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ABSTRACT

The first part of this thesis is concerned with the estimation of a univariate density f
nonparametrically via maximum likelihood from a given ordered sample X;,..., X,
of independent and identically distributed random variables having distribution
function F'. It is well known that such an estimator ]/”; does only exist if ad-
ditional assumptions are made, i.e. the maximum likelihood function needs some
regularization. We will impose the shape constraint of log-concavity, a natural
generalization of many parametric densities such as Normal, Gamma, Laplace or
Generalized Pareto. We show that such an estimator exists, is unique and that the
estimated log-density &, is supported by [X;, X,,] and piecewise linear with knots at
some of the observation points. We provide two characterizations of the estimator,
both of them involving the empirical distribution function of the sample. The first
of these characterizations is essential for the proof of our main result: a uniform
rate of convergence of ]/‘; on a fixed compact interval 1" as n goes to infinity. Under
standard assumptions this rate is of probabilistic order (log(n)/n)?°. But we also
prove adaptivity with respect to the unknown smoothness of the underlying density
f in terms of Holder-continuity.

The result above, together with considerations about the modulus of continuity
of a uniform empirical process, can be used to show that the integral of ﬁl, the
distribution function estimator ﬁn, is asymptotically equivalent to the empirical
distribution function F,, of the sample. Consequently, ﬁn can be viewed as an
efficient smoother of the empirical distribution function, if the underlying density
is indeed log-concave. Log-concavity of the density function f immediately implies
potentially desired properties for functions derived from it, such as the tail function
1 — F or the hazard rate function f/(1 — F'). The first is again log-concave and
the latter is monotone non-decreasing. As an application of the above theorem we
give an upper bound for the uniform rate of convergence for a monotone hazard rate
estimator.

Then, methods are provided to find ﬁl numerically via iterative algorithms. To this
end, the piecewise linearity of @, is exploited to embed the problem of minimizing
the negative log-likelihood functional into a high- but finite-dimensional convex opti-
mization framework. We compare four different algorithms, including two standard



approaches from convex optimization. It turns out that a suitable modification of
the iterative convex minorant algorithm is very efficient in solving this optimization

problem.

The second part is devoted to bump hunting, a term used for procedures to identify
regions where a density exhibits either a convex or concave behavior. For certain
reasons we reformulate the problem in that we seek to detect regions of log-convexity
and log-concavity. First we analyze a specific two-parameter model regarding its
power properties in a test for log-concavity vs. log-convexity. Then we use this
model to approximate the density on all intervals spanned by a pair of observations.
All these local tests are then combined in a global multiscale statistic, yielding
two sets of intervals whereon one can claim with probability at least 1 — . as n
tends to infinity that the underlying density is either log-convex or log-concave. We
further introduce an additive correction term into the global test statistic in order
to prevent it to be dominated by the local statistics stemming from small intervals.
The chosen multiscale approach ensures that all statements hold simultaneously.
From the collections of the above intervals a lower bound for the number of bumps
and dips of the underlying density can be derived. To our knowledge, this is the first
multiscale test in density estimation exhibiting all these properties (asymptotically
holding the significance level, simultaneous statements, additive correction term)
at once. However, the proposed method relies on an unproven assumption about
the quantiles of the limiting distribution and is therefore a first approach to the
problem. A detailed theoretical analysis of its properties, especially those of the
limiting distribution of the multiscale test statistic, is still lacking.

Assuming that a non-degenerate limiting distribution for the multiscale test statistic
exists we provide its quantiles, gained from numerical simulations. We also describe a
worst case distribution to input in the statistic when doing Monte-Carlo simulations.

The procedure is illustrated with some examples.

i
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CHAPTER 1

INTRODUCTION

1.1 DENSITY ESTIMATION IN GENERAL

The first part of this thesis is concerned with a standard problem in statistics: The
estimation of an unknown univariate probability density function (pdf) f. Typically,
one considers a sample Xy, ..., X, of independent, identically distributed real-valued

random variables with common density f and the aim is to get an estimate
f=f0X 0 X)

for f from the data. Denote by F,, the empirical distribution function of the sample
Xq,...,X,. In what follows, all asymptotic statements are to be understood when
the sample size n tends to infinity.

The following sections review some general methods in density estimation.

1.2 KERNEL DENSITY ESTIMATION

A standard tool in nonparametric density estimation are kernel estimators ﬁh,

}?nh(:r) = %z%k(Tth), zeR

where h > 0 is the bandwidth and k£ : R — R the kernel function. The main advan-
tage of kernel estimators is that they are easy computable, independent from the

assumptions made on f. However, in general using kernels poses at least one major
problem, namely the selection of a kernel and an appropriate bandwidth in order to
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avoid oversmoothing (hiding relevant features of f, e.g. modes) or undersmoothing
(producing artifacts). Asymptotic results under standard assumptions on the kernel
typically depend on the smoothness of f. Suppose f is m-times differentiable and
choose the bandwidth h = h(n) in order to balance the variance and the bias term
in the mean squared error. The rate of convergence of ﬁh — f at a fixed point is then
O, (n~™/m+1) "4 rate that approaches the “parametric rate” n~'/2 (see below) as
m — o0.

1.3 PARAMETRIC DENSITY ESTIMATION

Here and subsequently we will concentrate on methods for density estimation relying
on the maximum likelihood principle. Therefore introduce the negative maximum

log-likelihood functional as:

Lo(f) = -n / log f(z) dF, (z)

In classical parametric estimation, f is assumed to belong to a class F; of densities,

where

with a given subset © of RY and # — gg a continuous function from © into L; (R).
The dimension d is usually fixed and small compared to n. Our problem of estimating
f then reduces to estimate 8 € © from the data X;,..., X,, via minimizing L, (gg)
over all 8 € O:

0, = argmin L, (gg).
6co

If possible this can be done analytically, otherwise numerically. Under standard
assumptions the rate of convergence of 8 to 6 is of order O, (n~'/?).
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1.4 ROUGHNESS PENALIZED DENSITY ESTIMATION

When talking about nonparametric maximum likelihood estimation, it is not evi-
dent how to actually get an estimator. One can make L,(g) arbitrary small over all
g € L1(R) that are continuous, i.e. the continuity assumption is too weak, the class
of densities over which L, (g) is minimized needs to be made smaller. A general
approach to achieve this is via penalizing. Add a penalty term R = R(g) to the neg-
ative log-likelihood functional to get a penalized version L' (g, R) of the maximum

log-likelihood functional:
LP(g, R, \) == L,(9) +AR(9)

where A > 0 is a Lagrange-multiplier sequence decreasing to 0. Roughness penalized

density estimators are then defined as

Fun(R,C,\) = argmin LT (g, R, \)

ge]——Z(ch)

where Fy(R, C) is the following family of functions:
Fo(R,C) = {f : fisa continuous pdf and R(f) < C'}
for C' € (0,00) a fixed constant. In principle, A may be chosen such that
R(fus(R,C,\)) = C.

Since C'is usually unknown, A is often determined by other means.
One of the most famous choices for R is the first roughness penalty functional by
Good (1971):

2

dx,

ato) = [ | Vit

where Rg(g) = oo if the derivative of /g is not square integrable on R. According to

Eggermont and LaRiccia (2001), Rg has remarkably good practical and theoretical

properties. For instance, under the assumptions
R(f) < o Jo £ (@) dz < oo Jg 2™ f(2) dz < oo for some m >k > 1

on the true density f, Eggermont and LaRiccia (1999) prove that convergence in
the space L;(R) happens at a rate of O,(n"2/°), so one that is similar to that for
kernel estimators under comparable assumptions.
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1.5 DENSITY ESTIMATION UNDER QUALITATIVE
ASSUMPTIONS

A different approach to density estimation is to assume certain shape restrictions for
f, such as monotonicity, unimodality or convexity. These restrictions are often plau-
sible, sometimes even theoretically justified and they share the following common

property. Defining the estimators as

fua = argmin L, (g)
geF3

where Fj is the family of densities satisfying the given constraint(s), e.g.

{f : fis a monotone decreasing pdf on (0,00)}
Fs =
{f + fis a convex decreasing pdf on (0,00)},

it can be shown that ,}/”;1,3 must be piecewise linear with the number of knots being at
most n. These properties can be used to construct a penalty term and to consider

estimation under qualitative assumptions as a penalized estimation problem where
the class Fy(R, C) is generalized to Fo(R), defined as

F(R) = |JFR(R.0).
C>0
To summarize, both methods, roughness penalization and shape constraints, impose
some sort of regularization on the maximum log-likelihood functional in order to get
a meaningful estimator.
Nonparametric maximum likelihood estimation of density functions restricted by
qualitative assumptions has received much attention in the last decades and in the

following sections we briefly summarize these developments.

1.6 MONOTONE DENSITY ESTIMATION

For applications of monotone density estimation consult e.g. Barlow et al. (1972)
or Robertson, Wright, and Dykstra (1988).

Maximum likelihood estimation of a monotone density was first studied by Grenan-
der (1956), who found that a function e is the nonparametric maximum likelihood
estimator (NPMLE) if and only if it is the left derivative of the concave majorant
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of the empirical cumulative distribution function. Grenander’s was continued by
Prakasa Rao (1969) who established asymptotic distribution theory for f, — f at a
fixed point x, > 0:

1/3
A

Y

w7 (Fulea) = £(20)) =0 16| 7w )

where Z is distributed as the location of maxima of the process (W(t) — %)c(0.00)
with W being Brownian Motion starting at 0. Groeneboom (1985) resumed the
asymptotic distribution theory and examined the limiting distribution in great de-
tail (Groeneboom, 1988) whereas Groeneboom, Hooghiemstra and Lopuhad (1999)
and Kulikov and Lopuhad (2005a) concentrated on limit theory in the space L;(R).
The pointwise rate of convergence, O,(n~'/?), is slow compared e.g. to that of a
regular parametric problem where one obtains O,(n~'/2). The rate of convergence
with respect to uniform norm is further decelerated by a factor log(n). This result
is not directly proven but a special case of a theorem derived by Jonker and van der
Vaart (2001). They assumed that f possesses a derivative that is bounded, strictly
negative and bounded away from zero. The supremum distance between the empiri-
cal distribution function F,, and its concave majorant ﬁg was investigated by Kiefer
and Wolfowitz (1976) who proved that this difference disappears (in probability) at
a rate o,((logn)®%n=2/3). This result has recently been extended by Kulikov and
Lopuhda (2005b) in the sense that they investigated the whole process

n/3 (ﬁn(t) T, (t)) .

te(0,1]

1.7 UNIMODAL DENSITY ESTIMATION

Remember that a density f on the real line is unimodal if there exists a number
M = M (f) such that f is non-decreasing on (—oo, M| and non-increasing on [M, 0o).
In case the true mode is known a priori, unimodal density estimation boils down
to monotone estimation, by estimating the true underlying distribution function F'
by the distribution function ﬁn that is the least concave majorant of F, on the
interval [M, oo0) and the greatest convex minorant on (—oo, M|]. The density f is
then estimated by the left derivative }/”; of ﬁn In case none of the observations

equals M, this estimator maximizes the likelihood (but must not be continuous at
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The situation is completely different if M is not known. In that case, the likeli-
hood can be maximized to co by placing an arbitrary large mode at some fixed
observation, meaning that consistent estimation of f at the mode is not possible.
This phenomena is called “spiking”. Several methods were proposed to remedy this
problem. Wegman (1970) introduced a modal interval of fixed length ¢ on which the
density is assumed to be flat (this estimator is inconsistent except the true density
f also has a modal interval of at least length ), ensuring that the density can not
exceed 1/e. Woodroofe and Sun (1993) penalized the ordinary maximum likelihood
estimator (MLE), resulting in a consistent density estimator. Bickel and Fan (1996)
showed that estimating the mode first and then plug it into their smooth maximum
likelihood procedure does not change the asymptotic behavior of this estimator. The
meaning of “smooth” here is that they optimize the maximum likelihood functional
(given the true or estimated mode) not over the class of all unimodal densities, but
over the class of all continuous piecewise linear densities with mode at one of the X;
to get a linear spline MLE. To circumvent the spiking problem, they further propose
to group the data before computing their MLE. As for the spiking problem, Meyer
and Woodroofe (2004) generalize Wegman’s idea by introducing an estimator that is
concave over an interval containing the mode. This interval may be chosen a priori
or through an algorithm.

The combination of shape constraints and smoothing was continued by Eggermont
and LaRiccia (2000). In order to improve the slow rate of convergence of n~'/3 in
the space L;(R) for arbitrary unimodal densities, they derived a Grenander type
estimator by taking the derivative of the least concave majorant of the distribution
function corresponding to a kernel estimator rather than the empirical distribution
function, yielding a rate of convergence of O,(n=2/°). They introduced log-concavity
in density estimation (see below), but instead of a shape constraint for the density
as a property of the kernel Aj; (h is the bandwidth), exploiting a key property of

log-concave density functions (dF, is the true density):

The log-concavity is sensible since then the convolution Ay x dF, is uni-
modal whenever f, is unimodal, by the celebrated result of Ibragimouv
(1956).

Additionally, A, % dF,, is then continuous. Examples for log-concave kernels are
Epanechnikov, Gaussian or two-sided Exponential. In their book of 2001, Eggermont
and LaRiccia treated a similar case, replacing unimodality by log-concavity (of the
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density f) and they presumed, whether smoothing with the log-concave kernel Ay
is really necessary to get a “good” rate of convergence in the space L;(R) and how
to actually compute a log-concave density estimator. The second of these questions
is answered in Chapter 4 of this thesis.

Renouncing on a continuity assumption on f, Van der Vaart and Van der Laan
(2003) complemented the work by investigating the interplay of isotonization and
kernel estimation, showing that the limit distribution at a fixed point is more con-
centrated for the isotonized kernel than using either isotonization or smoothing
exclusively (but the rate of convergence is not improved).

For a discussion of other approaches than maximum likelihood consult e.g. Hall and

Huang (2002) and the references therein.

1.8 CONVEX DENSITY ESTIMATION

Convex density estimation was pioneered by Anevski (1994) (later published as
Anevski, 2003). The problem arose in a study of migrating birds discussed by
Hampel (1987). Jongbloed (1995) established lower bounds for minimax rates of
convergence and rates of convergence for a “sieved MLE”. Groeneboom, Jongbloed,
and Wellner (2001b) almost completely cleaned up the situation providing a char-
acterization of the estimator as well as consistency and limiting behavior at a fixed
point of positive curvature of the function to be estimated. They do this not only
for maximum likelihood but also for least squares density estimation and the corre-
sponding regression problems as well. They found that in all cases the estimators
have to be piecewise linear with knots between the observation points. They show
for the (rescaled) distance between the maximum likelihood estimator f, and the
true density at a fixed point x, > 0 that

w2 (Fulr) — 1)) =0 (/207 (7)) 0)

where H is a stochastic process connected to Brownian Motion and further de-
tailed in Groeneboom, Jongbloed, and Wellner (2001a). Apparently, they assumed
existence and positivity of the true density’s second derivative f”, what together
with the convexity assumption enables one to estimate f at a fairly better rate of
O,(n~%/°) than that in the non-smoothed monotone and unimodal case. Precisely,
they assumed that the true density f is twice continuously differentiable, convex,
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and decreasing on [0,00). Note that here again the estimator is inconsistent at 0
(which corresponds to the mode in the given situation).

It would be of great surprise if the rate of convergence with respect to uniform norm
was not (log(n)/n)?°, but to our knowledge no proof for this result has ever been
published.

Balabdaoui and Wellner (2004a-d) treated a unifying and extending approach. Let
k be a non-negative integer and G be a distribution function on (0, 0c). Then

flz) = /Oooﬁ(y—x)ﬁldG(y), >0

is monotone (decreasing) if £ = 1 and convex and decreasing if k = 2. They figured
out the details for all finite k, with the final aim to solve the case k = oo (completely
monotone densities).

Although a characterization of ﬁ in the convex case exists (but is not as simple as
the least concave majorant in the monotone case), actual calculation of ]?n is not
straight-forward and has to be done numerically. Several attacks to the problem
were made. Jongbloed (1998) proposed an algorithm to minimize a smooth convex
(likelihood-) function over a convex cone in R", well applicable to convex density
estimation. Another successful approach was chosen by Terlaky and Vial (1998),
using interior point methods. Diimbgen, Freitag, and Jongbloed (2006) presented a
new method specially tailored to find piecewise linear functions with only a few knot
points. They examined unimodal distribution function estimation with censored

data, but the methods should be applicable in the convex density case as well.

1.9 LOG-CONCAVITY

In this thesis we will impose a quite natural shape constraint on the density f to
be estimated: log-concavity, meaning that the density f to be estimated can be

represented as

f(z) =expp(r), z€R

for some concave function ¢ : R — [~00,00). This class is rather flexible in the
sense that it generalizes many densities of common parametric distributions, such
as Normal, Uniform, Logistic, x? or Laplace. Many other distributions have log-
concave densities for broad ranges of the parameter values: Gamma, Beta, Weibull
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or the Generalized Pareto distribution. Tables detailing these issues can be found
in Section 2.4 and in Bagnoli and Bergstrom (1989, later published as Bagnoli and
Bergstrom, 2005). The latter paper also offers a concise summary of the main prop-
erties of log-concave density functions, their corresponding distribution functions,
and their applications in reliability and many fields of economic theory. Further
applications of log-concavity in reliability can be found in the standard book by
Barlow and Proschan (1975). The book by Devroye (1986) offers a whole chapter
about random number generation for random variables having a log-concave density.
Voting theory and the theory of imperfect competition is the field of application in
a pair of papers by Caplin and Nalebuff (1991a, 1991b). A nice discussion of (multi-
variate) log-concavity, log-convexity and the differences between both is provided by
An (1995, 1998). He further details the connection between log-concavity/-convexity
and the properties inherited by functions derived from such densities under more
general assumptions than Bagnoli and Bergstrom (1989, 2005). We will exploit the
connection between a log-concave density and the corresponding hazard function A
in Section 3.6 to derive a new consistent estimator of .

In his first paper, An also describes an indirect goodness-of-fit test for log-concavity,
based on the hazard rate.

A key reference in connection with log-concavity of functions is the book by Kar-
lin (1968) about total positivity, a concept generalizing log-concavity (log-concave
functions correspond to totally positive functions of order 2).

Note that every log-concave density is automatically unimodal. Although certainly
the class of log-concave densities is much smaller than that of unimodal, if ever one
can estimate a log-concave density one gets a method to circumvent the problems
described in Section 1.7 of either trying out many modes or spiking at a known
mode.

Although being very flexible and an apparent generalization of several parametric
models, not much on log-concave density estimation has been published. So far only
Walther (2000) attacked the problem and used the iterative convex minorant algo-
rithm (as introduced by Jongbloed, 1998 for the estimation of a convex decreasing

density on (0, 00)) for estimation of a logarithmically concave density.
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Walther further conjectures:

The theoretical properties of a log-concave MLE are similar to those of
the MLE of a concave density, and the arguments in Groeneboom, Jong-
bloed, and Wellner (2001b) suggest that the uniform rate of convergence
is Oy((1og(n) /n)?/".

One of our results is indeed the verification of this conjectured rate of convergence,
see Section 3.3. Walther describes the MLE f. under the assumption that the true

density is of the form

fe(z) = exp(¢(m)+c\x|2), x € [0,1]

for some concave function ¢ and ¢ > 0. He suggests a bootstrap test to assess
log-concavity based on (ﬁ)cec, where C is some finite set of nonnegative numbers.
Absence of log-concavity indicated by the test is interpreted as a mixture of several
log-concave distributions. In Walther (2001), testing for log-concavity is transformed
in testing for monotonicity, enabling the application of the monotone estimation
device described in Section 1.6. The price to pay for this indirect procedure is that
deviations of log-concavity can only hardly be localized and visualized. In Part 2 of
this thesis we present a new method to make possible this visualization.

As pointed out by Bagnoli and Bergstrom (1989, 2005), a distribution function re-
ceived from a log-concave density function is again log-concave, the converse being
not true. Sengupta and Paul (2004) considered testing for log-concavity of a dis-
tribution function versus the alternative that it is not, where they need to restrict
their attention to such distribution functions having a point mass at 0. According to
the above mentioned authors, direct maximum likelihood estimation of a log-concave
distribution function is not possible without further restrictions, most likely because
this class is simply too big.

Note that by imposing log-concavity on the density, two of the major problems
arising in monotone and convex density estimation, namely spiking (both) resulting
in non-consistency points and discontinuity of the estimator (only monotone), do
not come up. Together with the fact that many parametric models are automatically
log-concave, an in-depth analysis of log-concave density estimation is overdue and
one step in this direction is the aim of this thesis.
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1.10 BUMP HUNTING

The second part of this thesis leaves the field of density estimation and is concerned
with what has been named “bump hunting”.

In the analysis of univariate data, researchers often want to infer qualitative charac-
teristics of the density function of their data. Examples for such characteristics are
local extrema, inflection points or regions where the density function is monotone
(mode hunting) or convex (bump hunting). Kernel density estimates, pioneered
by Silverman (1981), prevail in problems of this type. Silverman’s method is con-
structed such that the number of modes of the underlying density f is a decreasing
function of the bandwidth of a normal kernel (the only admissible in this specific
case). Critical values to test the null hypothesis whether f has, say, £ modes ver-
sus the alternative of having more than & modes are then found through a simple
bootstrap procedure. This principle can be generalized in various ways, one of them
being SiZer (Chaudhuri and Marron, 1999; 2000). This method goes further in the
sense that it combines kernels using a broad range of bandwidths. However, in this
approach it is not clear how to combine conclusions from kernel estimates at different
scales. Furthermore, the correction term for small scales derived by Diimbgen and
Spokoiny (2001) is not applied, meaning that the global view is possibly dominated
by the tests stemming from short intervals. Instead, Chaudhuri and Marron restrict
their attention to kernel bandwidths h such that h > ¢ > 0 for a fixed positive €.
Other approaches are excess masses, see e.g. Cheng and Hall (1998) and the refer-
ences therein, maximum likelihood as in Walther (2001) or the “dip test”, proposed
by Hartigan and Hartigan (1985).

For mode hunting, Diimbgen and Walther (2006) proposed a procedure that si-
multaneously provides confidence statements with guaranteed significance level for
arbitrary sample size (i.e. also for finite n, not only asymptotically). They applied
a multiscale approach in the spirit of Diimbgen and Spokoiny (2001) and Diimbgen
(2002) by introducing a test statistic derived from a simple parametric model. This
statistic is evaluated on local spacings (i.e. on every interval spanned by two ob-
servations) and all these test statistics are then combined to get a multiscale test.
To reach significance, even for finite n, Diimbgen and Walther (2006) provided a
quite remarkable deterministic inequality (Proposition 1 in their paper). They also
derived the limiting distribution for their global test statistic as the sample size in-
creases, by extending results from Diimbgen and Spokoiny (2001) to a more general
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class of stochastic processes. However, critical values are generated via Monte Carlo
simulations.

In Part 2 we propose a bump hunting method in the same spirit. We equally
introduce a relatively simple local parametric model and combine all test statistics
calculated on local spacings to get a global multiscale test. Commonly, to “hunt
bumps” means to identify intervals where the density f is either convex or concave,
at best with a certain confidence. However, our focus here is on log-concavity
and log-convexity. Beneath better mathematical tractability observe that by taking
the logarithm non-concave densities with only one bump, e.g. the gaussian density,
become purely concave, meaning that the region of the sole bump could possibly
be detected easier because it is not “contaminated” by non-concave regions. To
the best of our knowledge, no one has up to now chosen such an approach to the
problem.

However, compared to the mode hunting case, at least one major difference has to be
ascertained. Diimbgen and Walther (2006) received their local test statistics using
the general parametric model

f)\(.’l?) = 1+)‘(37_1/2)7 l‘E[O,l],

for A € R. Their test statistic is then the Neyman-Pearson locally most powerful test
in this model for the null hypothesis A < 0 versus the alternative A > 0. Evidence
for a non-decrease, say, is then simply received from testing this null hypothesis

A < 0. To detect log-concavity we propose the following parametric model:
fon(z) = C(0,n)exp (93: + n:r2/2>, x € [0,1] (1.1)

for € R,n € R, where C(,n) is a normalizing constant. Log-concavity is then
postulated if a statistical test decides on < 0. Unfortunately, in this model one has
somehow to deal with the nuisance parameter : Either by considering a test statistic
using “the worst” of all possible # € R, resulting probably in a considerable loss of
power, or to estimate f. This approach presumably yields more power, however only
with the major drawback that all results are only asymptotically valid.

We motivate a test statistic to perform a test for 7 in (1.1) and give some further
consistency justifications for the specific test statistic. That the method works is

illustrated with some examples.
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CHAPTER 2

LOG-CONCAVE DENSITIES

In this short chapter, we introduce some fundamental properties of log-concave

densities. Parametric examples for log-concave densities are given.

2.1 LOG-CONCAVE DENSITIES AND UNIMODALITY

Throughout the first part of this thesis X will denote a random variable having
distribution function F'. If we talk about densities they are always meant to be
defined with respect to Lebesgue measure. We assume that F' possesses a density f
such that

f(x) = exp ¢()

for some concave function ¢ : R — [~00,00) . Such densities f are given the name
log-concave and we will use this term also for the random variable X itself. The
following lemmas summarize three key properties of log-concave densities.

Lemma 2.1.1. Suppose the random variable X has a log-concave density function
f on R. Then f is also unimodal, i.e. there exists a number m € R such that f is

non-decreasing on (—oo, m] and non-increasing on [m, o).

To be able to state the following results properly, define the convolution a * b of two
density functions a,b € Ly (R) at = € R as

(axb)(z):= /Ra,(t)b(.r —t)dt.

Lemma 2.1.2. The convolution [, x5 of two log-concave densities [; and ly is again
log-concave.
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Even more surprising is the fact that convolutions of unimodal and log-concave
densities remain unimodal and that this property can even be used to characterize
log-concavity.

