almost all theseproduts are approximately equal (resp. the minimum is a substantial proportion ofthe average), implying that none of the onstraints are already \ative", therefore� an be dereased more rapidly.Finally, note that if (��; s�; v�) is a solution of (4.3)-(4.7) for the urrent �, then��>r�	n = ��>�r�	n +B>v�� + v�>(�B��)= v�>s�;so that with the de�nition of � we sort of measure how far we still are from the min-imum. The number � is generally known as \duality gap". Finally, the parameter := (1� �)�1 guarantees that ~� is suh that z + ~� dz 2 FÆ.



4.5 The modified iterative onvex minorant algorithm 734.5 The modified iterative onvex minorantalgorithmThe ICMA was �rst presented in Groeneboom and Wellner (1992) and further de-tailed in Jongbloed (1998). It is espeially tailored for minimizing a smooth onvexfuntion like 	n over a onvex one suh as our well-known K\. It simply minimizesthe quadrati approximation to the funtional under onsideration (as an ordinaryNewton proedure) with respet to a monotoniity onstraint by using the pool ad-jaent violaters algorithm (PAVA, see e.g. Robertson, Wright, and Dykstra, 1988).To ensure onvergene of the algorithm, one again needs to shorten the anonialNewton-diretion, see Jongbloed (1998, Lemma 1). Additionally, we make use of themore general algorithmi framework provided by D�umbgen, Freitag, and Jongbloed(2006) that generalizes ICMA-like algorithms via supplementing the line searh bya Hermite interpolation.Reapitulate that 	n is stritly onvex and ontinuously di�erentiable onf	n < 1g. Suppose W(x) is a positive de�nite diagonal matrix, depending on-tinuously on x where x 2 K\. Introdue an algorithmi mapping B : K ! K whereK := f	n <1g\ K\. Our goal is again to findb� := argmin�2K\ 	n(�);a unique point by the strit onvexity of 	n. Now approximate 	n loally aroundÆo by the quadrati funtion ~	n:~	n(Æ) = ~	n(ÆjÆo):= 	n(Æo) +rÆ	n(Æo)>(Æ � Æo) + 2�1(Æ � Æo)>W(Æo)(Æ � Æo) (4.13)where rÆh(Æo) denotes the gradient with respet to Æ at Æo for a funtionh : Rn ! R. This map provides a first guess B1 for B:B1 := B1(Æo) := argminÆ2K\ ~	n(Æ): (4.14)If B1 = Æo we are done and set B(Æo) = Æo. Note that this only happens if alreadyÆo = b�. Otherwise, apply the following robustifiating line searh proedure. Definethe funtion H as H(t) := H(t; Æo;B1):= 	n�Æo + t(B1 � Æo)�� 	n(Æo):



74 4 Algorithms to find the density estimatorfor t 2 [0; t1℄ where t1 := t1(Æo;B1) = 2�m with m the smallest positive integer suhthat H(2�m) � 0. Finally, introdue a Hermite interpolation ~H of H:~H(t) = ~H(tjt1; Æo;B1):= H 0(0)t+ �t�21 H(t1)� t�11 H 0(0)�t2:This interpolation is onstruted suh that ~H(0) = H(0) = 0, ~H 0(0) = H 0(0) > 0,~H(t1) = H(t1) � 0 and it attains its maximum over [0; t1℄ att2 = t2(t1; Æo;B1) := argmax[0;t1℄ ~H(t)= minn t21H 0(0)2(H 0(0)t1 �H(t1)) ; t1o= minn�2� 2 H(t1)H 0(0)t1��1; 1ot1:By defining B(Æo) := Æo + t2(B1 � Æo)= (1� t2)Æo + t2B1 (4.15)we get a new andidate. This proedure is justi�ed by Theorem A.6.1. The assump-tions in this theorem an easily be veri�ed for 	n and B. Below we give pseudo-odefor the ICMA.



4.5 The modified iterative onvex minorant algorithm 75input:" 2 R+ : auray parameterÆo : start vetor suh that Æo 2 K\ and 	n(Æo) <1T1; T2 : maximal number of respetive iterationsbegin: I1 := 0; I2 := 0; Æ := Æo;D = 2n"while jDj > n" and I1 � T1 doI1 := I1 + 1p := solution of (4.14)Æ� := Æ + pD := 	n(Æ)>pI2 := 0while 	n(Æ�) > 	n(Æ) and I2 � T2 do (Robustifiation)Æ� := (Æ + Æ�)=2D := D=2I2 := I2 + 1endt� := h2� 2�	n(Æ�)�	n(Æ)�=Di�1if t� < 1 then (Hermite interpolation)Æ := (1� t�)Æ� + t�Æelse Æ := Æ�endThe ruial point in the above algorithm is the minimization in (4.14), beause ofthe onstraint Æ 2 K\. We used the weighted PAVA (wPAVA) to aomplish thistask. For details on the wPAVA onsult Setion A.5. To see how the wPAVA anbe used to solve (4.14), reapitulate that the matrix W(Æo) is diagonal, i.e.W(Æo) := diag(w)for a vetor w 2 Rn . For ease of simple notation, introdue the abbreviationg := rÆ	n(Æo).



76 4 Algorithms to find the density estimatorInserting this in (4.13), the funtion ~	n an then be written as:~	n(Æ) = 	n(Æ) + nXi=1 gi(Æi � Æ0;i) + 12 nXi=1 wi(Æi � Æ0;i)2= 	n(Æ) + 12 nXi=1 wi�[(Æi � Æ0;i) + gi=wi℄2 � (gi=wi)2�= 	n(Æ)� 12 nXi=1 (gi=wi)2 + 12 nXi=1 wi�Æi � (Æ0;i � gi=wi)�2:Thus, minimization of ~	n over Æ 2 K\ is equivalent to the problemminÆ2�:::�Æn nXi=1 wi�Æi � (Æ0;i � gi=wi)�2: (4.16)Setting Æ1 := Æ0;1 � g1=w1, the weighted wPAVA is exatly what the dotor orderedto solve (4.16). For the matrix W, we used an approximation to the ompleteHessian, namely its diagonal. Robusti�ation is neessary to guarantee onditionsB1 and B2 of Theorem A.6.1. D�umbgen, Jongbloed and Freitag (2003) mentionthat numerial experiments suggested that inlusion of the Hermite interpolationimproves the speed of onvergene of the algorithm.4.6 A problem-adapted algorithmThe algorithms presented so far are developed to solve general minimization prob-lems under linear onstraints, without taking into aount very muh the haraterof the problem.A main property of all nonparametri density estimators under shape onstraints(monotone, onvex, log-onave) treated so far in literature is some sort of pieewiselinearity with only a few knots, be at observation points or in between. See Setion3.4 and the omments there.D�umbgen, Freitag, and Jongbloed (2006) proposed a Newton-type algorithm espe-ially tailored for this situation. To avoid expensive inversion of huge matries, an\orale" guesses (at every iteration), where the knots of b'n most likely are situ-ated and inversion only has to be performed on a subspae of Rn with the numberof guessed knots as dimension. This new proedure was inspired by the supportredution algorithm, developed to minimize onave funtions over onvex ones,introdued by Groeneboom, Jongbloed, and Wellner (2003).



4.6 A problem-adapted algorithm 77For our problem to �t in this new algorithmi framework, a reparametrization isneessary. Instead of a funtional 	n : Rn ! [�1;1), we need a new funtional	n : � ! [�1;1) where � = [0;1)n. To aomplish this, introdue a vetor �,onsisting mainly of the suessive slope di�erenes of the funtion under onsider-ation: �(') := �'1; �2;�(��i)ni=3�:This � apparently omes up to the desired property of lying in � when looking atits entries 3; : : : ; n. The �rst two omponents are just \free riders" whih do nota�et any alulations done for the algorithm. The aforementioned orale for theurrent iterate � is thenI(�) := f1; 2g [ fj = 3; : : : ; n : �j � "(�)g;where "(�) > 0 will be given later. To avoid umbersome notation, de�ne vetorsa := r�	n(�);b := diag(B(�))where B(�) = r��	n(�) and a = diag(A) is the vetor onsisting of the diagonalelements of a matrix A. Given B = B(�) and I = I(�), we introdue sub-matriesB(1) and B(2): B(1) := (Bij)i;j2IB(2) := diag�(Bii)i62I�:Analogously de�ne for any y 2 Rn sub-vetors y(1) := (yi)i2I and y(2) := (yi)i62I.The quadrati approximation to our funtional 	n we seek to minimize overf�� : ��j � 0 for j 62 I(�)gfor a given � is then, similarly to (4.13),Q(��j�) = Xk=1;2�aT(k)(��(k) � �(k)) + 2�1(��(k) � �(k))>B(k)(��(k) � �(k))�:The argmin of this funtion an expliitly be omputed asp(�; I)(1) = B�1(1)a(1)p(�; I)(2) = �(�i + ai=bi)+ �i62I � �(2):



78 4 Algorithms to find the density estimatorTo prevent the point �� = � + p(�; I) lying outside the one �, replae it by� + t(�; I)p(�; I); (4.17)where t := t(�; I) 2 (0; 1℄ is hosen as large as possible to ensure that � + tp 2 �.Supplemented by the line searh proedure already desribed in Setion 4.5, thisalgorithm indeed onverges to b� := �(b').We still owe the de�nition of the bound "(�), above whih a �i is onsidered apotential andidate for being a knot of b'n: similar to the latter paper, we used2�1 maxi=3;:::;n����(�i + ai=bi)+ � �i�ni=3���:A shemati algorithm looks exatly like that of the ICMA, exept that the Newtonstep is alulated aording to (4.17) instead of (4.14).An apparent di�erene between the latter three and this new algorithm is the ne-essity of omputation of not only the diagonal but the elements of the Hessian forall elements Bij with i; j 2 I. However, the performane of the algorithm seems todepend on the ability to orretly hoose the elements in Bij with i; j 2 I.4.7 Numerial examplesTo test the algorithms, we implemented them in R, Version 2.1.1 and sampledrandom numbers zk for k = 1; : : : ; n for n 2 f50; 100; 500; 1000g drawn from thethree distribution laws in Table 4.1.Table 4.1: Distribution laws we sampled from.Law Density funtion Range ParametersN (0; 1) (2�)�1=2 exp (�z2=2) R�(2; 1) z exp z [0;1)Generalized Laplae(b)a K(b)(exp(�jzj)1fjzj�1g + exp(1=b)1fjzj<1g) R b > 0a Normalizing onstant for the Generalized Laplae law is K(b) = (2(b+ 1) exp(�1=b))�1The Normal law is hosen due to its universality and infinite support and the ��lawbeause it has an infinite derivative of the log-density at 0. We introdue what weall generalized Laplae law to show that the algorithms also work for a genuinelog-linear density and to assess the e�et of non-di�erentiability points. To be ableto ompare the performane of the algorithms, we proeeded as follows.



4.7 Numerial examples 791. Run the log-barrier algorithm with the settings speified below and measureits running time t1i using the first argument of the R-funtion system.time()(user CPU time in seonds).2. Run the other three algorithms until either the value of the log-likelihoodor the time spent for the log-barrier algorithm was reahed and measure therespetive times t2i ; t3i ; t4i .3. Repeat this for i = 1; : : : ; 10 times and report tjmin := mini=1;:::;10 tji ,�tj := (P10k=1 tjk)=10 and tjmax := maxi=1;:::;10 tji for j = 1; : : : ; 4. As other mea-sures of the quality of the estimators beneath the value of the log-likelihoodwe alulated for j = 1; : : : ; 4 the following mean errors (ME):MEj1 := (1=10) 10Xi=1 maxk=1;:::;n j bf ji (zk)� f(zk)jand MEj1 := (1=10) 10Xi=1 nXk=1(zk � zk�1)j bf ji (zi)� f(zi)j:Simulations were run on a Dell desktop with 1.8 GHz and 512 MB RAM.We imposedthe settings detailed in Table 4.2.Table 4.2: Settings for the ICMA and log-barrier algorithm.Algorithm " � � � T1 T2log-barrier 10�10 0:9 0:1 0:1 8 25primal-dual 10�10 200 20problem-adapted 10�10 200ICMA 10�10 200 20Simulation results for the three distributional laws in Table 4.1 were very similar,�nd details in Tables 4.3 to 4.5.The ICMA learly performs best over all sample sizes and distributional laws. Allmethods are able to �nd the minimum of the negative maximum likelihood in prin-ipal, i.e. if given enough time. In all simulations, the ICMA was the sole algorithm



80 4 Algorithms to find the density estimatorTable 4.3: Results for the N (0; 1) law.n Algorithm tjmin �tj tjmax �LLj MEj1 MEj1ICMA 0.98 1.26 1.63 114.18 0.12 1:88 � 10�1log-barrier 0.97 1.34 2.51 114.22 0.12 1:88 � 10�1interior-point 0.98 1.27 1.62 114.39 0.12 1:91 � 10�150 prob-adap 1.00 1.29 1.64 114.78 0.11 1:75 � 10�1ICMA 1.88 3.20 4.74 232.43 0.09 1:39 � 10�1log-barrier 3.58 4.01 4.67 232.48 0.09 1:38 � 10�1interior-point 3.67 4.06 4.70 232.78 0.09 1:41 � 10�1100 prob-adap 3.67 4.09 4.75 233.29 0.07 1:28 � 10�1ICMA 19.55 43.70 62.10 1192.48 0.05 6:78 � 10�2log-barrier 194.69 197.90 203.03 1192.62 0.05 6:78 � 10�2interior-point 196.26 199.30 204.39 1193.22 0.05 8:47 � 10�2500 prob-adap 195.50 199.53 204.83 1193.37 0.04 6:27 � 10�2ICMA 48.59 130.10 226.17 2358.29 0.04 5:17 � 10�2log-barrier 1022.08 1047.21 1070.09 2358.49 0.04 5:21 � 10�2interior-point 1027.03 1066.98 1088.09 2359.24 0.04 5:34 � 10�21000 prob-adap 968.76 996.44 1015.42 2358.97 0.03 5:08 � 10�2to reah the log-likelihood value of the log-barrier algorithm (by far), whereas theother two were interrupted when reahing the time limit set by the log-barrier algo-rithm (note that reahing the time limit does not imply onsuming exatly the sameamount of seonds, beause time was only ompared at the beginning of a wholeiteration). Quality of the estimates measured by �LLj, MEj1 and MEj1 was similarfor all algorithms. As reveals Figure 4.1, the performane of the problem adaptedalgorithm was inferior to the others. We attribute this mainly to the struture ofthe Hessian, whih in our ase (in the ontrary to that in D�umbgen, Freitag, andJongbloed, 2006) is not as sparse as neessary for this algorithm to perform well. Weseem to have many non-negligible o�-diagonal entries of the Hessian. Furthermore,this algorithm operates on a di�erent parametrization, eventually ausing higheromputational resoure onsumption.Figure 4.1 shows typial shapes of log-likelihood urves for a single run for n = 1000resulting from the estimation of a ��density.After all, Figures 4.2, 4.3, and 4.4 display the estimated densities bfn and the log-densities b'n for all three distribution laws for a sample size of 500 where the parame-ter for the generalized Laplae law was hosen to be b = 1 (for all plots: estimatorsare drawn in solid and funtions to be estimated in dashed lines). Note the pieewise



