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Abstra
tThe �rst part of this thesis is 
on
erned with the estimation of a univariate density fnonparametri
ally via maximum likelihood from a given ordered sample X1; : : : ; Xnof independent and identi
ally distributed random variables having distributionfun
tion F . It is well known that su
h an estimator bfn does only exist if ad-ditional assumptions are made, i.e. the maximum likelihood fun
tion needs someregularization. We will impose the shape 
onstraint of log-
on
avity, a naturalgeneralization of many parametri
 densities su
h as Normal, Gamma, Lapla
e orGeneralized Pareto. We show that su
h an estimator exists, is unique and that theestimated log-density b'n is supported by [X1; Xn℄ and pie
ewise linear with knots atsome of the observation points. We provide two 
hara
terizations of the estimator,both of them involving the empiri
al distribution fun
tion of the sample. The �rstof these 
hara
terizations is essential for the proof of our main result: a uniformrate of 
onvergen
e of bfn on a �xed 
ompa
t interval T as n goes to in�nity. Understandard assumptions this rate is of probabilisti
 order (log(n)=n)2=5. But we alsoprove adaptivity with respe
t to the unknown smoothness of the underlying densityf in terms of H�older-
ontinuity.The result above, together with 
onsiderations about the modulus of 
ontinuityof a uniform empiri
al pro
ess, 
an be used to show that the integral of bfn, thedistribution fun
tion estimator bFn, is asymptoti
ally equivalent to the empiri
aldistribution fun
tion Fn of the sample. Consequently, bFn 
an be viewed as aneÆ
ient smoother of the empiri
al distribution fun
tion, if the underlying densityis indeed log-
on
ave. Log-
on
avity of the density fun
tion f immediately impliespotentially desired properties for fun
tions derived from it, su
h as the tail fun
tion1 � F or the hazard rate fun
tion f=(1 � F ). The �rst is again log-
on
ave andthe latter is monotone non-de
reasing. As an appli
ation of the above theorem wegive an upper bound for the uniform rate of 
onvergen
e for a monotone hazard rateestimator.Then, methods are provided to �nd bfn numeri
ally via iterative algorithms. To thisend, the pie
ewise linearity of b'n is exploited to embed the problem of minimizingthe negative log-likelihood fun
tional into a high- but �nite-dimensional 
onvex opti-mization framework. We 
ompare four di�erent algorithms, in
luding two standard



approa
hes from 
onvex optimization. It turns out that a suitable modi�
ation ofthe iterative 
onvex minorant algorithm is very eÆ
ient in solving this optimizationproblem.The se
ond part is devoted to bump hunting, a term used for pro
edures to identifyregions where a density exhibits either a 
onvex or 
on
ave behavior. For 
ertainreasons we reformulate the problem in that we seek to dete
t regions of log-
onvexityand log-
on
avity. First we analyze a spe
i�
 two-parameter model regarding itspower properties in a test for log-
on
avity vs. log-
onvexity. Then we use thismodel to approximate the density on all intervals spanned by a pair of observations.All these lo
al tests are then 
ombined in a global multis
ale statisti
, yieldingtwo sets of intervals whereon one 
an 
laim with probability at least 1 � � as ntends to in�nity that the underlying density is either log-
onvex or log-
on
ave. Wefurther introdu
e an additive 
orre
tion term into the global test statisti
 in orderto prevent it to be dominated by the lo
al statisti
s stemming from small intervals.The 
hosen multis
ale approa
h ensures that all statements hold simultaneously.From the 
olle
tions of the above intervals a lower bound for the number of bumpsand dips of the underlying density 
an be derived. To our knowledge, this is the �rstmultis
ale test in density estimation exhibiting all these properties (asymptoti
allyholding the signi�
an
e level, simultaneous statements, additive 
orre
tion term)at on
e. However, the proposed method relies on an unproven assumption aboutthe quantiles of the limiting distribution and is therefore a �rst approa
h to theproblem. A detailed theoreti
al analysis of its properties, espe
ially those of thelimiting distribution of the multis
ale test statisti
, is still la
king.Assuming that a non-degenerate limiting distribution for the multis
ale test statisti
exists we provide its quantiles, gained from numeri
al simulations. We also des
ribe aworst 
ase distribution to input in the statisti
 when doing Monte-Carlo simulations.The pro
edure is illustrated with some examples.

ii
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Chapter 1Introdu
tion
1.1 Density estimation in generalThe �rst part of this thesis is 
on
erned with a standard problem in statisti
s: Theestimation of an unknown univariate probability density fun
tion (pdf) f . Typi
ally,one 
onsiders a sampleX1; : : : ; Xn of independent, identi
ally distributed real-valuedrandom variables with 
ommon density f and the aim is to get an estimatebf = bf(:;X1; : : : ; Xn)for f from the data. Denote by Fn the empiri
al distribution fun
tion of the sampleX1; : : : ; Xn. In what follows, all asymptoti
 statements are to be understood whenthe sample size n tends to in�nity.The following se
tions review some general methods in density estimation.1.2 Kernel density estimationA standard tool in nonparametri
 density estimation are kernel estimators bfnh,bfnh(x) := 1n nXi=1 1hk�x�Xih �; x 2 Rwhere h > 0 is the bandwidth and k : R ! R the kernel fun
tion. The main advan-tage of kernel estimators is that they are easy 
omputable, independent from theassumptions made on f . However, in general using kernels poses at least one majorproblem, namely the sele
tion of a kernel and an appropriate bandwidth in order to



2 1 Introdu
tionavoid oversmoothing (hiding relevant features of f , e.g. modes) or undersmoothing(produ
ing artifa
ts). Asymptoti
 results under standard assumptions on the kerneltypi
ally depend on the smoothness of f . Suppose f is m-times di�erentiable and
hoose the bandwidth h = h(n) in order to balan
e the varian
e and the bias termin the mean squared error. The rate of 
onvergen
e of bfnh�f at a �xed point is thenOp(n�m=(2m+1)), a rate that approa
hes the \parametri
 rate" n�1=2 (see below) asm!1. 1.3 Parametri
 density estimationHere and subsequently we will 
on
entrate on methods for density estimation relyingon the maximum likelihood prin
iple. Therefore introdu
e the negative maximumlog-likelihood fun
tional as:Ln(f) := �n Z log f(x) dFn(x)= � nXi=1 log f(Xi):In 
lassi
al parametri
 estimation, f is assumed to belong to a 
lass F1 of densities,where F1 = fg� : � 2 �gwith a given subset � of Rd and � 7! g� a 
ontinuous fun
tion from � into L1(R).The dimension d is usually �xed and small 
ompared to n. Our problem of estimatingf then redu
es to estimate � 2 � from the data X1; : : : ; Xn, via minimizing Ln(g�)over all � 2 �: b�n := argmin�2� Ln(g�):If possible this 
an be done analyti
ally, otherwise numeri
ally. Under standardassumptions the rate of 
onvergen
e of b� to � is of order Op(n�1=2).



1.4 Roughness penalized density estimation 31.4 Roughness penalized density estimationWhen talking about nonparametri
 maximum likelihood estimation, it is not evi-dent how to a
tually get an estimator. One 
an make Ln(g) arbitrary small over allg 2 L1(R) that are 
ontinuous, i.e. the 
ontinuity assumption is too weak, the 
lassof densities over whi
h Ln(g) is minimized needs to be made smaller. A generalapproa
h to a
hieve this is via penalizing. Add a penalty term R = R(g) to the neg-ative log-likelihood fun
tional to get a penalized version LPn (g; R) of the maximumlog-likelihood fun
tional: LPn (g; R; �) := Ln(g) + �R(g)where � > 0 is a Lagrange-multiplier sequen
e de
reasing to 0. Roughness penalizeddensity estimators are then de�ned asbfn;2(R;C; �) := argming2F2(R;C)LPn (g; R; �)where F2(R;C) is the following family of fun
tions:F2(R;C) := ff : f is a 
ontinuous pdf and R(f) � Cgfor C 2 (0;1) a �xed 
onstant. In prin
iple, � may be 
hosen su
h thatR( bfn;2(R;C; �)) = C:Sin
e C is usually unknown, � is often determined by other means.One of the most famous 
hoi
es for R is the �rst roughness penalty fun
tional byGood (1971): RG(g) := Z 1�1 ���� ddxpg(x)����2 dx;where RG(g) =1 if the derivative of pg is not square integrable on R. A

ording toEggermont and LaRi

ia (2001), RG has remarkably good pra
ti
al and theoreti
alproperties. For instan
e, under the assumptionsR(f) <1 RR f 00(x) dx <1 RR jxjmf(x) dx <1 for some m > � > 1on the true density f , Eggermont and LaRi

ia (1999) prove that 
onvergen
e inthe spa
e L1(R) happens at a rate of Op(n�2=5), so one that is similar to that forkernel estimators under 
omparable assumptions.



4 1 Introdu
tion1.5 Density estimation under qualitativeassumptionsA di�erent approa
h to density estimation is to assume 
ertain shape restri
tions forf , su
h as monotoni
ity, unimodality or 
onvexity. These restri
tions are often plau-sible, sometimes even theoreti
ally justi�ed and they share the following 
ommonproperty. De�ning the estimators asbfn;3 := argming2F3 Ln(g)where F3 is the family of densities satisfying the given 
onstraint(s), e.g.F3 = 8<: ff : f is a monotone de
reasing pdf on (0;1)gff : f is a 
onvex de
reasing pdf on (0;1)g;it 
an be shown that bfn;3 must be pie
ewise linear with the number of knots being atmost n. These properties 
an be used to 
onstru
t a penalty term and to 
onsiderestimation under qualitative assumptions as a penalized estimation problem wherethe 
lass F2(R;C) is generalized to F2(R), de�ned asF2(R) := [C>0F2(R;C):To summarize, both methods, roughness penalization and shape 
onstraints, imposesome sort of regularization on the maximum log-likelihood fun
tional in order to geta meaningful estimator.Nonparametri
 maximum likelihood estimation of density fun
tions restri
ted byqualitative assumptions has re
eived mu
h attention in the last de
ades and in thefollowing se
tions we brie
y summarize these developments.1.6 Monotone density estimationFor appli
ations of monotone density estimation 
onsult e.g. Barlow et al. (1972)or Robertson, Wright, and Dykstra (1988).Maximum likelihood estimation of a monotone density was �rst studied by Grenan-der (1956), who found that a fun
tion bfG is the nonparametri
 maximum likelihoodestimator (NPMLE) if and only if it is the left derivative of the 
on
ave majorant



1.7 Unimodal density estimation 5of the empiri
al 
umulative distribution fun
tion. Grenander's was 
ontinued byPrakasa Rao (1969) who established asymptoti
 distribution theory for bfn � f at a�xed point xo > 0:n1=3� bfn(xo)� f(xo)�!D 16���f(xo)f 0(xo)���1=3Z;where Z is distributed as the lo
ation of maxima of the pro
ess (W (t) � t2)t2(0;1)with W being Brownian Motion starting at 0. Groeneboom (1985) resumed theasymptoti
 distribution theory and examined the limiting distribution in great de-tail (Groeneboom, 1988) whereas Groeneboom, Hooghiemstra and Lopuha�a (1999)and Kulikov and Lopuha�a (2005a) 
on
entrated on limit theory in the spa
e L1(R).The pointwise rate of 
onvergen
e, Op(n�1=3), is slow 
ompared e.g. to that of aregular parametri
 problem where one obtains Op(n�1=2). The rate of 
onvergen
ewith respe
t to uniform norm is further de
elerated by a fa
tor log(n). This resultis not dire
tly proven but a spe
ial 
ase of a theorem derived by Jonker and van derVaart (2001). They assumed that f possesses a derivative that is bounded, stri
tlynegative and bounded away from zero. The supremum distan
e between the empiri-
al distribution fun
tion Fn and its 
on
ave majorant bFG was investigated by Kieferand Wolfowitz (1976) who proved that this di�eren
e disappears (in probability) ata rate op((logn)5=6n�2=3). This result has re
ently been extended by Kulikov andLopuh�aa (2005b) in the sense that they investigated the whole pro
essn2=3� bFn(t)� Fn(t)�t2[0;1℄:1.7 Unimodal density estimationRemember that a density f on the real line is unimodal if there exists a numberM =M(f) su
h that f is non-de
reasing on (�1;M ℄ and non-in
reasing on [M;1).In 
ase the true mode is known a priori, unimodal density estimation boils downto monotone estimation, by estimating the true underlying distribution fun
tion Fby the distribution fun
tion bFn that is the least 
on
ave majorant of Fn on theinterval [M;1) and the greatest 
onvex minorant on (�1;M ℄. The density f isthen estimated by the left derivative bfn of bFn. In 
ase none of the observationsequals M , this estimator maximizes the likelihood (but must not be 
ontinuous atM).



6 1 Introdu
tionThe situation is 
ompletely di�erent if M is not known. In that 
ase, the likeli-hood 
an be maximized to 1 by pla
ing an arbitrary large mode at some �xedobservation, meaning that 
onsistent estimation of f at the mode is not possible.This phenomena is 
alled \spiking". Several methods were proposed to remedy thisproblem. Wegman (1970) introdu
ed a modal interval of �xed length " on whi
h thedensity is assumed to be 
at (this estimator is in
onsistent ex
ept the true densityf also has a modal interval of at least length "), ensuring that the density 
an notex
eed 1=". Woodroofe and Sun (1993) penalized the ordinary maximum likelihoodestimator (MLE), resulting in a 
onsistent density estimator. Bi
kel and Fan (1996)showed that estimating the mode �rst and then plug it into their smooth maximumlikelihood pro
edure does not 
hange the asymptoti
 behavior of this estimator. Themeaning of \smooth" here is that they optimize the maximum likelihood fun
tional(given the true or estimated mode) not over the 
lass of all unimodal densities, butover the 
lass of all 
ontinuous pie
ewise linear densities with mode at one of the Xito get a linear spline MLE. To 
ir
umvent the spiking problem, they further proposeto group the data before 
omputing their MLE. As for the spiking problem, Meyerand Woodroofe (2004) generalize Wegman's idea by introdu
ing an estimator that is
on
ave over an interval 
ontaining the mode. This interval may be 
hosen a priorior through an algorithm.The 
ombination of shape 
onstraints and smoothing was 
ontinued by Eggermontand LaRi

ia (2000). In order to improve the slow rate of 
onvergen
e of n�1=3 inthe spa
e L1(R) for arbitrary unimodal densities, they derived a Grenander typeestimator by taking the derivative of the least 
on
ave majorant of the distributionfun
tion 
orresponding to a kernel estimator rather than the empiri
al distributionfun
tion, yielding a rate of 
onvergen
e of Op(n�2=5). They introdu
ed log-
on
avityin density estimation (see below), but instead of a shape 
onstraint for the densityas a property of the kernel Ah (h is the bandwidth), exploiting a key property oflog-
on
ave density fun
tions ( dFo is the true density):The log-
on
avity is sensible sin
e then the 
onvolution Ah � dFo is uni-modal whenever fo is unimodal, by the 
elebrated result of Ibragimov(1956).Additionally, Ah � dFn is then 
ontinuous. Examples for log-
on
ave kernels areEpane
hnikov, Gaussian or two-sided Exponential. In their book of 2001, Eggermontand LaRi

ia treated a similar 
ase, repla
ing unimodality by log-
on
avity (of the



1.8 Convex density estimation 7density f) and they presumed, whether smoothing with the log-
on
ave kernel Ahis really ne
essary to get a \good" rate of 
onvergen
e in the spa
e L1(R) and howto a
tually 
ompute a log-
on
ave density estimator. The se
ond of these questionsis answered in Chapter 4 of this thesis.Renoun
ing on a 
ontinuity assumption on f , Van der Vaart and Van der Laan(2003) 
omplemented the work by investigating the interplay of isotonization andkernel estimation, showing that the limit distribution at a �xed point is more 
on-
entrated for the isotonized kernel than using either isotonization or smoothingex
lusively (but the rate of 
onvergen
e is not improved).For a dis
ussion of other approa
hes than maximum likelihood 
onsult e.g. Hall andHuang (2002) and the referen
es therein.1.8 Convex density estimationConvex density estimation was pioneered by Anevski (1994) (later published asAnevski, 2003). The problem arose in a study of migrating birds dis
ussed byHampel (1987). Jongbloed (1995) established lower bounds for minimax rates of
onvergen
e and rates of 
onvergen
e for a \sieved MLE". Groeneboom, Jongbloed,and Wellner (2001b) almost 
ompletely 
leaned up the situation providing a 
har-a
terization of the estimator as well as 
onsisten
y and limiting behavior at a �xedpoint of positive 
urvature of the fun
tion to be estimated. They do this not onlyfor maximum likelihood but also for least squares density estimation and the 
orre-sponding regression problems as well. They found that in all 
ases the estimatorshave to be pie
ewise linear with knots between the observation points. They showfor the (res
aled) distan
e between the maximum likelihood estimator bfn and thetrue density at a �xed point xo > 0 thatn2=5� bfn(xo)� f(xo)�!D (1=24)5�f 2(xo)f 00(xo)�1=5H00(0)where H is a sto
hasti
 pro
ess 
onne
ted to Brownian Motion and further de-tailed in Groeneboom, Jongbloed, and Wellner (2001a). Apparently, they assumedexisten
e and positivity of the true density's se
ond derivative f 00, what togetherwith the 
onvexity assumption enables one to estimate f at a fairly better rate ofOp(n�2=5) than that in the non-smoothed monotone and unimodal 
ase. Pre
isely,they assumed that the true density f is twi
e 
ontinuously di�erentiable, 
onvex,



8 1 Introdu
tionand de
reasing on [0;1). Note that here again the estimator is in
onsistent at 0(whi
h 
orresponds to the mode in the given situation).It would be of great surprise if the rate of 
onvergen
e with respe
t to uniform normwas not (log(n)=n)2=5, but to our knowledge no proof for this result has ever beenpublished.Balabdaoui and Wellner (2004a-d) treated a unifying and extending approa
h. Letk be a non-negative integer and G be a distribution fun
tion on (0;1). Thenf(x) = Z 10 kyk (y � x)k�1+ dG(y); x � 0is monotone (de
reasing) if k = 1 and 
onvex and de
reasing if k = 2. They �guredout the details for all �nite k, with the �nal aim to solve the 
ase k =1 (
ompletelymonotone densities).Although a 
hara
terization of bfn in the 
onvex 
ase exists (but is not as simple asthe least 
on
ave majorant in the monotone 
ase), a
tual 
al
ulation of bfn is notstraight-forward and has to be done numeri
ally. Several atta
ks to the problemwere made. Jongbloed (1998) proposed an algorithm to minimize a smooth 
onvex(likelihood-) fun
tion over a 
onvex 
one in Rn , well appli
able to 
onvex densityestimation. Another su

essful approa
h was 
hosen by Terlaky and Vial (1998),using interior point methods. D�umbgen, Freitag, and Jongbloed (2006) presented anew method spe
ially tailored to �nd pie
ewise linear fun
tions with only a few knotpoints. They examined unimodal distribution fun
tion estimation with 
ensoreddata, but the methods should be appli
able in the 
onvex density 
ase as well.1.9 Log-
on
avityIn this thesis we will impose a quite natural shape 
onstraint on the density f tobe estimated: log-
on
avity, meaning that the density f to be estimated 
an berepresented as f(x) = exp'(x); x 2 Rfor some 
on
ave fun
tion ' : R ! [�1;1). This 
lass is rather 
exible in thesense that it generalizes many densities of 
ommon parametri
 distributions, su
has Normal, Uniform, Logisti
, �2 or Lapla
e. Many other distributions have log-
on
ave densities for broad ranges of the parameter values: Gamma, Beta, Weibull



1.9 Log-
on
avity 9or the Generalized Pareto distribution. Tables detailing these issues 
an be foundin Se
tion 2.4 and in Bagnoli and Bergstrom (1989, later published as Bagnoli andBergstrom, 2005). The latter paper also o�ers a 
on
ise summary of the main prop-erties of log-
on
ave density fun
tions, their 
orresponding distribution fun
tions,and their appli
ations in reliability and many �elds of e
onomi
 theory. Furtherappli
ations of log-
on
avity in reliability 
an be found in the standard book byBarlow and Pros
han (1975). The book by Devroye (1986) o�ers a whole 
hapterabout random number generation for random variables having a log-
on
ave density.Voting theory and the theory of imperfe
t 
ompetition is the �eld of appli
ation ina pair of papers by Caplin and Nalebu� (1991a, 1991b). A ni
e dis
ussion of (multi-variate) log-
on
avity, log-
onvexity and the di�eren
es between both is provided byAn (1995, 1998). He further details the 
onne
tion between log-
on
avity/-
onvexityand the properties inherited by fun
tions derived from su
h densities under moregeneral assumptions than Bagnoli and Bergstrom (1989, 2005). We will exploit the
onne
tion between a log-
on
ave density and the 
orresponding hazard fun
tion �in Se
tion 3.6 to derive a new 
onsistent estimator of �.In his �rst paper, An also des
ribes an indire
t goodness-of-�t test for log-
on
avity,based on the hazard rate.A key referen
e in 
onne
tion with log-
on
avity of fun
tions is the book by Kar-lin (1968) about total positivity, a 
on
ept generalizing log-
on
avity (log-
on
avefun
tions 
orrespond to totally positive fun
tions of order 2).Note that every log-
on
ave density is automati
ally unimodal. Although 
ertainlythe 
lass of log-
on
ave densities is mu
h smaller than that of unimodal, if ever one
an estimate a log-
on
ave density one gets a method to 
ir
umvent the problemsdes
ribed in Se
tion 1.7 of either trying out many modes or spiking at a knownmode.Although being very 
exible and an apparent generalization of several parametri
models, not mu
h on log-
on
ave density estimation has been published. So far onlyWalther (2000) atta
ked the problem and used the iterative 
onvex minorant algo-rithm (as introdu
ed by Jongbloed, 1998 for the estimation of a 
onvex de
reasingdensity on (0;1)) for estimation of a logarithmi
ally 
on
ave density.
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tionWalther further 
onje
tures:The theoreti
al properties of a log-
on
ave MLE are similar to those ofthe MLE of a 
on
ave density, and the arguments in Groeneboom, Jong-bloed, and Wellner (2001b) suggest that the uniform rate of 
onvergen
eis Op((log(n)=n)2=5.One of our results is indeed the veri�
ation of this 
onje
tured rate of 
onvergen
e,see Se
tion 3.3. Walther des
ribes the MLE bf
 under the assumption that the truedensity is of the formf
(x) = exp��(x) + 
jxj2�; x 2 [0; 1℄for some 
on
ave fun
tion � and 
 � 0. He suggests a bootstrap test to assesslog-
on
avity based on ( bf
)
2C, where C is some �nite set of nonnegative numbers.Absen
e of log-
on
avity indi
ated by the test is interpreted as a mixture of severallog-
on
ave distributions. In Walther (2001), testing for log-
on
avity is transformedin testing for monotoni
ity, enabling the appli
ation of the monotone estimationdevi
e des
ribed in Se
tion 1.6. The pri
e to pay for this indire
t pro
edure is thatdeviations of log-
on
avity 
an only hardly be lo
alized and visualized. In Part 2 ofthis thesis we present a new method to make possible this visualization.As pointed out by Bagnoli and Bergstrom (1989, 2005), a distribution fun
tion re-
eived from a log-
on
ave density fun
tion is again log-
on
ave, the 
onverse beingnot true. Sengupta and Paul (2004) 
onsidered testing for log-
on
avity of a dis-tribution fun
tion versus the alternative that it is not, where they need to restri
ttheir attention to su
h distribution fun
tions having a point mass at 0. A

ording tothe above mentioned authors, dire
t maximum likelihood estimation of a log-
on
avedistribution fun
tion is not possible without further restri
tions, most likely be
ausethis 
lass is simply too big.Note that by imposing log-
on
avity on the density, two of the major problemsarising in monotone and 
onvex density estimation, namely spiking (both) resultingin non-
onsisten
y points and dis
ontinuity of the estimator (only monotone), donot 
ome up. Together with the fa
t that many parametri
 models are automati
allylog-
on
ave, an in-depth analysis of log-
on
ave density estimation is overdue andone step in this dire
tion is the aim of this thesis.



1.10 Bump hunting 111.10 Bump huntingThe se
ond part of this thesis leaves the �eld of density estimation and is 
on
ernedwith what has been named \bump hunting".In the analysis of univariate data, resear
hers often want to infer qualitative 
hara
-teristi
s of the density fun
tion of their data. Examples for su
h 
hara
teristi
s arelo
al extrema, in
e
tion points or regions where the density fun
tion is monotone(mode hunting) or 
onvex (bump hunting). Kernel density estimates, pioneeredby Silverman (1981), prevail in problems of this type. Silverman's method is 
on-stru
ted su
h that the number of modes of the underlying density f is a de
reasingfun
tion of the bandwidth of a normal kernel (the only admissible in this spe
i�

ase). Criti
al values to test the null hypothesis whether f has, say, k modes ver-sus the alternative of having more than k modes are then found through a simplebootstrap pro
edure. This prin
iple 
an be generalized in various ways, one of thembeing SiZer (Chaudhuri and Marron, 1999; 2000). This method goes further in thesense that it 
ombines kernels using a broad range of bandwidths. However, in thisapproa
h it is not 
lear how to 
ombine 
on
lusions from kernel estimates at di�erents
ales. Furthermore, the 
orre
tion term for small s
ales derived by D�umbgen andSpokoiny (2001) is not applied, meaning that the global view is possibly dominatedby the tests stemming from short intervals. Instead, Chaudhuri and Marron restri
ttheir attention to kernel bandwidths h su
h that h � " > 0 for a �xed positive ".Other approa
hes are ex
ess masses, see e.g. Cheng and Hall (1998) and the refer-en
es therein, maximum likelihood as in Walther (2001) or the \dip test", proposedby Hartigan and Hartigan (1985).For mode hunting, D�umbgen and Walther (2006) proposed a pro
edure that si-multaneously provides 
on�den
e statements with guaranteed signi�
an
e level forarbitrary sample size (i.e. also for �nite n, not only asymptoti
ally). They applieda multis
ale approa
h in the spirit of D�umbgen and Spokoiny (2001) and D�umbgen(2002) by introdu
ing a test statisti
 derived from a simple parametri
 model. Thisstatisti
 is evaluated on lo
al spa
ings (i.e. on every interval spanned by two ob-servations) and all these test statisti
s are then 
ombined to get a multis
ale test.To rea
h signi�
an
e, even for �nite n, D�umbgen and Walther (2006) provided aquite remarkable deterministi
 inequality (Proposition 1 in their paper). They alsoderived the limiting distribution for their global test statisti
 as the sample size in-
reases, by extending results from D�umbgen and Spokoiny (2001) to a more general
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tion
lass of sto
hasti
 pro
esses. However, 
riti
al values are generated via Monte Carlosimulations.In Part 2 we propose a bump hunting method in the same spirit. We equallyintrodu
e a relatively simple lo
al parametri
 model and 
ombine all test statisti
s
al
ulated on lo
al spa
ings to get a global multis
ale test. Commonly, to \huntbumps" means to identify intervals where the density f is either 
onvex or 
on
ave,at best with a 
ertain 
on�den
e. However, our fo
us here is on log-
on
avityand log-
onvexity. Beneath better mathemati
al tra
tability observe that by takingthe logarithm non-
on
ave densities with only one bump, e.g. the gaussian density,be
ome purely 
on
ave, meaning that the region of the sole bump 
ould possiblybe dete
ted easier be
ause it is not \
ontaminated" by non-
on
ave regions. Tothe best of our knowledge, no one has up to now 
hosen su
h an approa
h to theproblem.However, 
ompared to the mode hunting 
ase, at least one major di�eren
e has to beas
ertained. D�umbgen and Walther (2006) re
eived their lo
al test statisti
s usingthe general parametri
 modelf�(x) = 1 + �(x� 1=2); x 2 [0; 1℄;for � 2 R. Their test statisti
 is then the Neyman-Pearson lo
ally most powerful testin this model for the null hypothesis � � 0 versus the alternative � > 0. Eviden
efor a non-de
rease, say, is then simply re
eived from testing this null hypothesis� � 0. To dete
t log-
on
avity we propose the following parametri
 model:f�;�(x) := C(�; �) exp��x+ �x2=2�; x 2 [0; 1℄ (1.1)for � 2 R; � 2 R, where C(�; �) is a normalizing 
onstant. Log-
on
avity is thenpostulated if a statisti
al test de
ides on � < 0. Unfortunately, in this model one hassomehow to deal with the nuisan
e parameter �: Either by 
onsidering a test statisti
using \the worst" of all possible � 2 R, resulting probably in a 
onsiderable loss ofpower, or to estimate �. This approa
h presumably yields more power, however onlywith the major drawba
k that all results are only asymptoti
ally valid.We motivate a test statisti
 to perform a test for � in (1.1) and give some further
onsisten
y justi�
ations for the spe
i�
 test statisti
. That the method works isillustrated with some examples.
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Chapter 2Log-
on
ave densities
In this short 
hapter, we introdu
e some fundamental properties of log-
on
avedensities. Parametri
 examples for log-
on
ave densities are given.2.1 Log-
on
ave densities and unimodalityThroughout the �rst part of this thesis X will denote a random variable havingdistribution fun
tion F . If we talk about densities they are always meant to bede�ned with respe
t to Lebesgue measure. We assume that F possesses a density fsu
h that f(x) = exp'(x)for some 
on
ave fun
tion ' : R ! [�1;1) . Su
h densities f are given the namelog-
on
ave and we will use this term also for the random variable X itself. Thefollowing lemmas summarize three key properties of log-
on
ave densities.Lemma 2.1.1. Suppose the random variable X has a log-
on
ave density fun
tionf on R. Then f is also unimodal, i.e. there exists a number m 2 R su
h that f isnon-de
reasing on (�1; m℄ and non-in
reasing on [m;1).To be able to state the following results properly, de�ne the 
onvolution a � b of twodensity fun
tions a; b 2 L1(R) at x 2 R as(a � b)(x) := ZR a(t)b(x � t) dt:Lemma 2.1.2. The 
onvolution l1 � l2 of two log-
on
ave densities l1 and l2 is againlog-
on
ave.