Theorem 2.1.3. A density function [ is log-concave if and only if its convolution

[ * u with any unimodal density function u is again unimodal.

The latter results are both due to Ibragimov (1956), where Theorem 2.1.3 is generally
referred to as “Ibragimov’s Theorem”. Historically, Ibragimov introduced the term
“strongly unimodal” for densities exhibiting the property stated in the theorem and
showed that the class of strongly unimodal and log-concave densities coincide.

A survey of the connections between log-concavity and unimodality can be found in
the book by Barndorff-Nielsen (1978).

2.2 TAIL BEHAVIOR

One of the key properties of a log-concave random variable X is the existence of all
of its moments. The precise, and even stronger, statement is detailed in the next

lemma.

Lemma 2.2.1. There exist constants a, € R and b, > 0 such that for all v € R one
has:

o) < ay,—bylz|.
In particular,

/exp(tocp)dF < oo whenevert, < 1.

Moreover, for any polynomial p and any number t, € (0,1) there exists a constant
¢, > 0 such that

/roop(cp)dF < coexp(togo(r)) and

[ wiehar < cesp(ia-n) morairzo

o
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2.3 DERIVED FUNCTIONS

Log-concavity of the density function f immediately implies the same or similar
properties for functions derived from f such as the distribution function F', tail
function 1 — F' or hazard function A. Such connections under somewhat restrictive
smoothness conditions on the density were e.g. elaborated in Bagnoli and Bergstrom
(1989, 2005). An (1995) expanded their work to densities that need not necessarily
be differentiable. For illustrative purposes, we will pick one of these functions derived

from the density, namely the hazard function .

Lemma 2.3.1. Define the hazard rate function A as

f(z)

A = TR

for x in the interval I :== {y : F(y) < 1}. If f is log-concave, then X\ is monotone

non-decreasing on 1.

The proof of this lemma can be found in Bagnoli and Bergstrom (1989, 2005, Propo-
sition 1) for smooth densities and in the more general form stated in the lemma the
proof was given by An (1995, Corollary 2).

2.4 EXAMPLES OF PARAMETRIC LOG-CONCAVE
DENSITIES

The class of log-concave densities comprises many well-known parametric densities,
see Table 2.1. In Bagnoli and Bergstrom (1989, 2005) calculations necessary to verify
log-concavity of a specific density function, eventually only for certain parameter
values, are carried out, i.e. they check for many smooth enough parametric densities
that (log )" < 0.

The Generalized Pareto distribution (GPD) appears in extreme value theory as an
adequate parametric model for exceedances, see e.g. Reiss and Thomas (2001).
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Table 2.1: Some parametric log-concave densities

Type Density function f(x) Support | Parameters®
Uniform (b—a)! [a, b] a,beR;a <b
Normal (V2ro) texp (—(x — u)?/(20)) (—o00,00) | HER, 0 >0
Gamma boT (a) 2! exp (—bzx) [0,00) |a>1,6>0
Beta C(a+b)(T(a)L(b) tzo (1 — z)bt [0,1] a>1,b0>1
Fréchet az= () exp (—z7 ) [0,00) | a>0
Gumbel exp(—x)exp (—e™ ") (—00,0)

GPD (1 )~ 0+1/) 0,1/lh) | 1<~ <0
Logistic exp(—z)(1 + exp(—z)) 2 (—00,0)

Laplace (1/2) exp (—|z]|) (—00,0)

& Parameter values such that f is log-concave

2.5 PROOFS

Proof of Lemma 2.1.1: The function ¢ is concave. Together with the fact that
f is a probability density, i.e. [, expy = 1, it can not happen that ¢(x) /A —oo
for |z| — oo, implying unimodality of ¢, i.e. there exists a j € R such that ¢(z)
is non-decreasing in x < j and non-increasing in x > j. The result follows via
monotonicity of the exponential function. O

Proof of Lemma 2.2.1. The crucial point here is that ¢ can be bounded from
above by a piecewise linear function with one knot. Without loss of generality let ¢
be upper semi-continuous. After an affine transformation, if necessary, we assume
w.l.o.g. (see Section 3.2) that

= <0.
max ¢(t) = ¢(0) < 0

Then by Lemma 2.1.1 there exists a number r, > 0 such that p(+r,) < ¢(0) — 1.
By concavity of ¢, for any « > r,,

QO(TO) — 90(0) (’E - To) < S0(0) 1 (:E — To)

r) < .
plz) < plr) + £ -

< —[z[/ro + ¢(0).

Analogously, ¢(x) < —|z|/r, + ¢(0) for x < —r,. Since ¢(z) < ¢(0) < —|z|/r, +
©(0) + 1 whenever |z| < r,, the first assertion is true with a, = ¢(0) + 1 and
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b, = 1/r,. Then the second assertion follows from

[esttiehdr = [ew(-t)e) d
< /exp( J1 1) b1 —to)\x|> dr < oo
As for the last part, note first that

p(lel)f = pe]) exp(=|e]) < explc, —tole]) = exp(co) exp(top)

for a suitable constant ¢,. Since [ p(|¢|) dF is finite, it suffices to consider numbers
r that are greater than or equal to, say, r, above. Since the slope of ¢ is not larger
than —1/r, on [r,, o),

/ p(le)) dF < exp(c, / Xp<t0g0 r+z )
< exp(c, / exp {to (cp — z/r(,)} dz
exp

= exp(c, / ( (to/T0) )dz exp( 0(,0(7“))

= exp(e)(ro/to) exp (tup(r)).

Analogously one can show that [~ p(|¢|) dF < exp(c,)(ro/t,) exp(top(—r)). 0
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CHAPTER 3

MAXIMUM LIKELIHOOD ESTIMATION

In this chapter we introduce the maximum likelihood estimator of a log-concave den-
sity. At first we prove its existence and uniqueness. Then we provide two character-
izations for this estimator and give some results about uniform rate of convergence.
These asymptotic results are then extended to functions derived from the density

estimator, namely the distribution and hazard function.

3.1 GENERAL FRAMEWORK

Our goal is to estimate a univariate log-concave density function f based on a
random sample of size n > 1 . Let X; < ... < X, be the corresponding order
statistics. For any such density f on R, the negative log-likelihood functional at f,

our parameter of interest, is defined as

L.(f) = n/logf(x) dF, (z)
= =2 log f(Xy) (3.1)

where ,, stands for the empirical distribution function:

1 n
¥, = — Tix, <2y, e R
(2) " ; {X;<z}, @
The indicator function 1,4 for a condition A is defined as

1 if A holds,

14 =
0 else.
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The NPMLE is then defined as the minimizer of the functional in (3.1) over all
log-concave probability densities. In order to relax the constraint of f being a
probability density and to get a criterion function to minimize over all concave
functions in general, we focus on ¢ = log f and employ the standard trick of adding
a Lagrange-term to the log-likelihood functional defined in (3.1). This leads to

U,.(p) = —n/gp(:r) dF, (z) +n/exp o(x) dx. (3.2)

Define @,, as the minimizer of this functional over the set of all concave functions:

Pp = argmin V¥, ()

@ concave

and let

J?n = exp(Pn)

be the corresponding maximum likelihood estimator of f. The distribution function

ﬁn of ﬁl is given by

Fua) = | Oo Folw) du.

Since
d
0 = — v, (0, +1
i (@n +1)
= n-l-n/ﬁ(.r)d.r,

the Lagrange term guarantees in fact a probability density.
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3.2 BASIC PROPERTIES OF {, AND f,

Existence and uniqueness

First of all we need to show that &, is a meaningful estimator: Theorem 3.2.1
guarantees existence and uniqueness of ¢, and states an interesting key property of
it.

Theorem 3.2.1. The NPMLE {, exists and is unique. It is piecewise linear and
continuous on [ X1, X,] with changes of slope only at observation points. Moreover,
On = —o0 for x & [ X1, X,).

The piecewise linearity of ¢, is analogous to the case of estimating a convex decreas-
ing density, treated extensively by Groeneboom, Jongbloed, and Wellner (2001b).
But in the latter case the knots of the estimated density are situated strictly between
the observations. Theorem 3.2.1 further entails that ]/‘; is completely determined by

the vector

¢ = (@n(X¢)>i:1
Hence, the infinite-dimensional problem of finding the minimizer of ¥,, over all con-
cave functions boils down to a finite (but high) dimensional task which is elaborated

in Chapter 4.

Characterizations

We give two characterizations of the estimator ﬁl The first via special perturbation
functions and the second by connecting the empirical distribution function of the

sample with the distribution function derived from the estimator.

Theorem 3.2.2. Let ¢, be a concave piecewise linear function on [Xy, X,] with
knots only at {X;,..., X,,}. Moreover, let ¢,, = —oo0 on R\|X;, X,)]. Then ¢, = @,
if, and only if,

/ A(z) R, (z) < / A(x) exp G (x) da. (3.3)
for any A : R — R such that ¢,, + tA is concave for some t > 0.

For functions A that are continuous, piecewise linear and have the same knots as
©n, One gets even equality in (3.3).
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The characterization in terms of distribution functions is given in the following
theorem. Let h, : [ X7, X,,] — R be a piecewise linear continuous function, such that
the knots coincide with some of the observation points X; < ... < X,,. The set of
knots S(h,,) of h, is then defined as follows:

S(hy) = {t e (Xy,X,):hl(t—) > b, (t+)} U{X:, X, }.
Recall that @, is an example for such a function h,,.

Theorem 3.2.3. Let ¢, be as in Theorem 3.2.2 and define

Fy(x) = /1 exp @, (1) dt.

In addition, it is assumed that Fn(Xn) — 1. Then, ¢, = 3, and thus F, = ﬁn, if
and only if for arbitrary a <t < b with a,b € S(,),

IE@WfEIRW&y (3.4)
/tbﬁn(r)dr > /thF‘n(r) dr, (3.5)
/abﬁn(r)dr = /abIF‘n(r) dr. (3.6)

Note that (3.4) follows directly from (3.5) and (3.6). In Figure 3.1 we illustrate the
behavior of the process

t A

D@;:/ﬂm_mmmnthxﬂ

X3

The characterization of fAn in Theorem 3.2.3 as the second derivative of the integral of
the empirical distribution function coincides with that of the least squares estimator
of a convex decreasing density, specified in Lemma 2.2 of Groeneboom, Jongbloed,
and Wellner (2001b). The convex case analogue of (3.3) can be found in the cited
paper, Lemma 2.4.
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Figure 3.1: The process D(t) for a normal random sample of size 200.

Further properties of ]7’;

For an arbitrary distribution function G on the real line let

u(G) = /udG(u)
Var(G) = /(u—u(G))QdG(u)

denote the mean and the variance, provided that [ |u|dG(u) < co. Then the fol-

lowing corollary can be derived from Theorem 3.2.2.

Corollary 3.2.4. Setting A(z) = z and A(z) = —z* in (3.3) one obtains:

w(E,) = w(F,) and Var(E,) < Var(F,).
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The distribution function estimator £, has the highly appealing feature of being
very close the the empirical distribution function [, at all knot points of ©,,.

Corollary 3.2.5. Choosing A(x) := lizcqy or Alx) 1= —ly<qy for ¢ € S(@n)
yields:

ﬁn € []Fn — nil,]}?‘n} on S(&n).
This fact, together with Characterization 2 in Theorem 3.2.3 finally entails:

F, (X)) = 0 and F,(X,) = 1.

Equivariance

Finally, let us mention that our estimators are affine equivariant in the follow-
ing sense. To explicitly express the dependence of the log-likelihood function on
Xi,..., X, write

U.(e) = Yule; Xq,...,X,).

Replacing the observations Xy,..., X, by XZ = a+ bX; for all s = 1,....n and
a € R and b > 0 and defining

r—a

. . 1 <
gp(:r)ch( )—logb IFn(:r):EZl{Xigx}, r€eR
i=1

we have:
V(@i X ) = [ ele) By (o) +n [ exp (o) da
= n/(gp(m) + log b) dF,, (z) + n/exp (cp[(y — a)/b])lf1 dy
= U, (¢; Xy,...,X,) +nlogh. (3.7)
Consequently, minimizing the function ¥, (¢; Xy, ..., X,,) over all piecewise linear

functions ¢ with knots at some of the observations yields the same solution as
minimizing (3.7) w.r.t to functions ¢ (where this latter functions are also piecewise
linear with knots at some of the observation points). Because of this equivariance
we may and do assume from now on that

max p(r) = ¢(0) = —1. (3.8)

zeR

This will be convenient later on when we use |¢| > 1 as a weight function.
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3.3 UNIFORM CONSISTENCY OF f,

Let us introduce some notation. Define

pn = (logn)/n

and the uniform norm of a function ¢ on an interval I by
9115 = sup[g(z) .
zel

With T := [A, B] we always denote a fixed compact interval on R, where A < B.

The set of knots of ,, on an interval T' C R is written as:

S(En)NT = {s1,..., 5mm}-

A function g : T — R belongs to the Holder smoothness class H%L(T') with exponent
f € [1,2] and some constant L > 0 if for all 2,y € T we have

lg(x) —g(y)] < Llz—yl if =1,
d'(x) — ¢'(y)] < Llz—y/’" ifg>1.

Finally, convergence in probability and in law are written as —, and —p (equality
likewise).

Groeneboom, Jongbloed, and Wellner (2001b) proved uniform consistency of the
estimator of a convex density on (0, 00) as well as its rate of convergence of n=2/% at
a fixed point z, > 0 under the following smoothness conditions on the true density
i f'(xo) <0, f"(z,) > 0, and f" is continuous in a neighborhood of z,. The key in
the proof was the explicit characterization of the estimator }?n and a lemma about
pointwise consistency.

On the other hand, under similar assumptions, Diimbgen, Freitag, and Jongbloed
(2004) established a rate of uniform convergence of (log(n)/n)?® for concave least
squares regression using perturbation functions that are piecewise linear and con-
tinuous.

What we do here is transforming the latter result to maximum likelihood estimation
of log-concave densities under some Holder smoothness conditions on the true density
function f. We give theorems for uniform convergence on a compact interval, for the
density estimator ,]/‘;, the distribution function estimator ﬁn derived from it (Section
3.5), and the hazard rate estimator A, (Section 3.6).
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To conclude, we point out the difference to the general approach of van de Geer
(2000) to derive consistency and rates. While she uses entropy numbers for the fam-
ily of all potential density functions we consider a much smaller class of “caricatures”
for the difference between estimated and true density. Namely, our caricatures in

the proof of Theorem 3.3.1 are piecewise linear functions with at most three knots.

Theorem 3.3.1. Assume for the log-density ¢ = log f that o € H?(T) for some
exponent 3 € [1,2] and T a compact subinterval of {f > 0}. Then,

p (o0

1
» (p

-~

max (f, — f)(t) =

O 26+1))
teT
O

Y

~

max (f = f)t) =

e [A+pi£/(23+1)’pr;/(23+1)]

(
7ﬂi/(26+1)) _ (3.9)
Note that a concave function ¢ is automatically Lipschitz-continuous (i.e. Holder-

continuous with exponent 5 = 1) on any interval 7' = [A, B] with A > inf{yp > —o0}
and B < sup{y > —oo}. This entails:

Corollary 3.3.2. For any continuous log-concave density f,
1 fo = fllse = 0 and |[F, = Fl5 —, 0.

In the convex density case treated by Groeneboom, Jongbloed, and Wellner (2001b),
the rate of convergence of )?n to f at a fixed point (under the assumption § = 2)
is O, (n=%/). It would therefore be no surprise if the uniform rate in that situation
would be equal to the log-concave case, as generally the rate of convergence is slowed
down by a log-factor when considering uniform instead of pointwise convergence.
Furthermore, our proof for a uniform rate of convergence should be adaptable to
convex density estimation (where this result is still lacking).

3.4 DISTANCE BETWEEN CONSECUTIVE KNOTS
OF {,,: THE GAP PROBLEM
The next lemma about the maximal distance of two consecutive knots of @, plays a

crucial role in the proof of Theorem 3.5.1. However, it also deserves its own merits,
as it specifies how fast two consecutive knot points of ,, are approaching each other.
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Theorem 3.4.1. Let s; 1,8, € S(@n) be two arbitrary consecutive knots of p, on
T :=[A, B] where p € HP"(T) for some B € (1,2]. Assume ¢'(z)—¢'(y) > C(y—x)
for C >0 and A<x<y<DB. Then:

sup  (si —si1) = Oy (ﬂg/(4ﬁ+2))-
i=2,...,M(n)

This result completely corresponds to convex density estimation, as the rate of
convergence of two consecutive knots is of order root of the pointwise rate of the
density estimator (anticipating the log-concave pointwise rate from the uniform rate
in Theorem 3.3.1). However, there the knots are between observation points what
makes it much more difficult to receive a result that compares to Theorem 3.4.1. In
fact, in proving the result about the pointwise limiting distribution in Groeneboom,
Jongbloed, and Wellner (2001b), the distance about the distance of two consecutive
knots is the key result in the whole proof.

The situation is different for density estimation under a monotonicity constraint.
The Grenander density estimator ,]?G is the left-sided derivative of the least concave
majorant ﬁG of the empirical distribution function, implying that the jumps of the
estimator are at observation points. In Jonker and van der Vaart (2001) appears
a uniform rate of convergence for fG together with the distance between two con-
secutive changes of slope of ﬁG as a corollary of a more general statement about
monotone estimation with censored data. These two rates of convergence are equal,
up to a log-factor for the uniform rate, namely O, (n="/3).

In estimation of k-monotone densities, Balabdaoui and Wellner (2004d) derived the
rate of convergence of the difference between two consecutive knots in a neighbor-
hood of a fixed point z, > 0 only assuming that a certain unproven conjecture about
the upper bound on the error in a particular Hermite interpolation problem holds
true. Clearly, as k-monotone densities are a generalization of convex decreasing den-
sities, the whole limiting distribution theory again relies on the solution of the gap
problem and therefore on the abovementioned conjecture. Note that Balabdaoui
and Wellner introduced the term “gap problem”.

Theorem 3.4.1 solves a gap problem in log-concave density estimation, via some
relatively fundamental geometrical considerations (see the proof of the theorem on
p. 57). However, the crucial point in our case is that the knot points of the estimator
©n are at some of the observations X;, and not strictly inbetween as in all &~-monotone
cases for k > 2.
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3.5 UNIFORM CONSISTENCY OF F,,

Note that log-concavity is preserved under integration, see Bagnoli and Bergstrom
(1989 and 2005, Theorem 1). Using Theorem 3.3.1 together with Theorem 3.4.1 and
a theorem elaborated in Stute (1982) about the modulus of continuity of a uniform
empirical process, one can deduce an at least rate of convergence for the difference
between the integrated density estimator ﬁn and the empirical distribution function
F,. Two things are important to note. First, the proof of the theorem reveals
why the case f = 1 has to be excluded. Second, additionally to the conditions
in Theorem 3.3.1, the derivative of the log-density, which is well-defined (because
£ > 1), has to be bounded from below.

Theorem 3.5.1. Assume ¢'(z)—¢'(y) > C(y—=x) for C >0 and A<z <y < B.
Suppose that p € H?T(T) for some 3 € (1,2]. Then,

max (ﬁn o IE‘n)(t) = 0p (nil/Q)’

teT

F, — F = ), 1
te[A+p§L/(46%?’);7pg/(45+2)} n = F)®) % () (8.10)

The interval in (3.10) is slightly shorter (for finite n) than that in (3.9). This ensures
that we have at least one knot between A and the place where the maximum occurs
(same for B).

Using Theorem 3.5.1 together with the well known Dvoretzky-Kiefer-Wolfowitz in-
equality (Theorem A.3.1) we easily get the following corollary.

Corollary 3.5.2. Under the same assumptions as in Theorem 3.5.1 we have:

~

F —F — ~1/2y
te[A+pg/(4ﬁrg§iy);7pg/(4ﬁ+z)} ‘( n )(t)‘ Op (TL )

In most simulations we looked at, the estimator ﬁn satisfied the inequality
IE, — Bl < NIF —Falls. (3.11)

However, one can construct counterexamples showing that (3.11) may be violated,
even if the right hand side is multiplied with any fixed constant C' > 1. The latter
findings are in contrast to “Marshall’s Lemma” about the Grenander estimator Fi,.
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Lemma 3.5.3 (Marshall (1970)). Suppose that F is concave on [0,00) such that
F(0) =0. The least concave majorant Fg of T, then satisfies:

1B = PR < ||F, — PR

Note that the distribution function estimator ,]/‘\G corresponding to ﬁg is a piecewise

constant monotone decreasing function. Kiefer and Wolfowitz (1976) showed that
|Fe ~ Bl = opn *(logn)™/?).
Kulikov and Lopuhaé (2005b) derived the limiting process of

Ga(t) = n2? (ﬁg(t) _F, (t)) .
te[0.1]
Note that ﬁG is quite well accessible through its characterization as concave majorant
of F,,. However, to derive similar results in the log-concave (and convex) case one
has presumably to rely on the characterization of the estimator given in Theorem
3.2.3.
Theorem 3.5.1 assures that essentially the empirical distribution function and the
estimator ﬁn are equivalent up to a fast rate, at least on a fixed compact interval 7.
Together with Theorem 3.5.4 this reveals a remarkable advantage of the log-concave
density estimator over kernel estimators. If the latter are constructed with a non-
negative even kernel and a bandwidth of optimal order O(n~'/%), then the uniform
distance between integrated density estimator ﬁn,h and the true distribution function
F'is only of order Op(n*2/5), i.e. even worse than the simple empirical distribution

function while in the log-concave case the parametric rate O,(n~'/?) is attained.
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Theorem 3.5.4. Let k be a nonnegative and symmetric kernel and K its normalized
integral:

K(r) := /T k(x)dx  such that K(oc) = 1.

o0

For a bandwidth h = h(n) such that h | 0 and nh — oc, the integrated kernel density
estimator is defined as

Funla) = /R K(z — y)dF,(y)

for any x € R. Then, if the true density f has bounded derivative f' at any fized
x, € R,

Funles) = F(a,) +0pln ) + Oy(W*f(x,)). (3.12)

If f' is strictly positive at x,, choosing h = O,(n=/°) in (3.12) yields:

~

Fon(z,) = F(x,)+ Op(n’2/5).

3.6 A MONOTONE HAZARD RATE ESTIMATOR

The estimation of a monotone hazard rate is already described in the book by
Robertson, Wright, and Dykstra (1988). They directly solve an isotonic estimation
problem similar to that for the Grenander density estimator.

Recently, there has again grown some interest in the estimation of a monotone hazard
rate, see Hall et al. (2001) and Hall and van Keilegom (2005). Methods used there
relied upon suitable modifications of kernel estimators and Silverman’s “increasing
bandwidth” approach, proposed in 1981. However, with the aid of Lemma 2.3.1 and
defining

/)\\n(x) = L}) forz < X,

1— F,(x)

yields a simple plug-in monotone hazard rate estimator and gives raise to the fol-
lowing theorem.
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Theorem 3.6.1. Under the same assumptions as in Theorem 3.3.1 we have that Xn

is a non-decreasing function on (—oo, X,,). Furthermore,

teT n

-~

max (’):n — () = 0, (pﬁ/(2ﬁ+1)) :
A=X)(t) = O (p/*7HY).

max
e [A+p111/(2ﬂ+1)’pr}l/(w%-l)]

Find graphical illustrations for all the estimators fn, On, ﬁn and /)\\n in Chapter 4.
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3.7 PROOFS

Before coming to the proofs let us mention that vectors in R" are written as

x = (x1,...,2,) and that the Ly-norm for a vector € € R" is defined as
n 1/2
el = (3 a2) "
i=1

Existence and uniqueness

Proof of Theorem 3.2.1. We start with proving piecewise linearity of ¢,. Fix
an arbitrary concave function ¢ with ¥, (¢) < oo, and define ¢ by requiring that
o(X;) = o(X;) foralli = 1, ..., n, while ¢ is linear between successive observations.
Further let » = —oc outside [ X7, X,]. The concavity of ¢ then entails that ¢ > @.
Consequently,

(@) < Wa(yp) (3.13)

with strict inequality unless ¢ = ¢. Thus minimizers of ¥,, must have the form of
P©.

In order to prove existence of @,, we only consider concave functions ¢ satisfy-
ing the constraints just derived. Moreover it suffices to consider the case that
[expp(z)ds = 1. For if ¢ = ¢, + ¢ with exp(p,) being a probability density
and some number ¢ # 0, it follows from (3.2) that

U,(p) = W,(p,) + n(exp(t) —t— 1) > U, (p,).

For the remainder of this proof, any such function ¢ is identified with the vector

P = (gp(Xl))n € R".

1=

Note that the functional ¢ — W, (¢) is continuous. Thus for the existence of a

minimizer it suffices to show that
U, (p) — o0

whenever |||l — oc. For that purpose, let (o)) | be a sequence of such vectors

satisfying

lo™]l2 — oo
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and

QOEk) N fyie[_oo,oo] forizl,...,n.

Suppose first that v; < oo for all i. Then v; = —oco for at least one index 7, so that
U, (®)) =30 cpl(k) + n tends to infinity.
Secondly, suppose there exists an index j with v; = oo. Let j > 1. The piecewise

linearity of the function ¢*) entails that

1 > /Xj exp(go(k)(x)> dz

Xj—l
1 —exp (=9
= (X, — X,_1)exp (wﬁk))—ék( )
> (X5 = X ) exp () (1+3)

where 0 := cpg-k) — gogli)l. The latter inequality is a consequence of
1—-e™®

> for x > 0.
T 1+

Thus ¢ is bounded from below by (X; —X,_4) exp(cpg-k)) — 1. Consequently, v, = oo
entails that

k k k
—sog)—wﬁ-fl = —290§)+6k
k k
> 200" 4+ (X; - X;_p)exp(p}”) — 1
—  0OQ.