4.7 Numerial examples 81Table 4.4: Results for the �(2; 1) law.n Algorithm tjmin �tj tjmax �LLj MEj1 MEj1ICMA 0.61 1.12 1.48 121.68 0.16 1:490 � 10�1log-barrier 1.02 1.19 1.47 121.76 0.17 1:49 � 10�1interior-point 1.01 1.21 1.45 121.82 0.16 1:45 � 10�150 prob-adap 1.00 1.20 1.49 122.31 0.18 1:39 � 10�1ICMA 0.68 1.92 3.75 251.08 0.14 1:42 � 10�1log-barrier 3.64 3.95 4.24 251.17 0.14 1:43 � 10�1interior-point 3.70 4.00 4.29 251.34 0.15 1:53 � 10�1100 prob-adap 3.72 40.00 4.27 252.20 0.21 1:62 � 10�1ICMA 15.16 34.37 49.03 1277.59 0.20 9:73 � 10�2log-barrier 190.67 198.70 206.81 1277.77 0.20 9:76 � 10�2interior-point 192.78 200.16 205.32 1278.54 0.21 1:07 � 10�1500 prob-adap 192.37 200.09 204.95 1279.33 0.22 1:20 � 10�1ICMA 34.97 66.73 132.16 2538.06 0.23 9:54 � 10�2log-barrier 1025.13 1042.66 1059.86 2538.09 0.23 9:63 � 10�2interior-point 1022.61 1060.10 1110.74 2539.59 0.24 9:98 � 10�21000 prob-adap 982.10 997.42 1015.47 2539.12 0.24 1:20 � 10�1linearity of b'n.In light of Theorem 3.5.1 hardly any di�erene is visible on a plot displaying Fn andbFn. We therefore onentrate on the di�erenes Fn � F and bFn � F in Figure 4.6,reapitulate also Figure 3.1.For all the algorithms, we did not enounter major problems up to sample sizes of500 points. But for larger datasets and espeially in ase of the generalized laplaelaw for small b, observation points may get very lose (< 10�3) to eah other, ausingnumerial instabilities in the inversion of matries. In this ase, it is advisable toadopt the lustering sheme desribed in Terlaky and Vial (1998). Replae thelog-likelihood funtion 	n and the original data X := (X1; : : : ; Xn) by�n Z w(X 0)'(X 0) dFn(X 0)andX 0 := (X 01; : : : ; X 0n), where the latter vetor is onstruted starting at X1. If thedistane to X2 is smaller than some (small) resolution number Æ > 0, then replaeX1 and X2 by their mean X 01 and define w1 = 2. Continue this proedure up to nand so get X 0 and w of length n0 � n. This lustering is only a minor hange inthe optimization problem, but a powerful remedy against poor ondition numbersin the linear systems that have to be solved to find the Newton diretions.
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Table 4.5: Results for the Generalized Laplae(b) law.n Algorithm tjmin �tj tjmax �LLj MEj1 MEj1ICMA 0.35 1.02 1.42 140.69 0.08 2:17 � 10�1log-barrier 1.09 1.26 1.47 140.70 0.08 2:17 � 10�1interior-point 1.10 1.28 1.48 140.83 0.07 2:18 � 10�150 prob-adap 1.14 1.29 1.50 141.80 0.07 2:43 � 10�1ICMA 1.53 2.69 4.50 282.74 0.07 1:54 � 10�1log-barrier 3.72 4.18 5.00 282.77 0.07 1:54 � 10�1interior-point 3.81 4.23 5.05 283.18 0.07 1:59 � 10�1100 prob-adap 3.86 4.26 5.1 284.72 0.060 1:82 � 10�1ICMA 21.71 33.70 45.41 1423.59 0.05 1:93 � 10�1log-barrier 190.91 196.36 199.97 1423.16 0.05 1:94 � 10�1interior-point 193.43 198.38 202.36 1424.55 0.05 2:02 � 10�1500 prob-adap 192.87 198.75 202.40 1426.07 0.05 2:15 � 10�1ICMA 19.47 67.19 139.63 2838.38 0.06 3:34 � 10�1log-barrier 1054.81 1064.25 1085.00 2836.28 0.06 3:35 � 10�1interior-point 1061.19 1081.19 1105.21 2838.81 0.06 3:43 � 10�11000 prob-adap 1000.80 1010.40 1024.22 2839.74 0.06 3:51 � 10�1
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Figure 4.1: Log-likelihood funtions for a run for n = 10000.
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Figure 4.2: True and estimated Normal density and log-density.
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Figure 4.3: True and estimated ��density and log-density.
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4.7 Numerial examples 85

random sample Normal

h
a
za

rd
 f
u
n
ct

io
n

-4 -2 0 2 4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

random sample Gamma

h
a
za

rd
 f
u
n
ct

io
n

0 2 4 6 8

0
.0

0
.5

1
.0

1
.5

2
.0

Figure 4.5: Hazard funtions for Normal and Gamma sample.
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Chapter 5Bump hunting
The seond part of this thesis proposes a method to detet regions, based on ani.i.d. sample drawn from a density f , where this density is either log-onave orlog-onvex. This implies lower bounds for the number of bumps and dips.5.1 Exponential familiesLet X be a random variable with distribution P� on some measurable spae (X ;A)indexed by a parameter � ranging over an open subset � of Rp . Let p� be adensity of P� with respet to some dominating measure M . In what follows, we willhoose Lebesgue measure for M . We additionally assume that p� is a p-dimensionalexponential family (p 2 N), i.e. it an be written asp�(x) = (�)h(x) exp��>t(x)�; x 2 Xwith a normalizing funtion  : �! R�1(�) = ZX h(x) exp��>t(x)� dxand funtions h : X ! R and t : X ! Rp . The \natural parameter spae" for suha family is de�ned as Y = f� 2 Rp : �1(�) <1g � �:De�ne the expetation for a funtion u : R ! R and the random variable X havingdensity funtion p� as IE� u(X) = ZX u(t)p�(t) dt: (5.1)



90 5 Bump huntingVarianes and ovarianes are written likewise. Expetations of vetors and matriesare to be understood omponentwise.Exponential families are very well studied, see e.g. Lehmann (1986, Setions 2.7and 10.3) or van der Vaart (1998, Setion 4.2). We summarize key properties ofexponential families in the following lemma.Lemma 5.1.1. The funtion�! ZX h(x) exp��>t(x)� dxis in�nitively often di�erentiable w.r.t. to � and these derivatives an be found byinterhanging integration and di�erentiation. Furthermore, for any u 2 Rp theLaplae transform is: IE� exp�u>t(X)� = (�)(� + u) :The last statement implies that IE exp[u>t(X)℄ exists if �+u 2 Y, meaning that �needs to be in the interior of Y. If that is the ase all moments of t(X) exist. Dueto Lemma 5.1.1 the funtion log p� is in�nitively often di�erentiable w.r.t. �. Forthese two reasons the following de�nitions are justi�ed for x 2 X :`�(x) := log p�(x) _̀�(x) = (�=��)`�(x) I(�) = IE�� _̀�(X) _̀�(X)T�,where _̀� is denoted the \sore funtion" and I the \Fisher information matrix" ofthe density funtion p�. Straightforward alulation using Lemma 5.1.1 reveals forthe sore funtion that _̀�(x) = t(x)� IE� t(X). Therewith the following onnetionbetween the statisti t and I an be established:I(�) = IE�� _̀�(X) _̀�(X)T�= IE��[t(X)� IE� t(X)℄[t(X)� IE� t(X)℄>�= Cov� t(X): (5.2)We say that the exponential family is of \full rank" if this latter matrix Cov� t(X)is non-singular. One an further derive the identityIE� �̀�(X) = �I(�) (5.3)



5.1 Exponential families 91where �̀�(x) = (�=��>) _̀�(x). Now suppose we observe a sampleX := (X1; : : : ; Xn)of i.i.d. observations where all omponents Xi; i = 1; : : : ; n have the same distribu-tion as X. The maximum likelihood estimator b�n of � based on a sampleX is thende�ned as b�n = argmax�2� bLn(�) (5.4)where bLn(�) := nXi=1 `�(Xi)is the log-likelihood funtion. Note that beause the matrix�2����> `�(x) = �Cov� t(X)is negative-de�nite, the funtion bLn is stritly onave. This implies that if theexponential family p� is of full rank and the true parameter �o is in the interiorof Y, then with probability tending to one as n ! 1 the maximum likelihoodestimator b�n de�ned by (5.4) exists, see e.g. Theorem 4.1 in van der Vaart (1998).Furthermore it exhibits the following asymptoti behavior:pn(b�n � �o) !D Np(0; I(�o)�1) (5.5)for n!1 for every �xed �o in the interior of Y.We intend to use a ertain exponential family as a loal parametri model in bumphunting. Therefore we need to generalize (5.5) to a triangular array of observations.Suppose we observe a sample Xn := (X1n; : : : ; Xnn) from P�n . It is assumed thatfor a �xed n the elements of Xn are independent and identially distributed havingthe density p�n with parameter �n 2 Y varying with n. The log-likelihood funtionis then generalized to bLn(�) := nXi=1 `�(Xin):Assume for the parameter �n that it onverges to �o omponentwise, at an arbitraryrate of onvergene, i.e. for all i = 1; : : : ; p�n;i � �0;i = o(1):One an then extend statement (5.5) in the following sense.



92 5 Bump huntingTheorem 5.1.2. Suppose that every element of Xn := (X1n; : : : ; Xnn) is i.i.d. hav-ing density funtion p�n. Let p�n be an exponential family with full rank for everyn. Then: pn(b�n � �n) !D Np(0; I(�o)�1) (5.6)for n!1.5.2 Testing of omposite hypothesesTo set up our multisale test we will use a spei� sore test statisti in a spei�two-parameter model. In this setion we introdue sore tests in exponential familiesin general and ompare its power properties to a likelihood ratio test (LRT). Wewill furthermore assess the e�et of nuisane parameters on the power of the abovetests.We adopt the setting of Setion 5.1. To keep notation simple, let us split the Fishermatrix I as follows: I(�) := � I11(�) I12(�)I21(�) I22(�) �where I11(�) = (Iij(�))i;j=1;:::;p�1;I12(�) = (I1;p(�); : : : ; Ip�1;p(�))>;I21(�) = I12(�)> = (I1;p(�); : : : ; Ip�1;p(�));I22(�) = Ip;p(�):The following de�nition of a spei� number will turn out be useful below:I22�1(�) = I22(�)� I21(�)I11(�)�1I12(�):Given a vetor x 2 Rp we write ~x for its �rst p� 1 omponents: ~x = (x1; : : : ; xp�1).Let ep := (0; : : : ; 0; 1) 2 Rp . For a �xed � 2 R introdue the following set:�� := f# 2 Y : #p = �g:Then suppose we have an i.i.d. sampleXn = (X1n; : : : ; Xnn) where eah omponentis distributed aording to P�n introdued in Setion 5.1. The row-wise \true"



5.2 Testing of omposite hypotheses 93parameter �n 2 Y shall be onverging to �o 2 �o omponentwise, at a rate ofonvergene not yet further spei�ed. Then onsider the following test problem:Ho : � 2 �o vs. H1 : � is unrestritedwhih is equivalent to Ho : �p = 0 vs. H1 : �p 6= 0:The test statisti we analyze �rst is the LRT statisti �n�n = 2 sup�2Y bLn(�)� 2 sup�2�o bLn(�):Beneath the maximum likelihood estimator b�n in the full model, introdue theestimator in the restrited model for an arbitrary �xed � 2 R:b��n = argmax�2�� bLn(�):The likelihood ratio test statisti then beomes�n = 2bLn(b�n)� 2bLn(b�0n):For a given signi�ane level � 2 (0; 1), the null hypothesis Ho is rejeted by theLRT if, and only if, �n � � where � = �(b�n; b�0n) 2 (1;1). If there exists a� 2 (1;1) suh that sup�2�o P�(�n � �) = �;then we get a LRT of size �. However, it is often diÆult to �nd a LRT with size �for a �xed �nite n and one has to swith to tests of only asymptoti size �. This iswhat we do in the following theorem.Theorem 5.2.1. Suppose the elements of Xn are independent and have densityfuntion p�n where �n��o = o(1). The statisti �n has then the following asymptotibehavior: �n !D 8>>>><>>>>: 1 if pnj�n;pj ! 1�21(I22�1(�o)h2) if pnj�n;pj ! h�21(0) if pnj�n;pj ! 0where h > 0 and �21(p) is the non-entral �2-distribution with one degree of freedomand non-entrality parameter p.



94 5 Bump huntingFor a given signi�ane level � 2 (0; 1) we rejet the null hypothesis if �n exeedsthe ritial value �21;1�� where �21;1�� is the (1��)-quantile of a �2-distribution withone degree of freedom. Suh a test has then by onstrution asymptoti size �.The (loal, i.e. if not pnj�n;pj ! 1) power funtion �Ln of the above test thensatis�es, as n!1,�Ln (b�0n; b�n)� �L�I22�1(�o)1=2pnj�n;pj� = op(1):Expliitly, the asymptoti power funtion is�L(p) = 1� �21(p2; �21;1��)where �21(p; :) is the �2-distribution funtion for one degree of freedom and non-entrality parameter p � 0.Note that non-entral �2-distributions are stohastially inreasing in the non-entrality parameter, i.e. for two non-entrality parameters p1 < p2�21(p1; :) � �21(p2; :);implying that the LRT has good (loal) power properties at large values of thenon-entrality parameter.The LRT introdued above is two-sided, i.e. in ase of rejetion of the null hypoth-esis, nothing about the sign of �n;p an be said. In our intended appliation tobump hunting however, it will be onvenient to be able to make a statement aboutsign(�n;p) in ase Ho is rejeted, at least with a ertain (asymptoti) on�dene. Thesore test below is exatly what the dotor ordered. Its test statisti is de�ned as anormalized derivative of the pro�le log-likelihood funtion at � = 0:Sn := n�1=2 ��� bLn(b��n)����=0:The hypotheses we test areHo : �n;p < 0 vs. H1 : �n;p � 0 (5.7)or vie versa. Again, as for the LRT, we an speify the limiting distribution forthis statisti, depending on the behavior of �n;p.



5.2 Testing of omposite hypotheses 95Theorem 5.2.2. Under the assumptions of Theorem 5.2.1 the sore test statistiSn has the following asymptoti distribution:I22�1(�o)�1=2Sn !D 8>>>><>>>>: �1 if pn�n;p ! �1N (I22�1(�o)1=2h; 1) if pn�n;p ! hN (0; 1) if pn�n;p ! 0for h 2 R.In light of Theorem 5.2.2, for a given signi�ane level � 2 (0; 1) the null hypothesisHo in (5.7) is rejeted if I22�1(�o)�1=2Sn � z1�� where z1�� is the (1 � �)-quantileof a standard normal distribution. However, we do not know �o, but it seems lear,that a suitable onsistent estimate of �o an save us. For the spei� two-parametermodel elaborated in Setion 5.3 this is detailed in Theorem 5.4.1.As for the atual alulation of the sore statisti Sn, observe the following. Thelog-likelihood funtion bLn is a map from Rp ! R. Therefore:��� bLn(b��n) = rbLn(b��n)>� ���b��n�= e>prbLn(b��n)= �rbLn(b��n)�p:This implies that Sn = n�1=2 ��� bLn(b��n)����=0= �n�1=2 nXi=1 _̀b�0n(X1n)�p: (5.8)In other words, to alulate the sore statisti Sn for a test on the p-th oordinateof �, we an simply take the p-th oordinate of the sore vetor where we readilyinput the estimate under the onstraint �n;p = 0, namely b�0n.Consider the general situation of tests involving a �xed number of parameters wheresome other nuisane parameter has to be estimated. Suppose further this nuisaneparameter is estimated under the null using a pn-onsistent estimator (e.g. maxi-mum likelihood). It is well known that in this ase likelihood ratio, sore (and Wald)



96 5 Bump huntingtests are asymptotially equivalent under the null hypothesis, see e.g. Shao (2003,Setion 4.5.2). In Theorems 5.2.1 and 5.2.2 we onsider the more general situationof a \true" parameter �n varying with n and one-parameter alternatives that lie ina O(n�1=2)-ball around the parameter �n;p we perform the test on.The sore statisti is designed to test the hypotheses (5.7) or vie versa, e�etivelyentailing a statement about sign(�n;p) in ase of rejetion of Ho, with asymptotion�dene 1��. Using this, de�ne a modi�ed sore test by ombining two one-sidedsore tests using the test statisti Sn where eah of the two tests is performed athalf of the overall signi�ane level �. For the loal power funtion �Sn in this asewe have, aording to Theorem 5.2.2 as n!1,�Sn (b�0n; b�n)� �S�I22�1(�o)1=2pn�n;p� = op(1):To derive �S, onsider the ase of testing the one-sided hypotheses in (5.7). Aord-ing to 5.2.2, the asymptoti power funtion for testing at signi�ane level �=2 forany �xed � 2 (0; 1), m 2 R and a random variable Z having a N (m; 1) distribution,is P (Z > z1��=2) = 1� P (Z �m � �z1��=2 �m)= 1� �(�z1��=2 �m)where �(:) is the standard normal distribution funtion. As we simply put togethertwo one sided tests, testing either the hypotheses (5.7) or their reversed versions,we an write for the asymptoti power funtion for all m 2 R�S(m) = [1� �(�z1��=2 �m)℄1fm�0g + [1� �(�z1��=2 +m)℄1fm�0g= 1� �(�z1��=2 � jmj):Normal distributions with variane 1 (or in general with equal variane) are stohas-tially inreasing in the mean, i.e. for two means p1 < p2�1(p1; ) � �1(p2; :)entailing that, similar to the LRT, the sore test has good loal power properties forlarge values of I22�1(�o)1=2pn�n;p.Reapitulate the asymptoti power funtions for the above desribed tests, for a�xed signi�ane level � 2 (0; 1) and any p 2 R,�L(p) = 1� �21(p2; �21;1��)�S(p) = 1� �(�z1��=2 � jpj):