16 2 Log-
on
ave densitiesEven more surprising is the fa
t that 
onvolutions of unimodal and log-
on
avedensities remain unimodal and that this property 
an even be used to 
hara
terizelog-
on
avity.Theorem 2.1.3. A density fun
tion l is log-
on
ave if and only if its 
onvolutionl � u with any unimodal density fun
tion u is again unimodal.The latter results are both due to Ibragimov (1956), where Theorem 2.1.3 is generallyreferred to as \Ibragimov's Theorem". Histori
ally, Ibragimov introdu
ed the term\strongly unimodal" for densities exhibiting the property stated in the theorem andshowed that the 
lass of strongly unimodal and log-
on
ave densities 
oin
ide.A survey of the 
onne
tions between log-
on
avity and unimodality 
an be found inthe book by Barndor�-Nielsen (1978).2.2 Tail behaviorOne of the key properties of a log-
on
ave random variable X is the existen
e of allof its moments. The pre
ise, and even stronger, statement is detailed in the nextlemma.Lemma 2.2.1. There exist 
onstants ao 2 R and bo > 0 su
h that for all x 2 R onehas: '(x) � ao � bojxj:In parti
ular, Z exp(toj'j) dF < 1 whenever to < 1:Moreover, for any polynomial p and any number to 2 (0; 1) there exists a 
onstant
o > 0 su
h thatZ 1r p(j'j) dF � 
o exp�to'(r)� andZ �r�1 p(j'j) dF � 
o exp�to'(�r)� for all r � 0:



2.3 Derived fun
tions 172.3 Derived fun
tionsLog-
on
avity of the density fun
tion f immediately implies the same or similarproperties for fun
tions derived from f su
h as the distribution fun
tion F , tailfun
tion 1� F or hazard fun
tion �. Su
h 
onne
tions under somewhat restri
tivesmoothness 
onditions on the density were e.g. elaborated in Bagnoli and Bergstrom(1989, 2005). An (1995) expanded their work to densities that need not ne
essarilybe di�erentiable. For illustrative purposes, we will pi
k one of these fun
tions derivedfrom the density, namely the hazard fun
tion �.Lemma 2.3.1. De�ne the hazard rate fun
tion � as�(x) := f(x)1� F (x)for x in the interval I := fy : F (y) < 1g. If f is log-
on
ave, then � is monotonenon-de
reasing on I.The proof of this lemma 
an be found in Bagnoli and Bergstrom (1989, 2005, Propo-sition 1) for smooth densities and in the more general form stated in the lemma theproof was given by An (1995, Corollary 2).2.4 Examples of parametri
 log-
on
avedensitiesThe 
lass of log-
on
ave densities 
omprises many well-known parametri
 densities,see Table 2.1. In Bagnoli and Bergstrom (1989, 2005) 
al
ulations ne
essary to verifylog-
on
avity of a spe
i�
 density fun
tion, eventually only for 
ertain parametervalues, are 
arried out, i.e. they 
he
k for many smooth enough parametri
 densitiesthat (log f)00 � 0.The Generalized Pareto distribution (GPD) appears in extreme value theory as anadequate parametri
 model for ex
eedan
es, see e.g. Reiss and Thomas (2001).
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on
ave densitiesTable 2.1: Some parametri
 log-
on
ave densitiesType Density fun
tion f(x) Support ParametersaUniform (b� a)�1 [a; b℄ a; b 2 R; a < bNormal (p2��)�1 exp (�(x� �)2=(2�)) (�1;1) � 2 R; � > 0Gamma ba�(a)�1xa�1 exp (�bx) [0;1) a � 1; b > 0Beta �(a+ b)(�(a)�(b))�1xa�1(1� x)b�1 [0; 1℄ a � 1; b � 1Fr�e
het ax�(1+a) exp (�x�a) [0;1) a � 0Gumbel exp(�x) exp (�e�x) (�1;1)GPD (1 + 
x)�(1+1=
) [0; 1=j
j) �1 � 
 < 0Logisti
 exp(�x)(1 + exp(�x))�2 (�1;1)Lapla
e (1=2) exp (�jxj) (�1;1)a Parameter values su
h that f is log-
on
ave2.5 ProofsProof of Lemma 2.1.1: The fun
tion ' is 
on
ave. Together with the fa
t thatf is a probability density, i.e. RR exp' = 1, it 
an not happen that '(x) 6! �1for jxj ! 1, implying unimodality of ', i.e. there exists a j 2 R su
h that '(x)is non-de
reasing in x � j and non-in
reasing in x � j. The result follows viamonotoni
ity of the exponential fun
tion. 2Proof of Lemma 2.2.1. The 
ru
ial point here is that ' 
an be bounded fromabove by a pie
ewise linear fun
tion with one knot. Without loss of generality let 'be upper semi-
ontinuous. After an aÆne transformation, if ne
essary, we assumew.l.o.g. (see Se
tion 3.2) thatmaxt2R '(t) = '(0) � 0:Then by Lemma 2.1.1 there exists a number ro > 0 su
h that '(�ro) � '(0) � 1.By 
on
avity of ', for any x � ro,'(x) � '(ro) + '(ro)� '(0)ro � 0 (x� ro) � '(0)� 1� (x� ro)ro < �jxj=ro + '(0):Analogously, '(x) < �jxj=ro + '(0) for x � �ro. Sin
e '(x) � '(0) � �jxj=ro +'(0) + 1 whenever jxj � ro, the �rst assertion is true with ao = '(0) + 1 and



2.5 Proofs 19bo = 1=ro. Then the se
ond assertion follows fromZ exp(toj'j) dF = Z exp�(1� to)'(x)� dx� Z exp�ao(1� to)� bo(1� to)jxj� dx < 1:As for the last part, note �rst thatp(j'j)f = p(j'j) exp(�j'j) � exp(
o � toj'j) = exp(
o) exp(to')for a suitable 
onstant 
o. Sin
e R p(j'j) dF is �nite, it suÆ
es to 
onsider numbersr that are greater than or equal to, say, ro above. Sin
e the slope of ' is not largerthan �1=ro on [ro;1),Z 1r p(j'j) dF � exp(
o) Z 10 exp�to'(r + z)� dz� exp(
o) Z 10 exphto�'(r)� z=ro�i dz= exp(
o) Z 10 exp��(to=ro)z� dz exp�to'(r)�= exp(
o)(ro=to) exp�to'(r)�:Analogously one 
an show that R �r�1 p(j'j) dF � exp(
o)(ro=to) exp(to'(�r)). 2
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Chapter 3Maximum likelihood estimation
In this 
hapter we introdu
e the maximum likelihood estimator of a log-
on
ave den-sity. At �rst we prove its existen
e and uniqueness. Then we provide two 
hara
ter-izations for this estimator and give some results about uniform rate of 
onvergen
e.These asymptoti
 results are then extended to fun
tions derived from the densityestimator, namely the distribution and hazard fun
tion.3.1 General frameworkOur goal is to estimate a univariate log-
on
ave density fun
tion f based on arandom sample of size n > 1 . Let X1 < : : : < Xn be the 
orresponding orderstatisti
s. For any su
h density f on R, the negative log-likelihood fun
tional at f ,our parameter of interest, is de�ned asLn(f) := �n Z log f(x) dFn(x)= � nXi=1 log f(Xi) (3.1)where Fn stands for the empiri
al distribution fun
tion:Fn(x) := 1n nXi=1 1fXi�xg; x 2 R:The indi
ator fun
tion 1A for a 
ondition A is de�ned as1A = 8<: 1 if A holds,0 else:



22 3 Maximum likelihood estimationThe NPMLE is then de�ned as the minimizer of the fun
tional in (3.1) over alllog-
on
ave probability densities. In order to relax the 
onstraint of f being aprobability density and to get a 
riterion fun
tion to minimize over all 
on
avefun
tions in general, we fo
us on ' = log f and employ the standard tri
k of addinga Lagrange-term to the log-likelihood fun
tional de�ned in (3.1). This leads to	n(') = �n Z '(x) dFn(x) + n Z exp'(x) dx: (3.2)De�ne b'n as the minimizer of this fun
tional over the set of all 
on
ave fun
tions:b'n := argmin' 
on
ave 	n(')and let bfn = exp(b'n)be the 
orresponding maximum likelihood estimator of f . The distribution fun
tionbFn of bfn is given by bFn(x) := Z x�1 bfn(u) du:Sin
e 0 = ddt ����t=0	n(b'n + t)= �n + n Z bfn(x) dx;the Lagrange term guarantees in fa
t a probability density.
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 Properties of b'n and bfn 233.2 Basi
 Properties of b'n and bfnExisten
e and uniquenessFirst of all we need to show that b'n is a meaningful estimator: Theorem 3.2.1guarantees existen
e and uniqueness of b'n and states an interesting key property ofit.Theorem 3.2.1. The NPMLE b'n exists and is unique. It is pie
ewise linear and
ontinuous on [X1; Xn℄ with 
hanges of slope only at observation points. Moreover,b'n = �1 for x 62 [X1; Xn℄.The pie
ewise linearity of b'n is analogous to the 
ase of estimating a 
onvex de
reas-ing density, treated extensively by Groeneboom, Jongbloed, and Wellner (2001b).But in the latter 
ase the knots of the estimated density are situated stri
tly betweenthe observations. Theorem 3.2.1 further entails that bfn is 
ompletely determined bythe ve
tor b' = �b'n(Xi)�ni=1:Hen
e, the in�nite-dimensional problem of �nding the minimizer of 	n over all 
on-
ave fun
tions boils down to a �nite (but high) dimensional task whi
h is elaboratedin Chapter 4. Chara
terizationsWe give two 
hara
terizations of the estimator bfn. The �rst via spe
ial perturbationfun
tions and the se
ond by 
onne
ting the empiri
al distribution fun
tion of thesample with the distribution fun
tion derived from the estimator.Theorem 3.2.2. Let ~'n be a 
on
ave pie
ewise linear fun
tion on [X1; Xn℄ withknots only at fX1; : : : ; Xng. Moreover, let ~'n = �1 on Rn[X1 ; Xn℄. Then ~'n = b'nif, and only if, Z �(x) dFn(x) � Z �(x) exp ~'n(x) dx: (3.3)for any � : R ! R su
h that ~'n + t� is 
on
ave for some t > 0.For fun
tions � that are 
ontinuous, pie
ewise linear and have the same knots as~'n, one gets even equality in (3.3).



24 3 Maximum likelihood estimationThe 
hara
terization in terms of distribution fun
tions is given in the followingtheorem. Let hn : [X1; Xn℄! R be a pie
ewise linear 
ontinuous fun
tion, su
h thatthe knots 
oin
ide with some of the observation points X1 < : : : < Xn. The set ofknots S(hn) of hn is then de�ned as follows:S(hn) := ft 2 (X1; Xn) : h0n(t�) > h0n(t+)g [ fX1; Xng:Re
all that b'n is an example for su
h a fun
tion hn.Theorem 3.2.3. Let ~'n be as in Theorem 3.2.2 and de�ne~Fn(x) := Z x�1 exp ~'n(t) dt:In addition, it is assumed that ~Fn(Xn) = 1. Then, ~'n = b'n and thus ~Fn = bFn, ifand only if for arbitrary a < t < b with a; b 2 S( ~'n),Z ta ~Fn(r) dr � Z ta Fn(r) dr ; (3.4)Z bt ~Fn(r) dr � Z bt Fn(r) dr ; (3.5)Z ba ~Fn(r) dr = Z ba Fn(r) dr : (3.6)Note that (3.4) follows dire
tly from (3.5) and (3.6). In Figure 3.1 we illustrate thebehavior of the pro
essD(t) := Z tX1( bFn � Fn)(r) dr; t 2 [X1; Xn℄:The 
hara
terization of bfn in Theorem 3.2.3 as the se
ond derivative of the integral ofthe empiri
al distribution fun
tion 
oin
ides with that of the least squares estimatorof a 
onvex de
reasing density, spe
i�ed in Lemma 2.2 of Groeneboom, Jongbloed,and Wellner (2001b). The 
onvex 
ase analogue of (3.3) 
an be found in the 
itedpaper, Lemma 2.4.
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Figure 3.1: The pro
ess D(t) for a normal random sample of size 200.Further properties of bfnFor an arbitrary distribution fun
tion G on the real line let�(G) := Z u dG(u)Var(G) := Z �u� �(G)�2 dG(u)denote the mean and the varian
e, provided that R juj dG(u) < 1. Then the fol-lowing 
orollary 
an be derived from Theorem 3.2.2.Corollary 3.2.4. Setting �(x) = x and �(x) = �x2 in (3.3) one obtains:�( bFn) = �(Fn) and Var( bFn) � Var(Fn):



26 3 Maximum likelihood estimationThe distribution fun
tion estimator bFn has the highly appealing feature of beingvery 
lose the the empiri
al distribution fun
tion Fn at all knot points of b'n.Corollary 3.2.5. Choosing �(x) := 1fx<qg or �(x) := �1fx�qg for q 2 S(b'n)yields: bFn 2 �Fn � n�1; Fn� on S(b'n):This fa
t, together with Chara
terization 2 in Theorem 3.2.3 �nally entails:bFn(X1) = 0 and bFn(Xn) = 1:Equivarian
eFinally, let us mention that our estimators are aÆne equivariant in the follow-ing sense. To expli
itly express the dependen
e of the log-likelihood fun
tion onX1; : : : ; Xn write 	n(') = 	n(';X1; : : : ; Xn):Repla
ing the observations X1; : : : ; Xn by �Xi := a + bXi for all i = 1; : : : :n anda 2 R and b > 0 and de�ning�'(x) = '�x� ab �� log b �Fn(x) = 1n nXi=1 1f �Xi�xg; x 2 Rwe have:	n(';X1; : : : ; Xn) = �n Z '(x) dFn(x) + n Z exp'(x) dx= �n Z � �'(x) + log b� d �Fn(x) + n Z exp�'[(y � a)=b℄�b�1 dy= 	n( �'; �X1; : : : ; �Xn) + n log b: (3.7)Consequently, minimizing the fun
tion 	n(';X1; : : : ; Xn) over all pie
ewise linearfun
tions ' with knots at some of the observations yields the same solution asminimizing (3.7) w.r.t to fun
tions �' (where this latter fun
tions are also pie
ewiselinear with knots at some of the observation points). Be
ause of this equivarian
ewe may and do assume from now on thatmaxx2R '(x) = '(0) = �1: (3.8)This will be 
onvenient later on when we use j'j � 1 as a weight fun
tion.



3.3 Uniform 
onsisten
y of bfn 273.3 Uniform 
onsisten
y of bfnLet us introdu
e some notation. De�ne�n := (logn)=nand the uniform norm of a fun
tion g on an interval I bykgkI1 := supx2I jg(x)j:With T := [A;B℄ we always denote a �xed 
ompa
t interval on R, where A < B.The set of knots of b'n on an interval T � R is written as:S(b'n) \ T =: fs1; : : : ; sM(n)g:A fun
tion g : T ! R belongs to the H�older smoothness 
lassH�;L(T ) with exponent� 2 [1; 2℄ and some 
onstant L > 0 if for all x; y 2 T we havejg(x)� g(y)j � Ljx� yj if � = 1;jg0(x)� g0(y)j � Ljx� yj��1 if � > 1:Finally, 
onvergen
e in probability and in law are written as !p and !D (equalitylikewise).Groeneboom, Jongbloed, and Wellner (2001b) proved uniform 
onsisten
y of theestimator of a 
onvex density on (0;1) as well as its rate of 
onvergen
e of n�2=5 ata �xed point xo > 0 under the following smoothness 
onditions on the true densityf : f 0(xo) < 0; f 00(xo) > 0, and f 00 is 
ontinuous in a neighborhood of xo. The key inthe proof was the expli
it 
hara
terization of the estimator bfn and a lemma aboutpointwise 
onsisten
y.On the other hand, under similar assumptions, D�umbgen, Freitag, and Jongbloed(2004) established a rate of uniform 
onvergen
e of (log(n)=n)2=5 for 
on
ave leastsquares regression using perturbation fun
tions that are pie
ewise linear and 
on-tinuous.What we do here is transforming the latter result to maximum likelihood estimationof log-
on
ave densities under some H�older smoothness 
onditions on the true densityfun
tion f . We give theorems for uniform 
onvergen
e on a 
ompa
t interval, for thedensity estimator bfn, the distribution fun
tion estimator bFn derived from it (Se
tion3.5), and the hazard rate estimator b�n (Se
tion 3.6).



28 3 Maximum likelihood estimationTo 
on
lude, we point out the di�eren
e to the general approa
h of van de Geer(2000) to derive 
onsisten
y and rates. While she uses entropy numbers for the fam-ily of all potential density fun
tions we 
onsider a mu
h smaller 
lass of \
ari
atures"for the di�eren
e between estimated and true density. Namely, our 
ari
atures inthe proof of Theorem 3.3.1 are pie
ewise linear fun
tions with at most three knots.Theorem 3.3.1. Assume for the log-density ' = log f that ' 2 H�;L(T ) for someexponent � 2 [1; 2℄ and T a 
ompa
t subinterval of ff > 0g. Then,maxt2T ( bfn � f)(t) = Op ���=(2�+1)n � ;maxt2hA+�1=(2�+1)n ;B��1=(2�+1)n i (f � bfn)(t) = Op ���=(2�+1)n � : (3.9)Note that a 
on
ave fun
tion ' is automati
ally Lips
hitz-
ontinuous (i.e. H�older-
ontinuous with exponent � = 1) on any interval T = [A;B℄ with A > inff' > �1gand B < supf' > �1g. This entails:Corollary 3.3.2. For any 
ontinuous log-
on
ave density f ,k bfn � fkR1 !p 0 and k bFn � FkR1 !p 0:In the 
onvex density 
ase treated by Groeneboom, Jongbloed, and Wellner (2001b),the rate of 
onvergen
e of bfn to f at a �xed point (under the assumption � = 2)is Op(n�2=5). It would therefore be no surprise if the uniform rate in that situationwould be equal to the log-
on
ave 
ase, as generally the rate of 
onvergen
e is sloweddown by a log-fa
tor when 
onsidering uniform instead of pointwise 
onvergen
e.Furthermore, our proof for a uniform rate of 
onvergen
e should be adaptable to
onvex density estimation (where this result is still la
king).3.4 Distan
e between 
onse
utive knotsof b'n: the gap problemThe next lemma about the maximal distan
e of two 
onse
utive knots of b'n plays a
ru
ial role in the proof of Theorem 3.5.1. However, it also deserves its own merits,as it spe
i�es how fast two 
onse
utive knot points of b'n are approa
hing ea
h other.



3.4 Distan
e between 
onse
utive knots of b'n: the gap problem 29Theorem 3.4.1. Let si�1; si 2 S(b'n) be two arbitrary 
onse
utive knots of b'n onT := [A;B℄ where ' 2 H�;L(T ) for some � 2 (1; 2℄. Assume '0(x)�'0(y) � C(y�x)for C > 0 and A � x < y � B. Then:supi=2;:::;M(n)(si � si�1) = Op���=(4�+2)n �:This result 
ompletely 
orresponds to 
onvex density estimation, as the rate of
onvergen
e of two 
onse
utive knots is of order root of the pointwise rate of thedensity estimator (anti
ipating the log-
on
ave pointwise rate from the uniform ratein Theorem 3.3.1). However, there the knots are between observation points whatmakes it mu
h more diÆ
ult to re
eive a result that 
ompares to Theorem 3.4.1. Infa
t, in proving the result about the pointwise limiting distribution in Groeneboom,Jongbloed, and Wellner (2001b), the distan
e about the distan
e of two 
onse
utiveknots is the key result in the whole proof.The situation is di�erent for density estimation under a monotoni
ity 
onstraint.The Grenander density estimator bfG is the left-sided derivative of the least 
on
avemajorant bFG of the empiri
al distribution fun
tion, implying that the jumps of theestimator are at observation points. In Jonker and van der Vaart (2001) appearsa uniform rate of 
onvergen
e for bfG together with the distan
e between two 
on-se
utive 
hanges of slope of bFG as a 
orollary of a more general statement aboutmonotone estimation with 
ensored data. These two rates of 
onvergen
e are equal,up to a log-fa
tor for the uniform rate, namely Op(n�1=3).In estimation of k-monotone densities, Balabdaoui and Wellner (2004d) derived therate of 
onvergen
e of the di�eren
e between two 
onse
utive knots in a neighbor-hood of a �xed point xo > 0 only assuming that a 
ertain unproven 
onje
ture aboutthe upper bound on the error in a parti
ular Hermite interpolation problem holdstrue. Clearly, as k-monotone densities are a generalization of 
onvex de
reasing den-sities, the whole limiting distribution theory again relies on the solution of the gapproblem and therefore on the abovementioned 
onje
ture. Note that Balabdaouiand Wellner introdu
ed the term \gap problem".Theorem 3.4.1 solves a gap problem in log-
on
ave density estimation, via somerelatively fundamental geometri
al 
onsiderations (see the proof of the theorem onp. 57). However, the 
ru
ial point in our 
ase is that the knot points of the estimatorb'n are at some of the observationsXi, and not stri
tly inbetween as in all k-monotone
ases for k � 2.



30 3 Maximum likelihood estimation3.5 Uniform 
onsisten
y of bFnNote that log-
on
avity is preserved under integration, see Bagnoli and Bergstrom(1989 and 2005, Theorem 1). Using Theorem 3.3.1 together with Theorem 3.4.1 anda theorem elaborated in Stute (1982) about the modulus of 
ontinuity of a uniformempiri
al pro
ess, one 
an dedu
e an at least rate of 
onvergen
e for the di�eren
ebetween the integrated density estimator bFn and the empiri
al distribution fun
tionFn . Two things are important to note. First, the proof of the theorem revealswhy the 
ase � = 1 has to be ex
luded. Se
ond, additionally to the 
onditionsin Theorem 3.3.1, the derivative of the log-density, whi
h is well-de�ned (be
ause� > 1), has to be bounded from below.Theorem 3.5.1. Assume '0(x)�'0(y) � C(y�x) for C > 0 and A � x < y � B.Suppose that ' 2 H�;L(T ) for some � 2 (1; 2℄. Then,maxt2T ( bFn � Fn)(t) = op (n�1=2);maxt2[A+��=(4�+2)n ;B���=(4�+2)n ℄ (Fn � bFn)(t) = op (n�1=2): (3.10)The interval in (3.10) is slightly shorter (for �nite n) than that in (3.9). This ensuresthat we have at least one knot between A and the pla
e where the maximum o

urs(same for B).Using Theorem 3.5.1 together with the well known Dvoretzky-Kiefer-Wolfowitz in-equality (Theorem A.3.1) we easily get the following 
orollary.Corollary 3.5.2. Under the same assumptions as in Theorem 3.5.1 we have:maxt2[A+��=(4�+2)n ;B���=(4�+2)n ℄ j( bFn � F )(t)j = Op (n�1=2):In most simulations we looked at, the estimator bFn satis�ed the inequalityk bFn � FnkR1 � kF � FnkR1: (3.11)However, one 
an 
onstru
t 
ounterexamples showing that (3.11) may be violated,even if the right hand side is multiplied with any �xed 
onstant C > 1. The latter�ndings are in 
ontrast to \Marshall's Lemma" about the Grenander estimator bFG.



3.5 Uniform 
onsisten
y of bFn 31Lemma 3.5.3 (Marshall (1970)). Suppose that F is 
on
ave on [0;1) su
h thatF (0) = 0. The least 
on
ave majorant bFG of Fn then satis�es:k bFG � Fk[0;1)1 � kFn � Fk[0;1)1 :Note that the distribution fun
tion estimator bfG 
orresponding to bFG is a pie
ewise
onstant monotone de
reasing fun
tion. Kiefer and Wolfowitz (1976) showed thatk bFG � Fnk[0;1)1 = op(n�2=3(logn)5=6):Kulikov and Lopuha�a (2005b) derived the limiting pro
ess ofGn(t) := n2=3� bFG(t)� Fn(t)�t2[0;1℄:Note that bFG is quite well a

essible through its 
hara
terization as 
on
ave majorantof Fn . However, to derive similar results in the log-
on
ave (and 
onvex) 
ase onehas presumably to rely on the 
hara
terization of the estimator given in Theorem3.2.3.Theorem 3.5.1 assures that essentially the empiri
al distribution fun
tion and theestimator bFn are equivalent up to a fast rate, at least on a �xed 
ompa
t interval T .Together with Theorem 3.5.4 this reveals a remarkable advantage of the log-
on
avedensity estimator over kernel estimators. If the latter are 
onstru
ted with a non-negative even kernel and a bandwidth of optimal order O(n�1=5), then the uniformdistan
e between integrated density estimator bFn;h and the true distribution fun
tionF is only of order Op(n�2=5), i.e. even worse than the simple empiri
al distributionfun
tion while in the log-
on
ave 
ase the parametri
 rate Op(n�1=2) is attained.



32 3 Maximum likelihood estimationTheorem 3.5.4. Let k be a nonnegative and symmetri
 kernel and K its normalizedintegral: K(r) := Z r�1 k(x) dx su
h that K(1) = 1:For a bandwidth h = h(n) su
h that h # 0 and nh!1, the integrated kernel densityestimator is de�ned as bFn;h(x) := ZRK(x� y) dFn(y)for any x 2 R. Then, if the true density f has bounded derivative f 0 at any �xedxo 2 R, bFn;h(xo) = F (xo) +Op(n�1=2) + Op(h2f 0(xo)): (3.12)If f 0 is stri
tly positive at xo, 
hoosing h = Op(n�1=5) in (3.12) yields:bFn;h(xo) = F (xo) +Op(n�2=5):3.6 A monotone hazard rate estimatorThe estimation of a monotone hazard rate is already des
ribed in the book byRobertson, Wright, and Dykstra (1988). They dire
tly solve an isotoni
 estimationproblem similar to that for the Grenander density estimator.Re
ently, there has again grown some interest in the estimation of a monotone hazardrate, see Hall et al. (2001) and Hall and van Keilegom (2005). Methods used thererelied upon suitable modi�
ations of kernel estimators and Silverman's \in
reasingbandwidth" approa
h, proposed in 1981. However, with the aid of Lemma 2.3.1 andde�ning b�n(x) = bfn(x)1� bFn(x) for x < Xnyields a simple plug-in monotone hazard rate estimator and gives raise to the fol-lowing theorem.



3.6 A monotone hazard rate estimator 33Theorem 3.6.1. Under the same assumptions as in Theorem 3.3.1 we have that b�nis a non-de
reasing fun
tion on (�1; Xn). Furthermore,maxt2T (b�n � �)(t) = Op ���=(2�+1)n � ;maxt2hA+�1=(2�+1)n ;B��1=(2�+1)n i (�� b�n)(t) = Op ���=(2�+1)n � :Find graphi
al illustrations for all the estimators bfn; b'n; bFn and b�n in Chapter 4.



34 3 Maximum likelihood estimation3.7 ProofsBefore 
oming to the proofs let us mention that ve
tors in Rn are written asx = (x1; : : : ; xn) and that the L2-norm for a ve
tor x 2 Rn is de�ned askxk2 := � nXi=1 x2i�1=2:Existen
e and uniquenessProof of Theorem 3.2.1. We start with proving pie
ewise linearity of b'n. Fixan arbitrary 
on
ave fun
tion ' with 	n(') < 1, and de�ne �' by requiring that�'(Xi) = '(Xi) for all i = 1; : : : ; n, while �' is linear between su

essive observations.Further let �' � �1 outside [X1; Xn℄. The 
on
avity of ' then entails that ' � �'.Consequently, 	n( �') � 	n(') (3.13)with stri
t inequality unless �' = '. Thus minimizers of 	n must have the form of�'.In order to prove existen
e of b'n, we only 
onsider 
on
ave fun
tions ' satisfy-ing the 
onstraints just derived. Moreover it suÆ
es to 
onsider the 
ase thatR exp'(x) dx = 1. For if ' = 'o + t with exp('o) being a probability densityand some number t 6= 0, it follows from (3.2) that	n(') = 	n('o) + n�exp(t)� t� 1� > 	n('o):For the remainder of this proof, any su
h fun
tion ' is identi�ed with the ve
tor' := �'(Xi)�ni=1 2 Rn :Note that the fun
tional ' 7! 	n(') is 
ontinuous. Thus for the existen
e of aminimizer it suÆ
es to show that	n(') ! 1whenever k'k2 !1. For that purpose, let ('(k))1k=1 be a sequen
e of su
h ve
torssatisfying k'(k)k2 ! 1



3.7 Proofs 35and '(k)i ! 
i 2 [�1;1℄ for i = 1; : : : ; n:Suppose �rst that 
i <1 for all i. Then 
i = �1 for at least one index i, so that	n('(k)) = �Pni=1 '(k)i + n tends to in�nity.Se
ondly, suppose there exists an index j with 
j = 1. Let j > 1. The pie
ewiselinearity of the fun
tion '(k) entails that1 � Z XjXj�1 exp�'(k)(x)� dx= (Xj �Xj�1) exp ('(k)j )1� exp (�Æk)Æk� (Xj �Xj�1) exp ('(k)j )(1 + Æk)�1;where Æk := '(k)j � '(k)j�1. The latter inequality is a 
onsequen
e of1� e�xx � 11 + x for x � 0:Thus Æk is bounded from below by (Xj�Xj�1) exp('(k)j )�1. Consequently, 
j =1entails that �'(k)j � '(k)j�1 = �2'(k)j + Æk� �2'(k)j + (Xj �Xj�1) exp('(k)j )� 1! 1:Analogously, if j < n, then �'(k)j � '(k)j+1 tends to in�nity. These 
onsiderationsshow that 	n('(k))!1.For uniqueness observe that 	n is a stri
tly 
onvex fun
tional in ' in the sense that	n�(1� �)'1 + �'2� < (1� �)	n('1) + �	n('2)for � 2 (0; 1) and 
on
ave fun
tions '1; '2 : R 7! [�1;1) su
h that R exp'i <1 and Lebf'1 6= '2g > 0. This is a 
onsequen
e of the stri
t 
onvexity of theexponential fun
tion. 2



36 3 Maximum likelihood estimationChara
terizationsTo simplify notation in the following proofs, let us introdu
e three fun
tion 
lasses.For a 
on
ave fun
tion gn : [X1; Xn℄! R, let D1(gn) be the 
lass of all fun
tions �su
h that gn+t� is 
on
ave for some t > 0. De�ne D2(gn) as the family of pie
ewiselinear (not ne
essarily 
ontinuous) fun
tions � su
h that any knot q of � has oneof the two following properties:q 2 S(gn) and �(q) = lim infr!q �(r); (3.14)�(q) = limr!q�(r) and �0(q�) � �0(q+): (3.15)Finally, D3(gn) shall be the subset of D2(gn) 
onsisting of all 
ontinuous and pie
e-wise linear fun
tions with knots only in S(gn). See Figure 3.2 for two examples ofadmissible perturbation fun
tions in D2(gn).
Xi Xj��������������������

����������a
�������
�������AAAAAAAAAAAA

������a
Figure 3.2: Two examples for admissible perturbation fun
tions � 2 D2(gn).In Theorem 3.2.2 perturbation fun
tions � 2 D1(b'n) are used to 
hara
terize theestimator b'n. We 
an generalize and spe
ify inequality (3.3) to the even more general
lasses D2(b'n) and D3(b'n), see the following lemma.Lemma 3.7.1. Inequality (3.3) is also valid for fun
tions � 2 D2( ~'n). For fun
-tions � 2 D3( ~'n), we even get an equality.