;k) — cpg-li)l tends to infinity. These considerations

Analogously, if j < n, then — ¢
show that W, (¢*) — oo.

For uniqueness observe that W, is a strictly convex functional in ¢ in the sense that
W (1= 2" +A6%) < (1= )W () + AW ()

for A € (0,1) and concave functions @', p* : R + [—oc,0c) such that [exp¢’ <
oo and Leb{p' # ¢*} > 0. This is a consequence of the strict convexity of the

exponential function. O
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Characterizations

To simplify notation in the following proofs, let us introduce three function classes.
For a concave function g, : [X;, X,,] = R, let D!(g,) be the class of all functions A
such that g, +tA is concave for some ¢ > 0. Define D?(g,) as the family of piecewise
linear (not necessarily continuous) functions A such that any knot ¢ of A has one
of the two following properties:

g € S(g,) and A(q) :lil;n_glfA(r), (3.14)
A(q):liir;A(T) and A'(g—) > A'(g+). (3.15)

Finally, D3(g,) shall be the subset of D?(g,) consisting of all continuous and piece-
wise linear functions with knots only in S(g,). See Figure 3.2 for two examples of
admissible perturbation functions in D?(g,).

Figure 3.2: Two examples for admissible perturbation functions A € D?(g,,).

In Theorem 3.2.2 perturbation functions A € D!({,) are used to characterize the
estimator ¢,,. We can generalize and specify inequality (3.3) to the even more general

classes D?(3,) and D*(3,), see the following lemma.

Lemma 3.7.1. Inequality (3.3) is also valid for functions A € D*(p,). For func-
tions A € D*(@,), we even get an equality.
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Proof of Lemma 3.7.1. Suppose that A € D?($,,). In this case there are contin-
uous, piecewise linear functions Ay for £ € N converging pointwise isotonically to A
and having the following property: Any knot point g of Ay either belongs to S(%,),
or AL (g—) > A} (qg+); see Figure 3.3.

Figure 3.3: An example for an admissible perturbation function A and some approxima-
tions Ak

Thus @,, + tA is concave for sufficiently small £ > 0. Consequently, since A; <
A < A for all k, it follows from dominated convergence (Theorem A.1.1) and (3.3)
that

k—o0

/A dF, = lim | AxdF, < klim Ak(r)ﬁ(r) dz = /A(r)ﬁ(r) dz.

Finally, if A € D*(,,), one may apply (3.3) to +A and obtains equality in (3.3). O

Proof of Theorem 3.2.2. First suppose ¢, is a minimizer of W,,. This entails for
any function A € D'(g,) that the corresponding directional derivative of ¥, must

be non-negative:

0 < lim \Ijn((ﬁn + tA) - \Ijn((Pn)
10 t

- n(—/Alen +'/A(a:) exp G (x) d).
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As for the other direction let g be a concave function such that ¥, (g) < oo and
define g(r) — @, (r) = 0 for r € {—o00,00}. Then:

n (Wale) — aln)) =

= [exvgto)ds~ [ (o0) - u(@)) dEs(o) ~ [ Fola)da
_ /exp (g(x) - @n(.r)> fo(2) do — /(g(l‘) - gbn(:v)) dF, (z) — /fn(:v) dz
)

> / (14 9() ~ Gule)) Fulw) do / (5(2) — Bula)) dF (@) — / fulw) d
— /(g(:r) - 95n(x)>.fn(x) dz — /(g(x) - cﬁn(:r)> dF,, () (3.16)

by the inequality exp(z) > 1+ z for x € R. But the class of functions

{9~ @u, g concave}

is equivalent to the class D'(g,), so (3.16) is only positive if (3.3) holds for all
functions in D'(p,), entailing that @, is effectively the minimizer of ¥,,. O

Proof of Theorem 3.2.3. First, we provide a formula about integration of a special
class of functions. Assume G to be an arbitrary distribution function. Suppose
A : R — R can be written as follows.

Az) = A0+/I A'(t)dt

where A’ is a bounded and measurable function with bounded support. Then, using

Fubini’s Theorem:
/AdG(T) = AO—F//AI(t)l{tQU} dth(Z)
R R JR

- Ao+/RA’(t)</Rl{t<x} dG(.r)) dt
= Ao—l—/A’(t)[l—G(t)]dt. (3.17)

Equality (3.17) is specifically valid for piecewise linear and continuous functions A
with bounded support.
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Suppose @, is a minimizer of W,,. Then inequalities (3.4)-(3.6) follow from Theorem
3.2.2 applied to

Ay(z) = min{(b—x).,b—t}
== (b—t)+/ _1{t§T§b} dr

and

Ay(z) = min{(z —a)y,t—a}

= / HNa<r<yy dr

and remembering that a,b € S(,,).

As for the other direction let us just continue calculations in (3.16) as follows. Recall
from the proof of Theorem 3.2.1 the function g which is concave and piecewise linear
with knots only at the observations Xi,..., X,,. Using inequalities (3.13), (3.16),
the assumption F,,(X,) = 1, and (3.17) then yields:

7 (Wale) - WalEa) = m 1(%@)*%(@”))
> [ (90) - u(o) Fow) do — [ (90a) = (o)) dE, (@)
= [ (Fute) - A ))(g'(m)—@ﬂx))dx
- / / E@) ded(g0) - g,(0)

using integration by parts where ¢’ and ¢, can be interpreted as left-sided deriva-
tives. Note that the outer integration over d(g'(¢t) — @,(¢)) is just a sum over the
knot points. The assumption on ¢, entails that

/ X /X (o) = (o)) a0 -

= Y @6 -do) [ (R F@)ds
5€S(¢n) X
= 0
by (3.6). Define for i = 2,...,n the right-most knot of @, left of X; as

s; = max{s; € S(¢y) : 55 < X;}.
j



40 3 MAXIMUM LIKELIHOOD ESTIMATION

n

"= g'(X;+) — 7' (X;) <0 and use the calculations from above to get:

Introduce g;

nt (nl9) = Wa(@n)

> [X" (Ful@) - Fuw) dudg'(t)

= > (=a) [/Xs (IFn (z) — Nn(:r)) de + /SY (IFn . Fn(:p)) dg;]
>0 ’
by (3.4) and (3.6). 0

Uniform consistency of }?n

Proof of Theorem 3.3.1: The proof consists of several lemmas. To lift the fog
spread by the technical details, we summarize the ingredients. First, define D,, as
the family of all piecewise linear functions on R with at most m knots. Second,
verify that the class D,, indeed contains useful perturbation functions (for a fixed
m, Lemma 3.7.3) in the sense of providing sufficiently accurate “caricatures” for
the difference ¢, — ¢. Finally, bound the moment generating function of a random
variable specified there (Lemma 3.7.5) to show that the supremum norm of a suitably
weighted empirical process (w,(A) [[Ad(F, — F))aep,, is bounded in probability
(Lemma 3.7.4). This last step is done by approximating elements of D,, by linear
functions from a finite family (Lemma 3.7.6) to be followed by some bracketing
argument. Finally, to prove the theorem, use Lemma 3.7.2. This claim about
the difference of two concave functions (one of which is sufficiently smooth) was
introduced in slightly different form in Diimbgen (1998, Lemma 5.2) and readopted
in Diimbgen, Freitag, and Jongbloed (2004, Lemma 2). For completeness, we also
give a proof of this lemma.

It is important to note that thanks to inequality (3.3) we can concentrate our at-
tention in Lemma 3.7.4 on the rescaled supremum of the standard empirical process
(F(t) — F, (t))ser rather than having to deal with (F(t) — Fj(¢))er, what in fact
would be a much more difficult task.

Recall that, according to (3.8), ¢ is assumed to satisfy ¢ < —1. In order to be able
to state the following results rigorously we define two auxiliary quantities for any
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function A on the real line:

W) = /el o= ([ h(m)?dF(m))l/Z.

The first key ingredient in the proof of Theorem 3.3.1 is a statement about the
difference of two concave functions, one of which is sufficiently smooth.

Lemma 3.7.2. For any € [1,2] and L > 0 there exists a positive constant
K = K(f, L) with the following property: Suppose that g and g are concave and
real-valued functions on a compact interval T = [A, B], where g € H*"(T). For any
£>0let 6 := Kmin{B — A,¢'/#}. Then

sup(g —g) > € or sup (g —9) > ¢
teT te[A+6,B—0)

implies that

inf G g)(t) > /4 or _inf (g 9)(1) > /4
tefe,c+4] tefe,c+4]

for some ¢ € [A, B — {].
This is followed by the specification of “useful” perturbation functions A.

Lemma 3.7.3. Let ¢ — ¢, > € or p, — ¢ > £ on some interval [c,c+ 0] C T with
length & > 0. Then there exists a function A € Dj each knot of which satisfies
condition (3.14) or (3.15) and a positive constant K = K(f,T) such that

On—@ < —eA if op—@, >¢ on [c,c+ ]

(3.18)
On—p>—eAif p, —¢@>¢e on [c,c+ 4],
sign(A) = sign(p — @,) on {z : A(z) # 0}, (3.19)
A < 1 onR (3.20)
c+6
/ A*(z)dx > §/3, (3.21)

W(A) < K(f,T)max{1,6 "*}o(A). (3.22)
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Lemma 3.7.4 shows that [, is close to F' uniformly over the function class D,,.

Lemma 3.7.4. For any « € [2/3,1) there exists a constant B = B(k, f) such that

|[Ad(F, — F)|
Sp(m) = sup — <B
AeDm o(A)m!2py* + W (A)mps

with probability tending to one as n — oc.

The additional term W (A)mp! in the denominator is necessary to prevent S, (m)
from becoming “too big” in case o(A) is very small. This latter problem can occur
when the perturbation function A has small support.

Proof of Theorem 3.3.1

Now, to prove the theorem let G = G(k, f,T) > 0 be a generic constant whose
value may be different in different expressions. Since the exponential function is
Lipschitz—continuous on any halfline (—oc,m|, we may and do replace (f, f,) with

(¢, Pn). Suppose that

sup (@, — ¢)(t) > C¢g,

teT
or
sup (o —@a)(t) > Cey
for some C' > 0, where ¢, := pg/(wﬂ) and 9, = pqll/(w“) = &/? 1t follows

from Lemma 3.7.2 with £ := Ce¢, that for sufficiently large n and C > K(f,T) ?,
there is a (random) interval [c,, ¢, + 0,] C T on which either @, — ¢ > (C/4)e,
or ¢ — @, > (C/4)e,. But then by Lemma 3.7.3 there is a (random) function
A, € Dy C D?*(p,) fulfilling (3.18)-(3.22). For this A, we have by (3.3)

/R An(z) d(F — F,)(x) > / An(@)(f — Fu)() da
- / Au(2) (@) (1~ expl@ax) — p(a)]) da (3.23)

From (3.18) and the assumption above we get on the interval [c,, ¢, + d,]
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it o, —¢ > (C/4)e, and

it p — 9, > (C/4)e,. This together with (3.19) and the fact that the function
1 — exp(z) is decreasing for € R implies that (3.23) is not smaller than

/ M) () (1~ expl- (C/4)anAn(:r)]> dz =
4(Ce,) /A l—exp[ Az )]) d

with A, 1= (C/4)e,A,. Using Taylor expansion one can verify the inequalities

x? ifz <0
[l —exp(—x)] >
2?/(1+z) ifz>0.

Combining this with the above derivations yields

[ Aute)dr =) =

)L A2 () f () du s )1 A%(x)f(x) "
et [ Mwswdrrace)t [ B
2 (C/4)en 200 () da
M| M@ mram [ M@
(C/4)en
— 14 (C/4)e,
by (3.20). This entails, together with (3.21) and (3.22),

Jie An(z) d(F = F,)(x)
3120 (An) il + 3W (A,) s
(0/4)571 2(An)
(3120 (An)pil® + GO 120 (M) pt) (1 + (C/4)e,,)
GCeno(A,)
(on'” + 602 p) (1 + (C/4)en)
CGe, 0.
(on” + 622 p5) (1 + (C/4)en)

vV

02(An)

Su(3) >

v
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Consequently, the fact that S,(3) < B(k, f) implies
C < Glp>+8,pp)e, "6, 2 (14 (C/4)zn)
wherefrom we deduce

C < G(1+ pZ’(ﬂ“)/@ﬁ“))(l _ Gpg/(%’ﬂ) _ szfl/(%ﬂ))*l

= 0O(1).
Now the assertion follows from Lemma 3.7.4. O

Proof of Lemma 3.7.3. Again, the proof of this Lemma is very much inspired by
that of Lemma 3 in Diimbgen, Freitag, and Jongbloed (2004). It is worth noting
that here we are also incorporating non-continuous functions, what brings down the
number of knots which are necessary for the A’s from 6 to 3. The crucial point in

all the cases we have to distinguish is to construct a A € Dj satisfying (3.18).

Case 1: Let &, — ¢ > € on [¢,c + ¢]. Then a function A € D; will do. From

Theorem 3.2.1 we know that §,, is piecewise linear.

Case la: Suppose [¢,c+I]NS(@,) contains (at least) one point X,. Then we
force A € Dj to have knots at ¢, X,,, c+9d, where A = 0 on the set (—oc, ¢|U[c+0, 00),
and A(X,) = —1. Requirements (3.18), (3.19), and (3.21) are readily verified. To
establish (3.22) note that W (A) < [|A]E < 1.

Case 1b: Suppose [c,c+ ] NS(P,) = 0. Let (co,d,) D (¢, ¢+ d) be the maximal
open interval on which ¢ — @, is concave. Then there exists a linear function
A < 0 such that A > ¢ — 3, on (¢,d,) and A < —¢ on [¢,c + 6]. Next let
(c1,dy) == {A < 0} N (¢y, d,). Now we define A € D, via

0 ifx e (—o0,¢)U(dy, 00),

Alx) =4 _
AJe if x € [eq,dy].

This function A satisfies ¢ — @, < ¢A < 0 on [X;, X,], what establishes (3.18)
and (3.19). As for (3.21) note that |[A| > 1 on [¢,c + d]. In order to verify (3.22)
introduce P, the class of piecewise linear functions such that for every element of P
the interval [c, c+ d] is fully contained in its support. Let us assume for the moment
that

A
sup rnin{l,(5}1/2M (3.24)
6>0,AEP o(A)
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is unbounded. But then there exist sequences ¢,, and A,, such that

W(A,)
U(An)

as n — 0o. Furthermore, assume w.l.o.g. that A,, can be written as

B
An(2) = Z——(2 = cn)l{cr<acan)

min{1, 5, } /2

for sequences f3,, ¢, and d,,. Since W and o are both semi-norms, 3, can be set to
1 for all n. As for the other sequences we have 6, — 6 € [0,1], ¢, — ¢; € [—o0, B],
and d, — d; € [A, oo]. Elementary calculations yield:

dn

An(@)f(e)de > 37 min f(z)(dn — ca)

= G(d, —cn).

Since by Lemma 2.2.1 and equivariance (see Section 3.2) for z € R

lp(x)] > max{1, —a, + b,|z|} (3.25)
we can write:
_ W(A,) G min{1,6,}'/? r—c
1(5n 1/2 n < »Yn n
min{1, o} o(An) T (e — )2 acieby max{1, —a, + by|z|} (dy — cn)

= Rl(fa T: 671: Cn, dn)

Note that this latter function is continuous in its last three arguments. Now, assum-
ing that ¢, — ¢1,d, — ¢ for ¢; € T immediately entails that ¢, — 0. But then, as

n — 00,

G
R T 671: nad” S
l(fa J ¢ ) max{l,—ao+bo‘cl|}

= G.

If one considers either the case ¢, — —o00,d,, — d; € [A,0),0, — ¢ € [0,1] or
Cn — €1 € (—o0, B, d,, — 00,0, — 0 € [0,1] one even gets that

Rl(f,T,(Sn,Cn,dn) - Rl(faT)
— 0.
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But these considerations imply that

W(An)

o(Ay)

is at least bounded, what contradicts assumption (3.24). This establishes (3.22).
For an illustration consult Figure 3.4.

min{1, §, } /2

Figure 3.4: The perturbation function A in Case 1b.

Case 2: Let o — ¢, > ¢ on [c,c+0]. Let [c,, c] and [c+ §, d,] be maximal intervals
on which @, is linear. Then define

0 if z € (—00,¢,) U (dy, 20),
Alz) =9 14 Bi(z —3,) if 7 € [co, 2]
1+ Bo(r —x,) ifx €z, d,),
where z, := ¢+ 0/2 and $; > 0 is chosen such that either
A(c,) =0 and (o — @n)(co) >0  or

(QO - @n)(co) <0 and Slgn(A) = sign(gp - @n) on [Co: xo}'
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Analogously, # < 0 is chosen such that

(30 - @n)(do) 2 0 or

A(d,) =0 and
sign(A) = sign(p — @) on [z,, do).

(90 - @n)(do) <0 and

By construction (3.18) and (3.21) are ensured. Moreover, fCCMA(.r)de > §/3.
Figure 3.5 gives an example. In order to verify (3.22) one can now apply the same

reasoning as in Case 1b. Suppose that

sup min{l,&}lmw (3.26)
§>0,A€P o(A)

is unbounded. Then there exist sequences 9,, and A,, such that

- 12 W(An)
min{1,8,}" oA

as n — oo. For sequences ¢, x,,, d,, b1, B2, Write

An(l') = [1 + /81,71(:1j - xn)]l{cngwgmn} + [1 + /82,71(37 - xn)]l{wngmgdn}

= Ap,(x) + Ay p(x)
where 6, — § € [0,1],¢, = ¢, € [—00, B|,x, = ¢, +d,d, — d, € [A, 0], Br, — i,

and f,, — (. Define the function R, as follows, again using (3.25),

min{1, (5n}1/2 IZ((AA;"))

min{1, (Sn}l/QHAl,n/QOHIi

1/2
(i 2%, (0) f () dz
Gmin{1,0,}"? sup,ero, 4 [(1+ Brn(x — 2,))/ max{1, —a, + b,|z|}]

< 1/2
((:En - Cn) + /Bl,n(xn - Cn)2 + 612,71(1"71 - Cn)3/3)) /

=. Rg(f, T, 671, ﬁl,na Cn, l‘n)

Again, Ry(f, (1, ¢y, ,) is continuous in its latter four arguments. The first case to
look at is the following: ¢, — ¢, z, — ¢, (immediately implying 6, — 0) and
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Bin — oo. But then Ry(f, T, 6y, Bin, Cn, n) is not bigger than

GO D, [(1+ Brnd) max{1, —a, + by}

((xn — ) + Brn(wn — €a)2 + B2, (20 — Cn)3/3))1/2

_ Gy + GO By

= (O + Brad2 + B57,03/3)1/2

B G G
(1 + Biuby + B57,02/3)1/2 i (Biadn? 4 Bindyt +1/3)12
< G

as n — oo. If on the other hand 3,, — 0, then

G621 + o(1))

0u* (14 Bunbn + 52,,02/3)1/2
e

RQ(f: TJ 671761,717671737“) =

as n — oo. Finally, if £, — £ € (0,00), then Ry(f,T,0,. 1 n,Cn.tn) = G.
Similarly one can deal with the settings ¢, —» —oc, 2z, — x, and ¢, — ¢,, x,, — 00,
both these cases analyzed as above regarding the behavior of the sequence /3 ,. All
this cases together yield that the function Ry(f, T, 0n, f1.n, Cn, Ty) is either bounded
by a constant only depending on f and T or going to 0 as n — oo, contradicting
(3.26). As in Case 1b this implies that

W(Al,n)

mingl. 00} o

is bounded by a constant only depending on f and 7. As a consequence we get
W(A,) < Gmax{1,0,} "?o(A,).
Similar considerations apply to Ay,. Noting that

W(A,) = max{W(A,), W(As,)}
< Gmax{l,én}*l/2 max{o(A,),0(Ay,)}
< Gmax{1,d,} ?0(A,)

verifies (3.22). O
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Figure 3.5: The perturbation function A in Case 2.

In order to prove Lemma 3.7.4 we derive first an auxiliary inequality for the moment

generating function of a random variable with bounded exponential moment.

Lemma 3.7.5. Let Y be a random variable such that IE(Y) = 0, IE(Y?) = 02 and
Eexp(|Y|) <14 C. Then for arbitrary A € (0,1) and t € R,

O'2t2 0_2)\017/\617/\“‘3

E tY) < 1 .
e B (IS Ve e

This entails the following result for finite families of functions:

Lemma 3.7.6. Let H, be a finite family of functions h with 0 < W(h) < oc
such that #H, = O(nP) for some p > 0. Then for any fixed A € [0,1), k =
(2—X)/(3—2\) € [2/3,1) and sufficiently large D,

Jha(F, — F)
lim IP | max 72 >D | = 0.
noee \ MM g (h)pn” + W (h)p;
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Proof of Lemma 3.7.4. At first we consider the family # of all functions h of the

form
h(z) = liesy(a+ bz)

with any interval J C R and real constants a, b such that A is nonnegative. Given this
family H we show now that for each x € [2/3,1) there exists a constant C' = C(J, f)

such that
hd(F, — F
sup J 1/2( ) < C (3.27)
e o (h)pd ™+ W(h)pj

with probability tending to one as n — oo. Again, since W(-) and o(-) are semi-

norms, we may replace H with the subfamily , of all functions A € H such that
Wi(h)=1.

Now we use a bracketing argument. Let
-0 = tn,O < tn,l << tn,m(n) = 00,

and define I, ; := (¢, ;_1,t,,] for 1 < j < m(n). Here the points ¢, ; are chosen such
that

tn,j

[ @i < o

tn,j—l
with equality for j = 1 and j = m(n). According to Lemma 2.2.1, the integral of
@*f is finite. Thus we may and do assume that m(n) = O(n). Moreover the last
two inequalities in Lemma 2.2.1 imply that

t.j)| = O(logn).
(max ()] (logn)

For any h € H, we define functions h,, ¢, by, as follows: Let {j,..., k} be the set of
all indices ¢ € {1,...,m(n)} such that {h > 0} N I,; # (. Then we define

hn’g(.’li) = 1{tn,j<IStn,k71}(C+d:E)
and
hnu(x) = lger, o1, 31+ [2])

+ 1{tn,j<$§tn,k—1} min(C + d,E + n71/27 ]' + |80(l‘)‘)7

1/2

where ¢,d € {zn="? : 2z = 0,1,2,...} are chosen as large as possible such that

hne < h. Figure 3.6 illustrates the situation.



3.7 PROOFS 51

1+ 2] /

Figure 3.6: Construction of the brackets for h.

One easily verifies that 0 < h,,, < h < h,,,, W(h,,) =1 and
(I(h,n,u - h,n’g)Q S 377,71.

Moreover, the set Hy, := {hn s, oo h € H,} consists of O(m(n)*nlog(n)?) = o(n*)
different functions. For there are less than m(n)? possibilities for the index pair

i, k) and at most (n'/? max; [¢(t, ;)| + 1)? possibilities for the pair (c, d).
J J J

It follows from Lemma 3.7.6 that for some suitable constant D = D(k, f),

- [ hd(F, — F)|

(3.28)
netn o(h)py” + p

with probability tending to one as n — oco. But for any h € H, the inequality (3.28)
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entails that

/hd(an P < /h aF, — /hn,ldF
_ / B d(F, — F) + / (o — hog) AF
D(U(hm’u)p,l/2 + pﬁ) + 3L/2 12

D((O’(h) + :31/2Tfl/2)p711/2 + pﬁ) + 312712
< (D+1)(a(h)p)” + o)

IN

IN

for sufficiently large n. Thus we may take C' = D +1 in (3.27). In order to complete
the proof of Lemma 3.7.4, consider any A € D,,,. There are m’' < 2m + 2 disjoint

intervals on which A is linear and either nonnegative or nonpositive. Thus we may

A = i Aih;
j=1

with functions h; € H having disjoint support and numbers \; € {—1,1}. Conse-

write

quently,

’

Q) = Y alh),

=1

<

Thus (3.28), together with the Cauchy-Schwarz inequality, entails that

‘/Ad(IFn —F)‘ < i‘/hjd(lﬁ‘n —F)‘

!

C(a(hy)pl/ + W (hy)p;)
1

IN

j:
O3 alhy)p® + W (a)m'pf)

j=1

C 8yl 4 W ()t

IN
3

IN
[

IN

4C (cj(A)ml/Qp}/2 + W(A)mpﬁ)

what concludes the proof. O
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Proof of Lemma 3.7.5. Note first that

o tk k 2t2 ‘t|k
Bexp(ty) = Y B0 <1+—+Z E([Y]").
k=0

It follows from Holder’s inequality that

E(|Y %) E(Y|*Y[F*)  (for 0 < a< k)
E(|y|a/)\))\ E(‘Y‘(kfa)/(lf)\))lf/\

0_2/\ E(\y|(k72)\)/(17)\))17/\ (lf o = 2)\)‘

IA

Moreover, for £ > 1,

E(YY = E(lexp(¥)  )—1 ) < Cmax L < e
exp(|Y]) -1/ — y>0 eV —1 — '
For

d yt (e =1 —yev/l)

dyev —1 (ev —1)2

is strictly positive on (0, z) and strictly negative on (z,00), where z satisfies the
equality e* — 1 = 2¢*/¢. Hence the maximum of y*/(e? — 1) over all y > 0 is not
greater than the maximum of ¢z/"'e ™ over all z > 0, and the latter maximum

equals (¢ — 1) Te! =t < (fe'~*. Consequently,

k2)\

t 2/\ 1)\1)\ ‘t|
Eexp(tY) < 1+T+ C Z (

_ t 2/\ 1)\1+)\ ‘t|
_1+T+ C Z (

)
)’f 2k

IN

k
o O1-A 1+>\Z‘ 72>\( )\) ok
o’t? A T-A T\ |t] k ket
< 1+—2 + o220 e Z(1f,\) o

I YL ,\2( 2] )

2t2 2)\01 A 1 )‘|t‘3

5 T T

IN

= 1+
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Proof of Lemma 3.7.6. Since W(ch) = ¢W(h) and o(ch) = co(h) for any h €
‘H, and arbitrary constants ¢ > 0, we may assume without loss of generality that
W(h) =1 for all h € H,. Note that now |h(x)| < |p(z)|. Hence it follows from
Lemma 2.2.1 that

Bexp (o h(X) = (X)) < C, = explts T o(X) ) Bexp(tolo(X)),

which is finite for 0 < ¢, < 1. Thus Lemma 3.7.5, applied to Y := t,(h(X)—1E h(X)),
implies that
(h)*t* | Cro(h) |t

2 (1= Calt])+

Eexp[t(h(X)—IEh(X))] - lE((t/to)Y> < 1+7

for arbitrary h € H,, t € R and constants C},Cy depending on A, t,, C,. Conse-
quently,

n

Bexp(t [ hd(E, = ) = Bexp((t/n) S (1) - EA(X))

= (Bexp((t/n)(h(X) ~BR(X))))"
a(h)242 C’la(h)m\ |3 n
: <” pane i —cg|tjn>+>

§ oW Cro(h) P
= P\ T T2 Goltln), )

Now it follows from Markov’s inequality that

IP(/h,d(]Fn - F)‘ > n) < 2exp <J(Z‘:t2 + nQ((ilJ(?:/tZ)+ - tn> (3.29)

for arbitrary t,n > 0. Specifically let n = D(J(h,)p}l/2 + pf) and set

1/2
npn .
ti= ———— 5 < npl " = o(n).