5.3 A speifi two-parameter model 97These two funtions are almost idential, their di�erene dereases very fast withgrowing �rst argument. The only di�erene happens around 0, due to the fat thatthe sore test is performed at half the signi�ane level � ompared to the LRT. Notethat the power (against the onsidered loal alternatives) for both tests introduedabove is inreased when I22�1(�o) inreases. Reall the de�nition of I22�1(�)I22�1(�) = I22(�)� I21(�)I11(�)�1I12(�):Mathematial expressions simplify if one onsiders a model that has a diagonalFisher matrix. Sine in that ase I12(�) = 0 and onsequentlyI22�1(�) = I22(�):5.3 A speifi two-parameter modelThis setion is devoted to a spei� two-parameter exponential family whih servesas a building blok for the multisale test in Setion 5.6. Let the random variableXn have the univariate two-parameter density f�n;�n wheref�;�(x) := C(�; �) exp��x+ �x2=2�; x 2 [0; 1℄ (5.9)for �; � 2 R and a normalizing onstantC�1(�; �) := Z 10 exp��x + �x2=2�dx:For the sequenes of parameters we assume that �n ! �o as well as �n ! 0. Fur-thermore, for all n these sequenes belong to the natural parameter spae of f�;�,i.e. C�1(�n; �n) < 1. Denote by X1 the random variable having density funtionf�o;0.For n ordered i.i.d. observations X1n < : : : < Xnn all having the same distributionas Xn, de�ne a data vetor Xn := (X1n; : : : ; Xnn).To embed this spei� model in the framework of Setions 5.1 and 5.2 note that f�;�an be written as f�(x) = (�)h(x) exp��>t(x)�with � := (�; �), (�) := C(�; �), h(x) := 1 and t(x) := (x; x2=2).



98 5 Bump huntingIn bump hunting we will set up a multisale test to assess log-onavity and log-onvexity of a density, on spei� intervals. The urrent two-parameter model willserve as basi element for this multisale test. Based on a sample Xn a testHo : f�n;�n is log-linear vs.H1 : f�n;�n is log-onavetranslates into the following one-sided test for �n:Ho : �n = 0H1 : �n < 0;where �n is unknown and takes the role of a nuisane parameter, i.e. needs to beestimated from the same sample Xn. Testing for log-onvexity is similar. Relyingon the results of Setion 5.2 we propose a sore test, in order to be able to infersign(�n) in ase of rejetion of Ho. The sore test statisti in this spei� problemis then, aording to (5.8),Sn = �n�1=2 nXi=1 _̀b�0n;0(Xin)�2= (1=2)n1=2�X2in � IEb�0n;0X21n� (5.10)where we introdued the sore vetor_̀�;� := ��(�; �) log f�;�;the maximum likelihood estimator b�0n of �n based on a sample Xn under the nullhypothesis and an abbreviation for the meanxi = (1=n) nXi=1 xifor n vetors xi 2 Rk (or n real numbers if k = 1). The estimator b�0n an be foundusing e.g. a Newton-Raphson proedure.On p. 97 we disussed that a sore test based on the statisti Sn is mathemati-ally more onvenient if the Fisher information matrix I(�) is diagonal at the trueparameter �o. When adopting the model (5.9) diretly, the orresponding Fishermatrix In(�; �) = � Var�;�X1n Cov�;�(X1n; X21n)=2Cov�;�(X1n; X21n)=2 Var�;�(X21n)=4 �



5.3 A speifi two-parameter model 99does learly not have vanishing diagonal elements at (�o; 0), i.e. when n ! 1.This is due to the fat that the ovariane between X1 and X21 at (�o; 0) does notdisappear.In order to have mathematially onvenient expressions, we therefore propose thefollowing remedy. Instead of adopting the density funtion f�n;�n diretly, replae itby f ��n;�n wheref ��;�(x) := C�(�; �) exph�x + ��x2=2� a(�)x� b(�)�i (5.11)for x 2 [0; 1℄. The sore vetor orresponding to this density f ��;� is_̀��;�(x) = � x� a0(�)�x� IE�;�(X1n � a0(�)�X1n)T�(x)� IE�;� T�(X1n) �where T�(x) := x2=2 � a(�)x � b(�) for any � 2 R and x 2 [0; 1℄. The funtionsa : R ! R and b : R ! R are hosen suh thatIE�;0 T�(X) = 0 andIE�;0[T�(X)X℄ = 0 (5.12)for all � 2 R suh that C�1(�; 0) < 1 where X is distributed suh that it exhibitsa density funtion f�;0. Properties of these latter funtions are olleted in 5.3.1.Dedue a modi�ed sore statisti aording to (5.8) as follows:S�n = �n�1=2 nXi=1 _̀�b�0n;0(Xin)�2= n1=2�Tb�0n(Xin)� IEb�0n;0 Tb�0n(Xin)�= n1=2Tb�0n(Xin): (5.13)This onstrution immediately entailsCovb�0n;�n�X1n; Tb�0n(X1n)� !p 0; (5.14)implying that the Fisher matrix orresponding to (5.11) beomes diagonal asn!1. By Theorem 5.2.2 we getS�n(Var�o;0X1n)1=2 !D N�(Var�o;0X1n)1=2h; 1�



100 5 Bump huntingwhen pn�n ! h. However, �o is not known and has to be estimated. How thisa�ets the test statisti is detailed in Setion 5.4.In Setion 5.5 model (5.11) will be onsidered to derive a sore test statisti enablingto test whether �n is signi�antly di�erent from 0. The di�erene between a soretest statisti derived from f�;� to one reeived via f ��;� is the di�erent entering term,ompare (5.10) to (5.13). Note thata(b�n)Xin + b(b�n)onsistently estimates �o = 0 for an arbitrary onsistent estimator b�n of �o. Forevery n, the oeÆient of the linear term �n takes the role of a nuisane parameterand must be estimated. The fat detailed in (5.14) ensures that estimation of �nand �n are, at least asymptotially, \as independent as possible", i.e. do a�et eahother as little as possible.To onlude this setion, we owe the exat representations for the funtions a andb. To omit these formulas being even more lengthy than they already are, introduefor k = 0; 1; 2; : : : and any � 2 RHk(�) = Z 10 xk exp(�x) dx: (5.15)Using this abbreviation one an derive the following formulas for a and b from (5.12):a(�) = 12H1(�)H2(�)�Ho(�)H3(�)H1(�)2 �Ho(�)H2(�)b(�) = 12H1(�)H3(�)�H2(�)2H1(�)2 �Ho(�)H2(�) :Some properties of these funtions are olleted in Lemma 5.3.1 and Figure 5.1provides a plot.Lemma 5.3.1. For the funtion a we have the following limits:lim�!�1 a(�) = 0 lim�!1a(�) = 1and for b: lim�!�1 b(�) = 0 lim�!1 b(�) = �1=2:Furthermore, a is symmetri around 0: for any � 2 R one hasa(��) = 1� a(�):



5.3 A speifi two-parameter model 101

-100 -50 0 50 100

-0
.5

0.
0

0.
5

1.
0

  a(�)b(�) �Figure 5.1: Centering funtions a(�) and b(�).Note that in Setion 5.5 we resale our original observations X1; : : : ; Xn suh thatthey lie in [0; 1℄. This is antiipated in the de�nition of the densities f�;� and f ��;�,as they will serve as a basis to introdue a multisale test based on the resaledobservations. Clearly, the setting has impliations on the preise form of a and bwhen de�ning them via (5.12). This latter de�nition provides one with the \sim-plest" form of these funtions as well as the above densities, however it may notbe optimal with regard to symmetry. If symmetry was the aim, one ould ratheronentrate on �T�(x) = (x� 1=2)2=2� �a(�)(x� 1=2)� �b(�)where �a = a� 1=2 and �b = a=2 + b+ 1=8:Remembering that T� is the sore statisti derived from (5.11), the density having�T� � IE�;� �T�(X1n) as a sore funtion is�f�;�(x) = �C(�; �) exph�(x� 1=2) + ��(x� 1=2)2=2� �a(�)(x� 1=2)� �b(�)�i;



102 5 Bump huntingwhat �nally entails that the funtions orresponding to (5.15) would be�Hk(�) = Z 10 (x� 1=2)k exp[�(x� 1=2)℄ dx:Here, the integrand is a funtion that is entered around the midpoint 1=2 of theinterval under onsideration, and one an expet that the orresponding funtionsa and b exhibit \nier" symmetry properties.5.4 Analysis of loal test statistiWe will now analyze the spei� sore test statisti introdued in the previous se-tion.To assess whether log f ��n;�n introdued in (5.11) is onave or onvex on [0; 1℄, i.e. totest whether �n, the oeÆient of the quadrati part, is equal to or signi�antlydi�erent from 0, we will use, based on the arguments in the previous setion, thefollowing standardized sore test statisti:Tn(Xn; �) := n�1=2 nXi=1 T�(Xin)[Var� T�(X1n)℄1=2where we abbreviated Var� T�(X1n) = Var�;0 T�(X1n)as � will always be set to �o = 0. Reall that the parameters of f ��n;�n form sequenesonverging to �o and 0, i.e.�n � �o = o(1) and �n = o(1): (5.16)Theorem 5.4.1. Suppose that the elements of Xn := (X1n; : : : ; Xnn) are i.i.d. dis-tributed having density funtion f ��n;�n. Then, as n!1:
Tn(Xn; b�0n)!D 8>>>>><>>>>>: 1 if pnj�nj ! 1N�(Var�o X1)1=2h; 1� if pnj�nj ! hN (0; 1) if pnj�nj ! 0:



5.5 (Log-)Density funtion approximated by loal parabolas 103Log-onavity or log-onvexity of f ��n;�n at a given sigini�ane level � will then belaimed if Tn(Xn; b�0n) � �z1��=2 andTn(Xn; b�0n) � z1��=2;respetively. Theorem 5.4.1 delivers the justi�ation for the use of b�0n as a plug-inestimator for the test statisti Tn(Xn; �).5.5 (Log-)Density funtion approximated byloal parabolasThroughout the remainder of this hapter, we apply a setting similar to that inD�umbgen and Walther (2006). Suppose Y1 < : : : < Ym are ordered i.i.d. randomvariables with unknown distribution funtion F and density f on the real line.Assume that f is twie ontinuously di�erentiable on ff > 0g and that this latterset is open. Sometimes it is a priori known that F is onentrated on an interval[a;1); (�1; b℄ or [a; b℄ where �1 < a < b < 1. If this is the ase we add thepoint(s) Y0 := a or Ym =: b or both to our ordered sample, yielding an ordereddata vetor X0; : : : ; Xn where n 2 fm� 2; m� 1; mg. For 0 � j < k � n + 1 withk � j > 1, the onditional joint distribution of Xj+1; : : : ; Xk�1, given the intervalendpoints Xj and Xk, oinides with the joint distribution of the order statistis ofk � j � 1 independent random variables with densityfjk(x) = f(x)F (Xk)� F (Xj)1fx2Ijkgfor intervals Ijk := (Xj; Xk). Resaling the observations �nally yields loal orderstatistis: Xi:j;k := Xi �XjXk �Xj ; j � i � k:Commonly, to \hunt bumps" means to identify suh intervals Ijk where the den-sity f is either onvex or onave. However, our fous here is on log-onavity and-onvexity. Beneath better mathematial tratability observe that by taking thelogarithm non-onave densities with only one bump, e.g. the gaussian density, be-ome purely onave, i.e. the whole line is a \bump region". Up to type 1 errors nospurious dips are then deteted.



104 5 Bump huntingIn this setion we will desribe how the log-density an loally be approximatedby the parametri model in Setion 5.3, implying loal tests. The olletion of allthese tests on all intervals Ijk will then be used for multisale testing in Setion 5.6.Introdue two sequenes of indies j = j(n), k = k(n) suh thatj=n!  and k=n!  while k � j !1 (5.17)where  2 (0; 1) determines the orresponding quantile x , sine Xj !p x andXk !p x when n!1.By Taylor approximation we an write the log-density ' for any Xj, j = 1; : : : ; nand h 2 R as follows:'(Xj + h) = '(Xj) + '0(Xj)h + '00(Xj)h2=2 + rj(h)h2:As ' is ontinuous (even twie di�erentiable) we have for the remainderkrjk[�Æ;Æ℄1 !p 0when Æ ! 0 (and n!1, sine Xj !p x). Using this, write fjk as followsfjk(u) = f(Xj + uÆjk)R 10 f(Xj + vÆjk) dv1fu2[0;1℄g= exp'(Xj + uÆjk)R 10 exp'(Xj + vÆjk) dv1fu2[0;1℄g= exp�hjk(u) + rj(uÆjk)Æ2jk�R 10 exp�hjk(v) + rj(vÆjk)Æ2jk� dv1fu2[0;1℄gwhere we introdued hjk(x) = '0(Xj)Æjkx + '00(Xj)Æ2jkx2=2 (5.18)for x 2 [0; 1℄ and Æjk = Xk �Xj. Clearly,supu2[0;1℄ jrj(uÆjk)j !p 0 (5.19)as n ! 1. Note that we normalize in order to get a density funtion on [0; 1℄.Additionally let gjk(u) = exp hjk(u)R 10 exp hjk(v) dv1fu2[0;1℄g:



5.5 (Log-)Density funtion approximated by loal parabolas 105From (5.18) one an onlude that on an interval Ijk, the parameters �n and �nintrodued in Setion 5.3 are in detail, as n!1:�n = '0(x)f(x) k � jn+ 1(1 + op(1)) (5.20)�n = '00(x)2f(x)2�k � jn+ 1�2(1 + op(1)); (5.21)sine, aording to the proof of Lemma 5.5.1,Æjk = k � jn+ 1f(x)�1(1 + op(1)):To give a legitimation for an approximation of a smooth enough log-density by aparabola, onsider the total variation distane TV between two probability densitiesf : Rp ! R and g : Rp ! R. For x 2 Rp de�neTV(f; g) := ZRp jf(x)� g(x)j dx:Introdue the following joint densities:fn(X) := k�1Yi=j+1 fjk(Xi)gn(X) := k�1Yi=j+1 gjk(Xi):The following lemma then spei�es the asymptoti total variation distane betweenfn(X) and gn(X).Lemma 5.5.1. For fn(X) and gn(X) introdued above:TV�fn(X); gn(X)� = op(1)as n!1.Suppose we would like to test the hypothesis Ho : � = 0 vs. H1 : � = �n > 0.The above lemma implies, that the asymptoti power based on an i.i.d. sample ofsize k � j � 1 taken from fjk is equal to the power for the same testing problem ifwe adopted a sample from gjk instead. To be fully prepared for the statement ofthe theorem, introdue a so-alled \perfet sequene of tests". A sequene of testsin the above hypothesis is alled perfet, if for any sequene of alternatives �n thepower funtion �n(�n) is tending to 1 and the size �n(�o) = �n(0) is tending to 0, asn!1.