3.7 Proofs 37Proof of Lemma 3.7.1. Suppose that � 2 D2(b'n). In this 
ase there are 
ontin-uous, pie
ewise linear fun
tions �k for k 2 N 
onverging pointwise isotoni
ally to �and having the following property: Any knot point q of �k either belongs to S(b'n),or �0k(q�) > �0k(q+); see Figure 3.3.
Xi Xj�������������������

�����������
Figure 3.3: An example for an admissible perturbation fun
tion � and some approxima-tions �k.Thus b'n + t�k is 
on
ave for suÆ
iently small t > 0. Consequently, sin
e �1 ��k � � for all k, it follows from dominated 
onvergen
e (Theorem A.1.1) and (3.3)thatZ � dFn = limk!1Z �k dFn � limk!1Z �k(x) bfn(x) dx = Z �(x) bfn(x) dx:Finally, if � 2 D3(b'n), one may apply (3.3) to �� and obtains equality in (3.3). 2Proof of Theorem 3.2.2. First suppose ~'n is a minimizer of 	n. This entails forany fun
tion � 2 D1( ~'n) that the 
orresponding dire
tional derivative of 	n mustbe non-negative: 0 � limt#0 	n( ~'n + t�)� 	n( ~'n)t= n�� Z �dFn + Z �(x) exp ~'n(x) dx�:



38 3 Maximum likelihood estimationAs for the other dire
tion let g be a 
on
ave fun
tion su
h that 	n(g) < 1 andde�ne g(r)� ~'n(r) = 0 for r 2 f�1;1g. Then:n�1�	n(g)�	n( ~'n)� == Z exp g(x) dx� Z �g(x)� ~'n(x)� dFn(x)� Z ~fn(x) dx= Z exp �g(x)� ~'n(x)� ~fn(x) dx� Z �g(x)� ~'n(x)� dFn(x)� Z ~fn(x) dx� Z �1 + g(x)� ~'n(x)� ~fn(x) dx� Z �g(x)� ~'n(x)� dFn(x)� Z ~fn(x) dx= Z �g(x)� ~'n(x)� ~fn(x) dx� Z �g(x)� ~'n(x)� dFn(x) (3.16)by the inequality exp(x) � 1 + x for x 2 R. But the 
lass of fun
tionsfg � ~'n; g 
on
avegis equivalent to the 
lass D1( ~'n), so (3.16) is only positive if (3.3) holds for allfun
tions in D1( ~'n), entailing that ~'n is e�e
tively the minimizer of 	n. 2Proof of Theorem 3.2.3. First, we provide a formula about integration of a spe
ial
lass of fun
tions. Assume G to be an arbitrary distribution fun
tion. Suppose� : R ! R 
an be written as follows.�(x) = �o + Z x�1�0(t) dtwhere �0 is a bounded and measurable fun
tion with bounded support. Then, usingFubini's Theorem:ZR�dG(x) = �o + ZR ZR�0(t)1ft<xg dt dG(x)= �o + ZR�0(t)�ZR 1ft<xg dG(x)� dt= �o + ZR�0(t)[1�G(t)℄ dt: (3.17)Equality (3.17) is spe
i�
ally valid for pie
ewise linear and 
ontinuous fun
tions �with bounded support.



3.7 Proofs 39Suppose ~'n is a minimizer of 	n. Then inequalities (3.4)-(3.6) follow from Theorem3.2.2 applied to �1(x) = min f(b� x)+; b� tg= (b� t) + Z x�1�1ft�r�bg drand �2(x) = min f(x� a)+; t� ag= Z x�1 1fa�r�tg drand remembering that a; b 2 S( ~'n).As for the other dire
tion let us just 
ontinue 
al
ulations in (3.16) as follows. Re
allfrom the proof of Theorem 3.2.1 the fun
tion �g whi
h is 
on
ave and pie
ewise linearwith knots only at the observations X1; : : : ; Xn. Using inequalities (3.13), (3.16),the assumption ~Fn(Xn) = 1, and (3.17) then yields:n�1�	n(g)� 	n( ~'n)� � n�1�	n(�g)� 	n( ~'n)�� Z �g(x)� ~'n(x)� ~fn(x) dx� Z �g(x)� ~'n(x)� dFn(x)= ZR�Fn(x)� ~Fn(x)���g0(x)� ~'0n(x)� dx= � Z XnX1 Z tX1�Fn(x)� ~Fn(x)� dx d��g0(t)� ~'0n(t)�using integration by parts where �g0 and ~'0n 
an be interpreted as left-sided deriva-tives. Note that the outer integration over d(�g0(t) � ~'0n(t)) is just a sum over theknot points. The assumption on ~'n entails thatZ XnX1 Z tX1�Fn(x)� ~Fn(x)� dx d ~'0n(t) == Xs2S( ~'n)( ~'0(s+)� '0(s)) Z sX1�Fn(x)� ~Fn(x)� dx= 0by (3.6). De�ne for i = 2; : : : ; n the right-most knot of ~'n left of Xi assi = maxj fsj 2 S( ~'n) : sj < Xig:



40 3 Maximum likelihood estimationIntrodu
e �g00i = �g0(Xi+)� �g0(Xi) < 0 and use the 
al
ulations from above to get:n�1�	n(g)� 	n( ~'n)�� � Z XnX1 Z tX1�Fn(x)� ~Fn(x)� dx d�g0(t)= nXi=2 (��g00i )hZ siX1 �Fn(x)� ~Fn(x)� dx + Z Xisi �Fn(x)� ~Fn(x)� dxi� 0by (3.4) and (3.6). 2Uniform 
onsisten
y of bfnProof of Theorem 3.3.1: The proof 
onsists of several lemmas. To lift the fogspread by the te
hni
al details, we summarize the ingredients. First, de�ne Dm asthe family of all pie
ewise linear fun
tions on R with at most m knots. Se
ond,verify that the 
lass Dm indeed 
ontains useful perturbation fun
tions (for a �xedm, Lemma 3.7.3) in the sense of providing suÆ
iently a

urate \
ari
atures" forthe di�eren
e b'n � '. Finally, bound the moment generating fun
tion of a randomvariable spe
i�ed there (Lemma 3.7.5) to show that the supremum norm of a suitablyweighted empiri
al pro
ess (wn(�) R �d(Fn � F ))�2Dm is bounded in probability(Lemma 3.7.4). This last step is done by approximating elements of Dm by linearfun
tions from a �nite family (Lemma 3.7.6) to be followed by some bra
ketingargument. Finally, to prove the theorem, use Lemma 3.7.2. This 
laim aboutthe di�eren
e of two 
on
ave fun
tions (one of whi
h is suÆ
iently smooth) wasintrodu
ed in slightly di�erent form in D�umbgen (1998, Lemma 5.2) and readoptedin D�umbgen, Freitag, and Jongbloed (2004, Lemma 2). For 
ompleteness, we alsogive a proof of this lemma.It is important to note that thanks to inequality (3.3) we 
an 
on
entrate our at-tention in Lemma 3.7.4 on the res
aled supremum of the standard empiri
al pro
ess(F (t) � Fn(t))t2R rather than having to deal with (F (t) � bFn(t))t2R, what in fa
twould be a mu
h more diÆ
ult task.Re
all that, a

ording to (3.8), ' is assumed to satisfy ' � �1. In order to be ableto state the following results rigorously we de�ne two auxiliary quantities for any



3.7 Proofs 41fun
tion h on the real line:W (h) := kh='kR1 �(h) := �ZR h(x)2 dF (x)�1=2 :The �rst key ingredient in the proof of Theorem 3.3.1 is a statement about thedi�eren
e of two 
on
ave fun
tions, one of whi
h is suÆ
iently smooth.Lemma 3.7.2. For any � 2 [1; 2℄ and L > 0 there exists a positive 
onstantK = K(�; L) with the following property: Suppose that g and bg are 
on
ave andreal-valued fun
tions on a 
ompa
t interval T = [A;B℄, where g 2 H�;L(T ). For any" > 0 let Æ := KminfB � A; "1=�g. Thensupt2T (bg � g) � " or supt2[A+Æ;B�Æ℄(g � bg) � "implies that inft2[
;
+Æ℄ (bg � g)(t) � "=4 or inft2[
;
+Æ℄ (g � bg)(t) � "=4for some 
 2 [A;B � Æ℄.This is followed by the spe
i�
ation of \useful" perturbation fun
tions �.Lemma 3.7.3. Let '� b'n � " or b'n � ' � " on some interval [
; 
 + Æ℄ � T withlength Æ > 0. Then there exists a fun
tion � 2 D3 ea
h knot of whi
h satis�es
ondition (3.14) or (3.15) and a positive 
onstant K = K(f; T ) su
h thatb'n � ' � �"� if '� b'n � " on [
; 
+ Æ℄b'n � ' � �"� if b'n � ' � " on [
; 
+ Æ℄, (3.18)sign(�) = sign('� b'n) on fx : �(x) 6= 0g ; (3.19)� � 1 on R (3.20)Z 
+Æ
 �2(x) dx � Æ=3; (3.21)W (�) � K(f; T )maxf1; Æ�1=2g�(�): (3.22)



42 3 Maximum likelihood estimationLemma 3.7.4 shows that Fn is 
lose to F uniformly over the fun
tion 
lass Dm.Lemma 3.7.4. For any � 2 [2=3; 1) there exists a 
onstant B = B(�; f) su
h thatSn(m) := sup�2Dm ��R �d(Fn � F )���(�)m1=2�1=2n +W (�)m��n � Bwith probability tending to one as n!1.The additional term W (�)m��n in the denominator is ne
essary to prevent Sn(m)from be
oming \too big" in 
ase �(�) is very small. This latter problem 
an o

urwhen the perturbation fun
tion � has small support.Proof of Theorem 3.3.1Now, to prove the theorem let G = G(�; f; T ) > 0 be a generi
 
onstant whosevalue may be di�erent in di�erent expressions. Sin
e the exponential fun
tion isLips
hitz{
ontinuous on any hal
ine (�1; m℄, we may and do repla
e (f; bfn) with('; b'n). Suppose that supt2T (b'n � ')(t) � C"nor supt2[A+Æn;B�Æn℄ ('� b'n)(t) � C"nfor some C > 0, where "n := ��=(2�+1)n and Æn := �1=(2�+1)n = "1=�n . It followsfrom Lemma 3.7.2 with " := C"n that for suÆ
iently large n and C � K(f; T )��,there is a (random) interval [
n; 
n + Æn℄ � T on whi
h either b'n � ' � (C=4)"nor ' � b'n � (C=4)"n. But then by Lemma 3.7.3 there is a (random) fun
tion�n 2 D3 � D2(b'n) ful�lling (3.18)-(3.22). For this �n we have by (3.3)ZR�n(x) d(F � Fn)(x) � ZR�n(x)(f � bfn)(x) dx= ZR�n(x)f(x)�1� exp[b'n(x)� '(x)℄� dx (3.23)From (3.18) and the assumption above we get on the interval [
n; 
n + Æn℄b'n � ' � �(C=4)"n�n



3.7 Proofs 43if b'n � ' � (C=4)"n and b'n � ' � �(C=4)"n�nif ' � b'n � (C=4)"n. This together with (3.19) and the fa
t that the fun
tion1� exp(x) is de
reasing for x 2 R implies that (3.23) is not smaller thanZR�n(x)f(x)�1� exp[�(C=4)"n�n(x)℄� dx =4(C"n)�1 ZR ~�n(x)f(x)�1� exp[� ~�n(x)℄� dxwith ~�n := (C=4)"n�n. Using Taylor expansion one 
an verify the inequalitiesx[1� exp(�x)℄ � 8<: x2 if x � 0x2=(1 + x) if x > 0:Combining this with the above derivations yieldsZR�n(x) d(F � Fn)(x) �4(C"n)�1 Zf ~�n�0g ~�2n(x)f(x) dx + 4(C"n)�1 Zf ~�n>0g ~�2n(x)f(x)1 + ~�n(x) dx� (C=4)"n Zf�n�0g�2n(x)f(x) dx+ (C=4)"n1 + (C=4)"n Zf�n>0g�2n(x)f(x) dx� (C=4)"n1 + (C=4)"n�2(�n)by (3.20). This entails, together with (3.21) and (3.22),Sn(3) � RR�n(x) d(F � Fn)(x)31=2�(�n)�1=2n + 3W (�n)��n� (C=4)"n�2(�n)(31=2�(�n)�1=2n +GÆ�1=2�(�n)��n)(1 + (C=4)"n)= GC"n�(�n)(�1=2n + Æ�1=2n ��n)(1 + (C=4)"n)� CG"nÆ1=2n(�1=2n + Æ�1=2n ��n)(1 + (C=4)"n) :



44 3 Maximum likelihood estimationConsequently, the fa
t that Sn(3) � B(�; f) impliesC � G(�1=2n + Æ�1=2n ��n)"�1n Æ�1=2n (1 + (C=4)"n)wherefrom we dedu
eC � G(1 + ���(�+1)=(2�+1)n )(1�G��=(2�+1)n �G���1=(2�+1)n )�1= O(1):Now the assertion follows from Lemma 3.7.4. 2Proof of Lemma 3.7.3. Again, the proof of this Lemma is very mu
h inspired bythat of Lemma 3 in D�umbgen, Freitag, and Jongbloed (2004). It is worth notingthat here we are also in
orporating non-
ontinuous fun
tions, what brings down thenumber of knots whi
h are ne
essary for the �'s from 6 to 3. The 
ru
ial point inall the 
ases we have to distinguish is to 
onstru
t a � 2 D3 satisfying (3.18).Case 1: Let b'n � ' � " on [
; 
 + Æ℄. Then a fun
tion � 2 D3 will do. FromTheorem 3.2.1 we know that b'n is pie
ewise linear.Case 1a: Suppose [
; 
+ Æ℄\S(b'n) 
ontains (at least) one point Xo. Then wefor
e � 2 D3 to have knots at 
;Xo; 
+Æ, where � = 0 on the set (�1; 
℄[[
+Æ;1),and �(Xo) = �1. Requirements (3.18), (3.19), and (3.21) are readily veri�ed. Toestablish (3.22) note that W (�) � k�kR1 � 1.Case 1b: Suppose [
; 
+ Æ℄ \ S(b'n) = ;. Let (
o; do) � (
; 
+ Æ) be the maximalopen interval on whi
h ' � b'n is 
on
ave. Then there exists a linear fun
tion~� < 0 su
h that ~� � ' � b'n on (
o; do) and ~� � �" on [
; 
 + Æ℄. Next let(
1; d1) := fe� < 0g \ (
o; do). Now we de�ne � 2 D2 via�(x) := 8<: 0 if x 2 (�1; 
1) [ (d1;1);e�=" if x 2 [
1; d1℄:This fun
tion � satis�es ' � b'n � "� � 0 on [X1; Xn℄, what establishes (3.18)and (3.19). As for (3.21) note that j�j � 1 on [
; 
 + Æ℄. In order to verify (3.22)introdu
e P, the 
lass of pie
ewise linear fun
tions su
h that for every element of Pthe interval [
; 
+ Æ℄ is fully 
ontained in its support. Let us assume for the momentthat supÆ>0;�2Pminf1; Æg1=2W (�)�(�) (3.24)



3.7 Proofs 45is unbounded. But then there exist sequen
es Æn and �n su
h thatminf1; Æng1=2W (�n)�(�n) ! 1as n!1. Furthermore, assume w.l.o.g. that �n 
an be written as�n(x) = �ndn � 
n (x� 
n)1f
n�x�dngfor sequen
es �n; 
n and dn. Sin
e W and � are both semi-norms, �n 
an be set to1 for all n. As for the other sequen
es we have Æn ! Æ 2 [0; 1℄, 
n ! 
1 2 [�1; B℄,and dn ! d1 2 [A;1℄. Elementary 
al
ulations yield:Z dn
n �2n(x)f(x) dx � 3�1minx2T f(x)(dn � 
n)= G(dn � 
n):Sin
e by Lemma 2.2.1 and equivarian
e (see Se
tion 3.2) for x 2 Rj'(x)j � maxf1;�ao + bojxjg (3.25)we 
an write:minf1; Æng1=2W (�n)�(�n) � Gminf1; Æng1=2(dn � 
n)1=2 supx2[
n;dn℄ x� 
nmaxf1;�ao + bojxjg(dn � 
n)=: R1(f; T; Æn; 
n; dn):Note that this latter fun
tion is 
ontinuous in its last three arguments. Now, assum-ing that 
n ! 
1; dn ! 
1 for 
1 2 T immediately entails that Æn ! 0. But then, asn!1, R1(f; T; Æn; 
n; dn) � Gmaxf1;�ao + boj
1jg= G:If one 
onsiders either the 
ase 
n ! �1; dn ! d1 2 [A;1); Æn ! Æ 2 [0; 1℄ or
n ! 
1 2 (�1; B℄; dn !1; Æn ! Æ 2 [0; 1℄ one even gets thatR1(f; T; Æn; 
n; dn) = R1(f; T )! 0:



46 3 Maximum likelihood estimationBut these 
onsiderations imply thatminf1; Æng1=2W (�n)�(�n)is at least bounded, what 
ontradi
ts assumption (3.24). This establishes (3.22).For an illustration 
onsult Figure 3.4.

Figure 3.4: The perturbation fun
tion � in Case 1b.

0 � '� b'n
o 
1 
 
+ Æ d1 = do
b'n '

Case 2: Let '� b'n � " on [
; 
+ Æ℄. Let [
o; 
℄ and [
+ Æ; do℄ be maximal intervalson whi
h b'n is linear. Then de�ne�(x) := 8>>><>>>: 0 if x 2 (�1; 
o) [ (do;1);1 + �1(x� xo) if x 2 [
o; xo℄1 + �2(x� xo) if x 2 [xo; do℄;where xo := 
+ Æ=2 and �1 � 0 is 
hosen su
h that either�(
o) = 0 and ('� b'n)(
o) � 0 or('� b'n)(
o) < 0 and sign(�) = sign('� b'n) on [
o; xo℄:



3.7 Proofs 47Analogously, �2 � 0 is 
hosen su
h that�(do) = 0 and ('� b'n)(do) � 0 or('� b'n)(do) < 0 and sign(�) = sign('� b'n) on [xo; do℄:By 
onstru
tion (3.18) and (3.21) are ensured. Moreover, R 
+Æ
 �(x)2 dx � Æ=3.Figure 3.5 gives an example. In order to verify (3.22) one 
an now apply the samereasoning as in Case 1b. Suppose thatsupÆ>0;�2Pminf1; Æg1=2W (�)�(�) (3.26)is unbounded. Then there exist sequen
es Æn and �n su
h thatminf1; Æng1=2W (�n)�(�n) ! 1as n!1. For sequen
es 
n; xn; dn; �1;n; �2;n write�n(x) = [1 + �1;n(x� xn)℄1f
n�x�xng + [1 + �2;n(x� xn)℄1fxn�x�dng=: �1;n(x) + �2;n(x)where Æn ! Æ 2 [0; 1℄; 
n ! 
o 2 [�1; B℄; xn ! 
o + Æ; dn ! do 2 [A;1℄; �1;n ! �1,and �2;n ! �2. De�ne the fun
tion R2 as follows, again using (3.25),minf1; Æng1=2W (�1;n)�(�1;n)� minf1; Æng1=2k�1;n='kR1�RR�21;n(x)f(x) dx�1=2� Gminf1; Æng1=2 supx2[
n;xn℄[(1 + �1;n(x� xn))=maxf1;�ao + bojxjg℄�(xn � 
n) + �1;n(xn � 
n)2 + �21;n(xn � 
n)3=3)�1=2=: R2(f; T; Æn; �1;n; 
n; xn):Again, R2(f; �1; 
o; xo) is 
ontinuous in its latter four arguments. The �rst 
ase tolook at is the following: 
n ! 
o; xn ! 
o (immediately implying Æn ! 0) and



48 3 Maximum likelihood estimation�1;n !1. But then R2(f; T; Æn; �1;n; 
n; xn) is not bigger thanGÆ1=2n supx2[
n;xn℄[(1 + �1;nÆn)=maxf1;�ao + bojxjg℄�(xn � 
n) + �1;n(xn � 
n)2 + �21;n(xn � 
n)3=3)�1=2� GÆ1=2n +GÆ3=2n �1;n(Æn + �1;nÆ2n + �21;nÆ3n=3)1=2= G(1 + �1;nÆn + �21;nÆ2n=3)1=2 + G(��21;nÆ�2n + ��11;nÆ�1n + 1=3)1=2� Gas n!1. If on the other hand �1;n ! 0, thenR2(f; T; Æn; �1;n; 
n; xn) = GÆ1=2n (1 + o(1))Æ1=2n (1 + �1;nÆn + �21;nÆ2n=3)1=2= Gas n ! 1. Finally, if �1;n ! �1 2 (0;1), then R2(f; T; Æn; �1;n; 
n; xn) = G.Similarly one 
an deal with the settings 
n ! �1; xn ! xo and 
n ! 
o; xn !1,both these 
ases analyzed as above regarding the behavior of the sequen
e �1;n. Allthis 
ases together yield that the fun
tion R2(f; T; Æn; �1;n; 
n; xn) is either boundedby a 
onstant only depending on f and T or going to 0 as n ! 1, 
ontradi
ting(3.26). As in Case 1b this implies thatminf1; Æng1=2W (�1;n)�(�1;n)is bounded by a 
onstant only depending on f and T . As a 
onsequen
e we getW (�1;n) � Gmaxf1; Æng�1=2�(�1;n):Similar 
onsiderations apply to �2;n. Noting thatW (�n) = maxfW (�1;n);W (�2;n)g� Gmaxf1; Æng�1=2maxf�(�1;n); �(�2;n)g� Gmaxf1; Æng�1=2�(�n)veri�es (3.22). 2
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Figure 3.5: The perturbation fun
tion � in Case 2.

0 � '� b'n

o 
 xo 
+ Æ do
' b'n

1

In order to prove Lemma 3.7.4 we derive �rst an auxiliary inequality for the momentgenerating fun
tion of a random variable with bounded exponential moment.Lemma 3.7.5. Let Y be a random variable su
h that IE(Y ) = 0, IE(Y 2) = �2 andIE exp(jY j) � 1 + C. Then for arbitrary � 2 (0; 1) and t 2 R,IE exp(tY ) � 1 + �2t22 + �2�C1��e1��jtj3(1� �)2(1� �� jtj)+ :This entails the following result for �nite families of fun
tions:Lemma 3.7.6. Let Hn be a �nite family of fun
tions h with 0 < W (h) < 1su
h that #Hn = O(np) for some p > 0. Then for any �xed � 2 [0; 1), � :=(2� �)=(3� 2�) 2 [2=3; 1) and suÆ
iently large D,limn!1 IP0�maxh2Hn ���R h d(Fn � F )����(h)�1=2n +W (h)��n � D1A = 0:



50 3 Maximum likelihood estimationProof of Lemma 3.7.4. At �rst we 
onsider the family H of all fun
tions h of theform h(x) = 1fx2Jg(a+ bx)with any interval J � R and real 
onstants a; b su
h that h is nonnegative. Given thisfamily H we show now that for ea
h � 2 [2=3; 1) there exists a 
onstant C = C(Æ; f)su
h that suph2H ��R h d(Fn � F )���(h)�1=2n +W (h)��n � C (3.27)with probability tending to one as n ! 1. Again, sin
e W (�) and �(�) are semi-norms, we may repla
e H with the subfamily Ho of all fun
tions h 2 H su
h thatW (h) = 1.Now we use a bra
keting argument. Let�1 = tn;0 < tn;1 < � � � < tn;m(n) =1;and de�ne In;j := (tn;j�1; tn;j℄ for 1 � j � m(n). Here the points tn;j are 
hosen su
hthat Z tn;jtn;j�1 '(x)2f(x) dx � n�1with equality for j = 1 and j = m(n). A

ording to Lemma 2.2.1, the integral of'2f is �nite. Thus we may and do assume that m(n) = O(n). Moreover the lasttwo inequalities in Lemma 2.2.1 imply thatmax1�j<m(n) j'(tn;j)j = O(logn):For any h 2 Ho we de�ne fun
tions hn;`; hn;u as follows: Let fj; : : : ; kg be the set ofall indi
es i 2 f1; : : : ; m(n)g su
h that fh > 0g \ In;i 6= ;. Then we de�nehn;`(x) := 1ftn;j<x�tn;k�1g(
+ dx)and hn;u(x) := 1fx2In;j[In;kg(1 + jxj)+ 1ftn;j<x�tn;k�1gmin(
+ dx+ n�1=2; 1 + j'(x)j);where 
; d 2 fzn�1=2 : z = 0; 1; 2; : : :g are 
hosen as large as possible su
h thathn;` � h. Figure 3.6 illustrates the situation.
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���������������������h
( ℄In;j ( ℄In;k

                  
���� ����

                  

1 + jxj

hn;uhn;lFigure 3.6: Constru
tion of the bra
kets for h.
One easily veri�es that 0 � hn;` � h � hn;u, W (hn;u) = 1 and�(hn;u � hn;`)2 � 3n�1:Moreover, the set Hn := fhn;`; hn;u : h 2 Hog 
onsists of O(m(n)2n log(n)2) = o(n4)di�erent fun
tions. For there are less than m(n)2 possibilities for the index pair(j; k) and at most (n1=2maxj j'(tn;j)j+ 1)2 possibilities for the pair (
; d).It follows from Lemma 3.7.6 that for some suitable 
onstant D = D(�; f),suph2Hn ��R h d(Fn � F )���(h)�1=2n + ��n � D (3.28)with probability tending to one as n!1. But for any h 2 Ho the inequality (3.28)



52 3 Maximum likelihood estimationentails thatZ h d(Fn � F ) � Z hn;u dFn � Z hn;` dF= Z hn;u d(Fn � F ) + Z (hn;u � hn;`) dF� D��(hn;u)�1=2n + ��n� + 31=2n�1=2� D�(�(h) + 31=2n�1=2)�1=2n + ��n�+ 31=2n�1=2� (D + 1)(�(h)�1=2n + ��n)for suÆ
iently large n. Thus we may take C = D+1 in (3.27). In order to 
ompletethe proof of Lemma 3.7.4, 
onsider any � 2 Dm. There are m0 � 2m + 2 disjointintervals on whi
h � is linear and either nonnegative or nonpositive. Thus we maywrite � = m0Xj=1 �jhjwith fun
tions hj 2 H having disjoint support and numbers �j 2 f�1; 1g. Conse-quently, �(�)2 = m0Xj=1 �(hj)2;W (�) = maxj=1;:::;m0W (hj):Thus (3.28), together with the Cau
hy-S
hwarz inequality, entails that���Z �d(Fn � F )��� � m0Xj=1 ���Z hj d(Fn � F )���� m0Xj=1 C��(hj)�1=2n +W (hj)��n�� C� m0Xj=1 �(hj)�1=2n +W (�)m0��n�� C��(�)m01=2�1=2n +W (�)m0��n�� 4C��(�)m1=2�1=2n +W (�)m��n�what 
on
ludes the proof. 2



3.7 Proofs 53Proof of Lemma 3.7.5. Note �rst thatIE exp(tY ) = 1Xk=0 tkk! IE(Y k) � 1 + �2t22 + 1Xk=3 jtjkk! IE(jY jk):It follows from H�older's inequality thatIE(jY jk) = IE(jY j�jY jk��) (for 0 < � < k)� IE(jY j�=�)� IE(jY j(k��)=(1��))1��= �2� IE(jY j(k�2�)=(1��))1�� (if � = 2�):Moreover, for ` � 1,IE(jY j`) = IE�(exp(jY j)� 1) jY j`exp(jY j)� 1� � C maxy>0 y`ey � 1 � C ``e1�`:For ddy y`ey � 1 = `y`�1(ey � 1� yey=`)(ey � 1)2is stri
tly positive on (0; z) and stri
tly negative on (z;1), where z satis�es theequality ez � 1 = zez=`. Hen
e the maximum of y`=(ey � 1) over all y > 0 is notgreater than the maximum of `z`�1e�z over all z > 0, and the latter maximumequals `(`� 1)`�1e1�` � ``e1�`. Consequently,IE exp(tY ) � 1 + �2t22 + �2�C1��e1�� 1Xk=3 jtjkk! �k � 2�1� � �k�2�ek�2�= 1 + �2t22 + �2�C1��e1+� 1Xk=3 jtjkk! �k � 2�1� � �k�2�e�k� 1 + �2t22 + �2�C1��e1+� 1Xk=3 jtjkk! 3�2�� k1� ��ke�k< 1 + �2t22 + �2�C1��e1�� 1Xk=3� jtj1� ��k kke�kk!� 1 + �2t22 + �2�C1��e1�� 1Xk=3� jtj1� ��k= 1 + �2t22 + �2�C1��e1��jtj3(1� �)2(1� �� jtj) : 2