Then the bound (3.29) is not greater than

2 exp o(h)?logn Cro(h)* py/* logn “Dilogn
200(h) +pi )2 (o(h)+ pr P = Capl )
1 Cy
< 2exp{(§ + 0= Copi®), D) logn] = 2exp<(0(1) — D) logn).
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Consequently,

‘fhd@n—Fw
IP | max 72 > D
et o(h)pn' ™ + W(h)py,

< #’Hﬂexp((O(l)—D)logn) = O(l)exp((O(l)—i—p—D)logn) — 0

as n — 0o, provided that D is sufficiently large. 0

Proof of Lemma 3.7.2: Define the linear approximation to g at ¢, for t € T" as:

- g(to) if ﬂ - 17
g(t) =
glto) + g (L)t~ 1) B> 1,

The assumption that g € H?L(T) then implies for 3 =1

@ —9)t)| = lg(to) —g(t)] < LIt — 1, (3.30)
and for § > 1
(@ 9B = lg(te) — g(t) + g'(te) ([t — L)
< [ - e
< Ll%u%ﬁlmL
< (L))t 1|7, (3.31)

Case 1: Suppose that one has (g — g)(t,) > € for a t, € T such that, without loss
of generality, t, < (A+ B)/2. Let 0 < < (B — A)/8.

Case 1a: Assume that (§—9)(t,+0) > /2. Since g—g is concave with (§—9)(t,) =
(G — g)(t,) > ¢, it follows that (g — g)(t) > &/2 for all t € [t,,t, + 4]

Case 1b: On the other hand, let (g — ¢)(t, + ) < £/2. The slope of § — g right of
to+ 0 is then at most that of the line through (g —g)(t,) and (g —¢)(¢, + ), namely
—&/(26). This means that (g — ¢)(t) < —¢/2 if only t > ¢, + 30.

Summarizing Cases la and 1b, we learn that there exists an interval .J C [¢t,,t,+ 40]
of length ¢ such that for all t € .J we have |g — g| > £/2. By the triangle inequality
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we get £/2 < |[g—g| + |g—g]. Using Inequalities (3.30) and (3.31) this finally entails
that

G—gl > e/2—(L/B)(46)".
The expression on the right is at least £/4 if

§ < (B/L)VP4~"1BE = K\ (B, L)',

Case 2: Now assume (g—9)(t,) > € forat, € [A+J, B—§] where § € (0,(B—A)/2].
Thus, from (3.30) or (3.31) it follows the existence of v, such that

g(t) o g(to) > Vl(t o to) o (L/ﬁ)‘t o to‘ﬁ

and from the concavity of g that of v, with g(¢) — g(t,) < va(t — t,). Together this
yields

(g=9)t) > e+ —wa)(t —to) — (L/B)|t — t,|" > e — Lo&°

for all ¢ either in [t,, t,+d] or [t,— 0, t,], depending on sign(v; —15). Finally, ¢ — Lé® >
g/4if 6 < (3¢/(4L))"/P =: Ky (B, L)%, Note that K,(3, L) < K,(3, L) uniformly
in # and L, so that we define K (3, L) := min{K;(8, L), K»(5,L)} = K;(8,L). O
With the verification of this last lemma the proof of Theorem 3.3.1 is complete. O
Before coming to the proofs for ﬁn, we still owe that for Corollary 3.3.2.

Proof of Corollary 3.3.2: First, note that the statements are trivial outside
[ X1, X,], by Theorem 3.2.1. The concave function ¢ : (a,b) — R is automatically

Lipschitz-continuous on any compact subinterval [c, d] of (a,b), because
e(d) — ¢(c)
d—c
is, due to concavity of ¢, uniformly bounded for any ¢, d. This fact, together with

Theorem 3.3.1 and continuity of f entails uniform consistency of }?n For the inte-
grated density estimator F,, write |F,, — F| < [|f — f,| as

[ [Gi-po=2 [=Foe= ([ 1 [ R).

On the right-hand side, the first term tends to zero by dominated convergence
(Theorem A.1.1) applied to f > (f — fu)+ —p 0. The second term equals zero.
Actually, this is solely an application of what is known as Scheffé’s Theorem. O
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The gap problem

Proof of Theorem 3.4.1. To simplify things introduce a new coordinate system

with origin (s; 1, p(s;-1)). Suppose that for § = As; and ¢ = Kpb/®PHY) e have:
©(0/2) — (0)/2 < 2e. (3.32)
Then the assumption about ¢’ together with (3.8) yields:
2 > p(5/2) - 9l6)/2
§/2 5
> 21</ ¢'(u) du — / ¢ (u) du)
0 5/2
5/2
= 2! [/ (gp’(u) — ' (u+ 6/2)) du]
0
> (C(6%/8).
So we can conclude:
0 <20 %6,
To prove assertion (3.32) recapitulate from Theorem 3.3.1 that
(0 = @n) (@) <e. (3.33)

Introduce for z € [0, ] the auxiliary functions ¢(x) := (¢(0)/d)x and a parallelwise
translated x(x): Define x, as the left-most point in [0, ] where @/ (z) = ¢(4)/0 and
using this x(z) := (x) + (¢(x,) — t(z,)). Then distinct three cases, depending on
the number of intersections of ¢ and &, in (0, 9).

Case 1: Let #{z € (0,0) : @n(x) = ¢(x)} = 2. Then geometric considerations
reveal that (o — ¢)(z)/2 < e for z € [0,d] whenever (3.33) is true (and equality
holds whenever (@, — ¢)(z) = 27 (k — 1)(x) for all x € [0,6]). Set x = §/2. For an
illustration consult Figure 3.7.

Case 2: Let #{x € (0,0) : ¢.(z) = p(x)} = 1. Again, (p—1)(z)/2 < e forz € [0, ]
but here (¢ — ¢)(x)/2 = € e.g. in case ,(0) = k(0), £,(0) = ¢(0), ¢'(0/2) = K(5/2)
and x = §/2. Figure 3.8 details the situation.

Case 3: Let #{z € (0,9) : @u(z) = ¢(x)} = 0. In this last situation, we have
w.lo.g. that (k —¢)(x) < e for all z € [0,6/2] (otherwise mirror the situation) with
equality whenever @, (z) = k(z) for all x € [0,6]. This entails that (¢ — ¢)(z) < e
and with x = §/2 we get the assertion. 0



o8

3 MAXIMUM LIKELIHOOD ESTIMATION

; i P

; s ; \

Figure 3.8: Illustration of Case 2.
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Figure 3.9: Illustration of Case 3.
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Uniform consistency of ﬁn

Proof of Theorem 3.5.1: To simplify notation introduce:

re = B

w(g,d) = sup sup [g(z +h) — g(z)|
rE€[A+rn,B—rn—d] |h|<d

for d > 0 and functions g bounded on [A, B]. The uniform empirical distribution
function is denoted by G,, and U, stands for a uniform empirical process. Then note
that

w(F, ) < Tn”f”&
Consequently, together with

w(U,, rn) = v/2r, log(r; ') (1 + 0p(1))

guaranteed by Theorem A.2.1, we have (let id(z) := x)

W(F, — F,r) =p w(Gn(F) —id, w(F, rn))
= 0w (U, )
= nfl/QOp <\/(log n)(5ﬁ+2)/(4/3+2)n*ﬁ/(4ﬁ+2))

= Op(nil/Q)-

The conditions on r, imposed in the theorem are clearly fulfilled since

nr, = nBPHIIEBF2)(16g0)8/8+2) 5 oo
log(r,")/ Toglogn = <(10g n)? 52 — (loglog ”)ﬁ/(4ﬁ+2)> /loglogn — oo
log(roY)/(nrn) = (1—o(1))n G8H2/68+2)
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Together with Lemma 3.7.1 and Theorems 3.4.1 and 3.3.1 we have:
sup [(Fy — Fy)(2)]
TE[A+Tn,B—1y]

< ey (= @)+ (=) = (B = P -

(F = Fo)(si1)| + | (Fo = ) (s

< sup sup |/ (t)dt| + [(F — F,)(x)
i=2,..., M:EE 57, 1, 57,
1
~(F - Fn)<sz~71)|) +n

< Oylra) swp (sup |(fu— @) +w(F ~Fyra) 407"

i=2,...,M “ze(si—1,8i]
= 0 (piﬁ/(wJ’Q)) +op(n Y 40! (3.34)
= o,(n'?). O

Note that for § = 1 the exponent of the first term in (3.34) equals 1/2, so it is

the logarithmic term in the nominator together with the assumption in Theorem

3.4.1 that prevents the expression to be of probabilistic order smaller than n~'/2.

However, Corollary 3.3.2 gives at least uniform consistency also for g = 1.

Integrated kernel estimator

Proof of Theorem 3.5.4: Write for z, € R

Fon(zs) = (ﬁh(xo) K ﬁh(X1)> v (IE Fo(x) F(mo)) + F(a,)
= Ti(x,) + To(z,) + F(x,).
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Introduce a random variable Z independent of X1, ..., X,, and having density func-
tion k. Then:
1 " Ty — X,L Ty — X1
Tiw) = o3 |K(=5—) - mE (=)
w) = 52 h h
1 ¢ o — X; o— X
= =Ylp(z<—x, . x,) - Pz < )
n <= h
1 n
= - (P(XZ <1y — hZ| X1, ... X,) — P(X) < 2 — hZ))
n

NS S ([ MRS

i=1

= /(IF” (o — hz) — F(z, — hz))k(z) dz
= 0,(n'7?)

by Theorem A.3.1. On the other hand for T,(z,) one has:

Te) = [ K(™) ) dy - Pl

- [T o) s ay - e

o0

_ /R ( /R Vyr k() de) £ () dy — F ()

= [ro([" " rwar)ar- re

o0

_ /Rk(t) (F(wo— ht) — F(z,)) di

- h2/Rk(t)[(t2/2) (f’(xo)—l-o(l))] dt
= O(R*f'(z,)).
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It is important to note that this rate cannot be improved in the sense that the factor
h? always appears. As a summary, choosing a bandwidth of optimal order O(n~'/%):

Fon(z,) = F(x,) +0p(n ) + O(R2f'(x,))
= F(2,) + Op(n ?) + O(n %?)
= F(z,) +0(n %)
as stated in the theorem. O

Proof of Theorem 3.6.1. The Theorem is in fact a corollary of Theorems 3.3.1
and 3.5.1 combined with Lemma 2.3.1. O



CHAPTER 4

ALGORITHMS TO FIND THE DENSITY ESTIMATOR

In this chapter, we describe several algorithms performing well in finding the log-
concave density estimator f,, of the true density f analyzed in Chapter 3. Some

comparisons between the algorithms are reported.

4.1 INTRODUCTION

Suppose we want to estimate @, introduced in Chapter 3 based on ordered observa-
tions X; < Xy, < ... < X,,. We show that this can be achieved through numerical
minimization of the log-likelihood functional (3.2) over all concave functions ¢, where
we use that, according to Theorem 3.2.1, we only have to consider functions ¢ that

are piecewise linear and have knots at some of the observation points.

The above task is typical for many estimation problems in statistics as it demands
for the optimization of a (high-dimensional) objective function, the log-likelihood in
our case. We show that, within a linearly constrained optimization framework, @,

and therewith the density estimator fn can be found.

In Walther (2002), maximum likelihood log-concave density estimation is described
for the first time, in a multiscale context. He proposes the iterative convex minorant
algorithm (ICMA) introduced by Groeneboom and Wellner (1992) to solve the max-
imization problem and considers it to perform better than interior point methods,
in terms of speed and stability. We show that the interior point methods used for
convex density estimation in Terlaky and Vial (1998) work in log-concave density
estimation as well and give some simulation results comparing them to the ICMA
and a new algorithm, recently proposed in Diimbgen, Freitag, and Jongbloed (2006).
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4.2 FRAMEWORK OF NUMERICAL LOG-CONCAVE
DENSITY ESTIMATION

We use the notation introduced in Chapter 3. We will estimate ﬁ via its logarithm

On, 1.e. we show how to find

On = argminV,(p).

 concave

According to Theorem 3.2.1 it is sufficient to know ,, only at the observation points
X :=(Xy,...,X,), even only at the points belonging to S(p,), the set of knots of
©n. However, we have a priori no idea where the estimator @,, changes its slope. So
denoting ¢(X;) by ¢; and identifying the function ¢ with the vector

@ = ()i,

we reparametrize ¢ by the successive slopes

n=n(p) = (901’ (2?2)7—2)

where AX,; := X, — X;_; for a vector X € R” and ¢ = 2,...,n. Note that n is just
an affine transformation of ¢, therefore not affecting the existence, uniqueness or
location of the minimum of ¥,,. In order to ensure concavity of ¢, the corresponding
vector p € R" must belong to the cone

KHZZ{UGRTLZWAZ??Z} 2:37an}

where Kq is defined by n—2 inequalities. In other words, (1;)"_, must be a decreasing
sequence. The piecewise linearity now enables us to write the Lagrange term in (3.2)
as

n X; A .
n/expcp(x) dr = WZ/ exp(A;’;‘ (x — Xi 1) +g0i,1> dz

i=2 Y Xi1
n i—1
= nel g exp( Aank> exp( ) (4.1)
- i
=2 k=2

where (exp(0) — 1)/0 is taken conventionally to be equal to one and Y7 _. ¢ = 0 if
J < i. Note that (4.1) is now a sum rather than an integral, both depending on ¢.
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The with n reparametrized log-likelihood function ¥, defined in (3.2) now details
to:

Vo) = <0 p(X) 4 n [ expols)da

n

n_o i—1
= —n(mh + Z Z AXMk) + ne Z exp (Z AXM?k) xp(AXim) ~ 1
k=2

i=2 k=2 i=2 = i

and the estimator we seek is then

n = argminV,(n).
nekn

In the case of convex density estimation as described in Terlaky and Vial (1998),
the constraint of f being a probability density can be formulated as a simple linear
equation, whereas in our case this results in the more complicated expression in
(4.1).

Motivated by taking successive differences of the conditions in the definition of K,

we introduce the m X n matrix B with m =n — 2 as

0o -1 100 --- 0 0

o 0 -1120 --- 0 0
B =

0O 0 00O -1 1

and plugging in (4.1) into (3.2), the following optimization problem results:

minimize ¥, (n) (42)

overn € R" s.t. Bp <0

where 7 € R" is the variable in which the minimization is done and < y for two
vectors ¢,y € R” means that x; < y; for all i = 1,...,n. From Theorem A.4.1
recapitulate the necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions for
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7 to be a solution of (4.2):

Vo U, +Bv = 0 (4.3)
Bii+s = 0 (4.4)

vis; = 0 forall i=1,...,m (4.5)

v > 0 (4.6)

s > 0. (4.7)

The vector v € R™ contains Lagrange-multipliers whereas s € R™ consists of slack

variables. Furthermore,

is the gradient of ¥,, = ¥, (n) w.r.t. . Let us introduce the feasible set F and the
strictly feasible set JF°:

F o= {(UJSJU)ERn_l_Qm : vnan+BTv:0; B77+S:0;UZO; SZO}
Fo o= {(n.sv) R V0, +B v=0Bn+s=0v>0 s>0}.

Note that B + s = 0 for s € [0,00)™ implies that By < 0. Thus if v; > 0 for
a fixed i € {1,...,m} then s; = 0 and vice versa, by (4.5). This is known as the
“complementary condition”.

4.3 A PRIMAL LOG-BARRIER ALGORITHM

The key idea of log-barrier algorithms is to introduce a barrier function A that
penalizes the inequality constraints with oo whenever the constraints should not be
satisfied. A function h : R +— (—o0, oc] is a barrier function for the type of problems
as in (4.2), if h is convex, continuous and nondecreasing and one has that h(r) = oc

for all » > 0. The standard choice (inducing the name “log-barrier”) for h is

h(r) = —log(—r),

proposed by Fiacco and McCormick (1968). Introducing a tradeoff parameter p > 0,
we thus obtain from (4.2) a barrier problem of the form:

min T (n, 1) (4.8)
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where

T(n,p) = Vu(n)+p Xm: h((Bn)i)

— U, - uglog(—mn)i).

Similar to the inclusion of the equality constraint in (3.2), we add a Lagrange term
to the criterion function to account for the inequality constraint Bnp < 0. Clearly
the minimum of ¥,, belongs to F° and we can treat problem (4.2) actually as an
unconstrained one. The proof of Theorem 3.2.1 together with the convexity of h
entails that the function Y(n, ) is strictly convex in m for all p > 0. Let n(u)
denote the unique optimal point of problem (4.8) for a fixed y > 0. Collecting
all these points yields a set C, := {n(u) : p > 0}, called the “central path” of
problem (4.8). The interior point log-barrier method roughly spoken follows this
central path to reach an optimal solution. To accomplish this for a fixed u, it takes
repeatedly damped Newton steps in order to minimize the barrier function in (4.8),
where a Newton step is as usual the minimizer of the local quadratic approximation
of the objective function in (4.8). If for the specific p the minimum is reached, p
is decreased in a controlled way. This procedure is repeated until a convergence
criterion is met. Finally, the log-barrier algorithm almost boils down to an ordinary
application of the Newton procedure to the function T = Y (n, u), the only speciality
being the handling of p. The Newton step, denoted by p = p(n, i), is given by

p = H'V,T (4.9)

where H = H(n, 11) is the Hessian matrix V7 7T of the Lagrange-function in (4.8).
To be able to measure the distance of the current iterate to the central path (and
so to judge the appropriateness of a candidate), we follow the approach by Terlaky
(1996), introducing the norm induced by H:

HpHH =V PTHP-

The rationale behind introducing ||.||g is the following: ideally, we would like to
measure the usual Euclidean difference between n(u) and the corresponding point
on the central path 7(u), but we do not know 7(u). Straightforward calculation

reveals, that

||p||§{ = (VWT)THJ(VWT)-
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This implies that if 7 is a minimizer of T (for a fixed p) then ||p|lz = 0 and
|p|lg > 0 otherwise. So it makes sense to minimize Y for a fixed p as long as ||p||g
stays above a fixed constant (which signifies the current distance to the central path).
After ||p||y falling below this limit, 4 is decreased and the procedure of minimizing
p in H-norm restarts. That this strategy is indeed successful guarantees Theorem
A4.2.

Putting all these ingredients together, a central path-following log-barrier algorithm
can be described as follows:

input:
e e Ry : accuracy parameter
7€ (0,1) : proximity parameter
6 € (0,1) : reduction parameter
e € Ry @ initial barrier value
n, . feasible point such that ||p(n,, t,)|la < 7 and ¥, (n,) < oo
11,715 :  maximal number of iterations for outer and inner loop

begin: 1 := p,; [ :=0;1, :=0;n :=n,
while p > ¢/(4n) and I, < T do (outer loop)

pi=01-0)p
Il Zzll+1
IQZZO

while ||p||y > 7 and I, < T, do (inner loop)
p := solution of (4.9)
& = argming ., {T(n +ap,p) :n+ap € F°}
n:=mn-+ap
IL:=1,+1
end (inner loop)
end (outer loop)
end.
The start vector m, in the Newton procedure has to be in F, i.e. the corresponding
function ¢, must be concave. We used a quadratic interpolation to the logarithm
of a kernel density estimate of the data as a first guess for our algorithm. Other
approaches, such as a simple fit of a parametric log-concave density (e.g. Normal,
Gamma) are also conceivable and work as well.
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As an approximation to the Hessian of Y in (4.9) we used its diagonal. It is well
known (see Terlaky, 1996), that this reduced Hessian to be inverted in equation (4.9)
becomes ill-conditioned as p approaches 0. We did not encounter problems in that

direction.

The upper bound «, in the computation of a is calculated as

@, :=0.99 min } |An; / Ap;l,
S n

yeeey

so slightly below the limit beyond that a new candidate falls off 7°. The step length

a of the Newton step p is found via a search on a set of equidistant points.

4.4 A PRIMAL-DUAL ALGORITHM

Recapitulating the KKT conditions (4.3)-(4.7), one can derive another class of al-
gorithms known as “primal-dual interior point methods”. Introduce the mapping
F:RvH2m o RAF2m pg:

n Vo, +B v
Fl s [:= Bn + s
v diag(v)s

where diag(x) is a diagonal matrix having the vector & on the diagonal. To
see how a primal-dual algorithm works, introduce further the following system of

(in-)equalities, for a fixed p > 0 and a vector z* := (n*, s*, v*):

VU, +B o' = 0
Bnt+s" = 0

of'st = pforall i=1,....m (4.10)
v > 0
st > 0.

These conditions differ from the original KKT conditions (4.3)-(4.7) in the term pu
on the right hand side of (4.10) and the requirement that z#* be strictly feasible.
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The central path in this case is defined as
Cpa = {2" : p>0}.

An iterate in the primal-dual algorithm solves, for a fixed pu, the equation

n" 0
Fl s |[=1]1 0o [, (4.11)
vH ue

where e is a vector of all 1’s in appropriate dimension. One can conjecture that, as
i — 0, the corresponding vectors z# approach z* where z* is the vector that meets
the KK'T conditions

F(z*) =0.

That this strategy, implemented in the algorithm below, is indeed successful, guar-
antees Theorem 3.2 in Wright (1998). Note that (4.10) implies that z* approaches
the boundary of the feasible set F, without actually ever leaving F°.

Looking at (4.11), we are now in the position to apply, for every fixed p, an ordinary
Newton procedure to F'. For ease of simplicity, we will omit the dependence of z on
p. To get the Newton direction dz = (dn, ds, dv), the equation we actually solve

1S

dn 0
oF
- F(z) =
2 ds + F(z) 0
dov e

Computed explicitly, using the definition of F', this transforms to:

Vonl, 0 B’ dn V.U, +B v
B I 0 ds | =— Bn+s (4.12)
0 vV S dov Vs — e

where we introduced the abbreviations V := diag(v), S := diag(s) and I := diag(e).
The Hesse matrix of ¥,, w.r.t. to i is denoted by V,,¥,. Formula (4.12) yields the
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following equations:

VonUpdn+B dv = —VU, -B'v
Bdn+ds = —Bn-—s
Vds+Sdv = Vs —pe.

From these equations we finally get a closed system of formulas to calculate dz

iteratively:
dn = —(Vpy¥, +B VS 'B) !B (VS 'Bp+v—S 'ue) — V,0,]
ds = —-Bn—s—Bdn
dv = —S (Vs pe) VS 'ds.

The only matrix for which inversion is not trivial is (V,, ¥, + B' VS 'B), but this
matrix is symmetric and positive definite, by convexity of ¥, and complementarity.

This guarantees invertibility at every step. The detailed algorithmic procedure is as

follows.
input:
e € R, : accuracy parameter
e R, lower bound for p
v€ R, : determines reduction of Newton step length via o
1, : start vector, as in Section 4.3
T : maximal number of Newton steps

begin: ji:=10"/(m+n);y:=(1—0) L1, :=0;,:=0
while > cand [, x [, <7 do
L =1, +1
o= max(H(m, 8,v,0), ﬂ)
Compute dz as given in (4.13)
a:=vymax{a>0: z+adz e F}
z:=z+adz
end
end.
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The function II calculates a new target value for i in every iteration in the following
way (according to Terlaky and Vial, 1998):
input:

m,S,v,0
begin:

E=mmini_;__n,{vs;}/(v's)

p=: (V0 + B oll,+ By + sll.)

if: £ > o then:

S = p/(v"s+p)

else: S =:1
p=:5(v's/m)
end.

The lower bound g for p is introduced to prevent p from getting too small, i.e. to
avoid that the current iterate is too close to the boundary of F. If S =1 then the
new 4 is simply the average of all pairwise products v;s;. Otherwise, almost all these
products are approximately equal (resp. the minimum is a substantial proportion of
the average), implying that none of the constraints are already “active”, therefore
4 can be decreased more rapidly.