106 5 Bump huntingTheorem 5.5.2. Suppose '00(x) > 0 and the sequenes j = j(n) and k = k(n) aresuh that n1=5�k � j � 1n � ! 1 (5.22)as n!1. Then there exists a perfet sequene of tests for the hypothesis Ho : � = 0vs. H1 : � = �n > 0 based on an i.i.d. sample of size k � j � 1 where every randomvariable in the sample has density funtion fjk.To onlude, some words about the Condition (5.22). It seems not to be too strin-gent, sine De�nition (5.21) of �n suggests that in order to be able to test for thislatter parameter we anyway need enough observations in Ijk to guarantee(k � j � 1)1=2�k � j � 1n �2 !1:But this latter ondition is equivalent to (5.22).5.6 The multisale testHaving guaranteed suÆient power in Setion 5.1, shown onvenient properties ofthe loal test statisti Tn(Xn; �) in Setion 5.4 and justi�ed approximation of theoriginal density f on any interval Ijk through loal parabolas in Setion 5.5, we willnow introdue a multisale test.Beneath in D�umbgen and Walther (2006) for mode hunting, multisale testing in aquite general qualitative setting is desribed in D�umbgen and Spokoiny (2001) andin a more applied regression framework in D�umbgen (2002).Adopting the notation of the latter paper, de�ne the global test statisti for a sampleXn, 3 � m � n� l and 3 � l � m� 1 asT �l;m;n(X) := max1�j<k�n; l�k�j�m�jTjkn(X; b�0jk)j � k�j�where b�0jk is the estimated log-linearity parameter �jk based on the loal order statis-tis Xj+1:j;k; : : : ; Xk�1;j;k where �jk is assumed to be 0, i.e. estimation of �jk happensunder the null hypothesis. The loal test statistis areTjkn(Xn; �) := Pk�1i=j+1 T�(Xi:j;k)[(k � j � 1)Var� T�(Xj+1:j;k)℄1=2



5.6 The multisale test 107and the normalizing onstantsd := �2 + 2 log(n=d)�1=2:The papers ited above detail why onstants of this type are appropriate in suh amultisale setting. Informally, suh an additive orretion is introdued to preventthe limiting distribution of T �l;m;n to be dominated by loal statistis Tjkn for (k�j)=nsmall, i.e. those on short intervals.The test funtion Tjkn(X; �) an alternatively be written asTjkn(Xn; �) := Pk�1i=j+1�[Xi:j;k � a(�)℄2=2� a(�)2=2� b(�)�[(k � j � 1)Var� T�(Xj+1:j;k)℄1=2:= Pk�1i=j+1�Æ�(Xi:j;k)� a(�)2=2� b(�)�[(k � j � 1)Var� T�(Xj+1:j;k)℄1=2 (5.23)where Æ�(x) := 2�1(x � a(�))21fx2[0;1℄g. If we plug in an estimator b�n for �, (5.23)means that our test funtions are parabolas with an estimated (and therefore some-how adaptive) vertex �a(b�n);�a(b�n)2=2� b(b�n)�:Clearly, this estimator b�n will be b�0jk. Aording to (5.12) the test funtions Æ� areindi�erent with regard to linear density funtions. However, if the observations omefrom a loal log-density funtion log fjk that is onvex or onave, then Tjkn(Xn; b�0jk)tends to be highly positive or negative, respetively, by Theorem 5.2.2. It is impor-tant to note that other test funtions are equally possible, e.g. parabolas with a �xedvertex, immediately raising further possibilities to design tests for (log-) onavityor (log-) onvexity.As in D�umbgen (2002), we on�ne our attention in the de�nition of T �l;m;n to pairs(j; k) suh that their maximal lag k � j is smaller than m (typially we will hoosem < n, e.g. m = n=2), for two reasons. First, to redue omputational burdenin numerial simulations and alulations of the test statisti and seond beausewe want to inrease sensitivity on smaller intervals. Similarly, only lags l � 3 areonsidered, beause this is the minimal number of observations to assess onavityor onvexity meaningfully.



108 5 Bump huntingSuppose we somehow get hold of the distribution of T �l;m;n as n ! 1 (for detailssee Setion 5.7), de�ne �(�; f; n) as the (1� �)-quantile of this distribution. As wedo not know the preise limiting behavior of the distribution of T �l;m;n and thereforethe quantiles of it, we make the following working assumption.Working assumption 5.6.1. Suppose for the quantile �(�; f; n) that as n!1�(�; f; n) = �(�; go) + o(1)for some \null density" go and that this latter quantile �(�; go) is bounded.Some indiations that this working assumption may hold true are given in Setion5.7.Now �x �; l;m and n. For a given sampleXn, generate the distribution of T �l;m;n andalulate �(�) = �(�; f; n). Then introdue the following olletions of intervals:C\l;m;n(�) := f[Xj; Xk℄ : 0 � j < k � n; k � j � m; �Tjkn(Xn; b�jk) > k�j + �(�)gC[l;m;n(�) := f[Xj; Xk℄ : 0 � j < k � n; k � j � m; Tjkn(Xn; b�jk) > k�j + �(�)g:With probability at least 1 � � the following statement holds asymptotially as ntends to in�nity. The logarithm of the true density funtion f is neither onaveon any interval in C[l;m;n(�) nor onvex on any interval in C\l;m;n(�). Even further,the loal sore tests imply a lower on�dene bound for the loation and number ofthese piees. De�ne the sets of bump intervals as follows: If both sets C\l;m;n(�) andC[l;m;n(�) are non-empty, thenB\l;m;n(�) := f[x; y0℄ : [x; y℄ 2 C\l;m;n(�); [x0; y0℄ 2 C[l;m;n(�); y � x0g [ C\l;m;n(�)B[l;m;n(�) := f[x; y0℄ : [x; y℄ 2 C[l;m;n(�); [x0; y0℄ 2 C\l;m;n(�); y � x0g [ C[l;m;n(�);if C\l;m;n(�) = ?, set B\l;m;n(�) = ? and let B[l;m;n(�) only ontain the �rst elementof C[l;m;n(�) and likewise if C[l;m;n(�) is empty. Post-proess the sets B\l;m;n(�) andB[l;m;n(�) as follows. Take the left-most interval endpoint Xq in the set, keep onlythe longest interval [Xq; Xr℄ with this starting point and skip all other intervals thatare not disjoint with [Xq; Xr℄. Then ontinue with the left-most interval endpointright of Xr and do this until no intervals an be kept anymore.The sets B[l;m;n(�) and B\l;m;n(�) onsist of intervals J whih do ontain separated(in the sense that they are only allowed to adjoin at one point) regions J1; J2 wherelog f exhibits both a onave and a onvex behavior. Assembly above onsiderationsto onlude the following theorem.



5.7 The limiting distribution of T �l;m;n 109Theorem 5.6.2. Suppose the Working Assumption 5.6.1 holds true. With proba-bility at least 1 � � as n tends to in�nity log f is neither onave on C[l;m;n(�) noronvex on C\l;m;n(�). Furthermore, the number of bumps of log f is not smaller thanthe number of intervals in B\l;m;n(�). On the other hand, log f has at least as manydips as there are intervals in B[l;m;n(�).It is important to note that it is prinipally not possible to replae the one-sidedstatement in Theorem 5.6.2 by a two-sided version. This impossibility is a fun-damental property of truly nonparametri funtionals of a density f , suh as thenumber of bumps and the number of dips in our ase and is elaborated in Donoho(1988). 5.7 The limiting distribution of T �l;m;nTo start the setion, let us introdue three distributional laws in Table 5.1.Table 5.1: Distribution laws used to assess L(T �l;m;n).Law Symbol Density Range ParametersExponential(�) E � exp(��z) [0;1) � > 0Log-linear(�) E � exp(�z)=(exp(�)� 1) [0; 1℄ � 2 RUniform U 1 [0; 1℄With En;En and Un we mean vetors onsisting of n i.i.d. random variables of thegiven type.For a �xed n, T �l;m;n(Xn) is onstruted as the maximum over all lags greater than 3and smaller than m minus the orretion d, therefore it is not evident whether thelimiting distribution as n! 1, denoted by L(T �(Xn)), exists, if yes whether it isnon-degenerate and �nally how it depends on Xn. However, in view of the resultsin D�umbgen and Spokoiny (2001, Theorem 2.1.) it would be of great surprise ifthe answer to the �rst two questions is not aÆrmative. This onjeture is furthersupported by numerial simulations, learly pointing to the existene of a limitingdistribution L(T �(Xn)), see Figure 5.2. We sampled 9'999 statistis T �3;m;n(En) forevery ombination ofm and n detailed in the legend of the �gure, wherem = n�l�1for n � 200 and m = bn=2 � l � 1 for n � 200.
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T �3;m;nFigure 5.2: Limiting distribution funtions for T �3;m;n(En). The urves are generated fromleft to right with the parameters in the legend top down.Having postulated the existene of L(T �(Xn)), it is however reommendable inappliations for a given �xed n to rely on Monte-Carlo simulations to generatethe distributions L(T �l;m;n(Xn)) yielding the quantiles �(�). The problem then iswhat distribution to hoose where Xn is sampled from. We experimented with thedistributions detailed in Table 5.1.Numerial simulations suggest that using vetors En yields test statistis T �3;m;n(En)whose distributions are stohastially bigger than all other input distributions wetried, i.e. FEn(x) � FDn(x); for all x 2 Rwhere FEn(x) is the distribution funtion for a sample of T �3;m;n(En) generated fromthe entries of En and FDn(x) is the distribution funtion for a sample of T �3;m;n(Dn)whereDn 2 fEn;Ung. Figure 5.3 details the issue. The horizontal lines are drawn at1�� 2 f0:9; 0:95; 0:99g, i.e. where the most widely used quantiles �(�) are alulatedfrom. One hardly sees any di�erene between the three urves overall and only minordi�erenes in the tails. Per distribution we sampled 9'999 times the statisti T �3;46;50.
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T �3;46;50Figure 5.3: Distribution funtions for T �3;46;50.In what follows, we provide a lemma reminisent of the deterministi inequality ofProposition 1 in D�umbgen and Walther (2006), detailing a vetor Y n having somesort of borderline or worst-ase distribution suh that the test statisti Tjkn(Xn) isbounded from above (log-onave ase) or from below (log-onvex). However, dueto the fat that we have to estimate �jk we an only provide a weak statement interms of expetations.



112 5 Bump huntingLemma 5.7.1. Fix indies j and k where 0 � j < k � n with k� j � l. De�ne thevetor Y n = (Yi)k�1i=j+1 of i.i.d. random variables suh that every omponent Yi hasa log-linear density funtion gjk;�1 wheregjk;�(x) := �exp(�)� 1 exp(�x)1fx2Ijkg:Then:IE�jk;�jk Tjkn(Xn; �jk) 8<: � IE�jk;0 Tjkn(Y n; �1) if f is log-onave on Ijk,� IE�jk;0 Tjkn(Y n; �1) if f is log-onvex on Ijkas n!1 for all �1 � �jk where �jk and �jk are the parameters of the density f �jk.This lemma suggests an optimal strategy to sample from the distributionL(T �l;m;n(Xn)). On every interval Ijk estimate �jk, then generate a random ve-tor with omponents having density gjk;�1 for a �1 suh that �1 < b�jk and use thedistribution of T �l;m;n generated byM suh random vetors to get ritial values �(�)of L(T �l;m;n(Xn)). Note that this proedure provides quantiles depending on the a-tual data Xn. Seond, the original ondition for �1 is to be smaller than the true�jk. However, �jk is unknown and replaed by the maximum likelihood estimatorb�jk.Unfortunately, Lemma 5.7.1 is only a limit result as n ! 1. As long as oneestimates �jk, this annot be improved in the sense to get a result for �nite n.However, one an imagine to hoose � di�erently, e.g. via some \worst �" or mini-max riterion, perhaps yielding results for �nite n. The prize to pay when adoptingsuh a proedure is in terms of power. We have no lue how high the power loss is.As desribed above, to get quantiles generally appliable we sampled vetors Enof exponential random variables, whih we onsidered having some sort of generallog-linear distribution. At least their parametri shape is justi�ed by Lemma 5.7.1,however, �jk = 1 is used for all 0 � j < k � n + 1. In Table 5.2 we provide somequantiles �(�), generated from M = 90999 simulations.To interpolate (or even extrapolate) for values of n not provided in Table 5.2, wereommend to regress log�(�) on n (among n's where l and m are seleted usingthe same strategy).



5.8 Examples in bump hunting 113Table 5.2: Quantiles �(�) for the multisale test.n l m �(0:90) �(0:95) �(0:99)20 3 16 1.0749 1.3335 1.896950 3 46 1.4763 1.7007 2.2029100 3 96 1.6981 1.9253 2.3875200 3 196 1.8509 2.0702 2.5418300 3 146 1.8038 2.0098 2.4722400 3 196 1.8520 2.0699 2.5129500 3 246 1.8900 2.1052 2.5320600 4 296 1.9302 2.1346 2.5453700 5 346 1.9314 2.1270 2.5719800 6 396 1.9783 2.1729 2.5709900 7 446 1.9827 2.1908 2.61921000 8 496 1.9921 2.2058 2.63915.8 Examples in bump huntingWe illustrate the method desribed above with some examples with simulated data,performed in R, Version 2.1.1. Distributions we used are detailed in Table 5.3.Figures 5.4-5.7 illustrate the results. All �gures are to be read as follows: First, weimposed everywhere � = 0:05. Two plots always mate vertially. On the upper one,the straight line is the original density we sampled from whereas the dotted line isthe standard gaussian kernel estimate. In the lower plot, the sets C\l;m;n(0:05) (abovethe horizontal dotted line) and C[l;m;n(0:05) (below the dotted line) are displayed. Weintentionally omitted plots of the log-density (whereon the method atually works)in order not to overload the �gures.



114 5 Bump huntingTable 5.3: Distribution laws to illustrate bump hunting method.Name Law Sample Size nNormal N (0; 1) 50, 200Contaminated Normal 0:9N (0; 1) + 0:1N (6; 1) 200, 500Two bumps 0:5N (0; 1) + 0:5�(5; 2) 200, 500, 700, 1000Claw density 0:5N (0; 1) +P4i=0(1=10)N (i=2� 1; 1=100) 200, 500, 700, 1000In Figure 5.4 we see two standard normal samples of sizes n = 50 and n = 200. Inboth ases, only the set C\l;m;n(0:05) is non-empty, so that we onlude by Theorem5.6.2 that there is at least one bump. Preisely we have:C\3;46;50(0:05) = f[X(4); X(44)℄gC\3;196;200(0:05) = f[X(1); X(129)℄; [X(42); X(135)℄; [X(44); X(146)℄; [X(45); X(160)℄;f[X(46); X(162)℄; [X(48); X(163)℄; [X(54); X(196)℄gand C[3;46;50(0:05) = C[3;196;200(0:05) = ?, yielding B\3;46;50(0:05) = C\3;46;50(0:05) andB\3;196;200(0:05) = f[X(1); X(129)℄g.Two samples for n = 200 and n = 500 of a standard normal distribution orruptedby 10% of observations stemming from another normal distribution are displayed inFigure 5.5, see Table 5.4 displaying the number of learly asertained bumps andthe sets B\l;m;n(0:05) and B[l;m;n(0:05).By Theorem 5.6.2 we onlude with the level of the test tending to 0.05 as n!1that we have at least two bumps in the sample of size n = 500. Compared tothe purely normal distribution we an laim that there must be something di�erentgoing on here.A mixture density with two bumps appears in Figure 5.6. Note that the densityis onstruted suh that it has only one mode but two bumps, this being the mostspei� situation to apply bump hunting ompared to mode hunting. The resultsare given in Table 5.5.
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Table 5.4: Results for the ontaminated normal density.n bumps dips B\l;m;n(0:05) B[l;m;n(0:05)200 1 1 [X(7); X(182)℄ [X(154); X(182)℄500 2 1 [X(96); X(455)℄ [X(134); X(447)℄[X(460); X(499)℄