54 3 Maximum likelihood estimationProof of Lemma 3.7.6. Sin
e W (
h) = 
W (h) and �(
h) = 
�(h) for any h 2Hn and arbitrary 
onstants 
 > 0, we may assume without loss of generality thatW (h) = 1 for all h 2 Hn. Note that now jh(x)j � j'(x)j. Hen
e it follows fromLemma 2.2.1 thatIE exp�tojh(X)� IE h(X)j� � Co := exp(to IE j'(X)j) IE exp(toj'(X)j);whi
h is �nite for 0 < to < 1. Thus Lemma 3.7.5, applied to Y := to(h(X)�IE h(X)),implies thatIE expht�h(X)� IE h(X)�i = IE�(t=to)Y � � 1 + �(h)2t22 + C1�(h)2�jtj3(1� C2jtj)+for arbitrary h 2 Hn, t 2 R and 
onstants C1; C2 depending on �; to; Co. Conse-quently, IE exp�t Z h d(Fn � F )� = IE exp�(t=n) nXi=1 (h(Xi)� IE h(X))�= �IE exp�(t=n)(h(X)� IE h(X))��n� �1 + �(h)2t22n2 + C1�(h)2�jtj3n3(1� C2jtj=n)+�n� exp��(h)2t22n + C1�(h)2�jtj3n2(1� C2jtj=n)+� :Now it follows from Markov's inequality thatIP����Z h d(Fn � F )��� � �� � 2 exp��(h)2t22n + C1�(h)2�t3n2(1� C2t=n)+ � t�� (3.29)for arbitrary t; � > 0. Spe
i�
ally let � = D(�(h)�1=2n + ��n) and sett := n�1=2n�(h) + ���1=2n � n�1��n = o(n):Then the bound (3.29) is not greater than2 exp �(h)2 logn2(�(h) + ���1=2n )2 + C1�(h)2��1=2n logn(�(h) + ���1=2n )3(1� C2�1��n )+ �D logn!� 2 exph�12 + C1(1� C2�1��n )+ �D� logni = 2 exp�(O(1)�D) logn�:



3.7 Proofs 55Consequently,IP0�maxh2Hn ���R h d(Fn � F )����(h)�1=2n +W (h)��n � D1A� #Hn2 exp�(O(1)�D) logn� = O(1) exp�(O(1) + p�D) logn� ! 0as n!1, provided that D is suÆ
iently large. 2Proof of Lemma 3.7.2: De�ne the linear approximation to g at to for t 2 T as:eg(t) := 8<: g(to) if � = 1;g(to) + g0(to)(t� to) if � > 1:The assumption that g 2 H�;L(T ) then implies for � = 1j(eg � g)(t)j = jg(to)� g(t)j � Ljt� toj (3.30)and for � > 1 j(eg � g)(t)j = jg(to)� g(t) + g0(to)(t� to)j� Z tot jg0(u)� g0(to)j du� L Z tot ju� toj��1 du� (L=�)jt� toj�: (3.31)Case 1: Suppose that one has (bg � g)(to) � " for a to 2 T su
h that, without lossof generality, to � (A +B)=2. Let 0 < Æ � (B � A)=8.Case 1a: Assume that (bg�eg)(to+Æ) � "=2. Sin
e bg�eg is 
on
ave with (bg�eg)(to) =(bg � g)(to) � ", it follows that (bg � eg)(t) � "=2 for all t 2 [to; to + Æ℄.Case 1b: On the other hand, let (bg � eg)(to + Æ) � "=2. The slope of bg � eg right ofto+ Æ is then at most that of the line through (bg�eg)(to) and (bg�eg)(to+ Æ), namely�"=(2Æ). This means that (bg � eg)(t) � �"=2 if only t � to + 3Æ.Summarizing Cases 1a and 1b, we learn that there exists an interval J � [to; to+4Æ℄of length Æ su
h that for all t 2 J we have jeg � bgj � "=2. By the triangle inequality



56 3 Maximum likelihood estimationwe get "=2 � jbg�gj+ jg�egj. Using Inequalities (3.30) and (3.31) this �nally entailsthat jbg � gj � "=2� (L=�)(4Æ)�:The expression on the right is at least "=4 ifÆ � (�=L)1=�4�1�1=�"1=� =: K1(�; L)"1=�:Case 2: Now assume (g�bg)(to) � " for a to 2 [A+Æ; B�Æ℄ where Æ 2 (0; (B�A)=2℄.Thus, from (3.30) or (3.31) it follows the existen
e of �1 su
h thatg(t)� g(to) � �1(t� to)� (L=�)jt� toj�and from the 
on
avity of bg that of �2 with bg(t)� bg(to) � �2(t� to). Together thisyields (g � bg)(t) � "+ (�1 � �2)(t� to)� (L=�)jt� toj� � "� LÆ�for all t either in [to; to+Æ℄ or [to�Æ; to℄, depending on sign(�1��2). Finally, "�LÆ� �"=4 if Æ � (3"=(4L))1=� =: K2(�; L)"1=�. Note that K1(�; L) � K2(�; L) uniformlyin � and L, so that we de�ne K(�; L) := minfK1(�; L); K2(�; L)g = K1(�; L). 2With the veri�
ation of this last lemma the proof of Theorem 3.3.1 is 
omplete. 2Before 
oming to the proofs for bFn, we still owe that for Corollary 3.3.2.Proof of Corollary 3.3.2: First, note that the statements are trivial outside[X1; Xn℄, by Theorem 3.2.1. The 
on
ave fun
tion ' : (a; b) ! R is automati
allyLips
hitz-
ontinuous on any 
ompa
t subinterval [
; d℄ of (a; b), be
ause'(d)� '(
)d� 
is, due to 
on
avity of ', uniformly bounded for any 
; d. This fa
t, together withTheorem 3.3.1 and 
ontinuity of f entails uniform 
onsisten
y of bfn. For the inte-grated density estimator bFn, write j bFn � F j � R jf � bfnj asZ ( bfn � f)+ + Z ( bfn � f)� = 2 Z (f � bfn)+ � �Z f � Z bfn�:On the right-hand side, the �rst term tends to zero by dominated 
onvergen
e(Theorem A.1.1) applied to f � (f � bfn)+ !p 0. The se
ond term equals zero.A
tually, this is solely an appli
ation of what is known as S
he��e's Theorem. 2



3.7 Proofs 57The gap problemProof of Theorem 3.4.1. To simplify things introdu
e a new 
oordinate systemwith origin (si�1; '(si�1)). Suppose that for Æ = �si and " = K��=(2�+1)n we have:'(Æ=2)� '(Æ)=2 � 2": (3.32)Then the assumption about '0 together with (3.8) yields:2" � '(Æ=2)� '(Æ)=2� 2�1�Z Æ=20 '0(u) du� Z ÆÆ=2 '0(u) du�= 2�1hZ Æ=20 �'0(u)� '0(u+ Æ=2)�dui� C(Æ2=8):So we 
an 
on
lude: Æ � 2C�1=2"1=2:To prove assertion (3.32) re
apitulate from Theorem 3.3.1 thatj('� b'n)(x)j � ": (3.33)Introdu
e for x 2 [0; Æ℄ the auxiliary fun
tions �(x) := ('(Æ)=Æ)x and a parallelwisetranslated �(x): De�ne xo as the left-most point in [0; Æ℄ where b'0n(x) = '(Æ)=Æ andusing this �(x) := �(x) + ('(xo) � �(xo)). Then distin
t three 
ases, depending onthe number of interse
tions of ' and b'n in (0; Æ).Case 1: Let #fx 2 (0; Æ) : b'n(x) = '(x)g = 2. Then geometri
 
onsiderationsreveal that (' � �)(x)=2 � " for x 2 [0; Æ℄ whenever (3.33) is true (and equalityholds whenever (b'n � �)(x) = 2�1(�� �)(x) for all x 2 [0; Æ℄). Set x = Æ=2. For anillustration 
onsult Figure 3.7.Case 2: Let #fx 2 (0; Æ) : b'n(x) = '(x)g = 1. Again, ('��)(x)=2 � " for x 2 [0; Æ℄but here ('� �)(x)=2 = " e.g. in 
ase b'n(0) = �(0), b'n(Æ) = �(Æ), '0(Æ=2) = �(Æ=2)and x = Æ=2. Figure 3.8 details the situation.Case 3: Let #fx 2 (0; Æ) : b'n(x) = '(x)g = 0. In this last situation, we havew.l.o.g. that (�� �)(x) � " for all x 2 [0; Æ=2℄ (otherwise mirror the situation) withequality whenever b'n(x) = �(x) for all x 2 [0; Æ℄. This entails that (' � �)(x) � "and with x = Æ=2 we get the assertion. 2
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0 Æ=2 Æ(0,0) (Æ; '(Æ))b'n
' �

�

Figure 3.7: Illustration of Case 1 in the proof of Theorem 3.4.1.

0 Æ=2 Æ
(Æ; '(Æ))b'n '��

Figure 3.8: Illustration of Case 2.

0 Æ=2 Æ(0,0) (Æ; '(Æ))b'n
' �

�
Figure 3.9: Illustration of Case 3.



3.7 Proofs 59Uniform 
onsisten
y of bFnProof of Theorem 3.5.1: To simplify notation introdu
e:rn := ��=(4�+2)n!(g; d) := supx2[A+rn;B�rn�d℄ supjhj�d jg(x+ h)� g(x)jfor d > 0 and fun
tions g bounded on [A;B℄. The uniform empiri
al distributionfun
tion is denoted by G n and Un stands for a uniform empiri
al pro
ess. Then notethat !(F; rn) � rnkfkR1:Consequently, together with!(Un ; rn) =p2rn log(r�1n )(1 + op(1))guaranteed by Theorem A.2.1, we have (let id(x) := x)!(Fn � F; rn) =D !�G n(F )� id; !(F; rn)�=D n�1=2kfkR1!(Un ; rn)=D n�1=2Op�q(logn)(5�+2)=(4�+2)n��=(4�+2)�=D op(n�1=2):The 
onditions on rn imposed in the theorem are 
learly ful�lled sin
enrn = n(3�+2)=(4�+2)(logn)�=(4�+2) !1log(r�1n )= log logn = �(logn)�=(4�+2) � (log logn)�=(4�+2)�= log logn!1log(r�1n )=(nrn) = (1� o(1))n�(3�+2)=(4�+2) ! 0:



60 3 Maximum likelihood estimationTogether with Lemma 3.7.1 and Theorems 3.4.1 and 3.3.1 we have:supx2[A+rn;B�rn℄ j( bFn � Fn)(x)j� supi=2;:::;M supx2(si�1;si℄�j( bFn � F )(x) + (F � Fn)(x)� ( bFn � F )(si�1)�(F � Fn)(si�1)j+ j( bFn � Fn)(si�1)j�� supi=2;:::;M supx2(si�1;si℄�j Z xsi�1( bfn � f)(t) dtj+ j(F � Fn)(x)�(F � Fn)(si�1)j�+ n�1� Op(rn) supi=2;:::;M� supx2(si�1;si℄ j( bfn � f)(x)j� + !(F � Fn ; rn) + n�1= Op��3�=(4�+2)n � + op(n�1=2) + n�1 (3.34)= op(n�1=2): 2Note that for � = 1 the exponent of the �rst term in (3.34) equals 1/2, so it isthe logarithmi
 term in the nominator together with the assumption in Theorem3.4.1 that prevents the expression to be of probabilisti
 order smaller than n�1=2.However, Corollary 3.3.2 gives at least uniform 
onsisten
y also for � = 1.Integrated kernel estimatorProof of Theorem 3.5.4: Write for xo 2 RbFn;h(xo) = � bFh(xo)� IE bFh(X1)� + �IE bFh(X1)� F (xo)� + F (xo):= T1(xo) + T2(xo) + F (xo):



3.7 Proofs 61Introdu
e a random variable Z independent of X1; : : : ; Xn and having density fun
-tion k. Then:T1(xo) = 1n nXi=1 hK�xo �Xih �� IEK�xo �X1h �i= 1n nXi=1 hP�Z � xo �Xih jX1; : : : ; Xn�� P�Z � xo �X1h �i= 1n nXi=1�P (Xi � xo � hZjX1; : : : ; Xn)� P (X1 � xo � hZ)�= 1n nXi=1 Z �P (Xi � xo � hzjX1; : : : ; Xn)� P (X1 � xo � hz)�k(z) dz= 1n nXi=1 hZ �1fXi�xo�hzg � F (xo � hz)�k(z) dzi= Z �Fn(xo � hz)� F (xo � hz)�k(z) dz= Op(n�1=2)by Theorem A.3.1. On the other hand for T2(xo) one has:T2(xo) = Z K�xo � yh �f(y) dy� F (xo)= ZR�Z (xo�y)=h�1 k(t) dt�f(y) dy � F (xo)= ZR�ZR 1fy�xo�htgk(t) dt�f(y) dy � F (xo)= ZR k(t)�Z xo�ht�1 f(y) dy�dt� F (xo)= ZR k(t)�F (xo � ht)� F (xo)� dt= h2 ZR k(t)h(t2=2)�f 0(xo) + o(1)�idt= O(h2f 0(xo)):



62 3 Maximum likelihood estimationIt is important to note that this rate 
annot be improved in the sense that the fa
torh2 always appears. As a summary, 
hoosing a bandwidth of optimal order O(n�1=5):bFn;h(xo) = F (xo) +Op(n�1=2) +O(h2f 0(xo))= F (xo) +Op(n�1=2) +O(n�2=5)= F (xo) +O(n�2=5)as stated in the theorem. 2Proof of Theorem 3.6.1. The Theorem is in fa
t a 
orollary of Theorems 3.3.1and 3.5.1 
ombined with Lemma 2.3.1. 2



Chapter 4Algorithms to find the density estimator
In this 
hapter, we des
ribe several algorithms performing well in �nding the log-
on
ave density estimator bfn of the true density f analyzed in Chapter 3. Some
omparisons between the algorithms are reported.4.1 Introdu
tionSuppose we want to estimate b'n introdu
ed in Chapter 3 based on ordered observa-tions X1 < X2 < : : : < Xn. We show that this 
an be a
hieved through numeri
alminimization of the log-likelihood fun
tional (3.2) over all 
on
ave fun
tions ', wherewe use that, a

ording to Theorem 3.2.1, we only have to 
onsider fun
tions ' thatare pie
ewise linear and have knots at some of the observation points.The above task is typi
al for many estimation problems in statisti
s as it demandsfor the optimization of a (high-dimensional) obje
tive fun
tion, the log-likelihood inour 
ase. We show that, within a linearly 
onstrained optimization framework, b'nand therewith the density estimator bfn 
an be found.In Walther (2002), maximum likelihood log-
on
ave density estimation is des
ribedfor the �rst time, in a multis
ale 
ontext. He proposes the iterative 
onvex minorantalgorithm (ICMA) introdu
ed by Groeneboom and Wellner (1992) to solve the max-imization problem and 
onsiders it to perform better than interior point methods,in terms of speed and stability. We show that the interior point methods used for
onvex density estimation in Terlaky and Vial (1998) work in log-
on
ave densityestimation as well and give some simulation results 
omparing them to the ICMAand a new algorithm, re
ently proposed in D�umbgen, Freitag, and Jongbloed (2006).



64 4 Algorithms to find the density estimator4.2 Framework of numeri
al log-
on
avedensity estimationWe use the notation introdu
ed in Chapter 3. We will estimate bfn via its logarithmb'n, i.e. we show how to �nd b'n := argmin' 
on
ave 	n('):A

ording to Theorem 3.2.1 it is suÆ
ient to know b'n only at the observation pointsX := (X1; : : : ; Xn), even only at the points belonging to S(b'n), the set of knots ofb'n. However, we have a priori no idea where the estimator b'n 
hanges its slope. Sodenoting '(Xi) by 'i and identifying the fun
tion ' with the ve
tor' := ('i)ni=1;we reparametrize ' by the su

essive slopes� = �(') := �'1;��'i�Xi�ni=2�where �Xi := Xi �Xi�1 for a ve
tor X 2 Rn and i = 2; : : : ; n. Note that � is justan aÆne transformation of ', therefore not a�e
ting the existen
e, uniqueness orlo
ation of the minimum of 	n. In order to ensure 
on
avity of ', the 
orrespondingve
tor � 2 Rn must belong to the 
oneK\ := f� 2 Rn : �i�1 � �i; i = 3; : : : ; ngwhere K\ is de�ned by n�2 inequalities. In other words, (�i)ni=2 must be a de
reasingsequen
e. The pie
ewise linearity now enables us to write the Lagrange term in (3.2)as n Z exp'(x) dx = n nXi=2 Z XiXi�1 exp��'i�Xi (x�Xi�1) + 'i�1� dx= ne�1 nXi=2 exp� i�1Xk=2 �Xk�k�exp(�Xi�i)� 1�i (4.1)where (exp(0)� 1)=0 is taken 
onventionally to be equal to one and Pjk=i qk = 0 ifj < i. Note that (4.1) is now a sum rather than an integral, both depending on '.



4.2 Framework of numeri
al log-
on
ave density estimation 65The with � reparametrized log-likelihood fun
tion 	n de�ned in (3.2) now detailsto:	n(�) = �n nXi=1 '(Xi) + n Z exp'(x) dx= �n�n�1 + nXi=2 iXk=2 �Xk�k� + ne�1 nXi=2 exp� i�1Xk=2 �Xk�k�exp(�Xi�i)� 1�iand the estimator we seek is thenb� := argmin�2K\ 	n(�):In the 
ase of 
onvex density estimation as des
ribed in Terlaky and Vial (1998),the 
onstraint of f being a probability density 
an be formulated as a simple linearequation, whereas in our 
ase this results in the more 
ompli
ated expression in(4.1).Motivated by taking su

essive di�eren
es of the 
onditions in the de�nition of K\,we introdu
e the m� n matrix B with m = n� 2 as
B = 0BBBBBBB� 0 �1 1 0 0 � � � 0 00 0 �1 1 0 � � � 0 0... ...0 0 0 0 0 � � � �1 1

1CCCCCCCAand plugging in (4.1) into (3.2), the following optimization problem results:minimize 	n(�)over � 2 Rn s.t. B� � 0 (4.2)where � 2 Rn is the variable in whi
h the minimization is done and x � y for twove
tors x;y 2 Rn means that xi � yi for all i = 1; : : : ; n. From Theorem A.4.1re
apitulate the ne
essary and suÆ
ient Karush-Kuhn-Tu
ker (KKT) 
onditions for



66 4 Algorithms to find the density estimatorb� to be a solution of (4.2):r�	n +B>v = 0 (4.3)Bb� + s = 0 (4.4)visi = 0 for all i = 1; : : : ; m (4.5)v � 0 (4.6)s � 0: (4.7)The ve
tor v 2 Rm 
ontains Lagrange-multipliers whereas s 2 Rm 
onsists of sla
kvariables. Furthermore, r�	n := ���	n(�)is the gradient of 	n = 	n(�) w.r.t. �. Let us introdu
e the feasible set F and thestri
tly feasible set FÆ:F := f(�; s; v) 2 Rn+2m : r�	n +B>v = 0; B� + s = 0; v � 0; s � 0gFÆ := f(�; s; v) 2 Rn+2m : r�	n +B>v = 0; B� + s = 0; v > 0; s > 0g:Note that Bb� + s = 0 for s 2 [0;1)m implies that Bb� � 0. Thus if vi > 0 fora �xed i 2 f1; : : : ; mg then si = 0 and vi
e versa, by (4.5). This is known as the\
omplementary 
ondition".4.3 A primal log-barrier algorithmThe key idea of log-barrier algorithms is to introdu
e a barrier fun
tion h thatpenalizes the inequality 
onstraints with1 whenever the 
onstraints should not besatis�ed. A fun
tion h : R 7! (�1;1℄ is a barrier fun
tion for the type of problemsas in (4.2), if h is 
onvex, 
ontinuous and nonde
reasing and one has that h(r) =1for all r � 0. The standard 
hoi
e (indu
ing the name \log-barrier") for h ish(r) := � log(�r);proposed by Fia

o and M
Cormi
k (1968). Introdu
ing a tradeo� parameter � > 0,we thus obtain from (4.2) a barrier problem of the form:min�2Rn�(�; �) (4.8)



4.3 A primal log-barrier algorithm 67where �(�; �) := 	n(�) + � mXi=1 h�(B�)i�= 	n(�)� � n�2Xi=1 log��(B�)i�:Similar to the in
lusion of the equality 
onstraint in (3.2), we add a Lagrange termto the 
riterion fun
tion to a

ount for the inequality 
onstraint B� � 0. Clearlythe minimum of 	n belongs to FÆ and we 
an treat problem (4.2) a
tually as anun
onstrained one. The proof of Theorem 3.2.1 together with the 
onvexity of hentails that the fun
tion �(�; �) is stri
tly 
onvex in � for all � > 0. Let b�(�)denote the unique optimal point of problem (4.8) for a �xed � > 0. Colle
tingall these points yields a set Cp := fb�(�) : � > 0g, 
alled the \
entral path" ofproblem (4.8). The interior point log-barrier method roughly spoken follows this
entral path to rea
h an optimal solution. To a

omplish this for a �xed �, it takesrepeatedly damped Newton steps in order to minimize the barrier fun
tion in (4.8),where a Newton step is as usual the minimizer of the lo
al quadrati
 approximationof the obje
tive fun
tion in (4.8). If for the spe
i�
 � the minimum is rea
hed, �is de
reased in a 
ontrolled way. This pro
edure is repeated until a 
onvergen
e
riterion is met. Finally, the log-barrier algorithm almost boils down to an ordinaryappli
ation of the Newton pro
edure to the fun
tion � = �(�; �), the only spe
ialitybeing the handling of �. The Newton step, denoted by p = p(�; �), is given byp = �H�1r�� (4.9)where H = H(�; �) is the Hessian matrix r2��� of the Lagrange-fun
tion in (4.8).To be able to measure the distan
e of the 
urrent iterate to the 
entral path (andso to judge the appropriateness of a 
andidate), we follow the approa
h by Terlaky(1996), introdu
ing the norm indu
ed by H:kpkH := qp>Hp:The rationale behind introdu
ing k:kH is the following: ideally, we would like tomeasure the usual Eu
lidean di�eren
e between �(�) and the 
orresponding pointon the 
entral path b�(�), but we do not know b�(�). Straightforward 
al
ulationreveals, that kpk2H = (r��)>H�1(r��):



68 4 Algorithms to find the density estimatorThis implies that if b� is a minimizer of � (for a �xed �) then kpkH = 0 andkpkH > 0 otherwise. So it makes sense to minimize � for a �xed � as long as kpkHstays above a �xed 
onstant (whi
h signi�es the 
urrent distan
e to the 
entral path).After kpkH falling below this limit, � is de
reased and the pro
edure of minimizingp in H-norm restarts. That this strategy is indeed su

essful guarantees TheoremA.4.2.Putting all these ingredients together, a 
entral path-following log-barrier algorithm
an be des
ribed as follows:input:" 2 R+ : a

ura
y parameter� 2 (0; 1) : proximity parameter� 2 (0; 1) : redu
tion parameter�o 2 R+ : initial barrier value�o : feasible point su
h that kp(�o; �o)kH � � and 	n(�o) <1T1; T2 : maximal number of iterations for outer and inner loopbegin: � := �o; I1 := 0; I2 := 0;� := �owhile � > "=(4n) and I1 � T1 do (outer loop)� := (1� �)�I1 := I1 + 1I2 := 0while kpkH � � and I2 � T2 do (inner loop)p := solution of (4.9)~� := argmin0<���of�(� + �p; �) : � + �p 2 FÆg� := � + ~�pI2 := I2 + 1end (inner loop)end (outer loop)end.The start ve
tor �o in the Newton pro
edure has to be in F , i.e. the 
orrespondingfun
tion 'o must be 
on
ave. We used a quadrati
 interpolation to the logarithmof a kernel density estimate of the data as a �rst guess for our algorithm. Otherapproa
hes, su
h as a simple �t of a parametri
 log-
on
ave density (e.g. Normal,Gamma) are also 
on
eivable and work as well.



4.4 A primal-dual algorithm 69As an approximation to the Hessian of � in (4.9) we used its diagonal. It is wellknown (see Terlaky, 1996), that this redu
ed Hessian to be inverted in equation (4.9)be
omes ill-
onditioned as � approa
hes 0. We did not en
ounter problems in thatdire
tion.The upper bound �o in the 
omputation of ~� is 
al
ulated as�o := 0:99 mini2f2;:::;ng j��i=�pij;so slightly below the limit beyond that a new 
andidate falls o� FÆ. The step length~� of the Newton step p is found via a sear
h on a set of equidistant points.4.4 A primal-dual algorithmRe
apitulating the KKT 
onditions (4.3)-(4.7), one 
an derive another 
lass of al-gorithms known as \primal-dual interior point methods". Introdu
e the mappingF : Rn+2m 7! Rn+2m as:F 0BBB� �sv 1CCCA := 0BBB� r�	n +B>vB� + sdiag(v)s 1CCCAwhere diag(x) is a diagonal matrix having the ve
tor x on the diagonal. Tosee how a primal-dual algorithm works, introdu
e further the following system of(in-)equalities, for a �xed � > 0 and a ve
tor z� := (��; s�; v�):r�	n +B>v� = 0B�� + s� = 0v�i s�i = � for all i = 1; : : : ; m (4.10)v� > 0s� > 0:These 
onditions di�er from the original KKT 
onditions (4.3)-(4.7) in the term �on the right hand side of (4.10) and the requirement that z� be stri
tly feasible.



70 4 Algorithms to find the density estimatorThe 
entral path in this 
ase is de�ned asCpd := fz� : � > 0g:An iterate in the primal-dual algorithm solves, for a �xed �, the equationF 0BBB� ��s�v� 1CCCA = 0BBB� 00�e 1CCCA ; (4.11)where e is a ve
tor of all 1's in appropriate dimension. One 
an 
onje
ture that, as�! 0, the 
orresponding ve
tors z� approa
h z� where z� is the ve
tor that meetsthe KKT 
onditions F (z�) = 0:That this strategy, implemented in the algorithm below, is indeed su

essful, guar-antees Theorem 3.2 in Wright (1998). Note that (4.10) implies that z� approa
hesthe boundary of the feasible set F , without a
tually ever leaving FÆ.Looking at (4.11), we are now in the position to apply, for every �xed �, an ordinaryNewton pro
edure to F . For ease of simpli
ity, we will omit the dependen
e of z on�. To get the Newton dire
tion dz = ( d�; ds; dv), the equation we a
tually solveis: �F�z 0BBB� d�dsdv 1CCCA + F (z) = 0BBB� 00�e 1CCCA :Computed expli
itly, using the de�nition of F , this transforms to:0BBB� r��	n 0 B>B I 00 V S 1CCCA0BBB� d�dsdv 1CCCA = �0BBB� r�	n +B>vB� + sVs� �e 1CCCA (4.12)where we introdu
ed the abbreviationsV := diag(v), S := diag(s) and I := diag(e).The Hesse matrix of 	n w.r.t. to � is denoted by r��	n. Formula (4.12) yields the



4.4 A primal-dual algorithm 71following equations:r��	n d� +B> dv = �r	n �B>vB d� + ds = �B� � sV ds+ S dv = Vs� �e:From these equations we �nally get a 
losed system of formulas to 
al
ulate dziteratively:d� = �(r��	n +B>VS�1B)�1[B>(VS�1B� + v � S�1�e)�r�	n℄ds = �B� � s�Bd�dv = �S�1(Vs� �e)�VS�1 ds:The only matrix for whi
h inversion is not trivial is (r��	n+B>VS�1B), but thismatrix is symmetri
 and positive de�nite, by 
onvexity of 	n and 
omplementarity.This guarantees invertibility at every step. The detailed algorithmi
 pro
edure is asfollows.input:" 2 R+ : a

ura
y parameter�� 2 R+ : lower bound for �
 2 R+ : determines redu
tion of Newton step length via ��o : start ve
tor, as in Se
tion 4.3T1 : maximal number of Newton stepsbegin: �� := 10�5=(m+ n); 
 := (1� �)�1; I1 := 0; I2 := 0while � � " and I1 � I2 � T1 doI1 := I1 + 1� := max��(m; s; v; �); ���Compute dz as given in (4.13)~� := 
maxf� > 0 : z + � dz 2 Fgz := z + ~� dzendend.



72 4 Algorithms to find the density estimatorThe fun
tion � 
al
ulates a new target value for � in every iteration in the followingway (a

ording to Terlaky and Vial, 1998):input:m; s; v; �begin:E =: mmini=1;:::;mfvisig=(v>s)� =: �kr�	n +B>vk2 + kB� + sk2�1=2if: E � � then:S =: �=(v>s + �)else: S =: 1� =: S (v>s=m)end.The lower bound �� for � is introdu
ed to prevent � from getting too small, i.e. toavoid that the 
urrent iterate is too 
lose to the boundary of F . If S = 1 then thenew � is simply the average of all pairwise produ
ts visi. Otherwise, almost all theseprodu
ts are approximately equal (resp. the minimum is a substantial proportion ofthe average), implying that none of the 
onstraints are already \a
tive", therefore� 
an be de
reased more rapidly.Finally, note that if (��; s�; v�) is a solution of (4.3)-(4.7) for the 
urrent �, then��>r�	n = ��>�r�	n +B>v�� + v�>(�B��)= v�>s�;so that with the de�nition of � we sort of measure how far we still are from the min-imum. The number � is generally known as \duality gap". Finally, the parameter
 := (1� �)�1 guarantees that ~� is su
h that z + ~� dz 2 FÆ.