Finally, note that if (n*, s*, v*) is a solution of (4.3)-(4.7) for the current p, then

0 Vol = 07 (Vy,+Bv) + 0 (-Bry)
_ ’U*TS*,
so that with the definition of p we sort of measure how far we still are from the min-
imum. The number p is generally known as “duality gap”. Finally, the parameter
v := (1 — o)~ ! guarantees that & is such that z + adz € F°.
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4.5 THE MODIFIED ITERATIVE CONVEX MINORANT
ALGORITHM

The ICMA was first presented in Groeneboom and Wellner (1992) and further de-
tailed in Jongbloed (1998). It is especially tailored for minimizing a smooth convex
function like ¥,, over a convex cone such as our well-known /. It simply minimizes
the quadratic approximation to the functional under consideration (as an ordinary
Newton procedure) with respect to a monotonicity constraint by using the pool ad-
jacent violaters algorithm (PAVA, see e.g. Robertson, Wright, and Dykstra, 1988).
To ensure convergence of the algorithm, one again needs to shorten the canonical
Newton-direction, see Jongbloed (1998, Lemma 1). Additionally, we make use of the
more general algorithmic framework provided by Diimbgen, Freitag, and Jongbloed
(2006) that generalizes ICMA-like algorithms via supplementing the line search by
a Hermite interpolation.
Recapitulate that W, is strictly convex and continuously differentiable on
{¥,, < oc}. Suppose W(x) is a positive definite diagonal matrix, depending con-
tinuously on & where * € K. Introduce an algorithmic mapping B : K — K where
K :={V, <oc} N, Our goal is again to find

7= arg min W, (1),

nekn

a unique point by the strict convexity of ¥,,. Now approximate ¥, locally around
d, by the quadratic function \b,,:

U, (8) = W,(04,)
U, (8,) + Vs, (8,) (6~ 8,) +27'(8 —8,) W(8,)(6 —4,) (4.13)

where Vsh(d,) denotes the gradient with respect to § at 9, for a function
h:R" — R. This map provides a first guess B, for B:

B, := By(d,) = argmini’n(é). (4.14)
0ckn

If B; =4, we are done and set B(d,) = d,. Note that this only happens if already
d, = 1. Otherwise, apply the following robustificating line search procedure. Define
the function H as

H(t) = H(t, 6, B)
- xpn(ao (B, — 50)) —W,(8,).
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for t € [0,t1] where t; := t1(8,, B1) = 2~™ with m the smallest positive integer such

that H(2-™) < 0. Finally, introduce a Hermite interpolation H of H:

H(t) = H(t|ty,d,, B;)
— H'(0) + (t;QH(tl) - tle’(O))tQ.

This interpolation is constructed such that H(0) = H(0) = 0, H'(0) = H'(0) > 0,

H(t,) = H(t;) > 0 and it attains its maximum over [0, ;] at
ty = ty(t1,8,, By) = argmax H(t)
[O’tl}
t1H'(0)
= min .t }
{2(H’(0)t1 —H(t)) "
1

_ min{ (2 _ 25((33;) , 1}751.

By defining
B(50) = 50 + tQ(Bl - 60)

= (1-12)0,+ 1B, (4.15)

we get a new candidate. This procedure is justified by Theorem A.6.1. The assump-
tions in this theorem can easily be verified for ¥,, and B. Below we give pseudo-code

for the ICMA.
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input:
e € R, : accuracy parameter
0, : start vector such that 8, € K and ¥,,(d,) < oo
11,715 :  maximal number of respective iterations

begin: [, :=0;1,:=0;0 :=d,; D = 2ne
while |D| > ne and I, < T) do

I =1, +1

p := solution of (4.14)
" =0+p
D:=,(8) p

I, =0

while ¥, (8") > ¥,(d) and I, < T, do (Robustification)
0" :=(6+07)/2

D:=D/2
IQ — IQ + 1
end

= [2 . 2(%(5*) . \Iln(é))/D] B
if t* <1 then (Hermite interpolation)
d:=(1—1t)0" +1t*6
else § := 4"
end

The crucial point in the above algorithm is the minimization in (4.14), because of
the constraint § € K. We used the weighted PAVA (wPAVA) to accomplish this
task. For details on the wPAVA consult Section A.5. To see how the wPAVA can
be used to solve (4.14), recapitulate that the matrix W(4,) is diagonal, i.e.

W(4d,) := diag(w)

for a vector w € R". For ease of simple notation, introduce the abbreviation
g = Va\I’n(6o).
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Inserting this in (4.13), the function ¥, can then be written as:

~ n 1 n
i=1 =1

n

= 0,(8)+ 5 3 (16— o) + aifuil? — (aif i)
= V,(4) - %Z((h/wz)z + % Zwi <5i — (00 — gi/wi)>2-

Thus, minimization of ¥,, over § € K is equivalent to the problem

" 2

Setting 1 := dg1 — g1/wn, the weighted wPAVA is exactly what the doctor ordered
to solve (4.16). For the matrix W, we used an approximation to the complete
Hessian, namely its diagonal. Robustification is necessary to guarantee conditions
B1 and B2 of Theorem A.6.1. Diimbgen, Jongbloed and Freitag (2003) mention
that numerical experiments suggested that inclusion of the Hermite interpolation

improves the speed of convergence of the algorithm.

4.6 A PROBLEM-ADAPTED ALGORITHM

The algorithms presented so far are developed to solve general minimization prob-
lems under linear constraints, without taking into account very much the character
of the problem.

A main property of all nonparametric density estimators under shape constraints
(monotone, convex, log-concave) treated so far in literature is some sort of piecewise
linearity with only a few knots, be at observation points or in between. See Section
3.4 and the comments there.

Diimbgen, Freitag, and Jongbloed (2006) proposed a Newton-type algorithm espe-
cially tailored for this situation. To avoid expensive inversion of huge matrices, an
“oracle” guesses (at every iteration), where the knots of @, most likely are situ-
ated and inversion only has to be performed on a subspace of R” with the number
of guessed knots as dimension. This new procedure was inspired by the support
reduction algorithm, developed to minimize concave functions over convex cones,
introduced by Groeneboom, Jongbloed, and Wellner (2003).
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For our problem to fit in this new algorithmic framework, a reparametrization is
necessary. Instead of a functional ¥, : R* — [—00,00), we need a new functional
U, : 0 — [—o00,00) where © = [0,00)". To accomplish this, introduce a vector 6,
consisting mainly of the successive slope differences of the function under consider-

ation:

0(p) = (901,772,*(A77i)?:3>-

This @ apparently comes up to the desired property of lying in © when looking at
its entries 3,...,n. The first two components are just “free riders” which do not
affect any calculations done for the algorithm. The aforementioned oracle for the

current iterate @ is then
Z(0) ={1,2}u{j=3,...,n:0; > =(0)},
where £(6) > 0 will be given later. To avoid cumbersome notation, define vectors
a = VaVU,(0),
b = diag(B(0))
where B(0) = VeV, (0) and a = diag(A) is the vector consisting of the diagonal
elements of a matrix A. Given B = B(0) and Z = Z(0), we introduce sub-matrices
By and Byy:
By = (Bylier
By = diag((Bii)iQI)

Analogously define for any y € R* sub-vectors y;) = (yi)iez and yp) = (vi)igz-
The quadratic approximation to our functional ¥,, we seek to minimize over

{07 : 0;>0for j £71(0)}
for a given @ is then, similarly to (4.13),
Q(0"10) = 3" (a8 — 0u) +27 (8], — O
k=12

The arg min of this function can explicitly be computed as

p(0, 1)1y = Bjaq
p(G,I)(Q) = ((02+a2/b2)+) —0(2).

igT
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To prevent the point 8 = 0 + p(6,7) lying outside the cone ©, replace it by
0+1t0,7)p6,1), (4.17)

where t := t(0,Z) € (0,1] is chosen as large as possible to ensure that 6 + tp € ©.
Supplemented by the line search procedure already described in Section 4.5, this
algorithm indeed converges to 0= 0(p).

We still owe the definition of the bound £(8), above which a 6; is considered a
potential candidate for being a knot of @,: similar to the latter paper, we used

(6 + /vyt —6)

27! max ‘
i=3

1=3,...,n
A schematic algorithm looks exactly like that of the ICMA, except that the Newton
step is calculated according to (4.17) instead of (4.14).
An apparent difference between the latter three and this new algorithm is the ne-

cessity of computation of not only the diagonal but the elements of the Hessian for
all elements B;; with 7,5 € Z. However, the performance of the algorithm seems to

depend on the ability to correctly choose the elements in B;; with 4,5 € Z.

4.7 NUMERICAL EXAMPLES

To test the algorithms, we implemented them in R, Version 2.1.1 and sampled
random numbers z, for £ = 1,...,n for n € {50,100,500,1000} drawn from the
three distribution laws in Table 4.1.

Table 4.1: Distribution laws we sampled from.

Law Density function Range Parameters
N(0,1) (2m) /2 exp (=22 /2) R

r'2,1) zZexp z [0, 00)

Generalized Laplace(b)® | K (b)(exp(—|2[)1fz>13 +exp(1/b)1q1<13) R b>0

2 Normalizing constant for the Generalized Laplace law is K (b) = (2(b+ 1) exp(—1/b))~"

The Normal law is chosen due to its universality and infinite support and the I'—law
because it has an infinite derivative of the log-density at 0. We introduce what we
call generalized Laplace law to show that the algorithms also work for a genuine
log-linear density and to assess the effect of non-differentiability points. To be able
to compare the performance of the algorithms, we proceeded as follows.
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1. Run the log-barrier algorithm with the settings specified below and measure
its running time ¢ using the first argument of the R-function system.time ()
(user CPU time in seconds).

2. Run the other three algorithms until either the value of the log-likelihood
or the time spent for the log-barrier algorithm was reached and measure the
respective times ¢, ¢3, t}.

2710 Yt

3. Repeat this for ¢+ = 1,...,10 times and report tmm = ming—; 19 t{,
= (32", t1)/10 and tmax ‘= max,_y,_jot) for j = 1,...,4. As other mea-
sures of the quality of the estimators beneath the value of the log-likelihood
we calculated for j =1,...,4 the following mean errors (ME):

10
MEL == (1/10) ) max [/(z) = f(z)
i=1

and
10 n

ME] = (1/10) 33"z — 2 )| F () — f(2)].

i=1 k=1

Simulations were run on a Dell desktop with 1.8 GHz and 512 MB RAM. We imposed
the settings detailed in Table 4.2.

Table 4.2: Settings for the ICMA and log-barrier algorithm.

Algorithm € T 0 w o T1 T2
log-barrier 107 09 01 01 8 25
primal-dual 1010 200 20
problem-adapted | 10~'0 200

ICMA 1010 200 20

Simulation results for the three distributional laws in Table 4.1 were very similar,
find details in Tables 4.3 to 4.5.

The ICMA clearly performs best over all sample sizes and distributional laws. All
methods are able to find the minimum of the negative maximum likelihood in prin-
cipal, i.e. if given enough time. In all simulations, the ICMA was the sole algorithm
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Table 4.3: Results for the N'(0,1) law.

n Algorithm t)n t t L’ ME, ME]
ICMA 0.98 1.26 1.63 114.18 0.12 1.88- 1071
50 log-barrier 0.97 1.34 2.51 114.22 0.12 1.88-10!
interior-point 0.98 1.27 1.62 114.39 0.12 1.91-107"'
prob-adap 1.00 1.29 1.64 114.78 0.11 1.75-107!
ICMA 1.88 3.20 4.74 232.43 0.09 1.39-10!
100 log-barrier 3.58 4.01 4.67 232.48 0.09 1.38-10!
interior-point 3.67 4.06 4.70 232.78 0.09 141-107"'
prob-adap 3.67 4.09 4.75 233.29  0.07 1.28-107!
ICMA 19.55 43.70 62.10 1192.48 0.05 6.78-102
500 log-barrier 194.69 19790 203.03 119262 0.05 6.78- 10*:2
interior-point  196.26 199.30  204.39 1193.22  0.05  8.47-1072
prob-adap 19550  199.53  204.83 1193.37 0.04 6.27-10"2
ICMA 48.59 130.10  226.17 235829 0.04 5.17-102
1000 log-barrier ~ 1022.08 1047.21 1070.09 235849 0.04 5.21-102

interior-point  1027.03  1066.98 1088.09 2359.24  0.04  5.34-10"2
prob-adap 968.76  996.44 1015.42 2358.97 0.03  5.08-102

to reach the log-likelihood value of the log-barrier algorithm (by far), whereas the
other two were interrupted when reaching the time limit set by the log-barrier algo-
rithm (note that reaching the time limit does not imply consuming exactly the same
amount of seconds, because time was only compared at the beginning of a whole
iteration). Quality of the estimates measured by L, MEJ and M E] was similar
for all algorithms. As reveals Figure 4.1, the performance of the problem adapted
algorithm was inferior to the others. We attribute this mainly to the structure of
the Hessian, which in our case (in the contrary to that in Diimbgen, Freitag, and
Jongbloed, 2006) is not as sparse as necessary for this algorithm to perform well. We
seem to have many non-negligible off-diagonal entries of the Hessian. Furthermore,
this algorithm operates on a different parametrization, eventually causing higher

computational resource consumption.

Figure 4.1 shows typical shapes of log-likelihood curves for a single run for n = 1000
resulting from the estimation of a I'—density.

After all, Figures 4.2, 4.3, and 4.4 display the estimated densities ﬁ and the log-
densities @, for all three distribution laws for a sample size of 500 where the parame-

ter for the generalized Laplace law was chosen to be b = 1 (for all plots: estimators
are drawn in solid and functions to be estimated in dashed lines). Note the piecewise
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Table 4.4: Results for the I'(2,1) law.

n Algorithm thn t t L’ MEI, ME]
ICMA 0.61 1.12 148  121.68  0.16  1.490-107!
sy log-barrier 1.02 1.19 147 121.76  0.17  1.49-107!
interior-point  1.01 1.21 145  121.82 016 1.45-107!
prob-adap 1.00 1.20 149 12231 0.8  1.39-10!
ICMA 0.68 1.92 3.75 25108 0.4 1.42-10°"

log-barrier 3.64 3.95 4.24 251.17 0.14 1.43-10°1

100 interior-point 3.70 4.00 4.29 251.34 0.15 1.53-10"
prob-adap 3.72 40.00 4.27 252.20 0.21 1.62- 107!

ICMA 15.16 34.37 49.03 127759  0.20 9.73-102

500 log-barrier 190.67  198.70  206.81 1277.77  0.20 9.76-102
interior-point ~ 192.78  200.16  205.32 1278.54  0.21 1.07-107!
prob-adap 192.37  200.09 204.95 1279.33 0.22 1.20- 107!

ICMA 34.97 66.73 132.16  2538.06  0.23 9.54-102

1000 log-barrier 1025.13 1042.66 1059.86 2538.09  0.23 9.63-102

interior-point  1022.61 1060.10 1110.74 2539.59  0.24 9.98-1072
prob-adap 982.10  997.42 101547 2539.12 0.24 1.20-10°!

linearity of @,.

In light of Theorem 3.5.1 hardly any difference is visible on a plot displaying F,, and
ﬁn. We therefore concentrate on the differences F,, — F' and ﬁn — F in Figure 4.6,
recapitulate also Figure 3.1.

For all the algorithms, we did not encounter major problems up to sample sizes of
500 points. But for larger datasets and especially in case of the generalized laplace
law for small b, observation points may get very close (< 107?) to each other, causing
numerical instabilities in the inversion of matrices. In this case, it is advisable to
adopt the clustering scheme described in Terlaky and Vial (1998). Replace the
log-likelihood function ¥, and the original data X := (X;,..., X,,) by

-n / w(X")p(X") dF, (X")

and X’ := (X], ..., X]), where the latter vector is constructed starting at X;. If the
distance to X, is smaller than some (small) resolution number ¢ > 0, then replace
X7 and X5 by their mean X| and define w; = 2. Continue this procedure up to n
and so get X' and w of length n’ < n. This clustering is only a minor change in
the optimization problem, but a powerful remedy against poor condition numbers

in the linear systems that have to be solved to find the Newton directions.
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Table 4.5: Results for the Generalized Laplace(b) law.

n Algorithm . t - L’ ME], ME!
ICMA 0.35 1.02 1.42 140.69 0.08 2.17-1071
50 log-barrier 1.09 1.26 1.47 140.70 0.08 2.17-1071
interior-point 1.10 1.28 1.48 140.83 0.07 2.18-107!
prob-adap 1.14 1.29 150  141.80  0.07 2.43-107"
ICMA 1.53 2.69 4.50 282.74 0.07 1.54-107!
100 log-barrier 3.72 4.18 5.00 282.77 0.07 1.54-107!
interior-point 3.81 4.23 5.05 283.18 0.07 1.59-10!
prob-adap 3.86 4.26 5.1 284.72  0.060 1.82-10"!
ICMA 21.71 33.70 45.41 1423.59  0.05 1.93-107!
500 log-barrier 190.91 196.36 199.97 1423.16  0.05 1.94-107!
interior-point  193.43 198.38 202.36 142455 0.05 2.02-107!
prob-adap 192.87  198.75 202.40 1426.07 0.05 2.15-10"!
ICMA 19.47 67.19 139.63 2838.38 0.06 3.34-10!
1000 log-barrier ~ 1054.81 1064.25 1085.00 2836.28 0.06 3.35-10"'

interior-point  1061.19  1081.19 1105.21 2838.81  0.06  3.43-10"!
prob-adap 1000.80  1010.40 1024.22 2839.74 0.06  3.51-10"!
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CHAPTER 5

BUMP HUNTING

The second part of this thesis proposes a method to detect regions, based on an
i.i.d. sample drawn from a density f, where this density is either log-concave or
log-convex. This implies lower bounds for the number of bumps and dips.

5.1 EXPONENTIAL FAMILIES

Let X be a random variable with distribution Py on some measurable space (X', A)
indexed by a parameter 0 ranging over an open subset © of RP. Let pg be a
density of Py with respect to some dominating measure M. In what follows, we will
choose Lebesgue measure for M. We additionally assume that pg is a p-dimensional
exponential family (p € N), i.e. it can be written as

pe(r) = c(0)h(z) exp(OTt(x)>, rEX
with a normalizing function ¢ : © — R
c'(0) = / h(z) exp <0Tt(x)> dz
X

and functions h: X - R and t: X — RP. The “natural parameter space” for such
a family is defined as

Y = {#cR : ¢c'(0) <o} DO.

Define the expectation for a function v : R — R and the random variable X having

density function pg as

B u(X) = /Xu(t)pg(t) at. (5.1)
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Variances and covariances are written likewise. Expectations of vectors and matrices
are to be understood componentwise.

Exponential families are very well studied, see e.g. Lehmann (1986, Sections 2.7
and 10.3) or van der Vaart (1998, Section 4.2). We summarize key properties of

exponential families in the following lemma.

Lemma 5.1.1. The function

0—)/ expﬂt( ))dm

s infinitively often differentiable w.r.t. to 8 and these derivatives can be found by
interchanging integration and differentiation. Furthermore, for any w € RP the

Laplace transform is:

c(6)

[Eg exp (uTt(X)) = Oru)

The last statement implies that IE exp[u’ $(X)] exists if @ +u € ), meaning that 6
needs to be in the interior of Y. If that is the case all moments of ¢(X') exist. Due
to Lemma 5.1.1 the function logpg is infinitively often differentiable w.r.t. 8. For

these two reasons the following definitions are justified for z € X’:
lo() = logpa(x) Lol) = (9/00)lo(x) 1(6) = By (&s(X)ds(X)"),

where ég is denoted the “score function” and I the “Fisher information matrix” of
the density function pg. Straightforward calculation using Lemma 5.1.1 reveals for
the score function that £g(x) = t(2) —Eg #(X). Therewith the following connection
between the statistic £ and I can be established:

1) = IE(a(ée(X)ée(X)T)
= IEB([t(X) — Eq t(X)][t(X) — Eq t(X)]T)
— Covg t(X). (5.2)

We say that the exponential family is of “full rank” if this latter matrix Covg ¢(X)
is non-singular. One can further derive the identity

Eofs(X) = —1() (5.3)
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where £q(z) = (8/80T)é9(.r). Now suppose we observe a sample X := (Xy,..., X))
of i.i.d. observations where all components X;,2 = 1,....n have the same distribu-

tion as X. The maximum likelihood estimator §n of @ based on a sample X is then
defined as
6, = argmaxL,() (5.4)
6co

where
L.(0) = > lp(X))
i=1
is the log-likelihood function. Note that because the matrix

82
—lg(x) = —Covgt(X
o elalo) ot()

is negative-definite, the function En is strictly concave. This implies that if the
exponential family pg is of full rank and the true parameter 6, is in the interior
of Y, then with probability tending to one as n — oo the maximum likelihood
estimator 8, defined by (5.4) exists, see e.g. Theorem 4.1 in van der Vaart (1998).
Furthermore it exhibits the following asymptotic behavior:

Vn(@, —8,) —p N,(0,1(8,)") (5.5)

for n — oc for every fixed 6, in the interior of ).

We intend to use a certain exponential family as a local parametric model in bump
hunting. Therefore we need to generalize (5.5) to a triangular array of observations.
Suppose we observe a sample X, := (Xq,,..., X,,) from Py, . It is assumed that
for a fixed n the elements of X, are independent and identically distributed having
the density pg, with parameter 8,, € ) varying with n. The log-likelihood function

is then generalized to

L.(0) = Z&,(Xm).

Assume for the parameter ,, that it converges to 8, componentwise, at an arbitrary

rate of convergence, i.e. foralli=1,...,p

eni*

)

901‘ = 0(1)

)

One can then extend statement (5.5) in the following sense.
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Theorem 5.1.2. Suppose that every element of X, := (X1n, ..., Xpn) 1 i.i.d. hav-
ing density function pe,. Let pg, be an exponential family with full rank for every
n. Then:

Vn(6, —6,) —p N,(0,1(6,)") (5.6)

for n — oo.

5.2 TESTING OF COMPOSITE HYPOTHESES

To set up our multiscale test we will use a specific score test statistic in a specific
two-parameter model. In this section we introduce score tests in exponential families
in general and compare its power properties to a likelihood ratio test (LRT). We
will furthermore assess the effect of nuisance parameters on the power of the above
tests.

We adopt the setting of Section 5.1. To keep notation simple, let us split the Fisher

(1) 170
10 = (1a(o) 1=(o) )

matrix I as follows:

where

(0) :

(0) = (Il,p(oa-'-alpfl,p(o)) )
(6)

(0)

e
i
[\

0
0

122
The following definition of a specific number will turn out be useful below:

122-1(0) — 122(0)7121(0)111(0)71112(0).

Given a vector & € R? we write @ for its first p — 1 components: & = (z1,...,2,_1).
Let e, :=(0,...,0,1) € R”. For a fixed n € R introduce the following set:

0, ={9e)y : J,=n}

Then suppose we have an i.i.d. sample X,, = (X1, ..., X,,,) where each component
is distributed according to Py, introduced in Section 5.1. The row-wise “true”
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parameter 0, € ) shall be converging to 8, € ©, componentwise, at a rate of
convergence not yet further specified. Then consider the following test problem:

H,:0 €0, vs. H:80 is unrestricted
which is equivalent to
H,:0,=0 vs. Hy:0,#0.
The test statistic we analyze first is the LRT statistic A,

A, = 2supL,(0) — 2 sup L,(0).
oey 00,
Beneath the maximum likelihood estimator En in the full model, introduce the
estimator in the restricted model for an arbitrary fixed n € R:
52 — argmax L,(0).
6c0,
The likelihood ratio test statistic then becomes
~ ~ ~0
A, = 2L,(0,)—2L,(0,).
For a given significance level o« € (0,1), the null hypothesis H, is rejected by the
~ 0
LRT if, and only if, A,, > ¢, where ¢, = ¢4(6,,0,) € (1,00). If there exists a
Ca € (1,00) such that
sSup PB(An > Ca) =
6c0,
then we get a LRT of size ae. However, it is often difficult to find a LRT with size «
for a fixed finite n and one has to switch to tests of only asymptotic size «. This is
what we do in the following theorem.

Theorem 5.2.1. Suppose the elements of X, are independent and have density
function pg, where 8,6, = o(1). The statistic A,, has then the following asymptotic
behavior:

Aw =p ¢ XFTP(O,)R?) if /0y — b
xi(0) if /|| — 0

where h > 0 and x3(p) is the non-central x*-distribution with one degree of freedom

and non-centrality parameter p.
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For a given significance level « € (0,1) we reject the null hypothesis if A, exceeds
the critical value x7, , where x7, , is the (1 —)-quantile of a y*-distribution with
one degree of freedom. Such a test has then by construction asymptotic size «.

The (local, i.e. if not /n|f,, — oc) power function 7% of the above test then

satisfies, as n — oo,
7 (8,,8.) — 7 (121(6,)2Vlfa,]) = op(1).

Explicitly, the asymptotic power function is

™m) = 1- 0% X1 a)

where x%(p,.) is the y%-distribution function for one degree of freedom and non-
centrality parameter p > 0.
Note that non-central y2-distributions are stochastically increasing in the non-

centrality parameter, i.e. for two non-centrality parameters p; < py

Xi(p1y) > x3(pe, ),

implying that the LRT has good (local) power properties at large values of the
non-centrality parameter.

The LRT introduced above is two-sided, i.e. in case of rejection of the null hypoth-
esis, nothing about the sign of 6, , can be said. In our intended application to
bump hunting however, it will be convenient to be able to make a statement about
sign(f,,) in case H, is rejected, at least with a certain (asymptotic) confidence. The
score test below is exactly what the doctor ordered. Its test statistic is defined as a

normalized derivative of the profile log-likelihood function at n = 0:

~ -~

S, = n’l/QgLn(Gn) .
an n=0

The hypotheses we test are
Hy,:0,,<0 vs. Hy:0,,>0 (5.7)

or vice versa. Again, as for the LRT, we can specify the limiting distribution for
this statistic, depending on the behavior of 0, ,,.
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Theorem 5.2.2. Under the assumptions of Theorem 5.2.1 the score test statistic
S, has the following asymptotic distribution:

+o00 if \/ﬁgn,p — +00
11(0,) 28, = § NA*(6,)'°h, 1) if /by, — b

N(0,1) if Vb, — 0
for h € R.