Table 5.5: Results for the two bumps density.n bumps dips B\l;m;n(0:05) B[l;m;n(0:05)200 1 1 [X(1); X(164)℄ [X(59); X(151)℄500 2 1 [X(3); X(336)℄ [X(159); X(488)℄[X(338); X(488)℄700 2 1 [X(5); X(417)℄ [X(319); X(671)℄[X(480); X(671)℄1000 2 1 [X(3); X(674)℄ [X(326); X(970)℄[X(725); X(970)℄
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118 5 Bump huntingAs an illustration how the power of our multisale test evolves when n inreases,Figure 5.7 displays a mixture of six normal distributions, the so-alled Claw density,introdued by Marron and Wand (1992). Here modes and bumps are the same.Table 5.6 details the results. Clearly, the method is at a sample size of n = 1000 notable to detet the bumps in the statistially strit sense of Theorem 5.6.2. However,looking at Figure 5.7 in a more explorative manner, one already has lear indiationsat a sample size of n = 500 that there might be �ve bumps present, beause wehave alternating intervals whereon we laim log-onavity and log-onvexity, butthe intervals still overlap.Table 5.6: Results for the Claw density.n bumps dips B\l;m;n(0:05) B[l;m;n(0:05)200 1 1 [X(9); X(185)℄ [X(136); X(185)℄500 2 2 [X(33); X(134)℄ [X(94); X(299)℄[X(209); X(439)℄ [X(350); X(439)℄[X(48); X(182)℄ [X(4); X(244)℄700 3 3 [X(291); X(476)℄ [X(252); X(521)℄[X(566); X(671)℄ [X(521); X(626)℄[X(67); X(256)℄ [X(5); X(349)℄1000 3 3 [X(420); X(635)℄ [X(356); X(605)℄[X(799); X(980)℄ [X(705); X(855)℄
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120 5 Bump hunting5.9 ProofsProof of Lemma 5.1.1: Lehmann (1986, p. 59) gives the �rst statement of thelemma in an even more general form, inluding a proof. As for the Laplae transform,IE� exp�u>t(X)� = ZX exp[u>t(x)℄(�)h(x) exp[�>t(x)℄ dx= (�) ZX h(x) exp[(� + u)>t(x)℄ dx= (�)(� + u) : 2Proof of Theorem 5.1.2: Before attaking diretly the di�erene in (5.6), somepreliminary onsiderations have to be made. First, note that for a random variableX having density funtion p� and vetors �; Æ 2 Rp we have for the funtion t, byLemma 5.1.1:IE�+Æ t(X) = RX h(x)t(x) exp[(�+ Æ)>t(x)℄ dxRX h(x) exp[(�+ Æ)>t(x)℄ dx= IE� t(X) + Æ> IE�[t(X)t(X)>℄ +O(kÆk22)1 + Æ> IE� t(X) +O(kÆk22)= �IE� t(X) + Æ> IE�[t(X)X>℄�[1� Æ> IE�(X)℄ +O(kÆk22)= IE� t(X) + Æ>Cov�(X; t(X)) +O(kÆk22) (5.24)using (1 + x)�1 = 1� x+O(x2)whih holds for any x 6= �1. Similarly one an deriveVar�+Æ t(X) = Var� t(X) +O(kÆk2): (5.25)Now de�ne the random vetors Zin asZin := n�1=2�t(Xin)� t(Xn)�where t(Xn) := (1=n) nXi=1 t(Xin)



5.9 Proofs 121is the empirial ounterpart of (5.1). By the law of large numbers in Setion A.9and Lemma 5.1.1 we have thatnXi=1 ZinZin> !p Cov�o t(X):The assertion follows beausenXi=1 IE�n min�kZink2; kZink22� = n IE�n(kZ1nk2)� p IE�o�t1(X1n)� t1(Xn)�+ o(1)! 0;by the row-wise idential distribution of the Xin together with (5.24) and assumingwithout loss of generality that the maximal di�erene appears in the �rst omponentof t(X). To be able to apply the Lindeberg-Feller entral limit theorem of SetionA.9 to pn(t(Xin)� IE�n t(X1n)), the orresponding ondition (A.11) remains to beveri�ed. For all " > 0,nXi=1 IE�n�kZ2ink2�1fkZink2>"g� p IE�o�t1(X1n)� t1(Xn)�2 nXi=1 1ft(Xin)�t(Xn)>("=p)png + o(1)= O� nXi=1 1fpn(t(Xin)�t(Xn))>("=p)ng�!p 0as n ! 1 beause the di�erene in the indiator funtion is a.s. bounded. Nowapply Lindeberg's entral limit Theorem A.9.2 to onlude:n�1=2 nXi=1�t(Xin)� IE�n t(X1n)� !D Np�0;Cov�o t(X)�: (5.26)Together with the moment onditiont(Xn) = IEb�n t(X1n) (5.27)



122 5 Bump huntingfor the maximum likelihood estimator, (5.26) impliesIEb�n t(X1n)� IE�n t(X1n)= (b�n � �n)�Cov�o t(X) +Op(kb�n � �nk2)� +Op�kb�n � �nk22�= (b�n � �n) Cov�o t(X) + op(n�1=2)wherefrom we dedue, using again (5.26) as well as (5.27):pn(b�n � �n) = pn�t(Xn)� IE�n t(Xn)��Cov�o t(X)��1 + op(1)!D Np(0; I(�o)�1) as n!1by (5.2) and (5.26). 2Proof of Theorem 5.2.1: First let us derive a Taylor expansion for the log-likelihood funtion bLn and two vetors �;�o 2 �:bLn(�) = bLn(�o) + (�� �o)> nXi=1 _̀�o(Xin) + 12(���o)> nXi=1 �̀�o(Xin)(�� �o) ++16 nXj=1 nXk=1 nXl=1 (�j � �0;j)(�k � �0;k)(�l � �0;l) nXi=1 jklMjkl(Xin) (5.28)where jjklj = 1 and Mjkl(x) is suh that��� �3��j��k��l `�(x)��� � Mjkl(x)for all j; k; l = 1; : : : ; n. Write Rn for the fourth summand in (5.28). It is notdiÆult but tedious to verify that all the above third derivatives of `� are linearombinations of moments of t(X) and therefore, by Lemma 5.1.1, bounded. Thisimplies by Theorem A.9.1:���1n nXi=1 Mjkl(Xin)��� � IE�o Mjkl(X1n)� C(p�; �o)with probability tending to one for all j; k; l = 1; : : : ; n, a onstant C = C(p�; �o)only depending on the exponential family under onsideration and �o. Consequently,Rn an be written asjRnj = Op� nXj=1 nXk=1 nXl=1 pn(�j � �0;j)pn(�k � �0;k)(�l � �0;l)�:



5.9 Proofs 123Now if we have pn(�i � �0;i) = O(1) for all i = 1; : : : ; n thenjRnj = o(1):The expansion in (5.28) will now be used to derive the limit distribution of �n. Bythe assumption of the theorem,b�0n � �n = b�0n � �0n � ep hpn: (5.29)Setting � = b�0n and �o = �n in (5.28) we get a �rst approximation as follows:bLn(b�0n)� bLn(�n) = pn(b�0n � �n)>n�1=2 nXi=1 _̀�n(X1n)++12pn(b�0n � �n)> 1n nXi=1 �̀�n(X1n)pn(b�0n � �n) + op(1):Combining (5.3) and again Theorem A.9.1 one has1n nXi=1 �̀�n(X1n) = �I(�o) + op(1)what together with (5.29) yields:bLn(b�0n)� bLn(�n) == pn(b�0n � �0n)>n�1=2 nXi=1 _̀�n(X1n)�12pn(b�0n � �0n)>I(�o)pn(b�0n � �0n)� e>p hpn nXi=1 _̀�n(X1n) ++e>p hI(�o)pn(b�0n � �0n)� (h2=2)I22(�o) + op(1)= ~Y >n� ~V n + I12(�o)h�� hVn;p � 12 ~Y >n I11(�o) ~Y n � 12I22(�o)h2 + op(1) (5.30)where we introdued Y n := pn(b�0n � �0n)V n := 1pn nXi=1 _̀�n(X1n):



124 5 Bump huntingIn order to get ~Y n, minimize the di�erene bLn(b�0n) � bLn(�n) over ~Y n. Therefore,set the derivative of the expression in (5.30) equal to 0, yielding:~Y minn = I11(�o)�1� ~V n + I12(�o)h�: (5.31)Reinserting ~Y minn in (5.30) we �nally getbLn(b�0n)� bLn(�n) =12� ~V n + I(�o)12h�>I11(�o)�1� ~V n + I(�o)12h�� Vn;ph� 12I22(�o)h2: (5.32)Using again the approximation (5.28) with � = b�n and �o = �n and taking intoaount that nXi=1 _̀b�n(X1n) = 0one an derive in a similar fashion as above:bLn(b�n)� bLn(�n) = 12V >n I(�o)V n + op(1)= 12 ~V >n I(�o) ~V n + 12V >n;p�1I22�1(�o)�1Vn;p�1 + op(1) (5.33)de�ning Vn;p�1(�) = Vn;p � I21(�)I11(�)�1 ~V nI22�1(�) = I22(�)� I21(�)I11(�)�1I12(�)and applying Lemma A.10.2. Now again by Lindeberg's Central Limit Theorem(Theorem A.9.2) we have for the vetor of sores V n, as n!1,V n !D Np�0; I(�o)� (5.34)(see also Setion 5.3 in van der Vaart, 1998). Consequently,Var�o Vn;p�1 = IE�o V 2n;p � 2I21(�o)I11(�o)�1 IE�o(Vn;p ~V n) +IE�o�I21(�o)I11(�o)�1 ~V n ~V >n I11(�o)�1I12(�o)�+ op(1)= I22�1(�o) + op(1):



5.9 Proofs 125This together with Lemma A.10.1 implies thatZ = I22�1(�o)�1=2Vn;p�1 (5.35)onverges in distribution to a standard normal distribution.All ingredients to takle �n are now made available. Subtrating (5.32) from (5.33)and multiplied by 2 results in�n = 2bLn(b�n)� 2bLn(b�0n) + op(1)= I22�1(�o)h2 + 2Vn;p�1h+ V 2n;p�1I22�1(�o)�1 + op(1)= �Z + I22�1(�o)1=2h�2 + op(1):Due to (5.35), �n onverges in distribution to a �2-distribution with one degree offreedom and non-entrality parameter I22�1(�o)h2. The above representation alsodetails that �n !p 1 whenever h = pn�n;p !1. 2Proof of Theorem 5.2.2: Generalizing (5.29) one hasb��n � �n = b��n � ��n + �� � hpn�ep:Similarly to (5.30) one an derive the following Taylor approximation:bLn(b��n)� bLn(�n) == (b��n � ��n)> nXi=1 _̀�n(X1n) + �� � hpn�e>p nXi=1 _̀�n(X1n)�12n(b��n � ��n)>I(�o)(b��n � ��n)��n(b��n � ��n)>I(�o)�� � hpn�ep � 12n�� � hpn�2I22(�o) + op(1):Taking the derivative w.r.t. to � yields:��� bLn(b��n) = e>p nXi=1 _̀�n(X1n)� n(b��n � ��n)>I(�o)ep � n�� � hpn�2I22(�o) + op(1):Dividing by pn and setting � = 0 �nally gives for the sore statisti:Sn = n�1=2 ��� bLn(b��n)����=0= Vn;p � ~Y >n I12(�o) + I22(�o)h+ op(1):



126 5 Bump huntingTo derive the limiting distribution for the LRT we already �gured out the form of~Y , see equation (5.31). Therewith,Sn = Vn;p � � ~V n + I12(�o)h�>I11(�o)�1I12(�o) + I22(�o)h+ op(1)= Vn;p + I22�1(�o)h� ~V >n I11(�o)�1I12(�o) + op(1): (5.36)Using (5.34) the variane of (5.36) isVar�o�Vn;p � ~V >n I11(�o)�1I12(�o)�= IE�o�[Vn;p � ~V >n I11(�o)�1I12(�o)℄2� + op(1)= IE�o V 2n;p � 2 IE�o(Vn;p ~V >n )I11(�o)�1I12(�o) + IE�o�[ ~V >n I11(�o)�1I12(�o)℄2� + op(1)= I22(�o)� 2I21(�o)I11(�o)�1I12(�o) +I21(�o)I11(�o)�1 IE�o( ~V >n ~V n)I11(�o)�1I12(�o) + op(1)= I22�1(�o) + op(1):This together with (5.36) �nally entailsSn !D N�I22�1(�o)h; I22�1(�o)�wherefrom we easily dedue the latter two statements in Theorem 5.2.2. From (5.36)it follows that Sn !p 1 if h!1. 2Proof of Theorem 5.3.1: The proof of this lemma onsists of elementary, tediousand little instrutive manipulations and is therefore omitted. We only point outthat the following reursion formula helps:Hk(�) = exp(�)=� � (k=�)Hk�1(�)for k = 1; 2; ::: and any � 2 R. 2Proof of Theorem 5.4.1: Using (5.25) one hasVarb�0n Tb�0n(X1n) = Var�o T�o(X1n) +O(jb�0n � �oj)= Var�o T�o(X1n) + op(1) (5.37)by assumption (5.16), beause �n ! 0 entails that b�0n onsistently estimates �o. Thisontinuity property of the variane together with Theorem 5.2.2 already entails thestatement of the present theorem if pnj�nj ! h, where h � 0.



5.9 Proofs 127Next, rewrite Tn(Xn; b�0n) as:T (Xn; b�0n) == n�1=2 nXi=1 X2in=2� a(b�0n)Xin � b(b�0n)[Varb�0n Tb�0n(X1n)℄1=2= �C + op(1)�pn�2�1(X2n � IE�n;�n X21n)� a(b�0n)(Xn � IE�n;�n X1n)�+�C + op(1)�pn�2�1 IE�n;�n X21n � a(b�0n) IE�n;�n X1n � b(b�0n)� by (5:37)= �C + op(1)�pn�2�1 IE�n;�n X21n � a(b�0n) IE�n;�n X1n � b(b�0n)� (5.38)= pn�O(j�n � b�0nj) +O(j�nj)� by (5:12) and (5:24)= pn�op(n�1=2) +Op(j�nj)�= op(1) +Op(n1=2j�nj)for a generi positive onstant C independent of n where (5.38) is reeived via (5.26).From these derivations we see that indeedTn(Xn; b�0n) !p 1as n!1 if ever j�nj diminishes at a slower rate than n�1=2. 2Proof of Lemma 5.5.1: We start the proof with a generally appliable result forspaings when the underlying density f is di�erentiable and j and k are ful�lling(5.17): Xk �Xj = Op�k � jn+ 1�: (5.39)To proof (5.39), introdue a random vetor Un := (U1; : : : ; Un) ontaining the orderstatistis of an i.i.d. sample of uniformly on [0; 1℄ distributed random variables Ui,i = 1; : : : ; n. Denote the distribution funtion orresponding to f by F . First useLemma A.7.1 to reeive for all l = 1; : : : ; n,Ul = ln+ 1 +Op�r� ln+ 1�� 1n+ 2��1� ln + 1� �:



128 5 Bump huntingThen, using this and applying the mean value theorem for a z 2℄Uj; Uk[:Xk �Xj = F�1(Uk)� F�1(Uj)= (Uk � Uj)(F�1)0(z)= Uk � Ujf(F�1(z))= Uk � Ujf(x) + f 0(x)(F�1(z)� x) + o(F�1(z)� x)= k � jn+ 1� 1f(x) + op(1)� +Op�rk � jn2 �1� k � jn + 1� �= Op�k � jn + 1� +Op�pk � jn �1� k � jn + 1�1=2 �= Op�k � jn + 1�by Assumptions (5.17). To proof the lemma as n!1, note that verifying the limitTV(fn(X); gn(X))!p 0 is equivalent toH2�fn(X); gn(X)�!p 0 (5.40)by (A.9), where H is the Hellinger distane between two density funtions, seeSetion A.8. The limit in (5.40) holds if�1� 12H2(fjk; hjk)�k�j�1 !p 1using (A.10). Finally, with another simple manipulation, we arrive at the key on-dition to be veri�ed: (k � j � 1)H2(fjk; hjk)!p 0:First, use that as n!1,Z 10 exp(hjk(x) + rj(xÆjk)Æ2jk) dx == Z 10 �1 + '0(Xj)Æjkx+ '00(Xj)Æ2jkx2=2 + rj(xÆjk)Æ2jk +Op(Æ2jk)� dx= 1 +Op(Æjk):Similarly, Z 10 exp hjk(x) dx = 1 +Op(Æjk):