4.5 The modified iterative 
onvex minorant algorithm 734.5 The modified iterative 
onvex minorantalgorithmThe ICMA was �rst presented in Groeneboom and Wellner (1992) and further de-tailed in Jongbloed (1998). It is espe
ially tailored for minimizing a smooth 
onvexfun
tion like 	n over a 
onvex 
one su
h as our well-known K\. It simply minimizesthe quadrati
 approximation to the fun
tional under 
onsideration (as an ordinaryNewton pro
edure) with respe
t to a monotoni
ity 
onstraint by using the pool ad-ja
ent violaters algorithm (PAVA, see e.g. Robertson, Wright, and Dykstra, 1988).To ensure 
onvergen
e of the algorithm, one again needs to shorten the 
anoni
alNewton-dire
tion, see Jongbloed (1998, Lemma 1). Additionally, we make use of themore general algorithmi
 framework provided by D�umbgen, Freitag, and Jongbloed(2006) that generalizes ICMA-like algorithms via supplementing the line sear
h bya Hermite interpolation.Re
apitulate that 	n is stri
tly 
onvex and 
ontinuously di�erentiable onf	n < 1g. Suppose W(x) is a positive de�nite diagonal matrix, depending 
on-tinuously on x where x 2 K\. Introdu
e an algorithmi
 mapping B : K ! K whereK := f	n <1g\ K\. Our goal is again to findb� := argmin�2K\ 	n(�);a unique point by the stri
t 
onvexity of 	n. Now approximate 	n lo
ally aroundÆo by the quadrati
 fun
tion ~	n:~	n(Æ) = ~	n(ÆjÆo):= 	n(Æo) +rÆ	n(Æo)>(Æ � Æo) + 2�1(Æ � Æo)>W(Æo)(Æ � Æo) (4.13)where rÆh(Æo) denotes the gradient with respe
t to Æ at Æo for a fun
tionh : Rn ! R. This map provides a first guess B1 for B:B1 := B1(Æo) := argminÆ2K\ ~	n(Æ): (4.14)If B1 = Æo we are done and set B(Æo) = Æo. Note that this only happens if alreadyÆo = b�. Otherwise, apply the following robustifi
ating line sear
h pro
edure. Definethe fun
tion H as H(t) := H(t; Æo;B1):= 	n�Æo + t(B1 � Æo)�� 	n(Æo):



74 4 Algorithms to find the density estimatorfor t 2 [0; t1℄ where t1 := t1(Æo;B1) = 2�m with m the smallest positive integer su
hthat H(2�m) � 0. Finally, introdu
e a Hermite interpolation ~H of H:~H(t) = ~H(tjt1; Æo;B1):= H 0(0)t+ �t�21 H(t1)� t�11 H 0(0)�t2:This interpolation is 
onstru
ted su
h that ~H(0) = H(0) = 0, ~H 0(0) = H 0(0) > 0,~H(t1) = H(t1) � 0 and it attains its maximum over [0; t1℄ att2 = t2(t1; Æo;B1) := argmax[0;t1℄ ~H(t)= minn t21H 0(0)2(H 0(0)t1 �H(t1)) ; t1o= minn�2� 2 H(t1)H 0(0)t1��1; 1ot1:By defining B(Æo) := Æo + t2(B1 � Æo)= (1� t2)Æo + t2B1 (4.15)we get a new 
andidate. This pro
edure is justi�ed by Theorem A.6.1. The assump-tions in this theorem 
an easily be veri�ed for 	n and B. Below we give pseudo-
odefor the ICMA.



4.5 The modified iterative 
onvex minorant algorithm 75input:" 2 R+ : a

ura
y parameterÆo : start ve
tor su
h that Æo 2 K\ and 	n(Æo) <1T1; T2 : maximal number of respe
tive iterationsbegin: I1 := 0; I2 := 0; Æ := Æo;D = 2n"while jDj > n" and I1 � T1 doI1 := I1 + 1p := solution of (4.14)Æ� := Æ + pD := 	n(Æ)>pI2 := 0while 	n(Æ�) > 	n(Æ) and I2 � T2 do (Robustifi
ation)Æ� := (Æ + Æ�)=2D := D=2I2 := I2 + 1endt� := h2� 2�	n(Æ�)�	n(Æ)�=Di�1if t� < 1 then (Hermite interpolation)Æ := (1� t�)Æ� + t�Æelse Æ := Æ�endThe 
ru
ial point in the above algorithm is the minimization in (4.14), be
ause ofthe 
onstraint Æ 2 K\. We used the weighted PAVA (wPAVA) to a

omplish thistask. For details on the wPAVA 
onsult Se
tion A.5. To see how the wPAVA 
anbe used to solve (4.14), re
apitulate that the matrix W(Æo) is diagonal, i.e.W(Æo) := diag(w)for a ve
tor w 2 Rn . For ease of simple notation, introdu
e the abbreviationg := rÆ	n(Æo).



76 4 Algorithms to find the density estimatorInserting this in (4.13), the fun
tion ~	n 
an then be written as:~	n(Æ) = 	n(Æ) + nXi=1 gi(Æi � Æ0;i) + 12 nXi=1 wi(Æi � Æ0;i)2= 	n(Æ) + 12 nXi=1 wi�[(Æi � Æ0;i) + gi=wi℄2 � (gi=wi)2�= 	n(Æ)� 12 nXi=1 (gi=wi)2 + 12 nXi=1 wi�Æi � (Æ0;i � gi=wi)�2:Thus, minimization of ~	n over Æ 2 K\ is equivalent to the problemminÆ2�:::�Æn nXi=1 wi�Æi � (Æ0;i � gi=wi)�2: (4.16)Setting Æ1 := Æ0;1 � g1=w1, the weighted wPAVA is exa
tly what the do
tor orderedto solve (4.16). For the matrix W, we used an approximation to the 
ompleteHessian, namely its diagonal. Robusti�
ation is ne
essary to guarantee 
onditionsB1 and B2 of Theorem A.6.1. D�umbgen, Jongbloed and Freitag (2003) mentionthat numeri
al experiments suggested that in
lusion of the Hermite interpolationimproves the speed of 
onvergen
e of the algorithm.4.6 A problem-adapted algorithmThe algorithms presented so far are developed to solve general minimization prob-lems under linear 
onstraints, without taking into a

ount very mu
h the 
hara
terof the problem.A main property of all nonparametri
 density estimators under shape 
onstraints(monotone, 
onvex, log-
on
ave) treated so far in literature is some sort of pie
ewiselinearity with only a few knots, be at observation points or in between. See Se
tion3.4 and the 
omments there.D�umbgen, Freitag, and Jongbloed (2006) proposed a Newton-type algorithm espe-
ially tailored for this situation. To avoid expensive inversion of huge matri
es, an\ora
le" guesses (at every iteration), where the knots of b'n most likely are situ-ated and inversion only has to be performed on a subspa
e of Rn with the numberof guessed knots as dimension. This new pro
edure was inspired by the supportredu
tion algorithm, developed to minimize 
on
ave fun
tions over 
onvex 
ones,introdu
ed by Groeneboom, Jongbloed, and Wellner (2003).



4.6 A problem-adapted algorithm 77For our problem to �t in this new algorithmi
 framework, a reparametrization isne
essary. Instead of a fun
tional 	n : Rn ! [�1;1), we need a new fun
tional	n : � ! [�1;1) where � = [0;1)n. To a

omplish this, introdu
e a ve
tor �,
onsisting mainly of the su

essive slope di�eren
es of the fun
tion under 
onsider-ation: �(') := �'1; �2;�(��i)ni=3�:This � apparently 
omes up to the desired property of lying in � when looking atits entries 3; : : : ; n. The �rst two 
omponents are just \free riders" whi
h do nota�e
t any 
al
ulations done for the algorithm. The aforementioned ora
le for the
urrent iterate � is thenI(�) := f1; 2g [ fj = 3; : : : ; n : �j � "(�)g;where "(�) > 0 will be given later. To avoid 
umbersome notation, de�ne ve
torsa := r�	n(�);b := diag(B(�))where B(�) = r��	n(�) and a = diag(A) is the ve
tor 
onsisting of the diagonalelements of a matrix A. Given B = B(�) and I = I(�), we introdu
e sub-matri
esB(1) and B(2): B(1) := (Bij)i;j2IB(2) := diag�(Bii)i62I�:Analogously de�ne for any y 2 Rn sub-ve
tors y(1) := (yi)i2I and y(2) := (yi)i62I.The quadrati
 approximation to our fun
tional 	n we seek to minimize overf�� : ��j � 0 for j 62 I(�)gfor a given � is then, similarly to (4.13),Q(��j�) = Xk=1;2�aT(k)(��(k) � �(k)) + 2�1(��(k) � �(k))>B(k)(��(k) � �(k))�:The argmin of this fun
tion 
an expli
itly be 
omputed asp(�; I)(1) = B�1(1)a(1)p(�; I)(2) = �(�i + ai=bi)+ �i62I � �(2):



78 4 Algorithms to find the density estimatorTo prevent the point �� = � + p(�; I) lying outside the 
one �, repla
e it by� + t(�; I)p(�; I); (4.17)where t := t(�; I) 2 (0; 1℄ is 
hosen as large as possible to ensure that � + tp 2 �.Supplemented by the line sear
h pro
edure already des
ribed in Se
tion 4.5, thisalgorithm indeed 
onverges to b� := �(b').We still owe the de�nition of the bound "(�), above whi
h a �i is 
onsidered apotential 
andidate for being a knot of b'n: similar to the latter paper, we used2�1 maxi=3;:::;n����(�i + ai=bi)+ � �i�ni=3���:A s
hemati
 algorithm looks exa
tly like that of the ICMA, ex
ept that the Newtonstep is 
al
ulated a

ording to (4.17) instead of (4.14).An apparent di�eren
e between the latter three and this new algorithm is the ne-
essity of 
omputation of not only the diagonal but the elements of the Hessian forall elements Bij with i; j 2 I. However, the performan
e of the algorithm seems todepend on the ability to 
orre
tly 
hoose the elements in Bij with i; j 2 I.4.7 Numeri
al examplesTo test the algorithms, we implemented them in R, Version 2.1.1 and sampledrandom numbers zk for k = 1; : : : ; n for n 2 f50; 100; 500; 1000g drawn from thethree distribution laws in Table 4.1.Table 4.1: Distribution laws we sampled from.Law Density fun
tion Range ParametersN (0; 1) (2�)�1=2 exp (�z2=2) R�(2; 1) z exp z [0;1)Generalized Lapla
e(b)a K(b)(exp(�jzj)1fjzj�1g + exp(1=b)1fjzj<1g) R b > 0a Normalizing 
onstant for the Generalized Lapla
e law is K(b) = (2(b+ 1) exp(�1=b))�1The Normal law is 
hosen due to its universality and infinite support and the ��lawbe
ause it has an infinite derivative of the log-density at 0. We introdu
e what we
all generalized Lapla
e law to show that the algorithms also work for a genuinelog-linear density and to assess the e�e
t of non-di�erentiability points. To be ableto 
ompare the performan
e of the algorithms, we pro
eeded as follows.



4.7 Numeri
al examples 791. Run the log-barrier algorithm with the settings spe
ified below and measureits running time t1i using the first argument of the R-fun
tion system.time()(user CPU time in se
onds).2. Run the other three algorithms until either the value of the log-likelihoodor the time spent for the log-barrier algorithm was rea
hed and measure therespe
tive times t2i ; t3i ; t4i .3. Repeat this for i = 1; : : : ; 10 times and report tjmin := mini=1;:::;10 tji ,�tj := (P10k=1 tjk)=10 and tjmax := maxi=1;:::;10 tji for j = 1; : : : ; 4. As other mea-sures of the quality of the estimators beneath the value of the log-likelihoodwe 
al
ulated for j = 1; : : : ; 4 the following mean errors (ME):MEj1 := (1=10) 10Xi=1 maxk=1;:::;n j bf ji (zk)� f(zk)jand MEj1 := (1=10) 10Xi=1 nXk=1(zk � zk�1)j bf ji (zi)� f(zi)j:Simulations were run on a Dell desktop with 1.8 GHz and 512 MB RAM.We imposedthe settings detailed in Table 4.2.Table 4.2: Settings for the ICMA and log-barrier algorithm.Algorithm " � � � T1 T2log-barrier 10�10 0:9 0:1 0:1 8 25primal-dual 10�10 200 20problem-adapted 10�10 200ICMA 10�10 200 20Simulation results for the three distributional laws in Table 4.1 were very similar,�nd details in Tables 4.3 to 4.5.The ICMA 
learly performs best over all sample sizes and distributional laws. Allmethods are able to �nd the minimum of the negative maximum likelihood in prin-
ipal, i.e. if given enough time. In all simulations, the ICMA was the sole algorithm



80 4 Algorithms to find the density estimatorTable 4.3: Results for the N (0; 1) law.n Algorithm tjmin �tj tjmax �LLj MEj1 MEj1ICMA 0.98 1.26 1.63 114.18 0.12 1:88 � 10�1log-barrier 0.97 1.34 2.51 114.22 0.12 1:88 � 10�1interior-point 0.98 1.27 1.62 114.39 0.12 1:91 � 10�150 prob-adap 1.00 1.29 1.64 114.78 0.11 1:75 � 10�1ICMA 1.88 3.20 4.74 232.43 0.09 1:39 � 10�1log-barrier 3.58 4.01 4.67 232.48 0.09 1:38 � 10�1interior-point 3.67 4.06 4.70 232.78 0.09 1:41 � 10�1100 prob-adap 3.67 4.09 4.75 233.29 0.07 1:28 � 10�1ICMA 19.55 43.70 62.10 1192.48 0.05 6:78 � 10�2log-barrier 194.69 197.90 203.03 1192.62 0.05 6:78 � 10�2interior-point 196.26 199.30 204.39 1193.22 0.05 8:47 � 10�2500 prob-adap 195.50 199.53 204.83 1193.37 0.04 6:27 � 10�2ICMA 48.59 130.10 226.17 2358.29 0.04 5:17 � 10�2log-barrier 1022.08 1047.21 1070.09 2358.49 0.04 5:21 � 10�2interior-point 1027.03 1066.98 1088.09 2359.24 0.04 5:34 � 10�21000 prob-adap 968.76 996.44 1015.42 2358.97 0.03 5:08 � 10�2to rea
h the log-likelihood value of the log-barrier algorithm (by far), whereas theother two were interrupted when rea
hing the time limit set by the log-barrier algo-rithm (note that rea
hing the time limit does not imply 
onsuming exa
tly the sameamount of se
onds, be
ause time was only 
ompared at the beginning of a wholeiteration). Quality of the estimates measured by �LLj, MEj1 and MEj1 was similarfor all algorithms. As reveals Figure 4.1, the performan
e of the problem adaptedalgorithm was inferior to the others. We attribute this mainly to the stru
ture ofthe Hessian, whi
h in our 
ase (in the 
ontrary to that in D�umbgen, Freitag, andJongbloed, 2006) is not as sparse as ne
essary for this algorithm to perform well. Weseem to have many non-negligible o�-diagonal entries of the Hessian. Furthermore,this algorithm operates on a di�erent parametrization, eventually 
ausing higher
omputational resour
e 
onsumption.Figure 4.1 shows typi
al shapes of log-likelihood 
urves for a single run for n = 1000resulting from the estimation of a ��density.After all, Figures 4.2, 4.3, and 4.4 display the estimated densities bfn and the log-densities b'n for all three distribution laws for a sample size of 500 where the parame-ter for the generalized Lapla
e law was 
hosen to be b = 1 (for all plots: estimatorsare drawn in solid and fun
tions to be estimated in dashed lines). Note the pie
ewise



4.7 Numeri
al examples 81Table 4.4: Results for the �(2; 1) law.n Algorithm tjmin �tj tjmax �LLj MEj1 MEj1ICMA 0.61 1.12 1.48 121.68 0.16 1:490 � 10�1log-barrier 1.02 1.19 1.47 121.76 0.17 1:49 � 10�1interior-point 1.01 1.21 1.45 121.82 0.16 1:45 � 10�150 prob-adap 1.00 1.20 1.49 122.31 0.18 1:39 � 10�1ICMA 0.68 1.92 3.75 251.08 0.14 1:42 � 10�1log-barrier 3.64 3.95 4.24 251.17 0.14 1:43 � 10�1interior-point 3.70 4.00 4.29 251.34 0.15 1:53 � 10�1100 prob-adap 3.72 40.00 4.27 252.20 0.21 1:62 � 10�1ICMA 15.16 34.37 49.03 1277.59 0.20 9:73 � 10�2log-barrier 190.67 198.70 206.81 1277.77 0.20 9:76 � 10�2interior-point 192.78 200.16 205.32 1278.54 0.21 1:07 � 10�1500 prob-adap 192.37 200.09 204.95 1279.33 0.22 1:20 � 10�1ICMA 34.97 66.73 132.16 2538.06 0.23 9:54 � 10�2log-barrier 1025.13 1042.66 1059.86 2538.09 0.23 9:63 � 10�2interior-point 1022.61 1060.10 1110.74 2539.59 0.24 9:98 � 10�21000 prob-adap 982.10 997.42 1015.47 2539.12 0.24 1:20 � 10�1linearity of b'n.In light of Theorem 3.5.1 hardly any di�eren
e is visible on a plot displaying Fn andbFn. We therefore 
on
entrate on the di�eren
es Fn � F and bFn � F in Figure 4.6,re
apitulate also Figure 3.1.For all the algorithms, we did not en
ounter major problems up to sample sizes of500 points. But for larger datasets and espe
ially in 
ase of the generalized lapla
elaw for small b, observation points may get very 
lose (< 10�3) to ea
h other, 
ausingnumeri
al instabilities in the inversion of matri
es. In this 
ase, it is advisable toadopt the 
lustering s
heme des
ribed in Terlaky and Vial (1998). Repla
e thelog-likelihood fun
tion 	n and the original data X := (X1; : : : ; Xn) by�n Z w(X 0)'(X 0) dFn(X 0)andX 0 := (X 01; : : : ; X 0n), where the latter ve
tor is 
onstru
ted starting at X1. If thedistan
e to X2 is smaller than some (small) resolution number Æ > 0, then repla
eX1 and X2 by their mean X 01 and define w1 = 2. Continue this pro
edure up to nand so get X 0 and w of length n0 � n. This 
lustering is only a minor 
hange inthe optimization problem, but a powerful remedy against poor 
ondition numbersin the linear systems that have to be solved to find the Newton dire
tions.
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Table 4.5: Results for the Generalized Lapla
e(b) law.n Algorithm tjmin �tj tjmax �LLj MEj1 MEj1ICMA 0.35 1.02 1.42 140.69 0.08 2:17 � 10�1log-barrier 1.09 1.26 1.47 140.70 0.08 2:17 � 10�1interior-point 1.10 1.28 1.48 140.83 0.07 2:18 � 10�150 prob-adap 1.14 1.29 1.50 141.80 0.07 2:43 � 10�1ICMA 1.53 2.69 4.50 282.74 0.07 1:54 � 10�1log-barrier 3.72 4.18 5.00 282.77 0.07 1:54 � 10�1interior-point 3.81 4.23 5.05 283.18 0.07 1:59 � 10�1100 prob-adap 3.86 4.26 5.1 284.72 0.060 1:82 � 10�1ICMA 21.71 33.70 45.41 1423.59 0.05 1:93 � 10�1log-barrier 190.91 196.36 199.97 1423.16 0.05 1:94 � 10�1interior-point 193.43 198.38 202.36 1424.55 0.05 2:02 � 10�1500 prob-adap 192.87 198.75 202.40 1426.07 0.05 2:15 � 10�1ICMA 19.47 67.19 139.63 2838.38 0.06 3:34 � 10�1log-barrier 1054.81 1064.25 1085.00 2836.28 0.06 3:35 � 10�1interior-point 1061.19 1081.19 1105.21 2838.81 0.06 3:43 � 10�11000 prob-adap 1000.80 1010.40 1024.22 2839.74 0.06 3:51 � 10�1
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Chapter 5Bump hunting
The se
ond part of this thesis proposes a method to dete
t regions, based on ani.i.d. sample drawn from a density f , where this density is either log-
on
ave orlog-
onvex. This implies lower bounds for the number of bumps and dips.5.1 Exponential familiesLet X be a random variable with distribution P� on some measurable spa
e (X ;A)indexed by a parameter � ranging over an open subset � of Rp . Let p� be adensity of P� with respe
t to some dominating measure M . In what follows, we will
hoose Lebesgue measure for M . We additionally assume that p� is a p-dimensionalexponential family (p 2 N), i.e. it 
an be written asp�(x) = 
(�)h(x) exp��>t(x)�; x 2 Xwith a normalizing fun
tion 
 : �! R
�1(�) = ZX h(x) exp��>t(x)� dxand fun
tions h : X ! R and t : X ! Rp . The \natural parameter spa
e" for su
ha family is de�ned as Y = f� 2 Rp : 
�1(�) <1g � �:De�ne the expe
tation for a fun
tion u : R ! R and the random variable X havingdensity fun
tion p� as IE� u(X) = ZX u(t)p�(t) dt: (5.1)



90 5 Bump huntingVarian
es and 
ovarian
es are written likewise. Expe
tations of ve
tors and matri
esare to be understood 
omponentwise.Exponential families are very well studied, see e.g. Lehmann (1986, Se
tions 2.7and 10.3) or van der Vaart (1998, Se
tion 4.2). We summarize key properties ofexponential families in the following lemma.Lemma 5.1.1. The fun
tion�! ZX h(x) exp��>t(x)� dxis in�nitively often di�erentiable w.r.t. to � and these derivatives 
an be found byinter
hanging integration and di�erentiation. Furthermore, for any u 2 Rp theLapla
e transform is: IE� exp�u>t(X)� = 
(�)
(� + u) :The last statement implies that IE exp[u>t(X)℄ exists if �+u 2 Y, meaning that �needs to be in the interior of Y. If that is the 
ase all moments of t(X) exist. Dueto Lemma 5.1.1 the fun
tion log p� is in�nitively often di�erentiable w.r.t. �. Forthese two reasons the following de�nitions are justi�ed for x 2 X :`�(x) := log p�(x) _̀�(x) = (�=��)`�(x) I(�) = IE�� _̀�(X) _̀�(X)T�,where _̀� is denoted the \s
ore fun
tion" and I the \Fisher information matrix" ofthe density fun
tion p�. Straightforward 
al
ulation using Lemma 5.1.1 reveals forthe s
ore fun
tion that _̀�(x) = t(x)� IE� t(X). Therewith the following 
onne
tionbetween the statisti
 t and I 
an be established:I(�) = IE�� _̀�(X) _̀�(X)T�= IE��[t(X)� IE� t(X)℄[t(X)� IE� t(X)℄>�= Cov� t(X): (5.2)We say that the exponential family is of \full rank" if this latter matrix Cov� t(X)is non-singular. One 
an further derive the identityIE� �̀�(X) = �I(�) (5.3)



5.1 Exponential families 91where �̀�(x) = (�=��>) _̀�(x). Now suppose we observe a sampleX := (X1; : : : ; Xn)of i.i.d. observations where all 
omponents Xi; i = 1; : : : ; n have the same distribu-tion as X. The maximum likelihood estimator b�n of � based on a sampleX is thende�ned as b�n = argmax�2� bLn(�) (5.4)where bLn(�) := nXi=1 `�(Xi)is the log-likelihood fun
tion. Note that be
ause the matrix�2����> `�(x) = �Cov� t(X)is negative-de�nite, the fun
tion bLn is stri
tly 
on
ave. This implies that if theexponential family p� is of full rank and the true parameter �o is in the interiorof Y, then with probability tending to one as n ! 1 the maximum likelihoodestimator b�n de�ned by (5.4) exists, see e.g. Theorem 4.1 in van der Vaart (1998).Furthermore it exhibits the following asymptoti
 behavior:pn(b�n � �o) !D Np(0; I(�o)�1) (5.5)for n!1 for every �xed �o in the interior of Y.We intend to use a 
ertain exponential family as a lo
al parametri
 model in bumphunting. Therefore we need to generalize (5.5) to a triangular array of observations.Suppose we observe a sample Xn := (X1n; : : : ; Xnn) from P�n . It is assumed thatfor a �xed n the elements of Xn are independent and identi
ally distributed havingthe density p�n with parameter �n 2 Y varying with n. The log-likelihood fun
tionis then generalized to bLn(�) := nXi=1 `�(Xin):Assume for the parameter �n that it 
onverges to �o 
omponentwise, at an arbitraryrate of 
onvergen
e, i.e. for all i = 1; : : : ; p�n;i � �0;i = o(1):One 
an then extend statement (5.5) in the following sense.



92 5 Bump huntingTheorem 5.1.2. Suppose that every element of Xn := (X1n; : : : ; Xnn) is i.i.d. hav-ing density fun
tion p�n. Let p�n be an exponential family with full rank for everyn. Then: pn(b�n � �n) !D Np(0; I(�o)�1) (5.6)for n!1.5.2 Testing of 
omposite hypothesesTo set up our multis
ale test we will use a spe
i�
 s
ore test statisti
 in a spe
i�
two-parameter model. In this se
tion we introdu
e s
ore tests in exponential familiesin general and 
ompare its power properties to a likelihood ratio test (LRT). Wewill furthermore assess the e�e
t of nuisan
e parameters on the power of the abovetests.We adopt the setting of Se
tion 5.1. To keep notation simple, let us split the Fishermatrix I as follows: I(�) := � I11(�) I12(�)I21(�) I22(�) �where I11(�) = (Iij(�))i;j=1;:::;p�1;I12(�) = (I1;p(�); : : : ; Ip�1;p(�))>;I21(�) = I12(�)> = (I1;p(�); : : : ; Ip�1;p(�));I22(�) = Ip;p(�):The following de�nition of a spe
i�
 number will turn out be useful below:I22�1(�) = I22(�)� I21(�)I11(�)�1I12(�):Given a ve
tor x 2 Rp we write ~x for its �rst p� 1 
omponents: ~x = (x1; : : : ; xp�1).Let ep := (0; : : : ; 0; 1) 2 Rp . For a �xed � 2 R introdu
e the following set:�� := f# 2 Y : #p = �g:Then suppose we have an i.i.d. sampleXn = (X1n; : : : ; Xnn) where ea
h 
omponentis distributed a

ording to P�n introdu
ed in Se
tion 5.1. The row-wise \true"



5.2 Testing of 
omposite hypotheses 93parameter �n 2 Y shall be 
onverging to �o 2 �o 
omponentwise, at a rate of
onvergen
e not yet further spe
i�ed. Then 
onsider the following test problem:Ho : � 2 �o vs. H1 : � is unrestri
tedwhi
h is equivalent to Ho : �p = 0 vs. H1 : �p 6= 0:The test statisti
 we analyze �rst is the LRT statisti
 �n�n = 2 sup�2Y bLn(�)� 2 sup�2�o bLn(�):Beneath the maximum likelihood estimator b�n in the full model, introdu
e theestimator in the restri
ted model for an arbitrary �xed � 2 R:b��n = argmax�2�� bLn(�):The likelihood ratio test statisti
 then be
omes�n = 2bLn(b�n)� 2bLn(b�0n):For a given signi�
an
e level � 2 (0; 1), the null hypothesis Ho is reje
ted by theLRT if, and only if, �n � 
� where 
� = 
�(b�n; b�0n) 2 (1;1). If there exists a
� 2 (1;1) su
h that sup�2�o P�(�n � 
�) = �;then we get a LRT of size �. However, it is often diÆ
ult to �nd a LRT with size �for a �xed �nite n and one has to swit
h to tests of only asymptoti
 size �. This iswhat we do in the following theorem.Theorem 5.2.1. Suppose the elements of Xn are independent and have densityfun
tion p�n where �n��o = o(1). The statisti
 �n has then the following asymptoti
behavior: �n !D 8>>>><>>>>: 1 if pnj�n;pj ! 1�21(I22�1(�o)h2) if pnj�n;pj ! h�21(0) if pnj�n;pj ! 0where h > 0 and �21(p) is the non-
entral �2-distribution with one degree of freedomand non-
entrality parameter p.



94 5 Bump huntingFor a given signi�
an
e level � 2 (0; 1) we reje
t the null hypothesis if �n ex
eedsthe 
riti
al value �21;1�� where �21;1�� is the (1��)-quantile of a �2-distribution withone degree of freedom. Su
h a test has then by 
onstru
tion asymptoti
 size �.The (lo
al, i.e. if not pnj�n;pj ! 1) power fun
tion �Ln of the above test thensatis�es, as n!1,�Ln (b�0n; b�n)� �L�I22�1(�o)1=2pnj�n;pj� = op(1):Expli
itly, the asymptoti
 power fun
tion is�L(p) = 1� �21(p2; �21;1��)where �21(p; :) is the �2-distribution fun
tion for one degree of freedom and non-
entrality parameter p � 0.Note that non-
entral �2-distributions are sto
hasti
ally in
reasing in the non-
entrality parameter, i.e. for two non-
entrality parameters p1 < p2�21(p1; :) � �21(p2; :);implying that the LRT has good (lo
al) power properties at large values of thenon-
entrality parameter.The LRT introdu
ed above is two-sided, i.e. in 
ase of reje
tion of the null hypoth-esis, nothing about the sign of �n;p 
an be said. In our intended appli
ation tobump hunting however, it will be 
onvenient to be able to make a statement aboutsign(�n;p) in 
ase Ho is reje
ted, at least with a 
ertain (asymptoti
) 
on�den
e. Thes
ore test below is exa
tly what the do
tor ordered. Its test statisti
 is de�ned as anormalized derivative of the pro�le log-likelihood fun
tion at � = 0:Sn := n�1=2 ��� bLn(b��n)����=0:The hypotheses we test areHo : �n;p < 0 vs. H1 : �n;p � 0 (5.7)or vi
e versa. Again, as for the LRT, we 
an spe
ify the limiting distribution forthis statisti
, depending on the behavior of �n;p.