In light of Theorem 5.2.2; for a given significance level « € (0, 1) the null hypothesis
H, in (5.7) is rejected if I***(0,)"1/2S, > 2,_, where z,_, is the (1 — a)-quantile
of a standard normal distribution. However, we do not know 8,, but it seems clear,
that a suitable consistent estimate of @, can save us. For the specific two-parameter
model elaborated in Section 5.3 this is detailed in Theorem 5.4.1.

As for the actual calculation of the score statistic S,,, observe the following. The
log-likelihood function Zn is a map from R? — R. Therefore:

8 = N =~ NN, T 8 N
1.8, = VL.@0,) (-0
5 o (@) @) (5,9)
= e,VL,(0,)
= (Vi.@))
p
This implies that
0~ =1
Sy = n*—L,(0
e (O]

_ (n—l/Z iéai(Xl”)>p' (5.8)

In other words, to calculate the score statistic S,, for a test on the p-th coordinate
of 8, we can simply take the p-th coordinate of the score vector where we readily
input the estimate under the constraint 6, , = 0, namely 5:

Consider the general situation of tests involving a fixed number of parameters where
some other nuisance parameter has to be estimated. Suppose further this nuisance
parameter is estimated under the null using a y/n-consistent estimator (e.g. maxi-

mum likelihood). Tt is well known that in this case likelihood ratio, score (and Wald)
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tests are asymptotically equivalent under the null hypothesis, see e.g. Shao (2003,
Section 4.5.2). In Theorems 5.2.1 and 5.2.2 we consider the more general situation
of a “true” parameter 6, varying with n and one-parameter alternatives that lie in
a O(n~1/?)-ball around the parameter 6, , we perform the test on.

The score statistic is designed to test the hypotheses (5.7) or vice versa, effectively
entailing a statement about sign(f,,) in case of rejection of H,, with asymptotic
confidence 1 —«. Using this, define a modified score test by combining two one-sided
score tests using the test statistic S,, where each of the two tests is performed at
half of the overall significance level . For the local power function 72 in this case

we have, according to Theorem 5.2.2 as n — oc,

~0 ~

3(0,.8,) — 75 (121(0,) Vb)) = o,(1)

, consider the case of testing the one-sided hypotheses in (5.7). Accord-

T

To derive 7°

ing to 5.2.2, the asymptotic power function for testing at significance level «/2 for
any fixed @ € (0,1), m € R and a random variable Z having a N'(m, 1) distribution,
is
P(Z>Zlfa/2) = l—P(Z—mS—Zl,a/g—m)
= 1- q)(—Zl,a/g - m)
where ®@(.) is the standard normal distribution function. As we simply put together

two one sided tests, testing either the hypotheses (5.7) or their reversed versions,

we can write for the asymptotic power function for all m € R
(m) = [1 - D(—21-a72 — M) Lm0y + [1 — D(— 2102 + m)|1{m<oy
= 1- (I)(—Zl,a/Q - |m\)

Normal distributions with variance 1 (or in general with equal variance) are stochas-

tically increasing in the mean, i.e. for two means p; < po

Pi(p1,) > Pi(p2,.)

entailing that, similar to the LR, the score test has good local power properties for
large values of 1°*'(0,)'/%\/nb, .
Recapitulate the asymptotic power functions for the above described tests, for a

fixed significance level a € (0,1) and any p € R,

() = 1-xi(". xT1 a)
™(p) = 1—®(=21 a2 — |p).
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These two functions are almost identical, their difference decreases very fast with
growing first argument. The only difference happens around 0, due to the fact that
the score test is performed at half the significance level o compared to the LRT. Note
that the power (against the considered local alternatives) for both tests introduced

above is increased when 1**1(8,) increases. Recall the definition of 1°**(8)
122-1(0) — 122(0) o 121(0)111(0)71112(0).

Mathematical expressions simplify if one considers a model that has a diagonal

Fisher matrix. Since in that case I'*() = 0 and consequently

I22-1(0) — I22(0)

5.3 A SPECIFIC TWO-PARAMETER MODEL

This section is devoted to a specific two-parameter exponential family which serves
as a building block for the multiscale test in Section 5.6. Let the random variable

X,, have the univariate two-parameter density fy, ,, where

fou(x) == C(0,7) exp(@x + e /2), 7€ [0,1] (5.9)

for 8,7 € R and a normalizing constant

1
Cto,n) = /exp<9x+n:r2/2> dz.
0

For the sequences of parameters we assume that 6, — 6, as well as n, — 0. Fur-
thermore, for all n these sequences belong to the natural parameter space of fy,,
i.e. C7'(0,,m,) < co. Denote by X the random variable having density function
Fono-

For n ordered i.i.d. observations Xy, < ... < X, all having the same distribution
as X,, define a data vector X, := (X1, ..., Xpn)-

To embed this specific model in the framework of Sections 5.1 and 5.2 note that fy

can be written as
fo(w) = c(B)h(x) exp (87 t(x) )

with @ := (6,7), ¢(0) := C(0,n), h(z) := 1 and t(z) := (z,2%/2).
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In bump hunting we will set up a multiscale test to assess log-concavity and log-
convexity of a density, on specific intervals. The current two-parameter model will
serve as basic element for this multiscale test. Based on a sample X,, a test

H, : fo,n, is log-linear vs.

Hy : fy,n, is log-concave

translates into the following one-sided test for n,:

H, : n,=0

Hy & n, <0,
where #,, is unknown and takes the role of a nuisance parameter, i.e. needs to be
estimated from the same sample X,. Testing for log-convexity is similar. Relying
on the results of Section 5.2 we propose a score test, in order to be able to infer
sign(n,) in case of rejection of H,. The score test statistic in this specific problem
is then, according to (5.8),

S, = <n*1/22£§%’U(Xm)>2
i=1
= (1202 (X7, — I, X3, (5.10)
where we introduced the score vector
. 0
by = ——1og fo,
! a0, n) !

the maximum likelihood estimator 52 of 6,, based on a sample X, under the null
hypothesis and an abbreviation for the mean

T = (1/n)Z:BZ~

for n vectors x; € RF (or n real numbers if k = 1). The estimator 52 can be found
using e.g. a Newton-Raphson procedure.

On p. 97 we discussed that a score test based on the statistic S,, is mathemati-
cally more convenient if the Fisher information matrix I(0) is diagonal at the true
parameter 6,. When adopting the model (5.9) directly, the corresponding Fisher

matrix

In (9, ’I]) ( Varg,n Xln COVg’n(Xln, X%n)/Q )

COVQ:H (X1n= X12n)/2 Varg,n(an)/4
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does clearly not have vanishing diagonal elements at (6,,0), i.e. when n — oo.
This is due to the fact that the covariance between X, and X2 at (6,,0) does not
disappear.

In order to have mathematically convenient expressions, we therefore propose the
following remedy. Instead of adopting the density function fy, , directly, replace it
by fg. .. Where

fi,(x) == C*(6,m) exp [ex + n(ﬁ/z ~al®)r b(a))} (5.11)
for z € [0,1]. The score vector corresponding to this density f;, is

oo z—d(O)nz — Byy(Xi, — a'(0)nX1,)
Eﬂ,n(x) o ( Tg(l‘) — Ea,n TG(Xln) )

where Ty(z) := 2?/2 — a(f)x — b(#) for any § € R and x € [0,1]. The functions
a:R—Randb:R — R are chosen such that

Egyo Tg (X) = 0 and

Ego[Ty(X)X] = 0 (5.12)

for all § € R such that C~'(#,0) < oo where X is distributed such that it exhibits
a density function fyo. Properties of these latter functions are collected in 5.3.1.

Deduce a modified score statistic according to (5.8) as follows:

S: = (nm;é;g,O(Xm))Q
(T Ty (%)
= T (Xin). (5.13)
This construction immediately entails
COV@“%(XM,T@L(XM)) 5, 0, (5.14)

implying that the Fisher matrix corresponding to (5.11) becomes diagonal as

n — oo. By Theorem 5.2.2 we get

Sn
(val"goyo Xln) 1/2

S N((Vargmo Xon) 20, 1)
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when /nn, — h. However, 6, is not known and has to be estimated. How this
affects the test statistic is detailed in Section 5.4.

In Section 5.5 model (5.11) will be considered to derive a score test statistic enabling
to test whether 7, is significantly different from 0. The difference between a score
test statistic derived from fy, to one received via f7, is the different centering term,
compare (5.10) to (5.13). Note that

a(6,) X + b(6,)

consistently estimates 7, = 0 for an arbitrary consistent estimator @\n of 6,. For
every n, the coefficient of the linear term 6,, takes the role of a nuisance parameter
and must be estimated. The fact detailed in (5.14) ensures that estimation of 6,
and 7, are, at least asymptotically, “as independent as possible”, i.e. do affect each
other as little as possible.

To conclude this section, we owe the exact representations for the functions a and
b. To omit these formulas being even more lengthy than they already are, introduce
for k=0,1,2,... and any # € R

Hi(0) = /O.rkexp(G.r)d.r. (5.15)

Using this abbreviation one can derive the following formulas for a and b from (5.12):

1 Hy(0)Hy(0) — Ho(0)Hs(0)
2 Hi(0)? — H,(0)H,(0)

1 Hy(0) Hs(0) — Hy(0)?

2 Hy(0)2 — H,(0)Hy(0)

a(f)

b(0)

Some properties of these functions are collected in Lemma 5.3.1 and Figure 5.1

provides a plot.

Lemma 5.3.1. For the function a we have the following limits:

lim a(@) =0 lima(f) =1

0——o0 0— o0

and for b:
lim b(#) =0 lim b(f) = —1/2.

——o0 — 00

Furthermore, a is symmetric around 0: for any 0 € R one has

a(—0) = 1—a(h).
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Figure 5.1: Centering functions a(f) and b(6).

Note that in Section 5.5 we rescale our original observations Xy, ..., X, such that

they lie in [0, 1]. This is anticipated in the definition of the densities fj, and Ton:
as they will serve as a basis to introduce a multiscale test based on the rescaled
observations. Clearly, the setting has implications on the precise form of a and b
when defining them via (5.12). This latter definition provides one with the “sim-
plest” form of these functions as well as the above densities, however it may not
be optimal with regard to symmetry. If symmetry was the aim, one could rather

concentrate on
Ty(e) = (v—1/2)/2—a(0)(x — 1/2) - b(o)
where

Gd=a—1/2 and b=a/2+0b+1/8.

Remembering that Tj is the score statistic derived from (5.11), the density having
T, — IEg, Tg(Xln) as a score function is

foa®) = CO.m)exp |0z —1/2) +n((z -~ 1/2/2 al®)= -~ 1/2) - 5(6))],
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what finally entails that the functions corresponding to (5.15) would be

,(6) = /0(:r—l/2)kexp[9(:r—1/2)]dx.

Here, the integrand is a function that is centered around the midpoint 1/2 of the
interval under consideration, and one can expect that the corresponding functions

a and b exhibit “nicer” symmetry properties.

5.4 ANALYSIS OF LOCAL TEST STATISTIC

We will now analyze the specific score test statistic introduced in the previous sec-
tion.

To assess whether log f;  introduced in (5.11) is concave or convex on [0, 1], i.e. to
test whether n,, the coefficient of the quadratic part, is equal to or significantly
different from 0, we will use, based on the arguments in the previous section, the
following standardized score test statistic:

n

T(X0,0) = n 'y

i=1

[Varg Tg (Xln)] 1/2

where we abbreviated
Varg Tg (Xln) = Varm Tg (Xln)

as 1 will always be set to 7, = 0. Recall that the parameters of f;  form sequences

converging to , and 0, i.e.
0, — 0, =o(1) and 7, = o(1). (5.16)

Theorem 5.4.1. Suppose that the elements of X,, := (X, ..., Xpn) are i.i.d. dis-

tributed having density function f; . . Then, asn — oo:
( oo if /nlnn| — oo

(X 0) > 3 N ((Vars, Xoo) V2h,1) if /| = b

( N(0,1) if V/nlmn| — 0.
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Log-concavity or log-convexity of f; . ~at a given siginificance level o will then be
claimed if

Tn(Xn,ao) —Z1-a/2 and
Tn(Xna é\0) > Zl—a)2,

n

IN

3

respectively. Theorem 5.4.1 delivers the justification for the use of 52 as a plug-in
estimator for the test statistic T,,(X,,0).

5.5 (LOG-)DENSITY FUNCTION APPROXIMATED BY
LOCAL PARABOLAS

Throughout the remainder of this chapter, we apply a setting similar to that in
Diimbgen and Walther (2006). Suppose Y; < ... < Y,, are ordered i.i.d. random
variables with unknown distribution function F' and density f on the real line.
Assume that f is twice continuously differentiable on {f > 0} and that this latter
set is open. Sometimes it is a priori known that F' is concentrated on an interval
la, 00), (—00,b] or [a,b] where —oo < a < b < oo. If this is the case we add the
point(s) Yy := a or Y, =: b or both to our ordered sample, yielding an ordered
data vector X,..., X, where n € {m —2,m —1,m}. For 0 < j <k <n-+1 with
k — 7 > 1, the conditional joint distribution of X, ;,..., X;_;, given the interval
endpoints X; and X}, coincides with the joint distribution of the order statistics of

k — 7 — 1 independent random variables with density

f (=)

; = lizer
for intervals Z;; := (X;, X)). Rescaling the observations finally yields local order
statistics:
Xi—X;
Xisjik 1 j<i<k.
’ Xy — X

Commonly, to “hunt bumps” means to identify such intervals Z;, where the den-
sity f is either convex or concave. However, our focus here is on log-concavity and
-convexity. Beneath better mathematical tractability observe that by taking the
logarithm non-concave densities with only one bump, e.g. the gaussian density, be-
come purely concave, i.e. the whole line is a “bump region”. Up to type 1 errors no
spurious dips are then detected.
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In this section we will describe how the log-density can locally be approximated
by the parametric model in Section 5.3, implying local tests. The collection of all
these tests on all intervals Zj;, will then be used for multiscale testing in Section 5.6.

Introduce two sequences of indices j = j(n), k = k(n) such that
j/n— v and k/n — v while £k —j — o0 (5.17)

where v € (0,1) determines the corresponding quantile z,, since X; —, z, and
X} —p ¥4 when n — oo.

By Taylor approximation we can write the log-density ¢ for any X;, 7 =1,...,n
and h € R as follows:

P(Xj+h) = o(X;)+ @' (X))h +¢"(X;)h* /2 + rj(h)h*.
As ¢ is continuous (even twice differentiable) we have for the remainder
Il =, 0

when § — 0 (and n — oo, since X; —, x,). Using this, write fj; as follows

_ f(X; + udji)
Jo F(X;+vd) d

fir(u)

{u€[0,1]}

exp (hjk(u) + 7

fol exp (hjk(v) + 7, véjk)6?k> v fuelot)
where we introduced
hiw(z) = ¢'(X;)dmz + ¢"(X;)052° /2 (5.18)
for x € [0,1] and ¢;; = Xy — X;. Clearly,
sup |rj(udjr)| —p 0 (5.19)

u€e(0,1]

as n. — oo. Note that we normalize in order to get a density function on [0, 1].
Additionally let
exp hjx(u)

() fol exp hj(v) dv fucloal}
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From (5.18) one can conclude that on an interval Z;,, the parameters 6, and 7,
introduced in Section 5.3 are in detail, as n — oc:

¢'(zy) k—j
0, = 1 1 2
L= o) (5.20)
0" () (k—J\?
= 1 1), 5.21
= are ) (o) (5.21)
since, according to the proof of Lemma 5.5.1,
k—J _
= () (1 0p(1),

To give a legitimation for an approximation of a smooth enough log-density by a
parabola, consider the total variation distance TV between two probability densities
f:Rr - Rand g: R — R For € RP define

TV(f,9) = Rp\f(m)—g(m)\dm.

Introduce the following joint densities:

fo(X) = 1:[ fir(X5)

i=j+1

9,(X) = ﬁ 9k (Xi).

i=j+1
The following lemma then specifies the asymptotic total variation distance between
fn(X) and g, (X).
Lemma 5.5.1. For f (X)) and g, (X) introduced above:

TV(£,(X).9,(X)) = o,(1)
as n — oQ.

Suppose we would like to test the hypothesis H, : n = 0 vs. Hy : n = n, > 0.
The above lemma implies, that the asymptotic power based on an i.i.d. sample of
size k — j — 1 taken from f;; is equal to the power for the same testing problem if
we adopted a sample from g;; instead. To be fully prepared for the statement of
the theorem, introduce a so-called “perfect sequence of tests”. A sequence of tests
in the above hypothesis is called perfect, if for any sequence of alternatives 7, the
power function m,(n,) is tending to 1 and the size 7,(n,) = 7,(0) is tending to 0, as

n — o0.
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Theorem 5.5.2. Suppose ¢"(x,) > 0 and the sequences j = j(n) and k = k(n) are
such that

kg1
n“(—;L—) — 0 (5.22)
n

asn — oo. Then there exists a perfect sequence of tests for the hypothesis H, : =0
vs. Hy:m=mn, >0 based on an i.i.d. sample of size k — j — 1 where every random

variable in the sample has density function fy,.

To conclude, some words about the Condition (5.22). It seems not to be too strin-
gent, since Definition (5.21) of 7, suggests that in order to be able to test for this
latter parameter we anyway need enough observations in Zj; to guarantee

k—j—1

2
) oo
n

(k—j—1)"(

But this latter condition is equivalent to (5.22).

5.6 THE MULTISCALE TEST

Having guaranteed sufficient power in Section 5.1, shown convenient properties of
the local test statistic 7,,(X,,,#) in Section 5.4 and justified approximation of the
original density f on any interval Z;;, through local parabolas in Section 5.5, we will
now introduce a multiscale test.
Beneath in Diimbgen and Walther (2006) for mode hunting, multiscale testing in a
quite general qualitative setting is described in Diimbgen and Spokoiny (2001) and
in a more applied regression framework in Diimbgen (2002).
Adopting the notation of the latter paper, define the global test statistic for a sample
X,.3<m<n-—-land3<I[<m-—1as

LX) = max ([T (X))~ ey
where @\?k is the estimated log-linearity parameter ;;, based on the local order statis-
tics X1k - - -, Xg_1;5,6 Where 1, is assumed to be 0, i.e. estimation of 6;, happens

under the null hypothesis. The local test statistics are

Zf;j1+1 Ty (Xi:j,k)
[(k = j = 1) Vary Ty(X ;1572

Tjkn(Xn; 9) =
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and the normalizing constants

Cqa = <2 +2 log(n/d)) 1/2.

The papers cited above detail why constants of this type are appropriate in such a
multiscale setting. Informally, such an additive correction is introduced to prevent
the limiting distribution of 7}, | to be dominated by local statistics T}, for (k—j)/n
small, i.e. those on short intervals.

The test function T}, (X, ) can alternatively be written as

St ([Xeie — a0 /2 — a(8)2/2 — b(6))
[(k —j = 1) Varg Ty(Xj41:5,)] '/
S (00(Xiin) — a(0)2/2 = b(6) )

B (k=7 — 1) Varg Tp(Xj11.5.k)]"/2 (5.23)

where dp(z) := 27 (2 — a(0))?1{zep0p- If we plug in an estimator 0, for 0, (5.23)
means that our test functions are parabolas with an estimated (and therefore some-
how adaptive) vertex

(a(an), —a(8,)2/2 — b(@n)).

Clearly, this estimator 6, will be @\?k. According to (5.12) the test functions &y are
indifferent with regard to linear density functions. However, if the observations come
from a local log-density function log f;j that is convex or concave, then Tj, (X, 5;],6)
tends to be highly positive or negative, respectively, by Theorem 5.2.2. It is impor-
tant to note that other test functions are equally possible, e.g. parabolas with a fixed
vertex, immediately raising further possibilities to design tests for (log-) concavity
or (log-) convexity.

As in Diimbgen (2002), we confine our attention in the definition of 7}, to pairs

Lm,n
(4, k) such that their maximal lag k — j is smaller than m (typically we will choose
m < n, eg. m = n/2), for two reasons. First, to reduce computational burden
in numerical simulations and calculations of the test statistic and second because
we want to increase sensitivity on smaller intervals. Similarly, only lags [ > 3 are
considered, because this is the minimal number of observations to assess concavity

or convexity meaningfully.
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Suppose we somehow get hold of the distribution of 7}", = as n — oo (for details

I,m,n

see Section 5.7), define x(a, f,n) as the (1 — a)-quantile of this distribution. As we

do not know the precise limiting behavior of the distribution of 7)* ~and therefore

l,m,n

the quantiles of it, we make the following working assumption.

Working assumption 5.6.1. Suppose for the quantile (o, f,n) that as n — oo

k(a, fn) = k(. go) +o(1)
for some “null density” g, and that this latter quantile k(v g,) is bounded.

Some indications that this working assumption may hold true are given in Section
0.7.
Now fix a, [, m and n. For a given sample X ,,, generate the distribution of I}, and

calculate k(a) = k(a, f,n). Then introduce the following collections of intervals:

Clon(@) = (X)X :0<j<k<n k—j<m —Tjpa(Xn01) > crj+r(a)}
Cﬁmyn(a) = {[X;, Xy :0<j<k<n, k—j<m, Tjkn(Xn,@\jk) > ¢ + k(o) }.

With probability at least 1 — a the following statement holds asymptotically as n
tends to infinity. The logarithm of the true density function f is neither concave

«). Even further,

) nor convex on any interval in Cj} . (

on any interval in Cp, . (
the local score tests imply a lower confidence bound for the location and number of
these pieces. Define the sets of bump intervals as follows: If both sets Cj), (o) and

Cr., (@) are non-empty, then

Bzmn(a) = {lz.y] [z, 9] € Clnla), [2y] € Cppla), y <2t UCH, ,(a)
mn(@) = Az, y]: [2.y] € Cpla). [y € ClLla), y <2’} UG, ,(a),

if C{"mn( ) = @, set Bj}, (o) = @ and let B,
of C, () and likewise if C
B, () as follows. Take the left-most interval endpoint X, in the set, keep only

I,m,n

() only contain the first element
Imn(@) is empty. Post-process the sets B} . («) and
the longest interval [ X, X, | with this starting point and skip all other intervals that
are not disjoint with [X,, X;]. Then continue with the left-most interval endpoint
right of X, and do this until no intervals can be kept anymore.

The sets By, ,(a) and Bj)  (a) consist of intervals J which do contain separated
(in the sense that they are only allowed to adjoin at one point) regions .J;, .Jo where
log f exhibits both a concave and a convex behavior. Assembly above considerations

to conclude the following theorem.
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Theorem 5.6.2. Suppose the Working Assumption 5.6.1 holds true. With proba-

U

bility at least 1 — « as n tends to infinity log f is neither concave on Cl,m,n(a) nor

(). Furthermore, the number of bumps of log [ is not smaller than

N
l,m,n

-
conver on Cp\,

the number of intervals in B} (). On the other hand, log f has at least as many

dips as there are intervals in By, ().

It is important to note that it is principally not possible to replace the one-sided
statement in Theorem 5.6.2 by a two-sided version. This impossibility is a fun-
damental property of truly nonparametric functionals of a density f, such as the

number of bumps and the number of dips in our case and is elaborated in Donoho
(1988).

5.7 THE LIMITING DISTRIBUTION OF T

l,m,n

To start the section, let us introduce three distributional laws in Table 5.1.

Table 5.1: Distribution laws used to assess L(T}%,, ).

Law Symbol Density Range Parameters
Exponential(\) | £ Aexp(—Az) [0, o0) A>0
Log-linear () £ fexp(fz)/(exp(d) — 1) [0,1] feR
Uniform u 1 [0,1]

With £, €, and U, we mean vectors consisting of n i.i.d. random variables of the
given type.
For a fixed n, T}

U'm.n(Xn) is constructed as the maximum over all lags greater than 3

and smaller than m minus the correction ¢4, therefore it is not evident whether the
limiting distribution as n — oo, denoted by L£L(T*(X,)), exists, if yes whether it is
non-degenerate and finally how it depends on X,,. However, in view of the results
in Diimbgen and Spokoiny (2001, Theorem 2.1.) it would be of great surprise if
the answer to the first two questions is not affirmative. This conjecture is further
supported by numerical simulations, clearly pointing to the existence of a limiting
distribution £(7*(X,)), see Figure 5.2. We sampled 9'999 statistics 7,, ,(€,) for
every combination of m and n detailed in the legend of the figure, where m = n—I[(—1
for n <200 and m = [n/2| — 1 —1 for n > 200.
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Figure 5.2: Limiting distribution functions for 75, , (€,). The curves are generated from

left to right with the parameters in the legend top down.

Having postulated the existence of £(T%(X,)), it is however recommendable in

applications for a given fixed n to rely on Monte-Carlo simulations to generate
the distributions £(7}

l,m,n

(X)) yielding the quantiles x(«). The problem then is
what distribution to choose where X, is sampled from. We experimented with the
distributions detailed in Table 5.1.

Numerical simulations suggest that using vectors £, yields test statistics T,, ,(€x)
whose distributions are stochastically bigger than all other input distributions we

tried, i.e.
Fe, (v) < Fp,(z), forallz € R

where Fg, (z) is the distribution function for a sample of 73, (€,) generated from
the entries of £, and Fp, () is the distribution function for a sample of 77, (D)
where D,, € {gn, U, }. Figure 5.3 details the issue. The horizontal lines are drawn at
1—a € {0.9,0.95,0.99}, i.e. where the most widely used quantiles () are calculated
from. One hardly sees any difference between the three curves overall and only minor
differences in the tails. Per distribution we sampled 97999 times the statistic T3 44 -
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Figure 5.3: Distribution functions for T3 46 5¢-

In what follows, we provide a lemma reminiscent of the deterministic inequality of
Proposition 1 in Diimbgen and Walther (2006), detailing a vector Y, having some
sort of borderline or worst-case distribution such that the test statistic 7}, (X,,) is
bounded from above (log-concave case) or from below (log-convex). However, due
to the fact that we have to estimate 6;, we can only provide a weak statement in

terms of expectations.
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Lemma 5.7.1. Fiz indices j and k where 0 < 7 < k <n with k— 7 > [. Define the

vector Y, = (Yi)f;jIH of i.i.d. random variables such that every component Y; has

a log-linear density function g;9, where

0
giro(T) = W eXP(ex)l{erjk}-
Then:
< IEg, 0 Ljn(Yn,6h) if f islog-concave on L,
IEij:ﬂjk Tjkn(Xm ejk) wnd J

> Eg, 0 Tjkn(Y . 61) if fis log-conver on Ly

J

as n — oo for all 6y < O, where B, and n;y, are the parameters of the density f7.