5.9 Proofs 129Now, inserting the de�nitions of fjk and hjk into the total variation distane andusing (5.19) we get as n!1,(k � j � 1)H2(fjk; hjk) == (k � j � 1) Z 10 � exp[hjk(x)=2 + rj(xÆjk)Æ2jk=2℄(R 10 exp(hjk(v) + rj(vÆjk)) dv)1=2 � exp(hjk(x)=2)(R 10 exp hjk(v) dv)1=2�2 dx= (k � j � 1) Z 10 exp hjk(x)�[exp(rj(xÆjk)Æ2jk=2)� 1℄[1 +Op(Æjk)℄�1=2�2 dx� k � j � 1(1 +Op(Æjk))� supx2[0;1℄ jrj(xÆjk)jÆ2jk=2 + op(Æ4jk)�2�Z 10 exp hjk(x) dx�= (k � j � 1)op(Æ4jk)(1 + op(1))!p 0: 2Proof of Theorem 5.5.2: Sine Lemma 5.5.1 holds, we an restrit our attentionto the paraboli density gjk. Generalize the notation for this density togjk(u; �; �) = exp(�u+ �u2=2)R 10 exp(�v + �v2) dv1u2[0;1℄:Generalizing Lemma 14.31 in van der Vaart (1998) to omposite hypotheses, wehave to verify, in order to proof the theorem,(k � j � 1)H2�gjk(u; b�jk; �n); gjk(u; �0jk; 0)� !p 1;where the sequenes �n and �n are as introdued in (5.20) and (5.21). Finally, b�jk isa (k � j � 1)1=2�onsistent estimator of �n and �0jk is the true parameter of gjk onIjk. Similarly to the alulations in Lemma 5.5.1 one an derive, as n!1,(k � j � 1)H2�gjk(u; b�jk; �n); gjk(u; �0jk; 0)� = Op(�n(k � j � 1)1=2):But thanks to the assumption given by (5.22) this latter expression is unboundedas n!1. 2



130 5 Bump huntingProof of Lemma 5.7.1: Suppose that log fjk is onave on Ijk. Let Fjk and Gjk;�be the distribution funtions orresponding to the densities fjk and gjk;�. Choose�1 � �jk suh that Gjk;�1�a(b�jk)2 � = Fjk�a(b�jk)2 �:Both Fjk and Gjk;� are distribution funtions, what meansGjk;�1 = Fjk on fXj; a(b�jk)=2; Xkg:Hene the densities satisfy:Z a(b�jk)=2Xj (gjk;�1 � fjk) = Z Xka(b�jk)=2(gjk;�1 � fjk) = 0: (5.41)Beause log gjk;�1 is linear and log fjk is onave on Ijk, (5.41) entails that eithergjk;�1 � fjk on Ijk or the di�erene gjk;�1 � fjk has exatly two hanges of sign,namely at 1 2 �Xj; a(b�jk)=2� and 2 2 �a(b�jk)=2; Xk�suh that gjk;�1 � fjk8<: � 0 on (Xj; 1) [ (2; Xk)� 0 on (1; 2):Using Lemma 9 in D�umbgen and Walther (2006) together with (5.41) then yields:F�1jk �G�1jk;�18><>: � 0 on �0; Fjk�a(b�jk)=2��� 0 on �Fjk�a(b�jk)=2�; 1�:Consequently, Xi = F�1jk (Ui;j;k) R G�1jk;�1(Ui;j;k)= Xj + (Xk �Xj)G�1jk;�1(Ui;j;k) (5.42)depending whether Ui;j;k Q Fjk(a(b�jk)=2), this ondition being equivalent toXi;j;k Q a(b�jk)=2. The uniform loal order statistis Ui;j;k are de�ned similarly



5.9 Proofs 131to Xi;j;k but for uniform order statistis U0; : : : ; Un+1 instead of the X0; : : : ; Xn+1having density funtion f . Equation (5.42) entails:nXi=1 Æb�jk(Xi;j;k) � nXi=1 Æb�jk(Yi;j;k):where Æ� was de�ned in Setion 5.6. Tedious alulations reveal that �a(�)2=4� b(�)is a non-dereasing funtion on R. Hene:0 � 1n nXi=1�Æb�jk(Yi;j;k)� Æb�jk(Xi;j;k)�= 1n nXi=1�Æb�jk(Yi;j;k)� Æ�1(Xi;j;k)� Æ0�1(Xi;j;k)(b�jk � �1)�+ op(n�1)= 1n nXi=1�Tjkn(Y ; �1)� Tjkn(X; b�jk)�+ op(n�1=2)!p IE�jk;0 Tjkn(Y ; �1)� IE�jk ;�jk Tjkn(X; �jk)as n ! 1 by the law of large numbers. The ase where fjk is log-onvex an betreated analogously. 2
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Chapter 6Outlook and open problems
6.1 Estimation based on ensored observationsLog-onavity ould o�er a ompromise between fully nonparametri methods suhas Kaplan-Meier (or Grenander) and fully parametri models in the estimation of asurvival funtion (via its log-onave density) from ensored data as it is smooth,ompared to the former two whih are step funtions with possible high jumps.Compared to the unimodal distribution funtion estimator of D�umbgen, Freitag,and Jongbloed (2006), the assumption of log-onavity ould possibly yield morepowerful proedures. However, ensored observations ompliate the situation om-pared to the i.i.d. ase. One of the obstales is that the log-likelihood funtionorresponding to 	n in (4.2) is onvex with respet to the density f , but not withrespet to the log-density. A �rst algorithmi approah to takle this task was takenby H�usler (2005).This reasoning also applies to funtions derived from a log-onave density, suh asthe hazard funtion � in Setion 3.6.6.2 Tests for distribution funtionsTheorem 3.5.1 suggests that the estimator bFn is essentially equivalent to the em-pirial distribution funtion Fn . It an therefore be looked at as a smoother forFn . One should expet that every proedure where somehow the jump funtion Fnis plugged into an be improved in terms of auray (estimators) or power (tests)when plugging in the smooth funtion bFn instead, at least if the underlying densityfuntion is indeed log-onave. We sketh an example. Consider two i.i.d. samples



134 6 Outlook and open problems(Xi)ni=1 and (Yi)ni=1 of equal size (for ease of simpliity) and eah omponent havingdistribution funtions FX and F Y , respetively. To test whether Ho : FX = F Y ver-sus H1 : FX 6= F Y a ommon used two-sample test statisti is Kolmogorov-Smirnov,relying on the empirial distribution funtions FXn and FYn of the samples:K := K (FXn ; FYn )= pnkFXn � FYn k[0;1℄1 :The limiting distribution of K and the therefrom derived asymptoti test an befound e.g. in Durbin (1973). If one imposes that FX and F Y both have log-onavedensity funtions, we instead propose to use the following modi�ed test statisti:bK := bK( bFXn ; bF Yn )= pnk bFXn � bF Yn k[0;1℄1where bFXn and bF Yn are the log-onave distribution funtion estimators introdued inSetion 3.1. Deriving the limiting distribution of this statisti is presumably a diÆ-ult task, but if one assumes that under Ho our pooled data (X1; : : : ; Xn; Y1; : : : ; Yn)has the same distribution as (X�1; : : : ; X�n; Y�n+1; : : : ; Y�2n) where � is a randompermutation of f1; : : : ; 2ng (that does not depend on the data), one an attak thedistribution of bK under Ho via a Monte Carlo permutation test. Generate M sam-ples of � and alulate the orresponding values of the test statisti bK1; : : : ; bKM . Anonparametri p-value bp is then given by:bp = 1 +#fi � M : bKi � bKog1 +Mwhere bKo is the test statisti for the original samples. It ould be exiting toompare the power of this test to that of well established alternatives, suh as theabove desribed Kolmogorov-Smirnov or �2-tests.6.3 Tail index estimationAn example for auray improvement of an estimator using bFn is given in M�uller andRu�bah (2006). We show that both parametri distributions appearing in extremevalue theory, the generalized Pareto and the generalized extreme value distribution,have a log-onave density funtion if the tail index parameter  lies in [�1; 0℄.



6.4 Deonvolution with log-onave densities 135Suppose we are given an ordered sample X1 < : : : < Xn from one of the abovetwo limiting distributions having distribution funtion G. The most widely usedestimators for this tail index , suh as Pikand's or Falk's, are de�ned as weightedaverages of log-spaings. In order to improve the auray of these estimators, theidea is to replae the order statistis used to alulate them by quantiles reeivedvia inversion of bFn. This smoothing tehnique substantially redues variane inestimation not only of  but already in estimation of the quantiles. We intend toompare this new approah to existing tail index estimation methods and to deduereommendations when to use whih tail index estimator and whether smoothed ornot.Furthermore, we have shown in the above paper that all distribution funtions Fhaving a log-onave density funtion belong to the max-domain of attration of thegeneralized extreme value distribution, for some  2 [�1; 0℄. This result relies on theontinuity, unimodality, and the non-dereasing hazard property (see Lemma 2.3.1)of log-onave density funtions. It seems lear that the max-domain of attrationshould be obtainable for funtion lasses that assume less than log-onavity, as infat only the tail (i.e. loal) behavior of a distribution matters in determining itsmax-domain of attration. But log-onavity is a global property of the density.6.4 Deonvolution with log-onave densitiesGroeneboom and Jongbloed (2003) onsider the following setting. Suppose we ob-serve random variables Z1; : : : ; Zn having densitygF (z) = ZR k(z � x) dF (x); z 2 R:Here k is a known probability density on R and F is an arbitrary distributionfuntion. The question is: how an one estimate F or quantities related to it,e.g. moments? Equivalently, one ould think of observingZi = Xi + Yi; i = 1; : : : ; nwhere the Xi are distributed aording to F and Yi have density k. The authors thensimplify the task assuming that k is the uniform density on [0; 1), yielding a uni-form (or boxar) deonvolution problem. The nonparametri maximum likelihoodestimator bF of F is not ontinuous.



136 6 Outlook and open problemsHowever, the authors introdue a smoothed density estimator bfn;h:bfn;h(t) = ZRKh(t� y) d bFn(y)for some kernel funtion Kh, t 2 R, and a spei� bandwidth h = h(n). Beneaththe fat that this two-stage kernel estimator bfn;h has some undesired boundaryproperties, it ould be fruitful to alulate the estimate bFn diretly assuming thatF has a log-onave density, i.e. no additional smoothing via K is then neessary.
6.5 Rates for different normsIn this thesis we only onsidered onsisteny and rate of onvergene in the uniformnorm k:kT1 on ompat intervals T . First, the results in Chapter 3 should somehowbe generalized to the whole real line. Then, other norms ould be onsidered, e.g. thelimiting behavior (onsisteny, rate of onvergene, limiting distribution) ofk bfn � fkTp := �ZT j bfn(x)� f(x)jp dx�1=pfor any p 2 N . This work has already been aomplished for the Grenander estimatorby Kulikov and Lopuha�a (2005a, 2006).Another open problem is a proof that the uniform rate of onvergene for the onvexdereasing density estimator of Groeneboom, Jongbloed, and Wellner (2001b) has,under their assumptions, uniform rate of onvergene of (log(n)=n)2=5, and the gen-eralization of their whole work to density funtions belonging to H�older smoothnesslasses.One ould also think of a maximum likelihood version of the uniform rate of onver-gene result in the urrent status data regression setting of D�umbgen, Freitag, andJongbloed (2004). Finally, least squares log-onave density estimation ould alsobe takled.



6.6 Limiting distribution at fixed point 1376.6 Limiting distribution at fixed pointPreliminary onsiderations suggest that the limiting distribution ofn�=(2�+1)( bfn � f)(xo)at a �xed point xo 2 R an possibly be derived in a similar way like in the onvexase in Groeneboom, Jongbloed, and Wellner (2001b). One has to onsider suitableTaylor approximations to ZR�(x)( bfn � f)(x) dx;hoose the perturbation funtion � suh that the �rst two terms in the series dis-appear and make suitable appliation of (3.3). The remaining terms are then ap-proximated through suitable loal empirial proesses. Sine the onstant appearingin the limiting distribution for the onvex density estimator depends on f 00(xo)�1,Groeneboom, Jongbloed, and Wellner (2001b) simply assume f 00(xo) > 0. However,for the log-onave density estimator suh an assumption would be muh too restri-tive (if f e.g. stands for the normal density funtion we have f 00(�1) = 0), whenepresumably an even more involved limiting behavior will outrop.6.7 Log-onavity and total positivityAs desribed in the introdution, monotoniity and onvexity are speial ases fork = 1; 2 in the lass of k-monotone densities. These lasses were treated by Balab-daoui and Wellner (2004a-d) as a step to the solution of the ase k =1 (ompletemonotoniity). The relevane of the latter ase omes from the fat that the lassof ompletely monotone densities is equivalent to that of sale mixtures of expo-nentials. Unimodality and log-onavity on the other side are equally speial asesfor k = 1; 2 in the notion of total positivity, see Karlin (1968). Perhaps it ouldbe fruitful to similarly onsider the estimation of total positive density funtionsof order k = 3; : : : ;1. However, as log-onavity overs many parametri models,imposing further onstraints on the density possibly narrows the window too muhfor statistial appliations.



138 6 Outlook and open problems6.8 Multivariate ontextPolonik (1995, 1998) pioneered multivariate density estimation under shape on-straints. Log-onavity ould be another option to be studied in this ontext,e.g. imposed univariately in some dimensions or globally.6.9 Bump huntingThe method we propose in Part 2 still relies on the Working Assumption 5.6.1 thata limiting distribution for T �l;m;n as n!1 exists (and is non-degenerate and at bestindependent of f). A thorough analysis of this limiting distribution is still laking.Furthermore, our approah estimates the nuisane parameter �, implying that thesize of the test is only guaranteed asymptotially. Minimax approahes (i.e. takingthe \worst" � with respet to a ertain riterion) possibly yield proedures that holdthe signi�ane level also for �nite n. However, presumably an improvement in thissense has to be paid by a loss of power.As already pointed out in Setion 5.6, test funtions % instead of T� are equallypossible, as long as they wipe out linear funtions in the sense thatZR x%(x) dx = 0:Alternative test funtions possibly o�er a way to diretly test onvexity or on-avity of the underlying density. Probably not all approahes perform equally onall types of underlying densities. These di�erent performanes ould be assessedempirially and theoretially. Furthermore, (theoretial) power onsiderations forthe method desribed in Part 2 as well as di�erent assumptions for the alternativesould failitate the deision for a method in a spei� problem. Existing approaheslike Silverman's approah (Silverman 1981), the Dip test of Hartigan and Hartigan(1985) or SiZer of Chaudhuri and Marron (1999) ould be inorporated in theseomparisons.



Appendix AStandard results
We state here several well known theorems, in the order they appear in Chapters 3to 5. A.1 Lebesgue's dominated onvergeneTheoremWe borrow the formulation and the proof from Pollard (2002).Theorem A.1.1. Let fn be a sequene of �-integrable funtions (i.e. R f d� <1)for whih limn!1 fn(x) exists for all x. Suppose there exists a ��integrable funtionF , independent of n, suh that jfn(x)j � F (x) for all x and all n. Then the limitfuntion f := limn!1 fn is integrable andlimn!1Z fn = Z limn!1 fn = Z f:A.2 Modulus of ontinuity of a uniformempirial proessFirst, de�ne the uniform empirial proess. Let �1; : : : ; �n denote independent uni-form random variables supported on [0; 1℄. Introdue for t 2 [0; 1℄G n(t) := 1n nXi=1 1f�i�tg



140 A Standard resultsthe empirial distribution funtion of the sample. Let (Un(t))t2[0;1℄ denote the uni-form empirial proess whereUn(t) := pn(G n(t)� t)for t 2 [0; 1℄. Our funtion of interest, the modulus of ontinuity, is then:!(g; d) := supx2[A;B�d℄ supjhj�d jg(x+ h)� g(x)jfor d > 0 and funtions g bounded on [A;B℄. From Donsker's Theorem we knowthat the sequene of proesses (Un)n onverges weakly to a Brownian Bridge B .Sine B is ontinuous one an exept that !(B ; d) ! 0 a.s. and a famous result byL�evy (1937) spei�es the rate of onvergene to 0. Stute (1982) arried this resultfrom B over to Un , and this is exatly what �ts our purposes:Theorem A.2.1. Let rn satisfy the regularity onditions:rn ! 0nrn % 1log(r�1n )= log logn ! 1log(r�1n )=(nrn) ! 0:The modulus of ontinuity !(Un ; rn) of the uniform empirial proess then almostsurely satis�es: limn!1 !(Un ; rn)p2rn log(r�1n ) = 1:Sequenes rn omplying to the above four onditions are named \bandsequenes". Aproof for this theorem an be found in the original paper or in Shorak and Wellner(1986).