5.2 Testing of 
omposite hypotheses 95Theorem 5.2.2. Under the assumptions of Theorem 5.2.1 the s
ore test statisti
Sn has the following asymptoti
 distribution:I22�1(�o)�1=2Sn !D 8>>>><>>>>: �1 if pn�n;p ! �1N (I22�1(�o)1=2h; 1) if pn�n;p ! hN (0; 1) if pn�n;p ! 0for h 2 R.In light of Theorem 5.2.2, for a given signi�
an
e level � 2 (0; 1) the null hypothesisHo in (5.7) is reje
ted if I22�1(�o)�1=2Sn � z1�� where z1�� is the (1 � �)-quantileof a standard normal distribution. However, we do not know �o, but it seems 
lear,that a suitable 
onsistent estimate of �o 
an save us. For the spe
i�
 two-parametermodel elaborated in Se
tion 5.3 this is detailed in Theorem 5.4.1.As for the a
tual 
al
ulation of the s
ore statisti
 Sn, observe the following. Thelog-likelihood fun
tion bLn is a map from Rp ! R. Therefore:��� bLn(b��n) = rbLn(b��n)>� ���b��n�= e>prbLn(b��n)= �rbLn(b��n)�p:This implies that Sn = n�1=2 ��� bLn(b��n)����=0= �n�1=2 nXi=1 _̀b�0n(X1n)�p: (5.8)In other words, to 
al
ulate the s
ore statisti
 Sn for a test on the p-th 
oordinateof �, we 
an simply take the p-th 
oordinate of the s
ore ve
tor where we readilyinput the estimate under the 
onstraint �n;p = 0, namely b�0n.Consider the general situation of tests involving a �xed number of parameters wheresome other nuisan
e parameter has to be estimated. Suppose further this nuisan
eparameter is estimated under the null using a pn-
onsistent estimator (e.g. maxi-mum likelihood). It is well known that in this 
ase likelihood ratio, s
ore (and Wald)



96 5 Bump huntingtests are asymptoti
ally equivalent under the null hypothesis, see e.g. Shao (2003,Se
tion 4.5.2). In Theorems 5.2.1 and 5.2.2 we 
onsider the more general situationof a \true" parameter �n varying with n and one-parameter alternatives that lie ina O(n�1=2)-ball around the parameter �n;p we perform the test on.The s
ore statisti
 is designed to test the hypotheses (5.7) or vi
e versa, e�e
tivelyentailing a statement about sign(�n;p) in 
ase of reje
tion of Ho, with asymptoti

on�den
e 1��. Using this, de�ne a modi�ed s
ore test by 
ombining two one-sideds
ore tests using the test statisti
 Sn where ea
h of the two tests is performed athalf of the overall signi�
an
e level �. For the lo
al power fun
tion �Sn in this 
asewe have, a

ording to Theorem 5.2.2 as n!1,�Sn (b�0n; b�n)� �S�I22�1(�o)1=2pn�n;p� = op(1):To derive �S, 
onsider the 
ase of testing the one-sided hypotheses in (5.7). A

ord-ing to 5.2.2, the asymptoti
 power fun
tion for testing at signi�
an
e level �=2 forany �xed � 2 (0; 1), m 2 R and a random variable Z having a N (m; 1) distribution,is P (Z > z1��=2) = 1� P (Z �m � �z1��=2 �m)= 1� �(�z1��=2 �m)where �(:) is the standard normal distribution fun
tion. As we simply put togethertwo one sided tests, testing either the hypotheses (5.7) or their reversed versions,we 
an write for the asymptoti
 power fun
tion for all m 2 R�S(m) = [1� �(�z1��=2 �m)℄1fm�0g + [1� �(�z1��=2 +m)℄1fm�0g= 1� �(�z1��=2 � jmj):Normal distributions with varian
e 1 (or in general with equal varian
e) are sto
has-ti
ally in
reasing in the mean, i.e. for two means p1 < p2�1(p1; ) � �1(p2; :)entailing that, similar to the LRT, the s
ore test has good lo
al power properties forlarge values of I22�1(�o)1=2pn�n;p.Re
apitulate the asymptoti
 power fun
tions for the above des
ribed tests, for a�xed signi�
an
e level � 2 (0; 1) and any p 2 R,�L(p) = 1� �21(p2; �21;1��)�S(p) = 1� �(�z1��=2 � jpj):



5.3 A spe
ifi
 two-parameter model 97These two fun
tions are almost identi
al, their di�eren
e de
reases very fast withgrowing �rst argument. The only di�eren
e happens around 0, due to the fa
t thatthe s
ore test is performed at half the signi�
an
e level � 
ompared to the LRT. Notethat the power (against the 
onsidered lo
al alternatives) for both tests introdu
edabove is in
reased when I22�1(�o) in
reases. Re
all the de�nition of I22�1(�)I22�1(�) = I22(�)� I21(�)I11(�)�1I12(�):Mathemati
al expressions simplify if one 
onsiders a model that has a diagonalFisher matrix. Sin
e in that 
ase I12(�) = 0 and 
onsequentlyI22�1(�) = I22(�):5.3 A spe
ifi
 two-parameter modelThis se
tion is devoted to a spe
i�
 two-parameter exponential family whi
h servesas a building blo
k for the multis
ale test in Se
tion 5.6. Let the random variableXn have the univariate two-parameter density f�n;�n wheref�;�(x) := C(�; �) exp��x+ �x2=2�; x 2 [0; 1℄ (5.9)for �; � 2 R and a normalizing 
onstantC�1(�; �) := Z 10 exp��x + �x2=2�dx:For the sequen
es of parameters we assume that �n ! �o as well as �n ! 0. Fur-thermore, for all n these sequen
es belong to the natural parameter spa
e of f�;�,i.e. C�1(�n; �n) < 1. Denote by X1 the random variable having density fun
tionf�o;0.For n ordered i.i.d. observations X1n < : : : < Xnn all having the same distributionas Xn, de�ne a data ve
tor Xn := (X1n; : : : ; Xnn).To embed this spe
i�
 model in the framework of Se
tions 5.1 and 5.2 note that f�;�
an be written as f�(x) = 
(�)h(x) exp��>t(x)�with � := (�; �), 
(�) := C(�; �), h(x) := 1 and t(x) := (x; x2=2).



98 5 Bump huntingIn bump hunting we will set up a multis
ale test to assess log-
on
avity and log-
onvexity of a density, on spe
i�
 intervals. The 
urrent two-parameter model willserve as basi
 element for this multis
ale test. Based on a sample Xn a testHo : f�n;�n is log-linear vs.H1 : f�n;�n is log-
on
avetranslates into the following one-sided test for �n:Ho : �n = 0H1 : �n < 0;where �n is unknown and takes the role of a nuisan
e parameter, i.e. needs to beestimated from the same sample Xn. Testing for log-
onvexity is similar. Relyingon the results of Se
tion 5.2 we propose a s
ore test, in order to be able to infersign(�n) in 
ase of reje
tion of Ho. The s
ore test statisti
 in this spe
i�
 problemis then, a

ording to (5.8),Sn = �n�1=2 nXi=1 _̀b�0n;0(Xin)�2= (1=2)n1=2�X2in � IEb�0n;0X21n� (5.10)where we introdu
ed the s
ore ve
tor_̀�;� := ��(�; �) log f�;�;the maximum likelihood estimator b�0n of �n based on a sample Xn under the nullhypothesis and an abbreviation for the meanxi = (1=n) nXi=1 xifor n ve
tors xi 2 Rk (or n real numbers if k = 1). The estimator b�0n 
an be foundusing e.g. a Newton-Raphson pro
edure.On p. 97 we dis
ussed that a s
ore test based on the statisti
 Sn is mathemati-
ally more 
onvenient if the Fisher information matrix I(�) is diagonal at the trueparameter �o. When adopting the model (5.9) dire
tly, the 
orresponding Fishermatrix In(�; �) = � Var�;�X1n Cov�;�(X1n; X21n)=2Cov�;�(X1n; X21n)=2 Var�;�(X21n)=4 �



5.3 A spe
ifi
 two-parameter model 99does 
learly not have vanishing diagonal elements at (�o; 0), i.e. when n ! 1.This is due to the fa
t that the 
ovarian
e between X1 and X21 at (�o; 0) does notdisappear.In order to have mathemati
ally 
onvenient expressions, we therefore propose thefollowing remedy. Instead of adopting the density fun
tion f�n;�n dire
tly, repla
e itby f ��n;�n wheref ��;�(x) := C�(�; �) exph�x + ��x2=2� a(�)x� b(�)�i (5.11)for x 2 [0; 1℄. The s
ore ve
tor 
orresponding to this density f ��;� is_̀��;�(x) = � x� a0(�)�x� IE�;�(X1n � a0(�)�X1n)T�(x)� IE�;� T�(X1n) �where T�(x) := x2=2 � a(�)x � b(�) for any � 2 R and x 2 [0; 1℄. The fun
tionsa : R ! R and b : R ! R are 
hosen su
h thatIE�;0 T�(X) = 0 andIE�;0[T�(X)X℄ = 0 (5.12)for all � 2 R su
h that C�1(�; 0) < 1 where X is distributed su
h that it exhibitsa density fun
tion f�;0. Properties of these latter fun
tions are 
olle
ted in 5.3.1.Dedu
e a modi�ed s
ore statisti
 a

ording to (5.8) as follows:S�n = �n�1=2 nXi=1 _̀�b�0n;0(Xin)�2= n1=2�Tb�0n(Xin)� IEb�0n;0 Tb�0n(Xin)�= n1=2Tb�0n(Xin): (5.13)This 
onstru
tion immediately entailsCovb�0n;�n�X1n; Tb�0n(X1n)� !p 0; (5.14)implying that the Fisher matrix 
orresponding to (5.11) be
omes diagonal asn!1. By Theorem 5.2.2 we getS�n(Var�o;0X1n)1=2 !D N�(Var�o;0X1n)1=2h; 1�



100 5 Bump huntingwhen pn�n ! h. However, �o is not known and has to be estimated. How thisa�e
ts the test statisti
 is detailed in Se
tion 5.4.In Se
tion 5.5 model (5.11) will be 
onsidered to derive a s
ore test statisti
 enablingto test whether �n is signi�
antly di�erent from 0. The di�eren
e between a s
oretest statisti
 derived from f�;� to one re
eived via f ��;� is the di�erent 
entering term,
ompare (5.10) to (5.13). Note thata(b�n)Xin + b(b�n)
onsistently estimates �o = 0 for an arbitrary 
onsistent estimator b�n of �o. Forevery n, the 
oeÆ
ient of the linear term �n takes the role of a nuisan
e parameterand must be estimated. The fa
t detailed in (5.14) ensures that estimation of �nand �n are, at least asymptoti
ally, \as independent as possible", i.e. do a�e
t ea
hother as little as possible.To 
on
lude this se
tion, we owe the exa
t representations for the fun
tions a andb. To omit these formulas being even more lengthy than they already are, introdu
efor k = 0; 1; 2; : : : and any � 2 RHk(�) = Z 10 xk exp(�x) dx: (5.15)Using this abbreviation one 
an derive the following formulas for a and b from (5.12):a(�) = 12H1(�)H2(�)�Ho(�)H3(�)H1(�)2 �Ho(�)H2(�)b(�) = 12H1(�)H3(�)�H2(�)2H1(�)2 �Ho(�)H2(�) :Some properties of these fun
tions are 
olle
ted in Lemma 5.3.1 and Figure 5.1provides a plot.Lemma 5.3.1. For the fun
tion a we have the following limits:lim�!�1 a(�) = 0 lim�!1a(�) = 1and for b: lim�!�1 b(�) = 0 lim�!1 b(�) = �1=2:Furthermore, a is symmetri
 around 0: for any � 2 R one hasa(��) = 1� a(�):
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  a(�)b(�) �Figure 5.1: Centering fun
tions a(�) and b(�).Note that in Se
tion 5.5 we res
ale our original observations X1; : : : ; Xn su
h thatthey lie in [0; 1℄. This is anti
ipated in the de�nition of the densities f�;� and f ��;�,as they will serve as a basis to introdu
e a multis
ale test based on the res
aledobservations. Clearly, the setting has impli
ations on the pre
ise form of a and bwhen de�ning them via (5.12). This latter de�nition provides one with the \sim-plest" form of these fun
tions as well as the above densities, however it may notbe optimal with regard to symmetry. If symmetry was the aim, one 
ould rather
on
entrate on �T�(x) = (x� 1=2)2=2� �a(�)(x� 1=2)� �b(�)where �a = a� 1=2 and �b = a=2 + b+ 1=8:Remembering that T� is the s
ore statisti
 derived from (5.11), the density having�T� � IE�;� �T�(X1n) as a s
ore fun
tion is�f�;�(x) = �C(�; �) exph�(x� 1=2) + ��(x� 1=2)2=2� �a(�)(x� 1=2)� �b(�)�i;



102 5 Bump huntingwhat �nally entails that the fun
tions 
orresponding to (5.15) would be�Hk(�) = Z 10 (x� 1=2)k exp[�(x� 1=2)℄ dx:Here, the integrand is a fun
tion that is 
entered around the midpoint 1=2 of theinterval under 
onsideration, and one 
an expe
t that the 
orresponding fun
tionsa and b exhibit \ni
er" symmetry properties.5.4 Analysis of lo
al test statisti
We will now analyze the spe
i�
 s
ore test statisti
 introdu
ed in the previous se
-tion.To assess whether log f ��n;�n introdu
ed in (5.11) is 
on
ave or 
onvex on [0; 1℄, i.e. totest whether �n, the 
oeÆ
ient of the quadrati
 part, is equal to or signi�
antlydi�erent from 0, we will use, based on the arguments in the previous se
tion, thefollowing standardized s
ore test statisti
:Tn(Xn; �) := n�1=2 nXi=1 T�(Xin)[Var� T�(X1n)℄1=2where we abbreviated Var� T�(X1n) = Var�;0 T�(X1n)as � will always be set to �o = 0. Re
all that the parameters of f ��n;�n form sequen
es
onverging to �o and 0, i.e.�n � �o = o(1) and �n = o(1): (5.16)Theorem 5.4.1. Suppose that the elements of Xn := (X1n; : : : ; Xnn) are i.i.d. dis-tributed having density fun
tion f ��n;�n. Then, as n!1:
Tn(Xn; b�0n)!D 8>>>>><>>>>>: 1 if pnj�nj ! 1N�(Var�o X1)1=2h; 1� if pnj�nj ! hN (0; 1) if pnj�nj ! 0:



5.5 (Log-)Density fun
tion approximated by lo
al parabolas 103Log-
on
avity or log-
onvexity of f ��n;�n at a given sigini�
an
e level � will then be
laimed if Tn(Xn; b�0n) � �z1��=2 andTn(Xn; b�0n) � z1��=2;respe
tively. Theorem 5.4.1 delivers the justi�
ation for the use of b�0n as a plug-inestimator for the test statisti
 Tn(Xn; �).5.5 (Log-)Density fun
tion approximated bylo
al parabolasThroughout the remainder of this 
hapter, we apply a setting similar to that inD�umbgen and Walther (2006). Suppose Y1 < : : : < Ym are ordered i.i.d. randomvariables with unknown distribution fun
tion F and density f on the real line.Assume that f is twi
e 
ontinuously di�erentiable on ff > 0g and that this latterset is open. Sometimes it is a priori known that F is 
on
entrated on an interval[a;1); (�1; b℄ or [a; b℄ where �1 < a < b < 1. If this is the 
ase we add thepoint(s) Y0 := a or Ym =: b or both to our ordered sample, yielding an ordereddata ve
tor X0; : : : ; Xn where n 2 fm� 2; m� 1; mg. For 0 � j < k � n + 1 withk � j > 1, the 
onditional joint distribution of Xj+1; : : : ; Xk�1, given the intervalendpoints Xj and Xk, 
oin
ides with the joint distribution of the order statisti
s ofk � j � 1 independent random variables with densityfjk(x) = f(x)F (Xk)� F (Xj)1fx2Ijkgfor intervals Ijk := (Xj; Xk). Res
aling the observations �nally yields lo
al orderstatisti
s: Xi:j;k := Xi �XjXk �Xj ; j � i � k:Commonly, to \hunt bumps" means to identify su
h intervals Ijk where the den-sity f is either 
onvex or 
on
ave. However, our fo
us here is on log-
on
avity and-
onvexity. Beneath better mathemati
al tra
tability observe that by taking thelogarithm non-
on
ave densities with only one bump, e.g. the gaussian density, be-
ome purely 
on
ave, i.e. the whole line is a \bump region". Up to type 1 errors nospurious dips are then dete
ted.



104 5 Bump huntingIn this se
tion we will des
ribe how the log-density 
an lo
ally be approximatedby the parametri
 model in Se
tion 5.3, implying lo
al tests. The 
olle
tion of allthese tests on all intervals Ijk will then be used for multis
ale testing in Se
tion 5.6.Introdu
e two sequen
es of indi
es j = j(n), k = k(n) su
h thatj=n! 
 and k=n! 
 while k � j !1 (5.17)where 
 2 (0; 1) determines the 
orresponding quantile x
 , sin
e Xj !p x
 andXk !p x
 when n!1.By Taylor approximation we 
an write the log-density ' for any Xj, j = 1; : : : ; nand h 2 R as follows:'(Xj + h) = '(Xj) + '0(Xj)h + '00(Xj)h2=2 + rj(h)h2:As ' is 
ontinuous (even twi
e di�erentiable) we have for the remainderkrjk[�Æ;Æ℄1 !p 0when Æ ! 0 (and n!1, sin
e Xj !p x
). Using this, write fjk as followsfjk(u) = f(Xj + uÆjk)R 10 f(Xj + vÆjk) dv1fu2[0;1℄g= exp'(Xj + uÆjk)R 10 exp'(Xj + vÆjk) dv1fu2[0;1℄g= exp�hjk(u) + rj(uÆjk)Æ2jk�R 10 exp�hjk(v) + rj(vÆjk)Æ2jk� dv1fu2[0;1℄gwhere we introdu
ed hjk(x) = '0(Xj)Æjkx + '00(Xj)Æ2jkx2=2 (5.18)for x 2 [0; 1℄ and Æjk = Xk �Xj. Clearly,supu2[0;1℄ jrj(uÆjk)j !p 0 (5.19)as n ! 1. Note that we normalize in order to get a density fun
tion on [0; 1℄.Additionally let gjk(u) = exp hjk(u)R 10 exp hjk(v) dv1fu2[0;1℄g:



5.5 (Log-)Density fun
tion approximated by lo
al parabolas 105From (5.18) one 
an 
on
lude that on an interval Ijk, the parameters �n and �nintrodu
ed in Se
tion 5.3 are in detail, as n!1:�n = '0(x
)f(x
) k � jn+ 1(1 + op(1)) (5.20)�n = '00(x
)2f(x
)2�k � jn+ 1�2(1 + op(1)); (5.21)sin
e, a

ording to the proof of Lemma 5.5.1,Æjk = k � jn+ 1f(x
)�1(1 + op(1)):To give a legitimation for an approximation of a smooth enough log-density by aparabola, 
onsider the total variation distan
e TV between two probability densitiesf : Rp ! R and g : Rp ! R. For x 2 Rp de�neTV(f; g) := ZRp jf(x)� g(x)j dx:Introdu
e the following joint densities:fn(X) := k�1Yi=j+1 fjk(Xi)gn(X) := k�1Yi=j+1 gjk(Xi):The following lemma then spe
i�es the asymptoti
 total variation distan
e betweenfn(X) and gn(X).Lemma 5.5.1. For fn(X) and gn(X) introdu
ed above:TV�fn(X); gn(X)� = op(1)as n!1.Suppose we would like to test the hypothesis Ho : � = 0 vs. H1 : � = �n > 0.The above lemma implies, that the asymptoti
 power based on an i.i.d. sample ofsize k � j � 1 taken from fjk is equal to the power for the same testing problem ifwe adopted a sample from gjk instead. To be fully prepared for the statement ofthe theorem, introdu
e a so-
alled \perfe
t sequen
e of tests". A sequen
e of testsin the above hypothesis is 
alled perfe
t, if for any sequen
e of alternatives �n thepower fun
tion �n(�n) is tending to 1 and the size �n(�o) = �n(0) is tending to 0, asn!1.



106 5 Bump huntingTheorem 5.5.2. Suppose '00(x
) > 0 and the sequen
es j = j(n) and k = k(n) aresu
h that n1=5�k � j � 1n � ! 1 (5.22)as n!1. Then there exists a perfe
t sequen
e of tests for the hypothesis Ho : � = 0vs. H1 : � = �n > 0 based on an i.i.d. sample of size k � j � 1 where every randomvariable in the sample has density fun
tion fjk.To 
on
lude, some words about the Condition (5.22). It seems not to be too strin-gent, sin
e De�nition (5.21) of �n suggests that in order to be able to test for thislatter parameter we anyway need enough observations in Ijk to guarantee(k � j � 1)1=2�k � j � 1n �2 !1:But this latter 
ondition is equivalent to (5.22).5.6 The multis
ale testHaving guaranteed suÆ
ient power in Se
tion 5.1, shown 
onvenient properties ofthe lo
al test statisti
 Tn(Xn; �) in Se
tion 5.4 and justi�ed approximation of theoriginal density f on any interval Ijk through lo
al parabolas in Se
tion 5.5, we willnow introdu
e a multis
ale test.Beneath in D�umbgen and Walther (2006) for mode hunting, multis
ale testing in aquite general qualitative setting is des
ribed in D�umbgen and Spokoiny (2001) andin a more applied regression framework in D�umbgen (2002).Adopting the notation of the latter paper, de�ne the global test statisti
 for a sampleXn, 3 � m � n� l and 3 � l � m� 1 asT �l;m;n(X) := max1�j<k�n; l�k�j�m�jTjkn(X; b�0jk)j � 
k�j�where b�0jk is the estimated log-linearity parameter �jk based on the lo
al order statis-ti
s Xj+1:j;k; : : : ; Xk�1;j;k where �jk is assumed to be 0, i.e. estimation of �jk happensunder the null hypothesis. The lo
al test statisti
s areTjkn(Xn; �) := Pk�1i=j+1 T�(Xi:j;k)[(k � j � 1)Var� T�(Xj+1:j;k)℄1=2



5.6 The multis
ale test 107and the normalizing 
onstants
d := �2 + 2 log(n=d)�1=2:The papers 
ited above detail why 
onstants of this type are appropriate in su
h amultis
ale setting. Informally, su
h an additive 
orre
tion is introdu
ed to preventthe limiting distribution of T �l;m;n to be dominated by lo
al statisti
s Tjkn for (k�j)=nsmall, i.e. those on short intervals.The test fun
tion Tjkn(X; �) 
an alternatively be written asTjkn(Xn; �) := Pk�1i=j+1�[Xi:j;k � a(�)℄2=2� a(�)2=2� b(�)�[(k � j � 1)Var� T�(Xj+1:j;k)℄1=2:= Pk�1i=j+1�Æ�(Xi:j;k)� a(�)2=2� b(�)�[(k � j � 1)Var� T�(Xj+1:j;k)℄1=2 (5.23)where Æ�(x) := 2�1(x � a(�))21fx2[0;1℄g. If we plug in an estimator b�n for �, (5.23)means that our test fun
tions are parabolas with an estimated (and therefore some-how adaptive) vertex �a(b�n);�a(b�n)2=2� b(b�n)�:Clearly, this estimator b�n will be b�0jk. A

ording to (5.12) the test fun
tions Æ� areindi�erent with regard to linear density fun
tions. However, if the observations 
omefrom a lo
al log-density fun
tion log fjk that is 
onvex or 
on
ave, then Tjkn(Xn; b�0jk)tends to be highly positive or negative, respe
tively, by Theorem 5.2.2. It is impor-tant to note that other test fun
tions are equally possible, e.g. parabolas with a �xedvertex, immediately raising further possibilities to design tests for (log-) 
on
avityor (log-) 
onvexity.As in D�umbgen (2002), we 
on�ne our attention in the de�nition of T �l;m;n to pairs(j; k) su
h that their maximal lag k � j is smaller than m (typi
ally we will 
hoosem < n, e.g. m = n=2), for two reasons. First, to redu
e 
omputational burdenin numeri
al simulations and 
al
ulations of the test statisti
 and se
ond be
ausewe want to in
rease sensitivity on smaller intervals. Similarly, only lags l � 3 are
onsidered, be
ause this is the minimal number of observations to assess 
on
avityor 
onvexity meaningfully.



108 5 Bump huntingSuppose we somehow get hold of the distribution of T �l;m;n as n ! 1 (for detailssee Se
tion 5.7), de�ne �(�; f; n) as the (1� �)-quantile of this distribution. As wedo not know the pre
ise limiting behavior of the distribution of T �l;m;n and thereforethe quantiles of it, we make the following working assumption.Working assumption 5.6.1. Suppose for the quantile �(�; f; n) that as n!1�(�; f; n) = �(�; go) + o(1)for some \null density" go and that this latter quantile �(�; go) is bounded.Some indi
ations that this working assumption may hold true are given in Se
tion5.7.Now �x �; l;m and n. For a given sampleXn, generate the distribution of T �l;m;n and
al
ulate �(�) = �(�; f; n). Then introdu
e the following 
olle
tions of intervals:C\l;m;n(�) := f[Xj; Xk℄ : 0 � j < k � n; k � j � m; �Tjkn(Xn; b�jk) > 
k�j + �(�)gC[l;m;n(�) := f[Xj; Xk℄ : 0 � j < k � n; k � j � m; Tjkn(Xn; b�jk) > 
k�j + �(�)g:With probability at least 1 � � the following statement holds asymptoti
ally as ntends to in�nity. The logarithm of the true density fun
tion f is neither 
on
aveon any interval in C[l;m;n(�) nor 
onvex on any interval in C\l;m;n(�). Even further,the lo
al s
ore tests imply a lower 
on�den
e bound for the lo
ation and number ofthese pie
es. De�ne the sets of bump intervals as follows: If both sets C\l;m;n(�) andC[l;m;n(�) are non-empty, thenB\l;m;n(�) := f[x; y0℄ : [x; y℄ 2 C\l;m;n(�); [x0; y0℄ 2 C[l;m;n(�); y � x0g [ C\l;m;n(�)B[l;m;n(�) := f[x; y0℄ : [x; y℄ 2 C[l;m;n(�); [x0; y0℄ 2 C\l;m;n(�); y � x0g [ C[l;m;n(�);if C\l;m;n(�) = ?, set B\l;m;n(�) = ? and let B[l;m;n(�) only 
ontain the �rst elementof C[l;m;n(�) and likewise if C[l;m;n(�) is empty. Post-pro
ess the sets B\l;m;n(�) andB[l;m;n(�) as follows. Take the left-most interval endpoint Xq in the set, keep onlythe longest interval [Xq; Xr℄ with this starting point and skip all other intervals thatare not disjoint with [Xq; Xr℄. Then 
ontinue with the left-most interval endpointright of Xr and do this until no intervals 
an be kept anymore.The sets B[l;m;n(�) and B\l;m;n(�) 
onsist of intervals J whi
h do 
ontain separated(in the sense that they are only allowed to adjoin at one point) regions J1; J2 wherelog f exhibits both a 
on
ave and a 
onvex behavior. Assembly above 
onsiderationsto 
on
lude the following theorem.



5.7 The limiting distribution of T �l;m;n 109Theorem 5.6.2. Suppose the Working Assumption 5.6.1 holds true. With proba-bility at least 1 � � as n tends to in�nity log f is neither 
on
ave on C[l;m;n(�) nor
onvex on C\l;m;n(�). Furthermore, the number of bumps of log f is not smaller thanthe number of intervals in B\l;m;n(�). On the other hand, log f has at least as manydips as there are intervals in B[l;m;n(�).It is important to note that it is prin
ipally not possible to repla
e the one-sidedstatement in Theorem 5.6.2 by a two-sided version. This impossibility is a fun-damental property of truly nonparametri
 fun
tionals of a density f , su
h as thenumber of bumps and the number of dips in our 
ase and is elaborated in Donoho(1988). 5.7 The limiting distribution of T �l;m;nTo start the se
tion, let us introdu
e three distributional laws in Table 5.1.Table 5.1: Distribution laws used to assess L(T �l;m;n).Law Symbol Density Range ParametersExponential(�) E � exp(��z) [0;1) � > 0Log-linear(�) E � exp(�z)=(exp(�)� 1) [0; 1℄ � 2 RUniform U 1 [0; 1℄With En;En and Un we mean ve
tors 
onsisting of n i.i.d. random variables of thegiven type.For a �xed n, T �l;m;n(Xn) is 
onstru
ted as the maximum over all lags greater than 3and smaller than m minus the 
orre
tion 
d, therefore it is not evident whether thelimiting distribution as n! 1, denoted by L(T �(Xn)), exists, if yes whether it isnon-degenerate and �nally how it depends on Xn. However, in view of the resultsin D�umbgen and Spokoiny (2001, Theorem 2.1.) it would be of great surprise ifthe answer to the �rst two questions is not aÆrmative. This 
onje
ture is furthersupported by numeri
al simulations, 
learly pointing to the existen
e of a limitingdistribution L(T �(Xn)), see Figure 5.2. We sampled 9'999 statisti
s T �3;m;n(En) forevery 
ombination ofm and n detailed in the legend of the �gure, wherem = n�l�1for n � 200 and m = bn=2
 � l � 1 for n � 200.
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T �3;m;nFigure 5.2: Limiting distribution fun
tions for T �3;m;n(En). The 
urves are generated fromleft to right with the parameters in the legend top down.Having postulated the existen
e of L(T �(Xn)), it is however re
ommendable inappli
ations for a given �xed n to rely on Monte-Carlo simulations to generatethe distributions L(T �l;m;n(Xn)) yielding the quantiles �(�). The problem then iswhat distribution to 
hoose where Xn is sampled from. We experimented with thedistributions detailed in Table 5.1.Numeri
al simulations suggest that using ve
tors En yields test statisti
s T �3;m;n(En)whose distributions are sto
hasti
ally bigger than all other input distributions wetried, i.e. FEn(x) � FDn(x); for all x 2 Rwhere FEn(x) is the distribution fun
tion for a sample of T �3;m;n(En) generated fromthe entries of En and FDn(x) is the distribution fun
tion for a sample of T �3;m;n(Dn)whereDn 2 fEn;Ung. Figure 5.3 details the issue. The horizontal lines are drawn at1�� 2 f0:9; 0:95; 0:99g, i.e. where the most widely used quantiles �(�) are 
al
ulatedfrom. One hardly sees any di�eren
e between the three 
urves overall and only minordi�eren
es in the tails. Per distribution we sampled 9'999 times the statisti
 T �3;46;50.
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T �3;46;50Figure 5.3: Distribution fun
tions for T �3;46;50.In what follows, we provide a lemma reminis
ent of the deterministi
 inequality ofProposition 1 in D�umbgen and Walther (2006), detailing a ve
tor Y n having somesort of borderline or worst-
ase distribution su
h that the test statisti
 Tjkn(Xn) isbounded from above (log-
on
ave 
ase) or from below (log-
onvex). However, dueto the fa
t that we have to estimate �jk we 
an only provide a weak statement interms of expe
tations.