This lemma suggests an optimal strategy to sample from the distribution
L(T},, (X)), On every interval Zj; estimate f;;, then generate a random vec-
tor with components having density g;; ¢, for a #; such that 6, < @\]k and use the
distribution of T/, ,

of L(T},,,(X)). Note that this procedure provides quantiles depending on the ac-

generated by M such random vectors to get critical values k(«)

tual data X,,. Second, the original condition for 6; is to be smaller than the true
0x. However, 6, is unknown and replaced by the maximum likelihood estimator
O

Unfortunately, Lemma 5.7.1 is only a limit result as n — oo. As long as one
estimates 0, this cannot be improved in the sense to get a result for finite n.
However, one can imagine to choose 6 differently, e.g. via some “worst #” or mini-
max criterion, perhaps yielding results for finite n. The prize to pay when adopting
such a procedure is in terms of power. We have no clue how high the power loss is.
As described above, to get quantiles generally applicable we sampled vectors &€,
of exponential random variables, which we considered having some sort of general
log-linear distribution. At least their parametric shape is justified by Lemma 5.7.1,
however, ¢, = 1 is used for all 0 < j < k£ < n+ 1. In Table 5.2 we provide some
quantiles k(«), generated from M = 9’999 simulations.

To interpolate (or even extrapolate) for values of n not provided in Table 5.2, we
recommend to regress log k(a) on n (among n’s where [ and m are selected using

the same strategy).
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Table 5.2: Quantiles x(«) for the multiscale test.

n I m  k(090) k(0.95) £(0.99)

20 16 1.0749 1.3335  1.8969

3
50 3 46 14763 1.7007  2.2029
100 3 96 1.6981 1.9253  2.3875
200 3 196 1.8509  2.0702  2.5418
300 3 146 1.8038 2.0098  2.4722
400 3 196 1.8520 2.0699  2.5129
500 3 246 1.8900  2.1052  2.5320
600 4 296 1.9302 2.1346  2.5453
700 5 346 19314 21270 2.5719
800 6 396 19783  2.1729  2.5709
900 7 446 19827 21908  2.6192
8

1000 496  1.9921  2.2058  2.6391

5.8 EXAMPLES IN BUMP HUNTING

We illustrate the method described above with some examples with simulated data,
performed in R, Version 2.1.1. Distributions we used are detailed in Table 5.3.

Figures 5.4-5.7 illustrate the results. All figures are to be read as follows: First, we
imposed everywhere o = 0.05. Two plots always mate vertically. On the upper one,
the straight line is the original density we sampled from whereas the dotted line is
the standard gaussian kernel estimate. In the lower plot, the sets Cj ), (0.05) (above
the horizontal dotted line) and C;,, .. (0.05) (below the dotted line) are displayed. We
intentionally omitted plots of the log-density (whereon the method actually works)

in order not to overload the figures.



114 5 BUMP HUNTING

Table 5.3: Distribution laws to illustrate bump hunting method.

Name Law Sample Size n
Normal N(0,1) 50, 200
Contaminated Normal | 0.9N(0,1) + 0.1N(6,1) 200, 500

Two bumps 0.5N(0,1) + 0.5I(5, 2) 200, 500, 700, 1000
Claw density 0.5M(0,1) + 2?20(1/10)./\/(1'/2 —1,1/100) | 200, 500, 700, 1000

In Figure 5.4 we see two standard normal samples of sizes n = 50 and n = 200. In

both cases, only the set C! (0.05) is non-empty, so that we conclude by Theorem

l,m,n(

5.6.2 that there is at least one bump. Precisely we have:

C3 .46, 50( 05) = {[X(4)=X(44)]}
Cihg6.200(0.05) = {[ X1y, X129, [X(a2), X135)], [X(aay, X1ae)], [ X (a5, X(160)],
[ X6y, X(62)], [X(as), X163)], [X(54), X196)]}

and Cy46.50(0.05) = C5)19 200(0 05) = @, yielding BY4550(0.05) = C34650(0.05) and
51196,200 (0-05) = {[X(1), X(129)] }-
Two samples for n = 200 and n = 500 of a standard normal distribution corrupted
by 10% of observations stemming from another normal distribution are displayed in
Figure 5.5, see Table 5.4 displaying the number of clearly ascertained bumps and
the sets B}, ,(0.05) and By, (0.05).
By Theorem 5.6.2 we conclude with the level of the test tending to 0.05 as n — oo
that we have at least two bumps in the sample of size n = 500. Compared to
the purely normal distribution we can claim that there must be something different
going on here.
A mixture density with two bumps appears in Figure 5.6. Note that the density
is constructed such that it has only one mode but two bumps, this being the most
specific situation to apply bump hunting compared to mode hunting. The results
are given in Table 5.5.
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Table 5.4: Results for the contaminated normal density.

n  bumps dips  Bj, (0.05) By, ,(0.05)
200 1 1 X7y, Xasz)]  [X(sa), X(182)]
500 2 1 [X(96), X(a55)]  [X(134), X(a47)]

[X(460)> X(499)]

Table 5.5: Results for the two bumps density.

n  bumps dips  Bj, .(0.05) By, ,(0.05)

200 1 1 [Xap» Xaen]  [Xsey Xaasn)]

500 2 1 [X(3), X(336)]  [X(159), X(a88)]
[X(338): X(488)]

700 2 1 [(X(s), Xan]  [X(z19), X(o71)]
[X(a80): X(671)]

1000 2 1 [(X(3), X(eray)] [ X(326), X(970)]

[X(725): X(970)]
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Figure 5.5: Multiscale test results for normal contaminated samples for n = 200 and
n = 500.
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Figure 5.6: Test results for a two bumps sample for n = 200, 500,700 and n = 1000.
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As an illustration how the power of our multiscale test evolves when n increases,
Figure 5.7 displays a mixture of six normal distributions, the so-called Claw density,
introduced by Marron and Wand (1992). Here modes and bumps are the same.

Table 5.6 details the results. Clearly, the method is at a sample size of n = 1000 not
able to detect the bumps in the statistically strict sense of Theorem 5.6.2. However,
looking at Figure 5.7 in a more explorative manner, one already has clear indications
at a sample size of n = 500 that there might be five bumps present, because we

have alternating intervals whereon we claim log-concavity and log-convexity, but

the intervals still overlap.

Table 5.6: Results for the Claw density.

n  bumps dips  Bj), ,(0.05) By, ,(0.05)
200 1 1 [X(9), X(185)]  [X(136), X(185)]
500 2 2 Xz, Xasyl  [Xea), X(200)]

[X(200), X(a39)]  [X(350), X(439)]
[(Xas), Xaso)l  [X(a)s X(2a9)]
700 3 3 [Xon, Xure)]  [Xes2), Xso2n)
[(Xs66): X(671)]  [X(521), X(626)]
[X(er), X2s0)]  [X(5), X(3a9)]
1000 3 3 [X20), Xe3s)]  [X(356), X(605)]

[X(799): X(980)]

(X (705), X(855)]
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Figure 5.7: Multiscale test results for a Claw sample for n = 200, 500, 700 and n = 1000.
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5.9 PROOFS

Proof of Lemma 5.1.1: Lehmann (1986, p. 59) gives the first statement of the

lemma in an even more general form, including a proof. As for the Laplace transform,
Eg exp (uTt(X)> - / exp[u t(2)]c(0)h(z) expl8 t(z)] dx
X

= 0(0)/Xh,(:c) exp[(0 + u) t(z)] dz

_ o) 0
c(@+u)

Proof of Theorem 5.1.2: Before attacking directly the difference in (5.6), some
preliminary considerations have to be made. First, note that for a random variable

X having density function pg and vectors a, d € R? we have for the function ¢, by
Lemma 5.1.1:

ast(X) =
_ Eat(X) + 0" Eu[t(X)H(X) ']+ O(]|d]3)
1+ 0T ELt(X)+ O(]6]|3)
= (Eqt(X)+ 8" Eo[t(X )XT]>[1*5T1Ea(X)]+O(II5||§)
= Eat(X)+68" Cova(X, (X)) +O(]|6]2) (5.24)
using

(1+2)" = 1-2+0(2?
which holds for any « # —1. Similarly one can derive
Vargst(X) = Vargt(X)+ O(]|6]]2)- (5.25)

Now define the random vectors Z,, as

Z, = n71/2<t(Xm)—t(Xn))

where
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is the empirical counterpart of (5.1). By the law of large numbers in Section A.9
and Lemma 5.1.1 we have that

ZZ’mZZnT _>p COVGO t(X)
i=1
The assertion follows because

> B, min([| Zinllo, 1 Zial3) = 1T, (| Z1l2)

i=1

< plEg, <t1(X1n) - t1(Xn)> +o(1)
— 0,

by the row-wise identical distribution of the X;,, together with (5.24) and assuming
without loss of generality that the maximal difference appears in the first component
of t(X). To be able to apply the Lindeberg-Feller central limit theorem of Section
A9 to /n(t(X;,) — Eg, t(X1,)), the corresponding condition (A.11) remains to be
verified. For all € > 0,

> Bo, (1122,112) Lzia>e)

i=1
9 n
< pIE%(’fl(Xln)—tl(Xn)) 2 ey v +0(1)
i=1
= 0 (Z 1{ﬁ(t<xin)—t<x;>>>(a/p)n})
i=1
—p 0

as n — oo because the difference in the indicator function is a.s. bounded. Now

apply Lindeberg’s central limit Theorem A.9.2 to conclude:

n

n*1/2z<t(Xm)—IEgnt(X1n)) S Np(o,COVGOt(X)). (5.26)

i=1

Together with the moment condition

(X, = B, t(X),) (5.27)
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for the maximum likelihood estimator, (5.26) implies
s ¢(X1n) — g, t(X1,)
= (8 0. (Cove, t(X) + Op(18 — 8,l12)) + O, (118, — 6.13)
— (6, — 6,) Covg, t(X) + 0,(n"/?)

wherefrom we deduce, using again (5.26) as well as (5.27):

Vi@, -0, = Va(tX,) - B, (X)) (Cov, t(X)) " +0,(1)
—p N,(0,1(8,) ") as n — oo
by (5.2) and (5.26). 0

Proof of Theorem 5.2.1: First let us derive a Taylor expansion for the log-

likelihood function E and two vectors a, «, € O:

En(a) = L(ao) (a — ) ZEQO in) (a a,) Zfao Xin)(a — a,) +

T ZZZ —ag ) (o — aog)(on — 00) > ViwMir(Xin)  (5.28)

s i=1

where |y, =1 and Mjg(z) is such that
———ly(z)] < M;
‘aejaekael o) < Miulr)

for all j,k,l = 1,...,n. Write R, for the fourth summand in (5.28). Tt is not
difficult but tedious to verify that all the above third derivatives of £y are linear
combinations of moments of £(X) and therefore, by Lemma 5.1.1, bounded. This

implies by Theorem A.9.1:

1 n
> M < T, Myu(X1)
i=1
S C(pBa 00)

with probability tending to one for all j,k,l = 1,...,n, a constant C = C(pg, 80,)
only depending on the exponential family under consideration and 6,. Consequently,

R,, can be written as

<Z ZZ V(o — ag)vn(og — o) (o — a0,1)>.

j=1 k=1 I=1



5.9 PROOFS 123

Now if we have /n(a; — ag;) = O(1) for all i =1, ..., n then
R, = o(l).

The expansion in (5.28) will now be used to derive the limit distribution of A,,. By

the assumption of the theorem,

0 6, = 6. 0 (5.29)

h
epﬁ.

0
Setting @ = 6, and a, = 6,, in (5.28) we get a first approximation as follows:

L.(6,) — L.(6,) = (8, — 6,) *WZee (X)) +

+z f B Ze,, (X12)v/7(8, — 0,,) + 0y(1).

Combining (5.3) and again Theorem A.9.1 one has
1 <X ..
IS () = 10 + o)

what together with (5.29) yields:

~0 ~

= V/n(0, - 8% *1/2269 (X1,)
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~ ~ ~0 —~ ~
In order to get Y, minimize the difference L,(0,) — L,(0,) over Y. Therefore,
set the derivative of the expression in (5.30) equal to 0, yielding:

~ min

Y, = 1“(00)*1(17n+112(00)h>. (5.31)
Reinserting f’:in in (5.30) we finally get
L.(8,) ~ Lu(8,) =
1 ¥ 12 ' 11 —1{ x7 12 1 22 2
§<Vn+1(00) h) 1'(9,) (Vn+I(00) h) ~ Vagh = ST2(O)07. (5.32)

Using again the approximation (5.28) with a = b\n and a, = 6,, and taking into
account that

i=1

one can derive in a similar fashion as above:

~ o~ ~ 1
Ln(en) - Ln(en) = §V;I(90)Vn + Op(l)
1-7 ¥ L o+ 22-1 -1
= EV”I(HO)VH + §vn,p,11 (0y)  Vipa +0,(1) (5.33)
defining

Vipi(8) = Vi, IHOI™(O)'V,
) = 17(9)-1*'(0)1'(9) '1()

and applying Lemma A.10.2. Now again by Lindeberg’s Central Limit Theorem
(Theorem A.9.2) we have for the vector of scores V,,, as n — oo,

V. —=p N, (0,1(90)) (5.34)
(see also Section 5.3 in van der Vaart, 1998). Consequently,

Varg, Vop1 = B, V2, —21'(0,)1'(8,) ', (V,, V) +
- ~ T
o, (121(90)1“(90)*1VnVn1“(00)*11”(90)) + o, (1)
= 17°(0,) + 0, (1).
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This together with Lemma A.10.1 implies that
7 = T240,) 'V, (5.35)

converges in distribution to a standard normal distribution.
All ingredients to tackle A, are now made available. Subtracting (5.32) from (5.33)
and multiplied by 2 results in

Ay = 200(8,) — 2D0(85) + 0,(1)
= TI2Y(0,)h* + 2V, puh + V2, T221(0,) 7" + 0,(1)

2
- (Z + 122'1(90)1/217,) +o,(1).

Due to (5.35), A, converges in distribution to a x2-distribution with one degree of
freedom and non-centrality parameter 121(8,)h?. The above representation also
details that A, —, oo whenever h = \/nf, , — occ. O

Proof of Theorem 5.2.2: Generalizing (5.29) one has

0 9, = 520%(77%)6,,.

Similarly to (5.30) one can derive the following Taylor approximation:
L,(6,) ~ L. (6,) =

= @0 Y )+ (1 e (X
=1

(@) e1)'16,)(8) - 6n) -

(0], = 82) 100, (1= =) e, = 50 (1= =) T8 + 0,01

Taking the derivative w.r.t. to n yields:

aani Zeg (X1,) — n(0. — 0" 1(8, )ep—n< %)21”(00)+op(1).

Dividing by /n and setting n = 0 finally gives for the score statistic:
O ~ ~
S, = n V2L,
on

- T
= Vop =Y, 1%(0,) +1%(0,)h + 0,(1).
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To derive the limiting distribution for the LRT we already figured out the form of
Y, see equation (5.31). Therewith,

:
Su = Vap— (Vat 12(8,)0) T1(6,) '1%(8,) + T2(6,)h + 0 (1)
~ T
Vip +1210,)h — V 1(0,)'T*(8,) + 0,(1). (5.36)
Using (5.34) the variance of (5.36) is
~ T
Varg, (Va, — V,1(6,)'1(6,) )
~ T
= o, ([Vip = V,1"(8,) 'T2(8,)2) + 0, (1)
~ T ~ T
= B, V7, 2, (V,, V)T (8,) 'T(8,) + Eo, (7, 1(8,) 'T(8,)1) + 0,(1)
= I°(0,) — 21°'(0,)1''(8,) '1'*(0,) +

12(0,)1(8,) " B, (V,, V)" (8,)'T'%(8,) + 0,(1)
= 17°(0,) + 0,(1).

This together with (5.36) finally entails
Si o N(TE0,)n.T1(0,))

wherefrom we easily deduce the latter two statements in Theorem 5.2.2. From (5.36)
it follows that S,, =, oo if h — oo. O

Proof of Theorem 5.3.1: The proof of this lemma consists of elementary, tedious
and little instructive manipulations and is therefore omitted. We only point out

that the following recursion formula helps:
Hi(0) = exp(0)/0 — (k/O)Hy 1(0)
for k=1,2,... and any # € R. O

Proof of Theorem 5.4.1: Using (5.25) one has

n

= Varg, Ty, (Xy,) + 0p(1) (5.37)

Varg, Tg (X1,) = Varg, Tp, (X1,) + o8 — 6,))

by assumption (5.16), because 7, — 0 entails that 52 consistently estimates #,. This
continuity property of the variance together with Theorem 5.2.2 already entails the
statement of the present theorem if \/n|n,| — h, where h > 0.



5.9 PROOFS 127

Next, rewrite T, (X, 0°) as

T(Xm (9\2) =

_ nmixm ()Xo — (@)

[Varao Tao (Xln)] 1/2

= (C+o) V(2" (F — Bo, p, XE) — alBl) (X — g, p, X)) +

(c+ op(l))\f(z gy, X2, alBh) Bo, p, X1 b(ED)) Dy (5.37)
= (C+ o) V(2 By, X3, — al@)) B, 5, Xin — (@) (5.38)
= V(0. = %)+ O(na)) by (5.12) and (5.24)

= Vii(op(n ) + Oy(na)
= 0p(1) + Op(n'?],))

for a generic positive constant C' independent of n where (5.38) is received via (5.26).

From these derivations we see that indeed

as n — oo if ever |n,| diminishes at a slower rate than n='/2. O

Proof of Lemma 5.5.1: We start the proof with a generally applicable result for
spacings when the underlying density f is differentiable and j and k are fulfilling
(5.17):

k—j
X X; = 0y(=—2). 5.39

g n+1 ( )
To proof (5.39), introduce a random vector U,, := (Uy, ..., U,) containing the order
statistics of an i.i.d. sample of uniformly on [0, 1] distributed random variables U;,
1 =1,...,n. Denote the distribution function corresponding to f by F. First use
Lemma A.7.1 to receive for alll =1,...,n,

Ur = n-ll-l +Op<\/(ni1>(ni2>(l_ni1)>'
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Then, using this and applying the mean value theorem for a z €]U;, U/
Xp—X; = FHU) - F YUy
= (U= U)(F 1) (2)
Uy —U;

FF1(2))
Uy — U

Flay) + f'(2) (F71(2) = @) + o(F1(2) — 27)
- S0 o205 )
- ol o204

n+1 n n+1
k—j
o )
P\n+1
by Assumptions (5.17). To proof the lemma as n — oo, note that verifying the limit
TV(f,(X),9,(X)) =, 0 is equivalent to

H2(£,(X),9,(X)) =, 0 (5.40)

by (A.9), where H is the Hellinger distance between two density functions, see
Section A.8. The limit in (5.40) holds if

1, k—j—1
<]_ — EH (fjka h]k)> —)p 1

using (A.10). Finally, with another simple manipulation, we arrive at the key con-
dition to be verified:

(k—j — V)H*(fik, hjx) —p 0.

First, use that as n — oo,
1
[ explhan(o) + ri(a0,05%) di =
0

1
= [ (1 DB + (X)) 24 1y (085 + Ou(52))
0
= 14 Op(0jk)-

Similarly,

1
/exphjk(x)dx = 14+ Op(d;k).
0
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Now, inserting the definitions of f;;. and hj; into the total variation distance and
using (5.19) we get as n — oo,

(k— 7 — 1)H*(fik, hj) =
ki1 Yrexplhjr(w) /2 + 1(26)05, /2] ~exp(hy()/2) de
( J ) /U <(f01 exp(hjr(v) + rj(vd)) dv)'/? (fo exp hj(v )dv)1/2>

— (k—j—1) /U exp b (1) (lexp(r; (20)62,/2) 1””01’(59‘“]1/2)2“

k— j—1 . 2 1
S m <$S€1[10p1 ‘T] (x(sjk) ‘6yk/2 + Op((sjk)) (/0 exp hjk (.’E) d.’E)
= (k= = 1)oy(d5,) (1 + 05(1)) =, 0. O

Proof of Theorem 5.5.2: Since Lemma 5.5.1 holds, we can restrict our attention
to the parabolic density g;,. Generalize the notation for this density to

exp(fu + nu?/2)
fol exp(fv + nv?) dv

gjk(u,0,m) = uel0,1]-

Generalizing Lemma 14.31 in van der Vaart (1998) to composite hypotheses, we
have to verify, in order to proof the theorem,

(k - .] - 1)H2 (gjk(ua é\jka nn)agjk(ua 9]k7 O)) —p 0,

where the sequences 6,, and 7, are as introduced in (5.20) and (5.21). Finally, @\]k is
a (k—j —1)"/2—consistent estimator of 6, and 0); is the true parameter of g on
Zji. Similarly to the calculations in Lemma 5.5.1 one can derive, as n — 0o,

But thanks to the assumption given by (5.22) this latter expression is unbounded
as 1n — oQ. O
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Proof of Lemma 5.7.1: Suppose that log f; is concave on Z;,. Let Fj, and Gy g
be the distribution functions corresponding to the densities f;, and g 9. Choose
¢h < 0, such that

-~ -~

Gro, <a(9jk)) _ B, (M) _

2 2

Both Fj, and G ¢ are distribution functions, what means
Givoy = Fjr on {Xj,a(0r)/2, X}

Hence the densities satisfy:

/ (giko, — fir) = /A (gjk00 — fir) = 0. (5.41)

Xj (O51)/2

Because log gj; ¢, is linear and log f; is concave on Zj, (5.41) entails that either
9ik0, = fjx on L, or the difference g;.9, — fjr has exactly two changes of sign,

namely at
¢ € (Xj,a(@\jk)/Q) and ¢y € (a(@\jk)/2,Xk)
such that

Z 0 on (Xj,Cl) U (CQ,Xk)
Yik.0 — fik
<0 on (c,c3).

Using Lemma 9 in Diimbgen and Walther (2006) together with (5.41) then yields:

Z 0 on (0, ij (a(é\]k)/2>>
< 0 on (ij (a(é\]k)/2> s 1) .
Consequently,
Xi=F'(Ujn) = Gilo (Uijn)
= Xj+ (Xi — X)) Gpg, Uijn) (5.42)

depending whether Uy § ij(a(gjk)/2), this condition being equivalent to

Xisjk § a(éjk)/z The uniform local order statistics U;;;, are defined similarly
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to Xj,, but for uniform order statistics Uy, ..., U, instead of the X, ..., X,
having density function f. Equation (5.42) entails:

n

Z(ngk (Xi;j,k) < Zéﬁjk (Y;U'Jf)'
=1

i=1

where dy was defined in Section 5.6. Tedious calculations reveal that —a(60)?/4 — b(6)
is a non-decreasing function on R. Hence:

1 n
0 < =3 (05, (Vi) — G, (Xii))
i=1
— 1 S I 6 B
= > (05, (Vi) = B (Xig) = 8, (Xigu) @ — 01) ) + 0, (n ")
i=1

1 — R
- 5Z<Tjk”(Y’91) - Tjkn(X;gjk)> + 0y (n" %)
i—1

—p B0 Tjrn (Y, 00) — Egy 0 Tikn (X, 051)

as n — oo by the law of large numbers. The case where f;; is log-convex can be

treated analogously. O
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CHAPTER 6

OUTLOOK AND OPEN PROBLEMS

6.1 ESTIMATION BASED ON CENSORED OBSERVATIONS

Log-concavity could offer a compromise between fully nonparametric methods such
as Kaplan-Meier (or Grenander) and fully parametric models in the estimation of a
survival function (via its log-concave density) from censored data as it is smooth,
compared to the former two which are step functions with possible high jumps.
Compared to the unimodal distribution function estimator of Diimbgen, Freitag,
and Jongbloed (2006), the assumption of log-concavity could possibly yield more
powerful procedures. However, censored observations complicate the situation com-
pared to the i.i.d. case. One of the obstacles is that the log-likelihood function
corresponding to ¥, in (4.2) is convex with respect to the density f, but not with
respect to the log-density. A first algorithmic approach to tackle this task was taken
by Hiisler (2005).

This reasoning also applies to functions derived from a log-concave density, such as
the hazard function A in Section 3.6.

6.2 'TESTS FOR DISTRIBUTION FUNCTIONS

Theorem 3.5.1 suggests that the estimator F, is essentially equivalent to the em-
pirical distribution function F, . It can therefore be looked at as a smoother for
F,. One should expect that every procedure where somehow the jump function F,
is plugged into can be improved in terms of accuracy (estimators) or power (tests)
when plugging in the smooth function F, instead, at least if the underlying density
function is indeed log-concave. We sketch an example. Consider two i.i.d. samples
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(X;)™, and (Y;)I, of equal size (for ease of simplicity) and each component having
distribution functions F* and F'V', respectively. To test whether H, : F* = FY ver-
sus H, : FX # FY a common used two-sample test statistic is Kolmogorov-Smirnov,

relying on the empirical distribution functions FX and F? of the samples:

K = K, F,)
= VallFy - F I

The limiting distribution of K and the therefrom derived asymptotic test can be
found e.g. in Durbin (1973). If one imposes that F* and F both have log-concave
density functions, we instead propose to use the following modified test statistic:

K = K(FXEY)
= Va|EX — EY)LY

where ﬁ,f{ and ﬁ: are the log-concave distribution function estimators introduced in
Section 3.1. Deriving the limiting distribution of this statistic is presumably a diffi-
cult task, but if one assumes that under H, our pooled data (X1,..., X,,Y7,...,Y},)

has the same distribution as (Xy,,..., Xp,, Y1 .., Y11, ) where II is a random

n+17°
permutation of {1,...,2n} (that does not depend on the data), one can attack the
distribution of K under H, via a Monte Carlo permutation test. Generate M sam-
ples of IT and calculate the corresponding values of the test statistic Ky,..., K. A

nonparametric p-value p is then given by:

R 1+ #{i< M : K, > K,}
p

where l?o is the test statistic for the original samples. It could be exciting to
compare the power of this test to that of well established alternatives, such as the

above described Kolmogorov-Smirnov or y2-tests.