A.3 The Massart - Dvoretzky - Kiefer - Wolfowitz inequality 141A.3 The Massart - Dvoretzky - Kiefer -Wolfowitz inequalityIn 1956, Dvoretzky, Kiefer and Wolfowitz gave a bound on the tail probability ofkFn � Fk[0;1)1 .Theorem A.3.1. Let Fn be the empirial and F the true distribution funtion foran i.i.d. sample X1; : : : ; Xn. Then there exists a onstant C > 0 suh that for everyx > 0 P�pnkFn � Fk[0;1)1 > x� � Ce�2x2:The onstant C was dereased several times until Massart (1990) showed that C = 2holds and that no further improvement is possible. For proofs we refer to the originalpapers. The expression on the left is the tail probability of the Kolmogorov-Smirnovstatisti, see e.g. van der Vaart (1998), Setion 19.3.A.4 Some results from optimizationSuppose we would like to optimize a di�erentiable onvex funtional 	n(�) overvetors � 2 Rn under the linear onstraint B� � 0 where B is a m�n-dimensionalmatrix, implying that m onstraints are present. It would be onvenient to knowwhether an atual andidate b� already solves the problem. The following theoremdelivers exatly what the dotor ordered.Theorem A.4.1. Let b� be a vetor in Rn suh that 	n(b�) <1. Then b� minimizes	n(�) over the set of vetors � suh that B� � 0, if, and only if, the followingonditions hold for some vetors v; s 2 Rm :r�	n +B>v = 0 (A.1)Bb� + s = 0 (A.2)visi = 0 for all i = 1; : : : ; m (A.3)v � 0 (A.4)s � 0: (A.5)



142 A Standard resultsConditions (A.1)-(A.5) are referred to as the Karush-Kuhn-Tuker onditions. Notethat we onsider here a speial formulation of the problem. Generalizations alsoinlude equality onstraints and non-linear onstraint funtions. For a formulationof suh a muh more general version of the theorem, onsider e.g. Wright (1997,Appendix A). This book also provides a proof of Theorem A.4.1.In Chapter 4 we introdue a primal log-barrier algorithm. The theorem belowensures that an algorithm based on this method indeed �nds the solution b�.Theorem A.4.2. Suppose that there exists a point b� 2 F , where F is the feasibleset introdued in Setion 4.2. Let the level sets f� : B� � 0;	n(�) � g be boundedfor every  > 0. Assume further that the funtional 	n is di�erentiable and onvex.Then the optimization problemmin�2Rnn	n(�)� � mXi=1 log��(B�)i�ohas a solution for all � > 0 and this solution is unique. Furthermore, �(�) tends tothe optimal solution b� as � is driven down to 0.A proof is given e.g. by Fiao and MCormik (1968) who in fat introdued thismethod. A.5 Isotoni regressionSuppose a real-valued bivariate random vetor (X; Y ) is given. Let F (�jx) denotethe onditional distribution funtion of Y given X = x, i.e. for x; y 2 R:F (yjx) = P (Y � yjX = x):In linear regression, one now assumes that the unknown mean funtionm(x) := IE(Y jX = x)= Z y dF (yjx); x 2 Ris aÆne linear and lies in a given d-dimensional spae of funtions, denoted by Ld,where d 2 N is known and �xed. An example for Ld isff : x 7! f(x) = dXi=0 aixig;



A.5 Isotoni regression 143i.e. the (d + 1)-dimensional vetor spae of all polynomials of at most dimensiond. Given a sample of observations (X1; Y1); : : : ; (Xn; Yn) where (Xi; Yi) =D (X; Y )for all i = 1; : : : ; n, a possible way to de�ne an estimator bm is via weighted leastsquares: bm(x) := argminm2Ld nXi=1 wi(Yi �m(Xi))2 (A.6)where the wi; i = 1; : : : ; n are speifying the weight that eah observation is givento. Sometimes it is plausible to assume that the funtion m is isotoni rather thanlinear, i.e. monotone non-dereasing in x implying that for any x1; x2 2 R suh thatx1 � x2 and y 2 R one has F (yjx1) � F (yjx2):Problem (A.6) then transforms tobm" = argminm(X1)�:::�m(Xn) nXi=1 wi(Yi �m(Xi))2 (A.7)where we fous our attention on estimation of m on the set of observationsX := fX1; : : : ; Xng. Lower and upper bounds for bm"(x) for x 62 X an then befound via the isotoni property, e.g. trough linear step funtions. Now the PAVAomes into play. The ruial point is to introdue the umulative sum diagram(CSD), i.e. to plot the points pj = (Wj; Gj) for j = 0; : : : ; n whereWj := jXk=1 w(Xk) Gj := jXk=1 w(Xk)Yi:De�ne the greatest onvex minorant (GCM) at a plae t 2 R as the supremum ofthe values at t of all onvex funtions that lie entirely below the CSD. Theorem 1.2.1in Robertson, Wright, and Dykstra (1988) then guarantees that the left derivativeof the GCM solves problem (A.7). The key is that if we have two violators of themonotoniity onstraint, i.e. there exist a io 2 f2; : : : ; ng suh that Yio�1 > Yio, wean onnet the points Pio�2 and Pio in the CSD via a straight line, a modi�ationthat leaves the GCM unhanged but the above points do not violate the monotoniityonstraint for the left derivative anymore. The same theorem ensures that a solutionfound by this proedure indeed minimizes the weighted sum of squares in (A.7).Finally, the aforementioned book details an algorithm to �nd bm" via an iterativealgorithm. It an be shown that this algorithm in this spei� least square aseneeds at most O(n) operations to �nd bm".



144 A Standard resultsA.6 A onvergene theorem for iterativealgorithmsD�umbgen, Freitag, and Jongbloed (2006) present a framework to ompute MLEsiteratively, well appliable to many known iterative algorithms. For ease of om-pleteness we summarize their theorem on onvergene of these algorithms. We makeuse of this theorem in Setions 4.5 and 4.6.Suppose we want to maximize a funtional L : � ! [�1;1) over some metrispae (�; �). The following regularity onditions are imposed on L.(A.1) The funtional L is ontinuous on �, and the set fL > �1g is nonvoid.(A.2) For any r 2 R the set fL � rg is ompat (or empty).The seond ondition implies that the setb� := argmaxx2� L(x)is nonvoid and ompat. Note that if � = R and L is onave, Conditions (A.1) and(A.2) are easily guaranteed. To perform the maximiziation, introdue an algorith-mi mapping � from �o := � \ fL > �1g onto itself. This algorithmi mapping� should satisfy the following onditions:(B.1) All iterates lie in b�: �(x) 2 b� for all x 2 b�.(B.2) Improve the iterates in every step: For any x 2 �o n b�,lim infy!x L��(y)� > L(x):Note that only requesting L(�(x)) > L(x) for any x 2 �o n b� is not strit enoughto guarantee Theorem A.6.1.Theorem A.6.1. Suppose that L and � satisfy Conditions (A.1-2) and (B.1-2).For an arbitrary starting point xo 2 �o de�ne indutively new iterates xn := �(xn�1)for n � 1. Then limn!1minbxb2�o �(xn; bx) = 0:This theorem is Proposition 3.1 in D�umbgen, Freitag, and Jongbloed (2006). Theproof an be found there.



A.7 Some results about order statistis 145A.7 Some results about order statistisHere we give some fundamental properties of order statistis. Let U1 < : : : < Un bean i.i.d. ordered random sample of uniformly distributed random variables. For adistribution funtion F de�ne another sample X1 < : : : < Xn viaXi := F�1(Ui); i = 1; : : : ; n:It is well known that then all the Xi are distributed aording to F . Introdue an-other ordered i.i.d. exponentially distributed sample Y1 < : : : < Yn. We summarizethe fats used in the proofs in Setion 5.5 in the following lemma:Lemma A.7.1. For the ordered random variables we have:(Uk)nk=1 =D  Pki=1 YiPn+1j=1 Yj!nk=1 (A.8)whereas for the spaings�Uk � Uk�1�n+1k=1 =D  YkPn+1j=1 Yj!n+1k=1:Finally, one single order statisti Uj has a Beta(j; n + 1� j)-distribution whereIE(Uj) = j=(n+ 1) Var(Uj) = � jn+ 1�� 1n+ 2��1� jn + 1�:The proof of this lemma is elementary and an e.g. be found in Arnold et. al (1992).Through appliation of (A.8) one an further dedue that Uk � Uj =D Uk�j.A.8 Total variation and Hellinger distaneWhen replaing a density funtion by loal parabolas in Setion 5.5 we argue that bydoing this the total variation distane between the original density and the approxi-mation is asymptotially negligible. The proof relies among other things on LemmaA.8.1. Usually, the following de�nitions are given with (probability) measures asarguments, (e.g. in van der Vaart (1998), Chapter 14). However, our arguments willbe the densities diretly. For two probability densities p : Rk ! R and q : Rk ! Rde�ne the total variation distane asTV(p; q) := ZRk jp(x)� q(x)j dx



146 A Standard resultsand the Hellinger distaneH(p; q) := �ZRk�pp(x)�pq(x)�2 dx�1=2:The following lemma delivers the ritial (in-)equalities.Lemma A.8.1. For two probability densities p; q 2 L1(Rk) we haveH2(p; q) � TV(p; q) � 2H(p; q): (A.9)If u and v are the densities orresponding to the joint distributions reeived from ni.i.d. random variables having densities u and v respetively one has:H2(u; v) = 2� 2�1� 12H2(u; v)�n: (A.10)The proof of Lemma A.8.1 relies on fundamental manipulations with minima andintegrals plus the Cauhy-Shwarz inequality and an e.g. be found in the proof ofLemma 14.31 of van der Vaart (1998). The Hellinger distane is espeially onvenientwhen onsidering produt measures, as it is, by (A.10), easily expressible in termsof Hellinger distane of the individual measures. This is muh more diÆult (if noteven impossible) for the total variation distane, therefore (A.9) is used as a detour.A.9 Limit theorems for triangular arraysNow to the law of large numbers and the lassial Lindeberg-Feller entral limittheorem for triangular arrays. A triangular array of random vetors is a row-wiseindependent sequene Xn;kn. The generalization ompared to the standard entrallimit theorem is that the distributions ofXn;kn may depend on n. For suh an array,a law of large numbers an be stated as follows.Theorem A.9.1. For eah n let Xn;1; : : : ;Xn;kn be independent random vetorssuh that, as n!1, knXi=1 IEmin�kXn;ik; kXn;ik2� ! 0:Then knXi=1�Xn;i � IEXn;i� !p 0:



A.10 Some formulas from multivariate statistis 147The next theorem gives the orresponding entral limit theorem.Theorem A.9.2. For eah n let Xn;1; : : : ;Xn;kn be independent random vetorswith �nite varianes suh that the Lindeberg onditionknXi=1 IE�kX2n;ik�1fkXn;ik>"g ! 0 (A.11)holds for every " > 0 and knXi=1 VarXn;i ! �:Then knXi=1�Xn;i � IEXn;i� !D Np(0;�):In appliations, as in the proof of Theorem 5.4.1, often kn = n. Proofs an e.g. befound in Borovkov (1998), or for the latter Theorem in van der Vaart (1998), Propo-sition 2.27.A.10 Some formulas from multivariatestatistisHere we give two lemmas that are used in matrix manipulations in Setion 5.2. The�rst result is about inversion of blok matries.Lemma A.10.1. Let A be a r � r non-singular matrix, B a r � s matrix, C as � r matrix and D a non-singular s � s matrix suh that T := D � CA�1B isnon-singular. The inverse of the (r + s)� (r + s) matrixM := 0� A BC D 1Ais then: M�1 = 0� A�1 +A�1BT�1CA�1 �A�1BT�1�T�1CA�1 T�1 1A :



148 A Standard resultsThis lemma an be proven expliitly showing that MM�1 = I. Using the notationof Lemma A.10.1 the next lemma provides another shortut useful in manipulationsof blok matries.Lemma A.10.2. Let v 2 Rr+s , v1 = (vi)ri=1 and v2 = (vi)si=r+1. Then:v>M�1v = v>1A�1v1 + (v2 �CA�1v1)>T�1(v2 �CA�1v1):Again, this result an be veri�ed through brute fore alulation, at best not withouttaking advantage of Lemma A.10.1.



Appendix BList of speial symbols
Part I: Log-onave density estimationL1(R) real-valued and on R Lebesgue-integrable funtions, p. 2bfG Grenander density estimator, p. 4bFG Grenander distribution funtion estimator, p. 5X log-onave random variable, having distribution funtion F with log-onave Lebesgue density funtion f , p. 15F distribution funtion F : R ! [0; 1℄ on the real line, having log-onaveLebesgue-density f , p. 15f density funtion of F with respet to Lebesgue measure, p. 15' logarithm of f , p. 15d1 � d2 onvolution for two density funtions d1; d2 2 L1(R), p. 15� hazard rate funtion derived from f and F , p. 17n number of order statistis under onsideration (sample size), p. 21Xi i = 1; : : : ; n,X1 < : : : < Xn i.i.d. order statistis, all having distributionfuntion F , p. 21Ln general maximum log-likelihood funtional, p. 21Fn empirial distribution funtion for a sample X1 < : : : < Xn, p. 211A indiator funtion for a ondition A	n(') maximum log-likelihood funtional, depending on ', suh that its ex-ponentiated minimizer is a probability density, p. 22b'n maximum likelihood estimator of ', p. 22bfn maximum likelihood estimator of f , p. 22



bFn maximum likelihood estimator of F , p. 22v general vetor notation, v := (v1; : : : ; vn), p. 23b' the pieewise linear funtion b'n, viewed as a vetor of its knot points,p. 23S(hn) set of knots of a pieewise linear ontinuous funtion hn, p. 24�(G) mean of a distribution funtion G, p. 25Var(G) variane of a distribution funtion G, p. 25�n �n = log(n)=n, p. 27kgkI1 uniform norm of a funtion g on an interval I, p. 27T �xed ompat interval [A;B℄ with endpoints A < B, p. 27H�;L(T ) H�older lass of funtions for an exponent � and a onstant L on aompat interval T , p. 27!p onvergene in probability, p. 27. Applied to vetors this operator isto be understood omponentwise.!D onvergene in law, p. 27. Applied to vetors this operator is to beunderstood omponentwise.=D equality in law, p. 27. Applied to vetors this operator is to be under-stood omponentwise.bFn;h estimator of F based on a kernel with bandwidth h, p. 32b�n estimator of � based on bfn and bFn, p. 32kxk2 L2-norm for a vetor x, p. 34D1(g) lass of all funtions � suh that g + t� is onave for some t > 0 anda onave funtion g, p. 36D2(g) all pieewise linear funtions � suh that any knot q of � ful�lls either(3.14) or (3.15), for a onave funtion g, p. 36D3(g) ontinuous and pieewise linear funtions in D2(g) with knots only inS(g), p. 36IE(X) expetation for a random variable X 2 L1(R), p. 49(g)+ positive part of a real-valued funtion g: (g)+ := maxf0; gg, p. 56#A number of elements of a set A, p. 49�vi di�erene of two suessive elements of a vetor: �vi := vi � vi�1 forv 2 Rn and i = 2; : : : ; n, p. 64150