112 5 Bump huntingLemma 5.7.1. Fix indi
es j and k where 0 � j < k � n with k� j � l. De�ne theve
tor Y n = (Yi)k�1i=j+1 of i.i.d. random variables su
h that every 
omponent Yi hasa log-linear density fun
tion gjk;�1 wheregjk;�(x) := �exp(�)� 1 exp(�x)1fx2Ijkg:Then:IE�jk;�jk Tjkn(Xn; �jk) 8<: � IE�jk;0 Tjkn(Y n; �1) if f is log-
on
ave on Ijk,� IE�jk;0 Tjkn(Y n; �1) if f is log-
onvex on Ijkas n!1 for all �1 � �jk where �jk and �jk are the parameters of the density f �jk.This lemma suggests an optimal strategy to sample from the distributionL(T �l;m;n(Xn)). On every interval Ijk estimate �jk, then generate a random ve
-tor with 
omponents having density gjk;�1 for a �1 su
h that �1 < b�jk and use thedistribution of T �l;m;n generated byM su
h random ve
tors to get 
riti
al values �(�)of L(T �l;m;n(Xn)). Note that this pro
edure provides quantiles depending on the a
-tual data Xn. Se
ond, the original 
ondition for �1 is to be smaller than the true�jk. However, �jk is unknown and repla
ed by the maximum likelihood estimatorb�jk.Unfortunately, Lemma 5.7.1 is only a limit result as n ! 1. As long as oneestimates �jk, this 
annot be improved in the sense to get a result for �nite n.However, one 
an imagine to 
hoose � di�erently, e.g. via some \worst �" or mini-max 
riterion, perhaps yielding results for �nite n. The prize to pay when adoptingsu
h a pro
edure is in terms of power. We have no 
lue how high the power loss is.As des
ribed above, to get quantiles generally appli
able we sampled ve
tors Enof exponential random variables, whi
h we 
onsidered having some sort of generallog-linear distribution. At least their parametri
 shape is justi�ed by Lemma 5.7.1,however, �jk = 1 is used for all 0 � j < k � n + 1. In Table 5.2 we provide somequantiles �(�), generated from M = 90999 simulations.To interpolate (or even extrapolate) for values of n not provided in Table 5.2, were
ommend to regress log�(�) on n (among n's where l and m are sele
ted usingthe same strategy).



5.8 Examples in bump hunting 113Table 5.2: Quantiles �(�) for the multis
ale test.n l m �(0:90) �(0:95) �(0:99)20 3 16 1.0749 1.3335 1.896950 3 46 1.4763 1.7007 2.2029100 3 96 1.6981 1.9253 2.3875200 3 196 1.8509 2.0702 2.5418300 3 146 1.8038 2.0098 2.4722400 3 196 1.8520 2.0699 2.5129500 3 246 1.8900 2.1052 2.5320600 4 296 1.9302 2.1346 2.5453700 5 346 1.9314 2.1270 2.5719800 6 396 1.9783 2.1729 2.5709900 7 446 1.9827 2.1908 2.61921000 8 496 1.9921 2.2058 2.63915.8 Examples in bump huntingWe illustrate the method des
ribed above with some examples with simulated data,performed in R, Version 2.1.1. Distributions we used are detailed in Table 5.3.Figures 5.4-5.7 illustrate the results. All �gures are to be read as follows: First, weimposed everywhere � = 0:05. Two plots always mate verti
ally. On the upper one,the straight line is the original density we sampled from whereas the dotted line isthe standard gaussian kernel estimate. In the lower plot, the sets C\l;m;n(0:05) (abovethe horizontal dotted line) and C[l;m;n(0:05) (below the dotted line) are displayed. Weintentionally omitted plots of the log-density (whereon the method a
tually works)in order not to overload the �gures.



114 5 Bump huntingTable 5.3: Distribution laws to illustrate bump hunting method.Name Law Sample Size nNormal N (0; 1) 50, 200Contaminated Normal 0:9N (0; 1) + 0:1N (6; 1) 200, 500Two bumps 0:5N (0; 1) + 0:5�(5; 2) 200, 500, 700, 1000Claw density 0:5N (0; 1) +P4i=0(1=10)N (i=2� 1; 1=100) 200, 500, 700, 1000In Figure 5.4 we see two standard normal samples of sizes n = 50 and n = 200. Inboth 
ases, only the set C\l;m;n(0:05) is non-empty, so that we 
on
lude by Theorem5.6.2 that there is at least one bump. Pre
isely we have:C\3;46;50(0:05) = f[X(4); X(44)℄gC\3;196;200(0:05) = f[X(1); X(129)℄; [X(42); X(135)℄; [X(44); X(146)℄; [X(45); X(160)℄;f[X(46); X(162)℄; [X(48); X(163)℄; [X(54); X(196)℄gand C[3;46;50(0:05) = C[3;196;200(0:05) = ?, yielding B\3;46;50(0:05) = C\3;46;50(0:05) andB\3;196;200(0:05) = f[X(1); X(129)℄g.Two samples for n = 200 and n = 500 of a standard normal distribution 
orruptedby 10% of observations stemming from another normal distribution are displayed inFigure 5.5, see Table 5.4 displaying the number of 
learly as
ertained bumps andthe sets B\l;m;n(0:05) and B[l;m;n(0:05).By Theorem 5.6.2 we 
on
lude with the level of the test tending to 0.05 as n!1that we have at least two bumps in the sample of size n = 500. Compared tothe purely normal distribution we 
an 
laim that there must be something di�erentgoing on here.A mixture density with two bumps appears in Figure 5.6. Note that the densityis 
onstru
ted su
h that it has only one mode but two bumps, this being the mostspe
i�
 situation to apply bump hunting 
ompared to mode hunting. The resultsare given in Table 5.5.
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Table 5.4: Results for the 
ontaminated normal density.n bumps dips B\l;m;n(0:05) B[l;m;n(0:05)200 1 1 [X(7); X(182)℄ [X(154); X(182)℄500 2 1 [X(96); X(455)℄ [X(134); X(447)℄[X(460); X(499)℄

Table 5.5: Results for the two bumps density.n bumps dips B\l;m;n(0:05) B[l;m;n(0:05)200 1 1 [X(1); X(164)℄ [X(59); X(151)℄500 2 1 [X(3); X(336)℄ [X(159); X(488)℄[X(338); X(488)℄700 2 1 [X(5); X(417)℄ [X(319); X(671)℄[X(480); X(671)℄1000 2 1 [X(3); X(674)℄ [X(326); X(970)℄[X(725); X(970)℄
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118 5 Bump huntingAs an illustration how the power of our multis
ale test evolves when n in
reases,Figure 5.7 displays a mixture of six normal distributions, the so-
alled Claw density,introdu
ed by Marron and Wand (1992). Here modes and bumps are the same.Table 5.6 details the results. Clearly, the method is at a sample size of n = 1000 notable to dete
t the bumps in the statisti
ally stri
t sense of Theorem 5.6.2. However,looking at Figure 5.7 in a more explorative manner, one already has 
lear indi
ationsat a sample size of n = 500 that there might be �ve bumps present, be
ause wehave alternating intervals whereon we 
laim log-
on
avity and log-
onvexity, butthe intervals still overlap.Table 5.6: Results for the Claw density.n bumps dips B\l;m;n(0:05) B[l;m;n(0:05)200 1 1 [X(9); X(185)℄ [X(136); X(185)℄500 2 2 [X(33); X(134)℄ [X(94); X(299)℄[X(209); X(439)℄ [X(350); X(439)℄[X(48); X(182)℄ [X(4); X(244)℄700 3 3 [X(291); X(476)℄ [X(252); X(521)℄[X(566); X(671)℄ [X(521); X(626)℄[X(67); X(256)℄ [X(5); X(349)℄1000 3 3 [X(420); X(635)℄ [X(356); X(605)℄[X(799); X(980)℄ [X(705); X(855)℄
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120 5 Bump hunting5.9 ProofsProof of Lemma 5.1.1: Lehmann (1986, p. 59) gives the �rst statement of thelemma in an even more general form, in
luding a proof. As for the Lapla
e transform,IE� exp�u>t(X)� = ZX exp[u>t(x)℄
(�)h(x) exp[�>t(x)℄ dx= 
(�) ZX h(x) exp[(� + u)>t(x)℄ dx= 
(�)
(� + u) : 2Proof of Theorem 5.1.2: Before atta
king dire
tly the di�eren
e in (5.6), somepreliminary 
onsiderations have to be made. First, note that for a random variableX having density fun
tion p� and ve
tors �; Æ 2 Rp we have for the fun
tion t, byLemma 5.1.1:IE�+Æ t(X) = RX h(x)t(x) exp[(�+ Æ)>t(x)℄ dxRX h(x) exp[(�+ Æ)>t(x)℄ dx= IE� t(X) + Æ> IE�[t(X)t(X)>℄ +O(kÆk22)1 + Æ> IE� t(X) +O(kÆk22)= �IE� t(X) + Æ> IE�[t(X)X>℄�[1� Æ> IE�(X)℄ +O(kÆk22)= IE� t(X) + Æ>Cov�(X; t(X)) +O(kÆk22) (5.24)using (1 + x)�1 = 1� x+O(x2)whi
h holds for any x 6= �1. Similarly one 
an deriveVar�+Æ t(X) = Var� t(X) +O(kÆk2): (5.25)Now de�ne the random ve
tors Zin asZin := n�1=2�t(Xin)� t(Xn)�where t(Xn) := (1=n) nXi=1 t(Xin)



5.9 Proofs 121is the empiri
al 
ounterpart of (5.1). By the law of large numbers in Se
tion A.9and Lemma 5.1.1 we have thatnXi=1 ZinZin> !p Cov�o t(X):The assertion follows be
ausenXi=1 IE�n min�kZink2; kZink22� = n IE�n(kZ1nk2)� p IE�o�t1(X1n)� t1(Xn)�+ o(1)! 0;by the row-wise identi
al distribution of the Xin together with (5.24) and assumingwithout loss of generality that the maximal di�eren
e appears in the �rst 
omponentof t(X). To be able to apply the Lindeberg-Feller 
entral limit theorem of Se
tionA.9 to pn(t(Xin)� IE�n t(X1n)), the 
orresponding 
ondition (A.11) remains to beveri�ed. For all " > 0,nXi=1 IE�n�kZ2ink2�1fkZink2>"g� p IE�o�t1(X1n)� t1(Xn)�2 nXi=1 1ft(Xin)�t(Xn)>("=p)png + o(1)= O� nXi=1 1fpn(t(Xin)�t(Xn))>("=p)ng�!p 0as n ! 1 be
ause the di�eren
e in the indi
ator fun
tion is a.s. bounded. Nowapply Lindeberg's 
entral limit Theorem A.9.2 to 
on
lude:n�1=2 nXi=1�t(Xin)� IE�n t(X1n)� !D Np�0;Cov�o t(X)�: (5.26)Together with the moment 
onditiont(Xn) = IEb�n t(X1n) (5.27)



122 5 Bump huntingfor the maximum likelihood estimator, (5.26) impliesIEb�n t(X1n)� IE�n t(X1n)= (b�n � �n)�Cov�o t(X) +Op(kb�n � �nk2)� +Op�kb�n � �nk22�= (b�n � �n) Cov�o t(X) + op(n�1=2)wherefrom we dedu
e, using again (5.26) as well as (5.27):pn(b�n � �n) = pn�t(Xn)� IE�n t(Xn)��Cov�o t(X)��1 + op(1)!D Np(0; I(�o)�1) as n!1by (5.2) and (5.26). 2Proof of Theorem 5.2.1: First let us derive a Taylor expansion for the log-likelihood fun
tion bLn and two ve
tors �;�o 2 �:bLn(�) = bLn(�o) + (�� �o)> nXi=1 _̀�o(Xin) + 12(���o)> nXi=1 �̀�o(Xin)(�� �o) ++16 nXj=1 nXk=1 nXl=1 (�j � �0;j)(�k � �0;k)(�l � �0;l) nXi=1 
jklMjkl(Xin) (5.28)where j
jklj = 1 and Mjkl(x) is su
h that��� �3��j��k��l `�(x)��� � Mjkl(x)for all j; k; l = 1; : : : ; n. Write Rn for the fourth summand in (5.28). It is notdiÆ
ult but tedious to verify that all the above third derivatives of `� are linear
ombinations of moments of t(X) and therefore, by Lemma 5.1.1, bounded. Thisimplies by Theorem A.9.1:���1n nXi=1 Mjkl(Xin)��� � IE�o Mjkl(X1n)� C(p�; �o)with probability tending to one for all j; k; l = 1; : : : ; n, a 
onstant C = C(p�; �o)only depending on the exponential family under 
onsideration and �o. Consequently,Rn 
an be written asjRnj = Op� nXj=1 nXk=1 nXl=1 pn(�j � �0;j)pn(�k � �0;k)(�l � �0;l)�:



5.9 Proofs 123Now if we have pn(�i � �0;i) = O(1) for all i = 1; : : : ; n thenjRnj = o(1):The expansion in (5.28) will now be used to derive the limit distribution of �n. Bythe assumption of the theorem,b�0n � �n = b�0n � �0n � ep hpn: (5.29)Setting � = b�0n and �o = �n in (5.28) we get a �rst approximation as follows:bLn(b�0n)� bLn(�n) = pn(b�0n � �n)>n�1=2 nXi=1 _̀�n(X1n)++12pn(b�0n � �n)> 1n nXi=1 �̀�n(X1n)pn(b�0n � �n) + op(1):Combining (5.3) and again Theorem A.9.1 one has1n nXi=1 �̀�n(X1n) = �I(�o) + op(1)what together with (5.29) yields:bLn(b�0n)� bLn(�n) == pn(b�0n � �0n)>n�1=2 nXi=1 _̀�n(X1n)�12pn(b�0n � �0n)>I(�o)pn(b�0n � �0n)� e>p hpn nXi=1 _̀�n(X1n) ++e>p hI(�o)pn(b�0n � �0n)� (h2=2)I22(�o) + op(1)= ~Y >n� ~V n + I12(�o)h�� hVn;p � 12 ~Y >n I11(�o) ~Y n � 12I22(�o)h2 + op(1) (5.30)where we introdu
ed Y n := pn(b�0n � �0n)V n := 1pn nXi=1 _̀�n(X1n):



124 5 Bump huntingIn order to get ~Y n, minimize the di�eren
e bLn(b�0n) � bLn(�n) over ~Y n. Therefore,set the derivative of the expression in (5.30) equal to 0, yielding:~Y minn = I11(�o)�1� ~V n + I12(�o)h�: (5.31)Reinserting ~Y minn in (5.30) we �nally getbLn(b�0n)� bLn(�n) =12� ~V n + I(�o)12h�>I11(�o)�1� ~V n + I(�o)12h�� Vn;ph� 12I22(�o)h2: (5.32)Using again the approximation (5.28) with � = b�n and �o = �n and taking intoa

ount that nXi=1 _̀b�n(X1n) = 0one 
an derive in a similar fashion as above:bLn(b�n)� bLn(�n) = 12V >n I(�o)V n + op(1)= 12 ~V >n I(�o) ~V n + 12V >n;p�1I22�1(�o)�1Vn;p�1 + op(1) (5.33)de�ning Vn;p�1(�) = Vn;p � I21(�)I11(�)�1 ~V nI22�1(�) = I22(�)� I21(�)I11(�)�1I12(�)and applying Lemma A.10.2. Now again by Lindeberg's Central Limit Theorem(Theorem A.9.2) we have for the ve
tor of s
ores V n, as n!1,V n !D Np�0; I(�o)� (5.34)(see also Se
tion 5.3 in van der Vaart, 1998). Consequently,Var�o Vn;p�1 = IE�o V 2n;p � 2I21(�o)I11(�o)�1 IE�o(Vn;p ~V n) +IE�o�I21(�o)I11(�o)�1 ~V n ~V >n I11(�o)�1I12(�o)�+ op(1)= I22�1(�o) + op(1):



5.9 Proofs 125This together with Lemma A.10.1 implies thatZ = I22�1(�o)�1=2Vn;p�1 (5.35)
onverges in distribution to a standard normal distribution.All ingredients to ta
kle �n are now made available. Subtra
ting (5.32) from (5.33)and multiplied by 2 results in�n = 2bLn(b�n)� 2bLn(b�0n) + op(1)= I22�1(�o)h2 + 2Vn;p�1h+ V 2n;p�1I22�1(�o)�1 + op(1)= �Z + I22�1(�o)1=2h�2 + op(1):Due to (5.35), �n 
onverges in distribution to a �2-distribution with one degree offreedom and non-
entrality parameter I22�1(�o)h2. The above representation alsodetails that �n !p 1 whenever h = pn�n;p !1. 2Proof of Theorem 5.2.2: Generalizing (5.29) one hasb��n � �n = b��n � ��n + �� � hpn�ep:Similarly to (5.30) one 
an derive the following Taylor approximation:bLn(b��n)� bLn(�n) == (b��n � ��n)> nXi=1 _̀�n(X1n) + �� � hpn�e>p nXi=1 _̀�n(X1n)�12n(b��n � ��n)>I(�o)(b��n � ��n)��n(b��n � ��n)>I(�o)�� � hpn�ep � 12n�� � hpn�2I22(�o) + op(1):Taking the derivative w.r.t. to � yields:��� bLn(b��n) = e>p nXi=1 _̀�n(X1n)� n(b��n � ��n)>I(�o)ep � n�� � hpn�2I22(�o) + op(1):Dividing by pn and setting � = 0 �nally gives for the s
ore statisti
:Sn = n�1=2 ��� bLn(b��n)����=0= Vn;p � ~Y >n I12(�o) + I22(�o)h+ op(1):



126 5 Bump huntingTo derive the limiting distribution for the LRT we already �gured out the form of~Y , see equation (5.31). Therewith,Sn = Vn;p � � ~V n + I12(�o)h�>I11(�o)�1I12(�o) + I22(�o)h+ op(1)= Vn;p + I22�1(�o)h� ~V >n I11(�o)�1I12(�o) + op(1): (5.36)Using (5.34) the varian
e of (5.36) isVar�o�Vn;p � ~V >n I11(�o)�1I12(�o)�= IE�o�[Vn;p � ~V >n I11(�o)�1I12(�o)℄2� + op(1)= IE�o V 2n;p � 2 IE�o(Vn;p ~V >n )I11(�o)�1I12(�o) + IE�o�[ ~V >n I11(�o)�1I12(�o)℄2� + op(1)= I22(�o)� 2I21(�o)I11(�o)�1I12(�o) +I21(�o)I11(�o)�1 IE�o( ~V >n ~V n)I11(�o)�1I12(�o) + op(1)= I22�1(�o) + op(1):This together with (5.36) �nally entailsSn !D N�I22�1(�o)h; I22�1(�o)�wherefrom we easily dedu
e the latter two statements in Theorem 5.2.2. From (5.36)it follows that Sn !p 1 if h!1. 2Proof of Theorem 5.3.1: The proof of this lemma 
onsists of elementary, tediousand little instru
tive manipulations and is therefore omitted. We only point outthat the following re
ursion formula helps:Hk(�) = exp(�)=� � (k=�)Hk�1(�)for k = 1; 2; ::: and any � 2 R. 2Proof of Theorem 5.4.1: Using (5.25) one hasVarb�0n Tb�0n(X1n) = Var�o T�o(X1n) +O(jb�0n � �oj)= Var�o T�o(X1n) + op(1) (5.37)by assumption (5.16), be
ause �n ! 0 entails that b�0n 
onsistently estimates �o. This
ontinuity property of the varian
e together with Theorem 5.2.2 already entails thestatement of the present theorem if pnj�nj ! h, where h � 0.



5.9 Proofs 127Next, rewrite Tn(Xn; b�0n) as:T (Xn; b�0n) == n�1=2 nXi=1 X2in=2� a(b�0n)Xin � b(b�0n)[Varb�0n Tb�0n(X1n)℄1=2= �C + op(1)�pn�2�1(X2n � IE�n;�n X21n)� a(b�0n)(Xn � IE�n;�n X1n)�+�C + op(1)�pn�2�1 IE�n;�n X21n � a(b�0n) IE�n;�n X1n � b(b�0n)� by (5:37)= �C + op(1)�pn�2�1 IE�n;�n X21n � a(b�0n) IE�n;�n X1n � b(b�0n)� (5.38)= pn�O(j�n � b�0nj) +O(j�nj)� by (5:12) and (5:24)= pn�op(n�1=2) +Op(j�nj)�= op(1) +Op(n1=2j�nj)for a generi
 positive 
onstant C independent of n where (5.38) is re
eived via (5.26).From these derivations we see that indeedTn(Xn; b�0n) !p 1as n!1 if ever j�nj diminishes at a slower rate than n�1=2. 2Proof of Lemma 5.5.1: We start the proof with a generally appli
able result forspa
ings when the underlying density f is di�erentiable and j and k are ful�lling(5.17): Xk �Xj = Op�k � jn+ 1�: (5.39)To proof (5.39), introdu
e a random ve
tor Un := (U1; : : : ; Un) 
ontaining the orderstatisti
s of an i.i.d. sample of uniformly on [0; 1℄ distributed random variables Ui,i = 1; : : : ; n. Denote the distribution fun
tion 
orresponding to f by F . First useLemma A.7.1 to re
eive for all l = 1; : : : ; n,Ul = ln+ 1 +Op�r� ln+ 1�� 1n+ 2��1� ln + 1� �:



128 5 Bump huntingThen, using this and applying the mean value theorem for a z 2℄Uj; Uk[:Xk �Xj = F�1(Uk)� F�1(Uj)= (Uk � Uj)(F�1)0(z)= Uk � Ujf(F�1(z))= Uk � Ujf(x
) + f 0(x
)(F�1(z)� x
) + o(F�1(z)� x
)= k � jn+ 1� 1f(x
) + op(1)� +Op�rk � jn2 �1� k � jn + 1� �= Op�k � jn + 1� +Op�pk � jn �1� k � jn + 1�1=2 �= Op�k � jn + 1�by Assumptions (5.17). To proof the lemma as n!1, note that verifying the limitTV(fn(X); gn(X))!p 0 is equivalent toH2�fn(X); gn(X)�!p 0 (5.40)by (A.9), where H is the Hellinger distan
e between two density fun
tions, seeSe
tion A.8. The limit in (5.40) holds if�1� 12H2(fjk; hjk)�k�j�1 !p 1using (A.10). Finally, with another simple manipulation, we arrive at the key 
on-dition to be veri�ed: (k � j � 1)H2(fjk; hjk)!p 0:First, use that as n!1,Z 10 exp(hjk(x) + rj(xÆjk)Æ2jk) dx == Z 10 �1 + '0(Xj)Æjkx+ '00(Xj)Æ2jkx2=2 + rj(xÆjk)Æ2jk +Op(Æ2jk)� dx= 1 +Op(Æjk):Similarly, Z 10 exp hjk(x) dx = 1 +Op(Æjk):



5.9 Proofs 129Now, inserting the de�nitions of fjk and hjk into the total variation distan
e andusing (5.19) we get as n!1,(k � j � 1)H2(fjk; hjk) == (k � j � 1) Z 10 � exp[hjk(x)=2 + rj(xÆjk)Æ2jk=2℄(R 10 exp(hjk(v) + rj(vÆjk)) dv)1=2 � exp(hjk(x)=2)(R 10 exp hjk(v) dv)1=2�2 dx= (k � j � 1) Z 10 exp hjk(x)�[exp(rj(xÆjk)Æ2jk=2)� 1℄[1 +Op(Æjk)℄�1=2�2 dx� k � j � 1(1 +Op(Æjk))� supx2[0;1℄ jrj(xÆjk)jÆ2jk=2 + op(Æ4jk)�2�Z 10 exp hjk(x) dx�= (k � j � 1)op(Æ4jk)(1 + op(1))!p 0: 2Proof of Theorem 5.5.2: Sin
e Lemma 5.5.1 holds, we 
an restri
t our attentionto the paraboli
 density gjk. Generalize the notation for this density togjk(u; �; �) = exp(�u+ �u2=2)R 10 exp(�v + �v2) dv1u2[0;1℄:Generalizing Lemma 14.31 in van der Vaart (1998) to 
omposite hypotheses, wehave to verify, in order to proof the theorem,(k � j � 1)H2�gjk(u; b�jk; �n); gjk(u; �0jk; 0)� !p 1;where the sequen
es �n and �n are as introdu
ed in (5.20) and (5.21). Finally, b�jk isa (k � j � 1)1=2�
onsistent estimator of �n and �0jk is the true parameter of gjk onIjk. Similarly to the 
al
ulations in Lemma 5.5.1 one 
an derive, as n!1,(k � j � 1)H2�gjk(u; b�jk; �n); gjk(u; �0jk; 0)� = Op(�n(k � j � 1)1=2):But thanks to the assumption given by (5.22) this latter expression is unboundedas n!1. 2



130 5 Bump huntingProof of Lemma 5.7.1: Suppose that log fjk is 
on
ave on Ijk. Let Fjk and Gjk;�be the distribution fun
tions 
orresponding to the densities fjk and gjk;�. Choose�1 � �jk su
h that Gjk;�1�a(b�jk)2 � = Fjk�a(b�jk)2 �:Both Fjk and Gjk;� are distribution fun
tions, what meansGjk;�1 = Fjk on fXj; a(b�jk)=2; Xkg:Hen
e the densities satisfy:Z a(b�jk)=2Xj (gjk;�1 � fjk) = Z Xka(b�jk)=2(gjk;�1 � fjk) = 0: (5.41)Be
ause log gjk;�1 is linear and log fjk is 
on
ave on Ijk, (5.41) entails that eithergjk;�1 � fjk on Ijk or the di�eren
e gjk;�1 � fjk has exa
tly two 
hanges of sign,namely at 
1 2 �Xj; a(b�jk)=2� and 
2 2 �a(b�jk)=2; Xk�su
h that gjk;�1 � fjk8<: � 0 on (Xj; 
1) [ (
2; Xk)� 0 on (
1; 
2):Using Lemma 9 in D�umbgen and Walther (2006) together with (5.41) then yields:F�1jk �G�1jk;�18><>: � 0 on �0; Fjk�a(b�jk)=2��� 0 on �Fjk�a(b�jk)=2�; 1�:Consequently, Xi = F�1jk (Ui;j;k) R G�1jk;�1(Ui;j;k)= Xj + (Xk �Xj)G�1jk;�1(Ui;j;k) (5.42)depending whether Ui;j;k Q Fjk(a(b�jk)=2), this 
ondition being equivalent toXi;j;k Q a(b�jk)=2. The uniform lo
al order statisti
s Ui;j;k are de�ned similarly



5.9 Proofs 131to Xi;j;k but for uniform order statisti
s U0; : : : ; Un+1 instead of the X0; : : : ; Xn+1having density fun
tion f . Equation (5.42) entails:nXi=1 Æb�jk(Xi;j;k) � nXi=1 Æb�jk(Yi;j;k):where Æ� was de�ned in Se
tion 5.6. Tedious 
al
ulations reveal that �a(�)2=4� b(�)is a non-de
reasing fun
tion on R. Hen
e:0 � 1n nXi=1�Æb�jk(Yi;j;k)� Æb�jk(Xi;j;k)�= 1n nXi=1�Æb�jk(Yi;j;k)� Æ�1(Xi;j;k)� Æ0�1(Xi;j;k)(b�jk � �1)�+ op(n�1)= 1n nXi=1�Tjkn(Y ; �1)� Tjkn(X; b�jk)�+ op(n�1=2)!p IE�jk;0 Tjkn(Y ; �1)� IE�jk ;�jk Tjkn(X; �jk)as n ! 1 by the law of large numbers. The 
ase where fjk is log-
onvex 
an betreated analogously. 2
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Chapter 6Outlook and open problems
6.1 Estimation based on 
ensored observationsLog-
on
avity 
ould o�er a 
ompromise between fully nonparametri
 methods su
has Kaplan-Meier (or Grenander) and fully parametri
 models in the estimation of asurvival fun
tion (via its log-
on
ave density) from 
ensored data as it is smooth,
ompared to the former two whi
h are step fun
tions with possible high jumps.Compared to the unimodal distribution fun
tion estimator of D�umbgen, Freitag,and Jongbloed (2006), the assumption of log-
on
avity 
ould possibly yield morepowerful pro
edures. However, 
ensored observations 
ompli
ate the situation 
om-pared to the i.i.d. 
ase. One of the obsta
les is that the log-likelihood fun
tion
orresponding to 	n in (4.2) is 
onvex with respe
t to the density f , but not withrespe
t to the log-density. A �rst algorithmi
 approa
h to ta
kle this task was takenby H�usler (2005).This reasoning also applies to fun
tions derived from a log-
on
ave density, su
h asthe hazard fun
tion � in Se
tion 3.6.6.2 Tests for distribution fun
tionsTheorem 3.5.1 suggests that the estimator bFn is essentially equivalent to the em-piri
al distribution fun
tion Fn . It 
an therefore be looked at as a smoother forFn . One should expe
t that every pro
edure where somehow the jump fun
tion Fnis plugged into 
an be improved in terms of a

ura
y (estimators) or power (tests)when plugging in the smooth fun
tion bFn instead, at least if the underlying densityfun
tion is indeed log-
on
ave. We sket
h an example. Consider two i.i.d. samples



134 6 Outlook and open problems(Xi)ni=1 and (Yi)ni=1 of equal size (for ease of simpli
ity) and ea
h 
omponent havingdistribution fun
tions FX and F Y , respe
tively. To test whether Ho : FX = F Y ver-sus H1 : FX 6= F Y a 
ommon used two-sample test statisti
 is Kolmogorov-Smirnov,relying on the empiri
al distribution fun
tions FXn and FYn of the samples:K := K (FXn ; FYn )= pnkFXn � FYn k[0;1℄1 :The limiting distribution of K and the therefrom derived asymptoti
 test 
an befound e.g. in Durbin (1973). If one imposes that FX and F Y both have log-
on
avedensity fun
tions, we instead propose to use the following modi�ed test statisti
:bK := bK( bFXn ; bF Yn )= pnk bFXn � bF Yn k[0;1℄1where bFXn and bF Yn are the log-
on
ave distribution fun
tion estimators introdu
ed inSe
tion 3.1. Deriving the limiting distribution of this statisti
 is presumably a diÆ-
ult task, but if one assumes that under Ho our pooled data (X1; : : : ; Xn; Y1; : : : ; Yn)has the same distribution as (X�1; : : : ; X�n; Y�n+1; : : : ; Y�2n) where � is a randompermutation of f1; : : : ; 2ng (that does not depend on the data), one 
an atta
k thedistribution of bK under Ho via a Monte Carlo permutation test. Generate M sam-ples of � and 
al
ulate the 
orresponding values of the test statisti
 bK1; : : : ; bKM . Anonparametri
 p-value bp is then given by:bp = 1 +#fi � M : bKi � bKog1 +Mwhere bKo is the test statisti
 for the original samples. It 
ould be ex
iting to
ompare the power of this test to that of well established alternatives, su
h as theabove des
ribed Kolmogorov-Smirnov or �2-tests.6.3 Tail index estimationAn example for a

ura
y improvement of an estimator using bFn is given in M�uller andRu�ba
h (2006). We show that both parametri
 distributions appearing in extremevalue theory, the generalized Pareto and the generalized extreme value distribution,have a log-
on
ave density fun
tion if the tail index parameter 
 lies in [�1; 0℄.