6.3 TAIL INDEX ESTIMATION

An example for accuracy improvement of an estimator using ﬁn is given in Miiller and
Rufibach (2006). We show that both parametric distributions appearing in extreme
value theory, the generalized Pareto and the generalized extreme value distribution,
have a log-concave density function if the tail index parameter v lies in [—1, 0].
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Suppose we are given an ordered sample X; < ... < X, from one of the above
two limiting distributions having distribution function G,. The most widely used
estimators for this tail index 7, such as Pickand’s or Falk’s, are defined as weighted
averages of log-spacings. In order to improve the accuracy of these estimators, the
idea is to replace the order statistics used to calculate them by quantiles received
via inversion of ﬁn This smoothing technique substantially reduces variance in
estimation not only of 7 but already in estimation of the quantiles. We intend to
compare this new approach to existing tail index estimation methods and to deduce
recommendations when to use which tail index estimator and whether smoothed or
not.

Furthermore, we have shown in the above paper that all distribution functions F
having a log-concave density function belong to the max-domain of attraction of the
generalized extreme value distribution, for some v € [—1,0]. This result relies on the
continuity, unimodality, and the non-decreasing hazard property (see Lemma 2.3.1)
of log-concave density functions. It seems clear that the max-domain of attraction
should be obtainable for function classes that assume less than log-concavity, as in
fact only the tail (i.e. local) behavior of a distribution matters in determining its

max-domain of attraction. But log-concavity is a global property of the density.

6.4 DECONVOLUTION WITH LOG-CONCAVE DENSITIES

Groeneboom and Jongbloed (2003) consider the following setting. Suppose we ob-

serve random variables 7y, ..., Z, having density

gr(z) = /Rk(zx)dF(x), z € R

Here k is a known probability density on R and F' is an arbitrary distribution
function. The question is: how can one estimate F' or quantities related to it,
e.g. moments? Equivalently, one could think of observing

ZZZXZ—FY;, izl,...,n

where the X; are distributed according to F' and Y; have density k. The authors then
simplify the task assuming that & is the uniform density on [0, 1), yielding a uni-
form (or boxcar) deconvolution problem. The nonparametric maximum likelihood
estimator I of F' is not continuous.
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However, the authors introduce a smoothed density estimator ,ﬂ,h:

Funlt) = / Kalt — y) dF (y)

for some kernel function K, t € R, and a specific bandwidth A = h(n). Beneath
the fact that this two-stage kernel estimator ﬁl,h has some undesired boundary
properties, it could be fruitful to calculate the estimate ﬁn directly assuming that
F' has a log-concave density, i.e. no additional smoothing via K is then necessary.

6.5 RATES FOR DIFFERENT NORMS

In this thesis we only considered consistency and rate of convergence in the uniform
norm ||.]|I, on compact intervals T'. First, the results in Chapter 3 should somehow
be generalized to the whole real line. Then, other norms could be considered, e.g. the

limiting behavior (consistency, rate of convergence, limiting distribution) of

=115 = ([ 1)~ s@pae) ™

for any p € N. This work has already been accomplished for the Grenander estimator
by Kulikov and Lopuhad (2005a, 2006).

Another open problem is a proof that the uniform rate of convergence for the convex
decreasing density estimator of Groeneboom, Jongbloed, and Wellner (2001b) has,
under their assumptions, uniform rate of convergence of (log(n)/n)?/®, and the gen-
eralization of their whole work to density functions belonging to Hélder smoothness

classes.

One could also think of a maximum likelihood version of the uniform rate of conver-
gence result in the current status data regression setting of Diimbgen, Freitag, and
Jongbloed (2004). Finally, least squares log-concave density estimation could also
be tackled.
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6.6 LIMITING DISTRIBUTION AT FIXED POINT

Preliminary considerations suggest that the limiting distribution of

-~

w1 (F, — f)(z,)

at a fixed point z, € R can possibly be derived in a similar way like in the convex
case in Groeneboom, Jongbloed, and Wellner (2001b). One has to consider suitable
Taylor approximations to

QAN@@ﬁ@N%

choose the perturbation function A such that the first two terms in the series dis-
appear and make suitable application of (3.3). The remaining terms are then ap-
proximated through suitable local empirical processes. Since the constant appearing
in the limiting distribution for the convex density estimator depends on f”(x,)"",
Groeneboom, Jongbloed, and Wellner (2001b) simply assume f”(z,) > 0. However,
for the log-concave density estimator such an assumption would be much too restric-
tive (if f e.g. stands for the normal density function we have f”(£1) = 0), whence

presumably an even more involved limiting behavior will outcrop.

6.7 LOG-CONCAVITY AND TOTAL POSITIVITY

As described in the introduction, monotonicity and convexity are special cases for
k = 1,2 in the class of k-monotone densities. These classes were treated by Balab-
daoui and Wellner (2004a-d) as a step to the solution of the case k = oo (complete
monotonicity). The relevance of the latter case comes from the fact that the class
of completely monotone densities is equivalent to that of scale mixtures of expo-
nentials. Unimodality and log-concavity on the other side are equally special cases
for £ = 1,2 in the notion of total positivity, see Karlin (1968). Perhaps it could
be fruitful to similarly consider the estimation of total positive density functions
of order k£ = 3,...,00. However, as log-concavity covers many parametric models,
imposing further constraints on the density possibly narrows the window too much
for statistical applications.
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6.8 MULTIVARIATE CONTEXT

Polonik (1995, 1998) pioneered multivariate density estimation under shape con-
straints. Log-concavity could be another option to be studied in this context,

e.g. imposed univariately in some dimensions or globally.

6.9 BuUMP HUNTING

The method we propose in Part 2 still relies on the Working Assumption 5.6.1 that
a limiting distribution for 7}, asn — oc exists (and is non-degenerate and at best
independent of f). A thorough analysis of this limiting distribution is still lacking.
Furthermore, our approach estimates the nuisance parameter ¢, implying that the
size of the test is only guaranteed asymptotically. Minimax approaches (i.e. taking
the “worst” # with respect to a certain criterion) possibly yield procedures that hold
the significance level also for finite n. However, presumably an improvement in this
sense has to be paid by a loss of power.

As already pointed out in Section 5.6, test functions p instead of Ty are equally

possible, as long as they wipe out linear functions in the sense that

/R zo(z)dz = 0.

Alternative test functions possibly offer a way to directly test convexity or con-
cavity of the underlying density. Probably not all approaches perform equally on
all types of underlying densities. These different performances could be assessed
empirically and theoretically. Furthermore, (theoretical) power considerations for
the method described in Part 2 as well as different assumptions for the alternatives
could facilitate the decision for a method in a specific problem. Existing approaches
like Silverman’s approach (Silverman 1981), the Dip test of Hartigan and Hartigan
(1985) or SiZer of Chaudhuri and Marron (1999) could be incorporated in these

comparisons.



APPENDIX A

STANDARD RESULTS

We state here several well known theorems, in the order they appear in Chapters 3
to 5.

A.1 LEBESGUE’S DOMINATED CONVERGENCE
THEOREM

We borrow the formulation and the proof from Pollard (2002).

Theorem A.1.1. Let f, be a sequence of p-integrable functions (i.e. [ fdu < oo)
for which im,,_, . fn(x) exists for all x. Suppose there exists a p—integrable function
F, independent of n, such that |f,(x)| < F(x) for all x and all n. Then the limit
function f :=1lim, _, f, is integrable and

i [ = [ s= [

A.2 MODULUS OF CONTINUITY OF A UNIFORM
EMPIRICAL PROCESS

First, define the uniform empirical process. Let &, ..., &, denote independent uni-

form random variables supported on [0, 1]. Introduce for t € [0, 1]

1 n
G, (t) = ﬁzl{sigt}
i=1
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the empirical distribution function of the sample. Let (U, (t))ico,1] denote the uni-

form empirical process where

for t € [0,1]. Our function of interest, the modulus of continuity, is then:

w(g,d) ==  sup sup |g(z+h)— g(z)|
z€[A,B—d] |h|<d

for d > 0 and functions g bounded on [A, B]. From Donsker’s Theorem we know
that the sequence of processes (U, ), converges weakly to a Brownian Bridge B.
Since B is continuous one can except that w(B,d) — 0 a.s. and a famous result by
Lévy (1937) specifies the rate of convergence to 0. Stute (1982) carried this result

from B over to U,, and this is exactly what fits our purposes:

Theorem A.2.1. Let r, satisfy the reqularity conditions:

Tn

nry,

log(r, ")/ loglogn
log(r; ")/ ()

U
=8 8 °

The modulus of continuity w(U,,r,) of the uniform empirical process then almost

surely satisfies:

w(U,, )

lim
n—oe /21, log(r 1)

Sequences 1, complying to the above four conditions are named “bandsequences”. A
proof for this theorem can be found in the original paper or in Shorack and Wellner
(1986).
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A.3 THE MASSART - DVORETZKY - KIEFER -
WOLFOWITZ INEQUALITY

In 1956, Dvoretzky, Kiefer and Wolfowitz gave a bound on the tail probability of
B, — Fllse.

Theorem A.3.1. Let F,, be the empirical and F' the true distribution function for
an i.0.d. sample X1, ..., X,. Then there exists a constant C' > 0 such that for every
x>0

P(\/ﬁnwn N ICEORN r) < Ce

The constant C' was decreased several times until Massart (1990) showed that C' = 2
holds and that no further improvement is possible. For proofs we refer to the original
papers. The expression on the left is the tail probability of the Kolmogorov-Smirnov
statistic, see e.g. van der Vaart (1998), Section 19.3.

A.4 SOME RESULTS FROM OPTIMIZATION

Suppose we would like to optimize a differentiable convex functional ¥, (n) over
vectors n € R" under the linear constraint Bn < 0 where B is a m x n-dimensional
matrix, implying that m constraints are present. It would be convenient to know
whether an actual candidate 7 already solves the problem. The following theorem

delivers exactly what the doctor ordered.

Theorem A.4.1. Let 1) be a vector in R" such that ¥, (1) < oo. Then 1) minimizes
U, (n) over the set of vectors m such that By < 0, if, and only if, the following

conditions hold for some vectors v,s € R™:

V,U,+Bv = 0 (A.1)
Bnp+s =0 (A.2)

v;s; = 0 foralli=1,....,m (A.3)

v > 0 (A.4)

s > 0. (A.5)
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Conditions (A.1)-(A.5) are referred to as the Karush-Kuhn-Tucker conditions. Note
that we consider here a special formulation of the problem. Generalizations also
include equality constraints and non-linear constraint functions. For a formulation
of such a much more general version of the theorem, consider e.g. Wright (1997,
Appendix A). This book also provides a proof of Theorem A.4.1.

In Chapter 4 we introduce a primal log-barrier algorithm. The theorem below
ensures that an algorithm based on this method indeed finds the solution 7.

Theorem A.4.2. Suppose that there exists a point § € F, where F is the feasible
set introduced in Section 4.2. Let the level sets {m : Bn < 0,¥,(n) < ¢} be bounded
for every ¢ > 0. Assume further that the functional V,, is differentiable and convew.

Then the optimization problem

indw,(n) - u S 1 (— B )}
f,ré%@{ (n) u; og(—(Bn)
has a solution for all > 0 and this solution is unique. Furthermore, n(u) tends to

the optimal solution M as p is driven down to 0.

A proof is given e.g. by Fiacco and McCormick (1968) who in fact introduced this
method.

A.5 ISOTONIC REGRESSION

Suppose a real-valued bivariate random vector (X,Y) is given. Let F'(-|x) denote
the conditional distribution function of Y given X =z, i.e. for z,y € R:

Flyls) = P(Y <ylX = ).
In linear regression, one now assumes that the unknown mean function
m(z) = E{Y|X =uzx)
= /de(y|:r), zeR

is affine linear and lies in a given d-dimensional space of functions, denoted by L,

where d € N is known and fixed. An example for £¢ is

d

{f 2= [f(z)= Zaﬂi},

1=0
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i.e. the (d + 1)-dimensional vector space of all polynomials of at most dimension
d. Given a sample of observations (Xy,Y]),...,(X,,Y,) where (X;,Y;) =p (X,Y)

for all i = 1,...,n, a possible way to define an estimator m is via weighted least
squares:
n
mi(r) = argmin w;(¥; — m(X;))? (A.6)
meLd T
where the w;,7 = 1,...,n are specifying the weight that each observation is given

to. Sometimes it is plausible to assume that the function m is isotonic rather than
linear, i.e. monotone non-decreasing in x implying that for any z;, 2o € R such that
x1 < 9 and y € R one has

Fylv:) > F(ylzs).
Problem (A.6) then transforms to

n

my = arg min w; (Y; — m(X;))? (A.7)
m(X1)<..<m(Xn) 37
where we focus our attention on estimation of m on the set of observations
X = {Xi,...,X,,}. Lower and upper bounds for m(x) for x ¢ X can then be
found via the isotonic property, e.g. trough linear step functions. Now the PAVA
comes into play. The crucial point is to introduce the cumulative sum diagram

(CSD), i.e. to plot the points p; = (W;,G;) for j =0,...,n where

J J
k=1 k=1

Define the greatest convex minorant (GCM) at a place ¢t € R as the supremum of
the values at ¢ of all convex functions that lie entirely below the CSD. Theorem 1.2.1
in Robertson, Wright, and Dykstra (1988) then guarantees that the left derivative
of the GCM solves problem (A.7). The key is that if we have two violators of the
monotonicity constraint, i.e. there exist a i, € {2,...,n} such that ¥;, ; > Y , we
can connect the points P 5 and F;, in the CSD via a straight line, a modification
that leaves the GCM unchanged but the above points do not violate the monotonicity
constraint for the left derivative anymore. The same theorem ensures that a solution
found by this procedure indeed minimizes the weighted sum of squares in (A.7).
Finally, the aforementioned book details an algorithm to find m4 via an iterative
algorithm. It can be shown that this algorithm in this specific least square case
needs at most O(n) operations to find ;.
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A.6 A CONVERGENCE THEOREM FOR ITERATIVE
ALGORITHMS

Diimbgen, Freitag, and Jongbloed (2006) present a framework to compute MLEs
iteratively, well applicable to many known iterative algorithms. For ease of com-
pleteness we summarize their theorem on convergence of these algorithms. We make
use of this theorem in Sections 4.5 and 4.6.

Suppose we want to maximize a functional L : © — [—00,00) over some metric

space (O, p). The following regularity conditions are imposed on L.

(A.1) The functional L is continuous on ©, and the set {L > —oo} is nonvoid.

(A.2) For any r € R the set {L > r} is compact (or empty).
The second condition implies that the set
O := arg max L(z)
€O

is nonvoid and compact. Note that if © = R and L is concave, Conditions (A.1) and
(A.2) are easily guaranteed. To perform the maximiziation, introduce an algorith-
mic mapping IT from ©, := © N {L > —oo} onto itself. This algorithmic mapping
IT should satisfy the following conditions:

(B.1) All iterates lic in ©: II(z) € © for all z € O.
(B.2) Improve the iterates in every step: For any z € 0, \ ©,

lim infL(H(y)) > L(z).

Yy—x

Note that only requesting L(I1(z)) > L(z) for any z € ©, \ © is not strict enough

to guarantee Theorem A.6.1.

Theorem A.6.1. Suppose that L and 11 satisfy Conditions (A.1-2) and (B.1-2).
For an arbitrary starting point x, € ©, define inductively new iterates x, := I(x, 1)
forn >1. Then

lim min p(z,,z) = 0.
n—00 €O,

This theorem is Proposition 3.1 in Diimbgen, Freitag, and Jongbloed (2006). The
proof can be found there.
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A.7 SOME RESULTS ABOUT ORDER STATISTICS

Here we give some fundamental properties of order statistics. Let U; < ... < U, be
an i.i.d. ordered random sample of uniformly distributed random variables. For a

distribution function F' define another sample X; < ... < X, via
Xi = Fﬁl(UZ’), Z:1,,77

It is well known that then all the X; are distributed according to F'. Introduce an-
other ordered i.i.d. exponentially distributed sample ¥} < ... <Y,,. We summarize

the facts used in the proofs in Section 5.5 in the following lemma:

Lemma A.7.1. For the ordered random wvariables we have:
, AN
Ui = (Znﬁl > (A8)
whereas for the spacings

" Y n+1
n-+

U —U,) - i .
( k k—1 b1 D (Zn+1y)

k=1

Finally, one single order statistic U; has a Beta(j,n + 1 — j)-distribution where

BU) =j/(n+1)  Var(U)) = () (=) (1- ).

n+1/\n+2 n+1

The proof of this lemma is elementary and can e.g. be found in Arnold et. al (1992).
Through application of (A.8) one can further deduce that U, — U; =p Uy_;.

A.8 TOTAL VARIATION AND HELLINGER DISTANCE

When replacing a density function by local parabolas in Section 5.5 we argue that by
doing this the total variation distance between the original density and the approxi-
mation is asymptotically negligible. The proof relies among other things on Lemma
A.8.1. Usually, the following definitions are given with (probability) measures as
arguments, (e.g. in van der Vaart (1998), Chapter 14). However, our arguments will
be the densities directly. For two probability densities p : R¥ — R and ¢ : R¥ — R
define the total variation distance as

= / (@)~ a(z) de
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and the Hellinger distance

) = ([ (Vilal - Vi) o) "

The following lemma delivers the critical (in-)equalities.

Lemma A.8.1. For two probability densities p,q € L (R¥) we have
H*(p,q) <TV(p.q) < 2H(p,q). (A.9)

If uw and v are the densities corresponding to the joint distributions received from n

i.1.d. random variables having densities u and v respectively one has:
1 n
H(u,v) = 2— 2(1 - 5H?(u,v)) . (A.10)

The proof of Lemma A.8.1 relies on fundamental manipulations with minima and
integrals plus the Cauchy-Schwarz inequality and can e.g. be found in the proof of
Lemma 14.31 of van der Vaart (1998). The Hellinger distance is especially convenient
when considering product measures, as it is, by (A.10), easily expressible in terms
of Hellinger distance of the individual measures. This is much more difficult (if not

even impossible) for the total variation distance, therefore (A.9) is used as a detour.

A.9 LIMIT THEOREMS FOR TRIANGULAR ARRAYS

Now to the law of large numbers and the classical Lindeberg-Feller central limit
theorem for triangular arrays. A triangular array of random vectors is a row-wise
independent sequence X, ;. The generalization compared to the standard central
limit theorem is that the distributions of X, 5, may depend on n. For such an array,

a law of large numbers can be stated as follows.

Theorem A.9.1. For each n let X, .,..., X, k, be independent random vectors
such that, as n — oo,

kn
S Ewin (X, 1 X0F) = 0

i=1
Then

kn

Z(anﬂaxn,i) ~, 0.

i=1
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The next theorem gives the corresponding central limit theorem.

Theorem A.9.2. For each n let X, .,..., Xk, be independent random vectors

with finite variances such that the Lindeberg condition

kn
S B(IXE ) L, — 0 (A1)
=1

holds for every e > 0 and

kn
» VarX,; — .

i=1
Then

kn

Z(Xn,i—]EXn,i) —p Np(0,%).

i=1
In applications, as in the proof of Theorem 5.4.1, often k, = n. Proofs can e.g. be

found in Borovkov (1998), or for the latter Theorem in van der Vaart (1998), Propo-
sition 2.27.

A.10 SOME FORMULAS FROM MULTIVARIATE
STATISTICS

Here we give two lemmas that are used in matrix manipulations in Section 5.2. The

first result is about inversion of block matrices.

Lemma A.10.1. Let A be a r X r non-singular matriz, B a r x s matriz, C a
s x r matriz and D a non-singular s x s matriz such that T := D — CA™'B is

non-singular. The inverse of the (r + s) x (r + s) matriz

A B
M =

C D
18 then:
A"+ A 'BT 'CA' —A'BT!
~T 'CA! T !
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This lemma can be proven explicitly showing that MM ' = I. Using the notation
of Lemma A.10.1 the next lemma provides another shortcut useful in manipulations
of block matrices.

Lemma A.10.2. Let v € R'™, vy = (v;)]_; and vy = (v;)i_, . Then:
v M 'v = v, A v+ (v3— CA 'v;) T (v, — CA 'vy).

Again, this result can be verified through brute force calculation, at best not without
taking advantage of Lemma A.10.1.
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LIST OF SPECIAL SYMBOLS

PART I: LOG-CONCAVE DENSITY ESTIMATION

real-valued and on R Lebesgue-integrable functions, p. 2

Grenander density estimator, p. 4

Grenander distribution function estimator, p. 5

log-concave random variable, having distribution function F' with log-
concave Lebesgue density function f, p. 15

distribution function F': R — [0, 1] on the real line, having log-concave
Lebesgue-density f, p. 15

density function of F' with respect to Lebesgue measure, p. 15
logarithm of f, p. 15

convolution for two density functions dy, ds € L;(R), p. 15

hazard rate function derived from f and F, p. 17

number of order statistics under consideration (sample size), p. 21
1=1,...,n, Xy < ... < X,iid. order statistics, all having distribution
function F', p. 21

general maximum log-likelihood functional, p. 21

empirical distribution function for a sample X; < ... < X,,, p. 21
indicator function for a condition A

maximum log-likelihood functional, depending on ¢, such that its ex-
ponentiated minimizer is a probability density, p. 22

maximum likelihood estimator of ¢, p. 22

maximum likelihood estimator of f, p. 22



)
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maximum likelihood estimator of F', p. 22
general vector notation, v := (vy,...,v,), p. 23

the piecewise linear function @, viewed as a vector of its knot points,
p- 23
set of knots of a piecewise linear continuous function h,,, p. 24

mean of a distribution function G, p. 25

variance of a distribution function G, p. 25

pn = log(n)/n, p. 27

uniform norm of a function g on an interval I, p. 27

fixed compact interval [A, B] with endpoints A < B, p. 27

Holder class of functions for an exponent [ and a constant L on a
compact interval T', p. 27

convergence in probability, p. 27. Applied to vectors this operator is
to be understood componentwise.

convergence in law, p. 27. Applied to vectors this operator is to be
understood componentwise.

equality in law, p. 27. Applied to vectors this operator is to be under-
stood componentwise.

estimator of F' based on a kernel with bandwidth A, p. 32
estimator of A based on }?n and ﬁn, p. 32
Lo-norm for a vector @, p. 34

class of all functions A such that g + tA is concave for some ¢ > () and
a concave function g, p. 36

all piecewise linear functions A such that any knot ¢ of A fulfills either
(3.14) or (3.15), for a concave function g, p. 36

continuous and piecewise linear functions in D?(g) with knots only in

S(g), p- 36

expectation for a random variable X € L;(R), p. 49
positive part of a real-valued function g: (g); := max{0, g}, p. 56
number of elements of a set A, p. 49

difference of two successive elements of a vector: Awv; := v; — v;_; for
veR"andi=2,...,n, p. 64

150



general notation for a m x n matrix where the elements are

p. 65

for two vectors ¢,y € R” we say that * < y holds if z; < y; for all
1 =1,...,n. Equality is likewise, p. 65

transposed vector x, p. 66

norm of the vector & with respect to the matrix A: ||z||a := Vz ' Az,
p. 67

diagonal matrix with the vector  on its diagonal, p. 69

vector consisting of the diagonal of the matrix A, p. 77

Univariate Normal distribution with mean p € R and standard devia-

tion o > 0, p. 78

Gamma distribution with shape parameter o > 0 and scale parameter
8 >0,p. 78

PART II: BuMP HUNTING

parametric density function, with parameter 8 € © € RP, p. 89
expectation of a function u such that upg € L;(R) for a random variable
X, where X has density function pg, p. 89

sample mean of the random variables u(X;), i =1,...,n, p. 120

log of pg, p. 90

score function of pg, p. 90

Fisher information matrix of pg, p. 90

For a given vector in R¥, £ € RF! is the vector omitting the last

component, p. 92

p-variate Normal distribution with mean vector p € R? and covariance
matrix X € RP*P p. 91
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x2-distribution with one degree of freedom and a non-centrality para-
meter p > 0, p. 93

a-quantile of a y?-distribution with one degree of freedom, a € (0, 1),
p- 94

x2-distribution function with one degree of freedom and non-centrality
parameter p > 0, p. 94

a-quantile of a standard normal distribution, o € (0, 1), p. 95
distribution function of a standard normal distribution, p. 96

specific two-parameter density used to define bump hunting test statis-
tic, p. 97

twice continuously differentiable density function, p. 103

order statistics Xy < ... < X,,, having distribution function F' and
density function f, p. 103

“local” density function, p. 103

intervals spanned by two order statistics: Z;, = (X, Xj), p. 103

local order statistics, p. 103

total variation distance between two densities f and ¢, p. 105

set of intervals whereon multiscale test claims that f is convex, p. 108
set of intervals whereon multiscale test claims that f is concave, p. 108
set of intervals whereon multiscale test claims that f has a bump, p.
108

set of intervals whereon multiscale test claims that f has a antibump,
p- 108

distribution of the random variable X, p. 109
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