A general notation for a m� n matrix where the elements areA = 0BBB� A11 � � � A1n... ...Am1 � � � Amn
1CCCA ;p. 65x � y for two vetors x;y 2 Rn we say that x � y holds if xi � yi for alli = 1; : : : ; n. Equality is likewise, p. 65x> transposed vetor x, p. 66kxkA norm of the vetor x with respet to the matrix A: kxkA := px>Ax,p. 67diag(x) diagonal matrix with the vetor x on its diagonal, p. 69diag(A) vetor onsisting of the diagonal of the matrix A, p. 77N (�; �) Univariate Normal distribution with mean � 2 R and standard devia-tion � > 0, p. 78�(�; �) Gamma distribution with shape parameter � > 0 and sale parameter� > 0, p. 78Part II: Bump huntingp� parametri density funtion, with parameter � 2 � 2 Rp , p. 89IE� u(X) expetation of a funtion u suh that up� 2 L1(R) for a random variableX, where X has density funtion p�, p. 89u(Xi) sample mean of the random variables u(Xi); i = 1; : : : ; n, p. 120`� log of p�, p. 90_̀� sore funtion of p�, p. 90I� Fisher information matrix of p�, p. 90~x For a given vetor in Rk , ~x 2 Rk�1 is the vetor omitting the lastomponent, p. 92Np(�;�) p-variate Normal distribution with mean vetor � 2 Rp and ovarianematrix � 2 Rp�p , p. 91 151



�21(p) �2-distribution with one degree of freedom and a non-entrality para-meter p � 0, p. 93�21;� �-quantile of a �2-distribution with one degree of freedom, � 2 (0; 1),p. 94�21(p; :) �2-distribution funtion with one degree of freedom and non-entralityparameter p � 0, p. 94z� �-quantile of a standard normal distribution, � 2 (0; 1), p. 95�1 distribution funtion of a standard normal distribution, p. 96f�;� spei� two-parameter density used to de�ne bump hunting test statis-ti, p. 97f twie ontinuously di�erentiable density funtion, p. 103Xi order statistis X0 < : : : < Xn, having distribution funtion F anddensity funtion f , p. 103fjk \loal" density funtion, p. 103Ijk intervals spanned by two order statistis: Ijk = (Xj; Xk), p. 103Xi;j;k loal order statistis, p. 103TV (f; g) total variation distane between two densities f and g, p. 105C\l;m;n set of intervals whereon multisale test laims that f is onvex, p. 108C[l;m;n set of intervals whereon multisale test laims that f is onave, p. 108B\l;m;n(�) set of intervals whereon multisale test laims that f has a bump, p.108B[l;m;n(�) set of intervals whereon multisale test laims that f has a antibump,p. 108L(X) distribution of the random variable X, p. 109

152



BibliographyAn, M. Y. (1995). Log-onave probability distributions: Theory and statistialtesting. Preprint, Eonomis Department, Duke University, Durham, N.C.An, M. Y. (1998). Logonavity versus logonvexity: A omplete haraterization.J. Eon. Theory, 80, 350{369.Anevski, D. (1994). Estimating the derivative of a onvex density. Preprint,Department of Mathematial Statistis, University of Lund.Anevski, D. (2003). Estimating the derivative of a onvex density. Stat. Neerl.,57, 245{257.Arnold, B. C., Balakrishnan, N., Nagaraja, H. N. (1992). A First Coursein Order Statistis, Wiley, New York.Bagnoli, M., Bergstrom, T. (1989). Log-onave probability and its applia-tions. Preprint, University of Mihigan.Bagnoli, M., Bergstrom, T. (2005). Log-onave probability and its applia-tions. Eon. Theory, 26, 445{469.Balabdaoui, F., Wellner, J. A. (2004a). Estimation of a k-monotone density,part 1: haraterizations, onsisteny, and minimax lower bounds. Tehnialreport 459, Department of Statistis, University of Washington.Balabdaoui, F., Wellner, J. A. (2004b). Estimation of a k-monotone density,part 2: algorithms for omputation and numerial results. Tehnial report460, Department of Statistis, University of Washington.Balabdaoui, F., Wellner, J. A. (2004). Estimation of a k-monotone den-sity, part 3: limiting Gaussian versions of the problem. Tehnial report 461,Department of Statistis, University of Washington.Balabdaoui, F., Wellner, J. A. (2004d). Estimation of a k-monotone density,part 4: limit distribution theory and the spline onnetion. Tehnial report462, Department of Statistis, University of Washington.



154 BibliographyBarlow, E. B., Bartholomew, D. J., Bremner, J. M., Brunk, H. D.(1972). Statistial Inferene under Order Restritions, Wiley, New York.Barlow, E. B., Proshan, F. (1975). Statistial Theory of Reliability and LifeTesting, To begin with, Silver.Barndorff-Nielsen, O. (1978). Information and Exponential Families in Sta-tistial Theory, Wiley, New York.Bikel, P., Fan, J. (1996). Some problems on the estimation of unimodal den-sities. Stat. Sin., 6, 23{45.Borovkov, A. A. (1998). Mathematial Statistis, Gordon and Breah SienePublishers, Amsterdam.Caplin, A., Nalebuff, B. (1991a). Aggregation and soial hoie: A meanvoter theorem. Eonometria, 59, 1{24.Caplin, A., Nalebuff, B. (1991b). Aggregation and imperfet ompetition:On the existene of equilibrium. Eonometria, 59, 26{60.Chaudhuri, P., Marron, J. S. (1999). SiZer for the exploration of struturesin urves. J. Amer. Statist. Asso., 94, 807{823.Chaudhuri, P., Marron, J. S. (2000). Sale spae view of urve estimation.Ann. Statist., 28, 408{428.Cheng, M. Y., Hall, P. (1999). Mode testing in diÆult ases. Ann. Statist.,27, 1294{1315.Devroye, L. (1986). Non-Uniform Random Variate Generation, Springer, NewYork.Donoho, D. (1988). One-sided inferene about funtionals of a density. Ann.Statist., 16, 1390{1420.D�umbgen, L. (1998). New goodness-of-�t tests and their appliation to nonpara-metri on�dene sets. Ann. Statist., 26, 288{314.D�umbgen, L. (2002). Appliation of loal rank tests to nonparametri regression.J. Nonparametri Stat., 14, 511{537.



Bibliography 155D�umbgen, L., Freitag S., Jongbloed, G. (2004). Consisteny of onaveregression, with an appliation to urrent status data. Math. Methods Stat.,13, 69{81.D�umbgen, L., Freitag S., Jongbloed, G. (2006). Estimating a UnimodalDistribution from Interval-Censored Data. J. Amer. Statist. Asso., to ap-pear.D�umbgen, L., Spokoiny, V. (2001). Multisale testing of qualitative hypothe-ses. Ann. Statist., 29, 124{152.D�umbgen, L., Walther, G. (2006). Multisale inferene about a density. Teh-nial report 56, IMSV, University of Bern.Durbin, J. (1973). Distribution theory for tests based on the sample distributionfuntion, SIAM, Philadelphia.Dvoretzky, A, Kiefer, J. C., Wolfowitz, J. (1956). Asymptoti minimaxharater of the sample distribution funtion and of the lassial multinomialestimator. Ann. Math. Statist., 33, 642{669.Eggermont, P. P. B., LaRiia, V. N. (1999). Optimal onvergene rates forGood's nonparametri maximum likelihood density estimation. Ann. Statist.,27, 1600{1615.Eggermont, P. P. B., LaRiia, V. N. (2000). Maximum Likelihood Es-timation of Smooth Monotone and Unimodal Densities. Ann. Statist., 28,922{947.Eggermont, P. P. B., LaRiia, V. N. (2001). Maximum Penalized LikelihoodEstimation, Volume 1: Density Estimation, Springer, New York.Fiao, A. V., MCormik, G. P. (1968). Nonlinear Programming: SequentialUnonstrained Minimization Tehniques, Wiley, New York.van de Geer, S. (2000). Empirial Proesses in M-Estimation, Cambridge Uni-versity Press, Cambridge.Good, I. J. (1971). A nonparametri roughness penalty for probability densities.Nature, 229, 29{30.



156 BibliographyGrenander, U. (1956). On the theory of mortality measurement, part II. Skan-dinavisk Aktuarietidskrift, 39, 125{153.Groeneboom, P. (1985). Estimating a monotone density, Proeedings of theBerkeley Conferene in Honor of Jerzy Neyman and Jak Kiefer, Volume II,Luien M. LeCam and Rihard A. Ohlsen eds.Groeneboom, P. (1988). Brownian motion with a paraboli drift and Airy fun-tions. Probab. Theory Relat. Fields, 81, 79{109.Groeneboom, P., Hooghiemstra, G., Lopuha�a, H. P. (1999). Asymptotinormality of the L1 error of the Grenander estimator. Ann. Statist., 27,1316{1347.Groeneboom, P., Jongbloed, G., Wellner, J.A. (2001a). A anonialproess for estimation of onvex funtions: the \invelope" of integrated Brown-ian motion +t4. Ann. Statist., 29, 1620{1652.Groeneboom, P., Jongbloed, G., Wellner, J.A. (2001b). Estimation of aonvex funtion: haraterization and asymptoti theory. Ann. Statist., 29,1653{1698.Groeneboom, P., Jongbloed, G. (2003). Density estimation in the uniformdeonvolution model. Stat. Neerl., 57, 136{157.Groeneboom, P., Jongbloed, G., and Wellner, J. A. (2003). The sup-port redution algorithm for omputing nonparametri funtion estimates inmixture models. Preprint, Department of Mathematis, Vrije Universiteit Am-sterdam.Groeneboom, P., Wellner, J.A. (1992). Information bounds and nonpara-metri maximum likelihood estimation., DMV Seminar, 19, Birkhuser Verlag,Basel.Hall, P., Huang, L. S., Gifford, J. A., Gijbels, I. (2001). Nonparamet-ri estimation of hazard rate under the onstraint of monotoniity. Comput.Graph. Statist., 10, 592{614.Hall, P., Huang, L. S. (2002). Unimodal density estimation using kernel meth-ods. Statist. Sinia, 12, 965{990.



Bibliography 157Hall, P., Van Keilegom, I. (2005). Testing for monotone inreasing hazardrate. Ann. Statist., 33, 1109{1137.Hampel, F. R. (1987). Design, modelling and analysis of some biologial datasets,Design, data and analysis, by some friends of Cuthbert Daniel, C.L. Mallowseditor, Wiley, New York.Hartigan, J. A., Hartigan, P. M. (1985). The dip test of unimodality. Ann.Statist., 13, 70{84.H�usler, A. (2005). Estimating Log-Conave Densities from Censored Data. Teh-nial report 53, IMSV, University of Bern.Ibragimov, I. A. (1956). On the omposition of unimodal distributions. TheoryProbab. Appl., 1, 255{260.Jongbloed, G. (1995). Three Statistial Inverse Problems, Ph.D. Dissertation,Delft University of Tehnology.Jongbloed, G. (1998). The iterative onvex minorant algorithm for nonpara-metri estimation. J. Comp. Graph. Statist., 7, 310{321.Jonker, M., van der Vaart, A. (2001). A semi-parametri model for ensoredand passively registered data. Bernoulli, 7, 1{31.Karlin, S. (1968). Total positivity, Volume 1, Stanford University Press, Stan-ford.Kiefer, J., Wolfowitz, J. (1976). Asymptotially minimax estimation of on-ave and onvex distribution funtions. Z. Wahrsheinlihkeitstheorie verw.Gebiete, 34, 73{85.Kulikov, V. N., Lopuha�a, H. P. (2005a). Asymptoti normality of the Lk-errorof the Grenander estimator. Ann. Statist., 33, 2228{2255.Kulikov, V. N., Lopuha�a, H. P. (2005b). The limit proess of the di�er-ene between the empirial distribution funtion and its onave majorant.Preprint, Delft University of Tehnology.



158 BibliographyKulikov, V. N., Lopuha�a, H. P. (2006). Distribution of global measures of de-viation between the empirial distribution funtion and its onave majorant.Preprint, Delft University of Tehnology.Lehmann, E. L. (1986). Testing Statistial Hypotheses, Wiley, New York.L�evy, P. (1937). Theorie de l'Addition des Variables Aleatoires, Gauthier-Villars,Paris.Marron, J. S., Wand, M. P. (1992). Exat mean integrated squared error.Ann. Statist., 20, 712{736.Marshall, A. W. (1970). Disussion of Barlow and van Zwet's papers. In M. L.Puri (ed.), Nonparametri Tehniques in Statistial Inferene. Cambridge Uni-versity Press, 175{176.Massart, P. (1990). The tight onstant in the Dvoretzky-Kiefer-Wolfowitz in-equality. Ann. Probab., 18, 1269{1283.Meyer, C. M., Woodroofe, M. (2004). Consistent maximum likelihood es-timation of a unimodal density using shape restritions. Can. J. Stat., 32,85{100.M�uller, S., Rufibah, K. (2006). Smoothed semi-parametri tail index esti-mation. Tehnial report 58, IMSV, University of Bern.Pollard, D. (2002). A user's guide to measure theoreti probability, CambridgeUniversity Press, Cambrigde.Polonik, W. (1995). Density estimation under qualitative assumptions in higherdimensions. J. Multivariate Anal., 55, 61{81.Polonik, W. (1998). The silhouette, onentration funtions and ML-densityestimation under order restritions. Ann. Statist., 26, 1857{1877.R Development Core Team. (2005). R: A language and environment for sta-tistial omputing, R Foundation for Statistial Computing, ISBN3{900051{07{0, URL http://www.R-projet.org, Vienna, Austria.



Bibliography 159Rao, Prakasa (1969). Estimation of a unimodal density. Sankhya Ser. A, 31,23{36.Reiss, R. D., Thomas, M. (2001). Statistial Analysis of Extreme Values,Birkh�auser, Basel.Robertson, T., Wright, F. T., Dykstra, R. L. (1988). Order restritedstatistial inferene, Wiley, New York.Sengupta, D., Paul, D. (2004). Some tests for log-onavity of life distributions.Preprint, Department of statistis, Stanford University.Shao, J. (2003). Mathematial Statistis, Springer, New York.Shorak, G. R., Wellner, J. A. (1986). Empirial Proesses with Appliationsto Statistis, Wiley, New York.Silverman, B. W. (1981). Using kernel density estimates to investigate multi-modality. J. Royal. Statist. Soiety, Series B, 43, 97{99.Stute, W. (1982). The osillation behaviour of empirial proesses.. Ann. Prob.,10, 86{107.Terlaky, T. (1996). Interior Point Methods of Mathematial Programming,Kluwer Aademi Publishers, Dordreht.Terlaky, T., Vial, J-Ph. (1998). Computing maximum likelihood estimatorsof onvex density funtions. SIAM J. Sienti� Comp., 19, 675{694.van der Vaart, A. (1998). Asymptoti Statistis, Cambridge University Press,Cambrigde.van der Vaart, A., Van der Laan, M. J. (2003). Smooth estimation of amonotone density. Statistis, 37, 189{203.Walther, G. (2000). Deteting the presene of mixing with multisale maximumlikelihood. J. Am. Stat. Asso., 97, 508{514.Walther, G. (2001). Multisale maximum likelihood analysis of a semiparametrimodel, with appliations. Ann. Statist., 29, 1297{1319.



160 BibliographyWegman, E. J. (1970). Maximum likelihood estimation of a unimodal densityfuntion. Ann. Math. Statist., 41, 457{471.Woodroofe, M, Sun, J. (1993). A penalized maximum likelihood estimate off(0+) when f is non-inreasing. Statist. Sinia, 3, 501{515.Wright, J. W. (1997). Primal-Dual Interior-Point Methods, SIAM, Philadel-phia.Wright, J. W. (1998). Superlinear Convergene of a Stabilized SQP Method toa Degenerate Solution. Comput. Optim. Appl., 11, 253-275.



Curriulum Vitae
Name: Kaspar Ru�bahDate of birth April 23, 1977Nationality SwissEduation1984-1993 Shools in Meiringen and Interlaken1993-1997 Gymnasium Interlaken1997 Matura Typus C (University Entrane Exam)1997-2001 University of BernStudies in Statistis, Mathematis and Eonomis2001 Diploma in Statistis\Phasenrekonstruktion von Gleihverteilungen in Rd"(supervised by Prof. Dr. H. Carnal)2002-2006 PhD in Mathematis\Log-onave Density Estimation and Bump Huntingfor i.i.d. Observations"(supervised by Prof. Dr. L. D�umbgen)Professional Ativities1999-2002 Internships and onsultant, UBS Switzerland2000-today Assistant, Institute for Mathematial Statistis andAtuarial Siene, University of Bern2002-2006 Biostatistiian, Swiss Group for Clinial Caner Re-searh SAKK, Bern