6.4 De
onvolution with log-
on
ave densities 135Suppose we are given an ordered sample X1 < : : : < Xn from one of the abovetwo limiting distributions having distribution fun
tion G
. The most widely usedestimators for this tail index 
, su
h as Pi
kand's or Falk's, are de�ned as weightedaverages of log-spa
ings. In order to improve the a

ura
y of these estimators, theidea is to repla
e the order statisti
s used to 
al
ulate them by quantiles re
eivedvia inversion of bFn. This smoothing te
hnique substantially redu
es varian
e inestimation not only of 
 but already in estimation of the quantiles. We intend to
ompare this new approa
h to existing tail index estimation methods and to dedu
ere
ommendations when to use whi
h tail index estimator and whether smoothed ornot.Furthermore, we have shown in the above paper that all distribution fun
tions Fhaving a log-
on
ave density fun
tion belong to the max-domain of attra
tion of thegeneralized extreme value distribution, for some 
 2 [�1; 0℄. This result relies on the
ontinuity, unimodality, and the non-de
reasing hazard property (see Lemma 2.3.1)of log-
on
ave density fun
tions. It seems 
lear that the max-domain of attra
tionshould be obtainable for fun
tion 
lasses that assume less than log-
on
avity, as infa
t only the tail (i.e. lo
al) behavior of a distribution matters in determining itsmax-domain of attra
tion. But log-
on
avity is a global property of the density.6.4 De
onvolution with log-
on
ave densitiesGroeneboom and Jongbloed (2003) 
onsider the following setting. Suppose we ob-serve random variables Z1; : : : ; Zn having densitygF (z) = ZR k(z � x) dF (x); z 2 R:Here k is a known probability density on R and F is an arbitrary distributionfun
tion. The question is: how 
an one estimate F or quantities related to it,e.g. moments? Equivalently, one 
ould think of observingZi = Xi + Yi; i = 1; : : : ; nwhere the Xi are distributed a

ording to F and Yi have density k. The authors thensimplify the task assuming that k is the uniform density on [0; 1), yielding a uni-form (or box
ar) de
onvolution problem. The nonparametri
 maximum likelihoodestimator bF of F is not 
ontinuous.



136 6 Outlook and open problemsHowever, the authors introdu
e a smoothed density estimator bfn;h:bfn;h(t) = ZRKh(t� y) d bFn(y)for some kernel fun
tion Kh, t 2 R, and a spe
i�
 bandwidth h = h(n). Beneaththe fa
t that this two-stage kernel estimator bfn;h has some undesired boundaryproperties, it 
ould be fruitful to 
al
ulate the estimate bFn dire
tly assuming thatF has a log-
on
ave density, i.e. no additional smoothing via K is then ne
essary.
6.5 Rates for different normsIn this thesis we only 
onsidered 
onsisten
y and rate of 
onvergen
e in the uniformnorm k:kT1 on 
ompa
t intervals T . First, the results in Chapter 3 should somehowbe generalized to the whole real line. Then, other norms 
ould be 
onsidered, e.g. thelimiting behavior (
onsisten
y, rate of 
onvergen
e, limiting distribution) ofk bfn � fkTp := �ZT j bfn(x)� f(x)jp dx�1=pfor any p 2 N . This work has already been a

omplished for the Grenander estimatorby Kulikov and Lopuha�a (2005a, 2006).Another open problem is a proof that the uniform rate of 
onvergen
e for the 
onvexde
reasing density estimator of Groeneboom, Jongbloed, and Wellner (2001b) has,under their assumptions, uniform rate of 
onvergen
e of (log(n)=n)2=5, and the gen-eralization of their whole work to density fun
tions belonging to H�older smoothness
lasses.One 
ould also think of a maximum likelihood version of the uniform rate of 
onver-gen
e result in the 
urrent status data regression setting of D�umbgen, Freitag, andJongbloed (2004). Finally, least squares log-
on
ave density estimation 
ould alsobe ta
kled.



6.6 Limiting distribution at fixed point 1376.6 Limiting distribution at fixed pointPreliminary 
onsiderations suggest that the limiting distribution ofn�=(2�+1)( bfn � f)(xo)at a �xed point xo 2 R 
an possibly be derived in a similar way like in the 
onvex
ase in Groeneboom, Jongbloed, and Wellner (2001b). One has to 
onsider suitableTaylor approximations to ZR�(x)( bfn � f)(x) dx;
hoose the perturbation fun
tion � su
h that the �rst two terms in the series dis-appear and make suitable appli
ation of (3.3). The remaining terms are then ap-proximated through suitable lo
al empiri
al pro
esses. Sin
e the 
onstant appearingin the limiting distribution for the 
onvex density estimator depends on f 00(xo)�1,Groeneboom, Jongbloed, and Wellner (2001b) simply assume f 00(xo) > 0. However,for the log-
on
ave density estimator su
h an assumption would be mu
h too restri
-tive (if f e.g. stands for the normal density fun
tion we have f 00(�1) = 0), when
epresumably an even more involved limiting behavior will out
rop.6.7 Log-
on
avity and total positivityAs des
ribed in the introdu
tion, monotoni
ity and 
onvexity are spe
ial 
ases fork = 1; 2 in the 
lass of k-monotone densities. These 
lasses were treated by Balab-daoui and Wellner (2004a-d) as a step to the solution of the 
ase k =1 (
ompletemonotoni
ity). The relevan
e of the latter 
ase 
omes from the fa
t that the 
lassof 
ompletely monotone densities is equivalent to that of s
ale mixtures of expo-nentials. Unimodality and log-
on
avity on the other side are equally spe
ial 
asesfor k = 1; 2 in the notion of total positivity, see Karlin (1968). Perhaps it 
ouldbe fruitful to similarly 
onsider the estimation of total positive density fun
tionsof order k = 3; : : : ;1. However, as log-
on
avity 
overs many parametri
 models,imposing further 
onstraints on the density possibly narrows the window too mu
hfor statisti
al appli
ations.



138 6 Outlook and open problems6.8 Multivariate 
ontextPolonik (1995, 1998) pioneered multivariate density estimation under shape 
on-straints. Log-
on
avity 
ould be another option to be studied in this 
ontext,e.g. imposed univariately in some dimensions or globally.6.9 Bump huntingThe method we propose in Part 2 still relies on the Working Assumption 5.6.1 thata limiting distribution for T �l;m;n as n!1 exists (and is non-degenerate and at bestindependent of f). A thorough analysis of this limiting distribution is still la
king.Furthermore, our approa
h estimates the nuisan
e parameter �, implying that thesize of the test is only guaranteed asymptoti
ally. Minimax approa
hes (i.e. takingthe \worst" � with respe
t to a 
ertain 
riterion) possibly yield pro
edures that holdthe signi�
an
e level also for �nite n. However, presumably an improvement in thissense has to be paid by a loss of power.As already pointed out in Se
tion 5.6, test fun
tions % instead of T� are equallypossible, as long as they wipe out linear fun
tions in the sense thatZR x%(x) dx = 0:Alternative test fun
tions possibly o�er a way to dire
tly test 
onvexity or 
on-
avity of the underlying density. Probably not all approa
hes perform equally onall types of underlying densities. These di�erent performan
es 
ould be assessedempiri
ally and theoreti
ally. Furthermore, (theoreti
al) power 
onsiderations forthe method des
ribed in Part 2 as well as di�erent assumptions for the alternatives
ould fa
ilitate the de
ision for a method in a spe
i�
 problem. Existing approa
heslike Silverman's approa
h (Silverman 1981), the Dip test of Hartigan and Hartigan(1985) or SiZer of Chaudhuri and Marron (1999) 
ould be in
orporated in these
omparisons.



Appendix AStandard results
We state here several well known theorems, in the order they appear in Chapters 3to 5. A.1 Lebesgue's dominated 
onvergen
eTheoremWe borrow the formulation and the proof from Pollard (2002).Theorem A.1.1. Let fn be a sequen
e of �-integrable fun
tions (i.e. R f d� <1)for whi
h limn!1 fn(x) exists for all x. Suppose there exists a ��integrable fun
tionF , independent of n, su
h that jfn(x)j � F (x) for all x and all n. Then the limitfun
tion f := limn!1 fn is integrable andlimn!1Z fn = Z limn!1 fn = Z f:A.2 Modulus of 
ontinuity of a uniformempiri
al pro
essFirst, de�ne the uniform empiri
al pro
ess. Let �1; : : : ; �n denote independent uni-form random variables supported on [0; 1℄. Introdu
e for t 2 [0; 1℄G n(t) := 1n nXi=1 1f�i�tg



140 A Standard resultsthe empiri
al distribution fun
tion of the sample. Let (Un(t))t2[0;1℄ denote the uni-form empiri
al pro
ess whereUn(t) := pn(G n(t)� t)for t 2 [0; 1℄. Our fun
tion of interest, the modulus of 
ontinuity, is then:!(g; d) := supx2[A;B�d℄ supjhj�d jg(x+ h)� g(x)jfor d > 0 and fun
tions g bounded on [A;B℄. From Donsker's Theorem we knowthat the sequen
e of pro
esses (Un)n 
onverges weakly to a Brownian Bridge B .Sin
e B is 
ontinuous one 
an ex
ept that !(B ; d) ! 0 a.s. and a famous result byL�evy (1937) spe
i�es the rate of 
onvergen
e to 0. Stute (1982) 
arried this resultfrom B over to Un , and this is exa
tly what �ts our purposes:Theorem A.2.1. Let rn satisfy the regularity 
onditions:rn ! 0nrn % 1log(r�1n )= log logn ! 1log(r�1n )=(nrn) ! 0:The modulus of 
ontinuity !(Un ; rn) of the uniform empiri
al pro
ess then almostsurely satis�es: limn!1 !(Un ; rn)p2rn log(r�1n ) = 1:Sequen
es rn 
omplying to the above four 
onditions are named \bandsequen
es". Aproof for this theorem 
an be found in the original paper or in Shora
k and Wellner(1986).



A.3 The Massart - Dvoretzky - Kiefer - Wolfowitz inequality 141A.3 The Massart - Dvoretzky - Kiefer -Wolfowitz inequalityIn 1956, Dvoretzky, Kiefer and Wolfowitz gave a bound on the tail probability ofkFn � Fk[0;1)1 .Theorem A.3.1. Let Fn be the empiri
al and F the true distribution fun
tion foran i.i.d. sample X1; : : : ; Xn. Then there exists a 
onstant C > 0 su
h that for everyx > 0 P�pnkFn � Fk[0;1)1 > x� � Ce�2x2:The 
onstant C was de
reased several times until Massart (1990) showed that C = 2holds and that no further improvement is possible. For proofs we refer to the originalpapers. The expression on the left is the tail probability of the Kolmogorov-Smirnovstatisti
, see e.g. van der Vaart (1998), Se
tion 19.3.A.4 Some results from optimizationSuppose we would like to optimize a di�erentiable 
onvex fun
tional 	n(�) overve
tors � 2 Rn under the linear 
onstraint B� � 0 where B is a m�n-dimensionalmatrix, implying that m 
onstraints are present. It would be 
onvenient to knowwhether an a
tual 
andidate b� already solves the problem. The following theoremdelivers exa
tly what the do
tor ordered.Theorem A.4.1. Let b� be a ve
tor in Rn su
h that 	n(b�) <1. Then b� minimizes	n(�) over the set of ve
tors � su
h that B� � 0, if, and only if, the following
onditions hold for some ve
tors v; s 2 Rm :r�	n +B>v = 0 (A.1)Bb� + s = 0 (A.2)visi = 0 for all i = 1; : : : ; m (A.3)v � 0 (A.4)s � 0: (A.5)



142 A Standard resultsConditions (A.1)-(A.5) are referred to as the Karush-Kuhn-Tu
ker 
onditions. Notethat we 
onsider here a spe
ial formulation of the problem. Generalizations alsoin
lude equality 
onstraints and non-linear 
onstraint fun
tions. For a formulationof su
h a mu
h more general version of the theorem, 
onsider e.g. Wright (1997,Appendix A). This book also provides a proof of Theorem A.4.1.In Chapter 4 we introdu
e a primal log-barrier algorithm. The theorem belowensures that an algorithm based on this method indeed �nds the solution b�.Theorem A.4.2. Suppose that there exists a point b� 2 F , where F is the feasibleset introdu
ed in Se
tion 4.2. Let the level sets f� : B� � 0;	n(�) � 
g be boundedfor every 
 > 0. Assume further that the fun
tional 	n is di�erentiable and 
onvex.Then the optimization problemmin�2Rnn	n(�)� � mXi=1 log��(B�)i�ohas a solution for all � > 0 and this solution is unique. Furthermore, �(�) tends tothe optimal solution b� as � is driven down to 0.A proof is given e.g. by Fia

o and M
Cormi
k (1968) who in fa
t introdu
ed thismethod. A.5 Isotoni
 regressionSuppose a real-valued bivariate random ve
tor (X; Y ) is given. Let F (�jx) denotethe 
onditional distribution fun
tion of Y given X = x, i.e. for x; y 2 R:F (yjx) = P (Y � yjX = x):In linear regression, one now assumes that the unknown mean fun
tionm(x) := IE(Y jX = x)= Z y dF (yjx); x 2 Ris aÆne linear and lies in a given d-dimensional spa
e of fun
tions, denoted by Ld,where d 2 N is known and �xed. An example for Ld isff : x 7! f(x) = dXi=0 aixig;



A.5 Isotoni
 regression 143i.e. the (d + 1)-dimensional ve
tor spa
e of all polynomials of at most dimensiond. Given a sample of observations (X1; Y1); : : : ; (Xn; Yn) where (Xi; Yi) =D (X; Y )for all i = 1; : : : ; n, a possible way to de�ne an estimator bm is via weighted leastsquares: bm(x) := argminm2Ld nXi=1 wi(Yi �m(Xi))2 (A.6)where the wi; i = 1; : : : ; n are spe
ifying the weight that ea
h observation is givento. Sometimes it is plausible to assume that the fun
tion m is isotoni
 rather thanlinear, i.e. monotone non-de
reasing in x implying that for any x1; x2 2 R su
h thatx1 � x2 and y 2 R one has F (yjx1) � F (yjx2):Problem (A.6) then transforms tobm" = argminm(X1)�:::�m(Xn) nXi=1 wi(Yi �m(Xi))2 (A.7)where we fo
us our attention on estimation of m on the set of observationsX := fX1; : : : ; Xng. Lower and upper bounds for bm"(x) for x 62 X 
an then befound via the isotoni
 property, e.g. trough linear step fun
tions. Now the PAVA
omes into play. The 
ru
ial point is to introdu
e the 
umulative sum diagram(CSD), i.e. to plot the points pj = (Wj; Gj) for j = 0; : : : ; n whereWj := jXk=1 w(Xk) Gj := jXk=1 w(Xk)Yi:De�ne the greatest 
onvex minorant (GCM) at a pla
e t 2 R as the supremum ofthe values at t of all 
onvex fun
tions that lie entirely below the CSD. Theorem 1.2.1in Robertson, Wright, and Dykstra (1988) then guarantees that the left derivativeof the GCM solves problem (A.7). The key is that if we have two violators of themonotoni
ity 
onstraint, i.e. there exist a io 2 f2; : : : ; ng su
h that Yio�1 > Yio, we
an 
onne
t the points Pio�2 and Pio in the CSD via a straight line, a modi�
ationthat leaves the GCM un
hanged but the above points do not violate the monotoni
ity
onstraint for the left derivative anymore. The same theorem ensures that a solutionfound by this pro
edure indeed minimizes the weighted sum of squares in (A.7).Finally, the aforementioned book details an algorithm to �nd bm" via an iterativealgorithm. It 
an be shown that this algorithm in this spe
i�
 least square 
aseneeds at most O(n) operations to �nd bm".



144 A Standard resultsA.6 A 
onvergen
e theorem for iterativealgorithmsD�umbgen, Freitag, and Jongbloed (2006) present a framework to 
ompute MLEsiteratively, well appli
able to many known iterative algorithms. For ease of 
om-pleteness we summarize their theorem on 
onvergen
e of these algorithms. We makeuse of this theorem in Se
tions 4.5 and 4.6.Suppose we want to maximize a fun
tional L : � ! [�1;1) over some metri
spa
e (�; �). The following regularity 
onditions are imposed on L.(A.1) The fun
tional L is 
ontinuous on �, and the set fL > �1g is nonvoid.(A.2) For any r 2 R the set fL � rg is 
ompa
t (or empty).The se
ond 
ondition implies that the setb� := argmaxx2� L(x)is nonvoid and 
ompa
t. Note that if � = R and L is 
on
ave, Conditions (A.1) and(A.2) are easily guaranteed. To perform the maximiziation, introdu
e an algorith-mi
 mapping � from �o := � \ fL > �1g onto itself. This algorithmi
 mapping� should satisfy the following 
onditions:(B.1) All iterates lie in b�: �(x) 2 b� for all x 2 b�.(B.2) Improve the iterates in every step: For any x 2 �o n b�,lim infy!x L��(y)� > L(x):Note that only requesting L(�(x)) > L(x) for any x 2 �o n b� is not stri
t enoughto guarantee Theorem A.6.1.Theorem A.6.1. Suppose that L and � satisfy Conditions (A.1-2) and (B.1-2).For an arbitrary starting point xo 2 �o de�ne indu
tively new iterates xn := �(xn�1)for n � 1. Then limn!1minbxb2�o �(xn; bx) = 0:This theorem is Proposition 3.1 in D�umbgen, Freitag, and Jongbloed (2006). Theproof 
an be found there.



A.7 Some results about order statisti
s 145A.7 Some results about order statisti
sHere we give some fundamental properties of order statisti
s. Let U1 < : : : < Un bean i.i.d. ordered random sample of uniformly distributed random variables. For adistribution fun
tion F de�ne another sample X1 < : : : < Xn viaXi := F�1(Ui); i = 1; : : : ; n:It is well known that then all the Xi are distributed a

ording to F . Introdu
e an-other ordered i.i.d. exponentially distributed sample Y1 < : : : < Yn. We summarizethe fa
ts used in the proofs in Se
tion 5.5 in the following lemma:Lemma A.7.1. For the ordered random variables we have:(Uk)nk=1 =D  Pki=1 YiPn+1j=1 Yj!nk=1 (A.8)whereas for the spa
ings�Uk � Uk�1�n+1k=1 =D  YkPn+1j=1 Yj!n+1k=1:Finally, one single order statisti
 Uj has a Beta(j; n + 1� j)-distribution whereIE(Uj) = j=(n+ 1) Var(Uj) = � jn+ 1�� 1n+ 2��1� jn + 1�:The proof of this lemma is elementary and 
an e.g. be found in Arnold et. al (1992).Through appli
ation of (A.8) one 
an further dedu
e that Uk � Uj =D Uk�j.A.8 Total variation and Hellinger distan
eWhen repla
ing a density fun
tion by lo
al parabolas in Se
tion 5.5 we argue that bydoing this the total variation distan
e between the original density and the approxi-mation is asymptoti
ally negligible. The proof relies among other things on LemmaA.8.1. Usually, the following de�nitions are given with (probability) measures asarguments, (e.g. in van der Vaart (1998), Chapter 14). However, our arguments willbe the densities dire
tly. For two probability densities p : Rk ! R and q : Rk ! Rde�ne the total variation distan
e asTV(p; q) := ZRk jp(x)� q(x)j dx



146 A Standard resultsand the Hellinger distan
eH(p; q) := �ZRk�pp(x)�pq(x)�2 dx�1=2:The following lemma delivers the 
riti
al (in-)equalities.Lemma A.8.1. For two probability densities p; q 2 L1(Rk) we haveH2(p; q) � TV(p; q) � 2H(p; q): (A.9)If u and v are the densities 
orresponding to the joint distributions re
eived from ni.i.d. random variables having densities u and v respe
tively one has:H2(u; v) = 2� 2�1� 12H2(u; v)�n: (A.10)The proof of Lemma A.8.1 relies on fundamental manipulations with minima andintegrals plus the Cau
hy-S
hwarz inequality and 
an e.g. be found in the proof ofLemma 14.31 of van der Vaart (1998). The Hellinger distan
e is espe
ially 
onvenientwhen 
onsidering produ
t measures, as it is, by (A.10), easily expressible in termsof Hellinger distan
e of the individual measures. This is mu
h more diÆ
ult (if noteven impossible) for the total variation distan
e, therefore (A.9) is used as a detour.A.9 Limit theorems for triangular arraysNow to the law of large numbers and the 
lassi
al Lindeberg-Feller 
entral limittheorem for triangular arrays. A triangular array of random ve
tors is a row-wiseindependent sequen
e Xn;kn. The generalization 
ompared to the standard 
entrallimit theorem is that the distributions ofXn;kn may depend on n. For su
h an array,a law of large numbers 
an be stated as follows.Theorem A.9.1. For ea
h n let Xn;1; : : : ;Xn;kn be independent random ve
torssu
h that, as n!1, knXi=1 IEmin�kXn;ik; kXn;ik2� ! 0:Then knXi=1�Xn;i � IEXn;i� !p 0:



A.10 Some formulas from multivariate statisti
s 147The next theorem gives the 
orresponding 
entral limit theorem.Theorem A.9.2. For ea
h n let Xn;1; : : : ;Xn;kn be independent random ve
torswith �nite varian
es su
h that the Lindeberg 
onditionknXi=1 IE�kX2n;ik�1fkXn;ik>"g ! 0 (A.11)holds for every " > 0 and knXi=1 VarXn;i ! �:Then knXi=1�Xn;i � IEXn;i� !D Np(0;�):In appli
ations, as in the proof of Theorem 5.4.1, often kn = n. Proofs 
an e.g. befound in Borovkov (1998), or for the latter Theorem in van der Vaart (1998), Propo-sition 2.27.A.10 Some formulas from multivariatestatisti
sHere we give two lemmas that are used in matrix manipulations in Se
tion 5.2. The�rst result is about inversion of blo
k matri
es.Lemma A.10.1. Let A be a r � r non-singular matrix, B a r � s matrix, C as � r matrix and D a non-singular s � s matrix su
h that T := D � CA�1B isnon-singular. The inverse of the (r + s)� (r + s) matrixM := 0� A BC D 1Ais then: M�1 = 0� A�1 +A�1BT�1CA�1 �A�1BT�1�T�1CA�1 T�1 1A :



148 A Standard resultsThis lemma 
an be proven expli
itly showing that MM�1 = I. Using the notationof Lemma A.10.1 the next lemma provides another short
ut useful in manipulationsof blo
k matri
es.Lemma A.10.2. Let v 2 Rr+s , v1 = (vi)ri=1 and v2 = (vi)si=r+1. Then:v>M�1v = v>1A�1v1 + (v2 �CA�1v1)>T�1(v2 �CA�1v1):Again, this result 
an be veri�ed through brute for
e 
al
ulation, at best not withouttaking advantage of Lemma A.10.1.



Appendix BList of spe
ial symbols
Part I: Log-
on
ave density estimationL1(R) real-valued and on R Lebesgue-integrable fun
tions, p. 2bfG Grenander density estimator, p. 4bFG Grenander distribution fun
tion estimator, p. 5X log-
on
ave random variable, having distribution fun
tion F with log-
on
ave Lebesgue density fun
tion f , p. 15F distribution fun
tion F : R ! [0; 1℄ on the real line, having log-
on
aveLebesgue-density f , p. 15f density fun
tion of F with respe
t to Lebesgue measure, p. 15' logarithm of f , p. 15d1 � d2 
onvolution for two density fun
tions d1; d2 2 L1(R), p. 15� hazard rate fun
tion derived from f and F , p. 17n number of order statisti
s under 
onsideration (sample size), p. 21Xi i = 1; : : : ; n,X1 < : : : < Xn i.i.d. order statisti
s, all having distributionfun
tion F , p. 21Ln general maximum log-likelihood fun
tional, p. 21Fn empiri
al distribution fun
tion for a sample X1 < : : : < Xn, p. 211A indi
ator fun
tion for a 
ondition A	n(') maximum log-likelihood fun
tional, depending on ', su
h that its ex-ponentiated minimizer is a probability density, p. 22b'n maximum likelihood estimator of ', p. 22bfn maximum likelihood estimator of f , p. 22



bFn maximum likelihood estimator of F , p. 22v general ve
tor notation, v := (v1; : : : ; vn), p. 23b' the pie
ewise linear fun
tion b'n, viewed as a ve
tor of its knot points,p. 23S(hn) set of knots of a pie
ewise linear 
ontinuous fun
tion hn, p. 24�(G) mean of a distribution fun
tion G, p. 25Var(G) varian
e of a distribution fun
tion G, p. 25�n �n = log(n)=n, p. 27kgkI1 uniform norm of a fun
tion g on an interval I, p. 27T �xed 
ompa
t interval [A;B℄ with endpoints A < B, p. 27H�;L(T ) H�older 
lass of fun
tions for an exponent � and a 
onstant L on a
ompa
t interval T , p. 27!p 
onvergen
e in probability, p. 27. Applied to ve
tors this operator isto be understood 
omponentwise.!D 
onvergen
e in law, p. 27. Applied to ve
tors this operator is to beunderstood 
omponentwise.=D equality in law, p. 27. Applied to ve
tors this operator is to be under-stood 
omponentwise.bFn;h estimator of F based on a kernel with bandwidth h, p. 32b�n estimator of � based on bfn and bFn, p. 32kxk2 L2-norm for a ve
tor x, p. 34D1(g) 
lass of all fun
tions � su
h that g + t� is 
on
ave for some t > 0 anda 
on
ave fun
tion g, p. 36D2(g) all pie
ewise linear fun
tions � su
h that any knot q of � ful�lls either(3.14) or (3.15), for a 
on
ave fun
tion g, p. 36D3(g) 
ontinuous and pie
ewise linear fun
tions in D2(g) with knots only inS(g), p. 36IE(X) expe
tation for a random variable X 2 L1(R), p. 49(g)+ positive part of a real-valued fun
tion g: (g)+ := maxf0; gg, p. 56#A number of elements of a set A, p. 49�vi di�eren
e of two su

essive elements of a ve
tor: �vi := vi � vi�1 forv 2 Rn and i = 2; : : : ; n, p. 64150



A general notation for a m� n matrix where the elements areA = 0BBB� A11 � � � A1n... ...Am1 � � � Amn
1CCCA ;p. 65x � y for two ve
tors x;y 2 Rn we say that x � y holds if xi � yi for alli = 1; : : : ; n. Equality is likewise, p. 65x> transposed ve
tor x, p. 66kxkA norm of the ve
tor x with respe
t to the matrix A: kxkA := px>Ax,p. 67diag(x) diagonal matrix with the ve
tor x on its diagonal, p. 69diag(A) ve
tor 
onsisting of the diagonal of the matrix A, p. 77N (�; �) Univariate Normal distribution with mean � 2 R and standard devia-tion � > 0, p. 78�(�; �) Gamma distribution with shape parameter � > 0 and s
ale parameter� > 0, p. 78Part II: Bump huntingp� parametri
 density fun
tion, with parameter � 2 � 2 Rp , p. 89IE� u(X) expe
tation of a fun
tion u su
h that up� 2 L1(R) for a random variableX, where X has density fun
tion p�, p. 89u(Xi) sample mean of the random variables u(Xi); i = 1; : : : ; n, p. 120`� log of p�, p. 90_̀� s
ore fun
tion of p�, p. 90I� Fisher information matrix of p�, p. 90~x For a given ve
tor in Rk , ~x 2 Rk�1 is the ve
tor omitting the last
omponent, p. 92Np(�;�) p-variate Normal distribution with mean ve
tor � 2 Rp and 
ovarian
ematrix � 2 Rp�p , p. 91 151



�21(p) �2-distribution with one degree of freedom and a non-
entrality para-meter p � 0, p. 93�21;� �-quantile of a �2-distribution with one degree of freedom, � 2 (0; 1),p. 94�21(p; :) �2-distribution fun
tion with one degree of freedom and non-
entralityparameter p � 0, p. 94z� �-quantile of a standard normal distribution, � 2 (0; 1), p. 95�1 distribution fun
tion of a standard normal distribution, p. 96f�;� spe
i�
 two-parameter density used to de�ne bump hunting test statis-ti
, p. 97f twi
e 
ontinuously di�erentiable density fun
tion, p. 103Xi order statisti
s X0 < : : : < Xn, having distribution fun
tion F anddensity fun
tion f , p. 103fjk \lo
al" density fun
tion, p. 103Ijk intervals spanned by two order statisti
s: Ijk = (Xj; Xk), p. 103Xi;j;k lo
al order statisti
s, p. 103TV (f; g) total variation distan
e between two densities f and g, p. 105C\l;m;n set of intervals whereon multis
ale test 
laims that f is 
onvex, p. 108C[l;m;n set of intervals whereon multis
ale test 
laims that f is 
on
ave, p. 108B\l;m;n(�) set of intervals whereon multis
ale test 
laims that f has a bump, p.108B[l;m;n(�) set of intervals whereon multis
ale test 
laims that f has a antibump,p. 108L(X) distribution of the random variable X, p. 109
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