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Abstract

It is a challenge for people, especially children, to speak, improve language and communicate
without hearing. In addition, if people cannot hear any sounds, they will feel isolated. At this
point, cochlear implantation has become widely used as a treatment for people with a severe-
to-profound sensorineural hearing loss and not benefiting from hearing aids. A cochlear
implant is an electrical device, which uses the electrical signal to imitate the sound waves, as
replacement of the damaged part of the inner ear. The implanted electrode stimulates the
hearing nerve inside the cochlea in order to transfer the signal to the brain, which enables the
person to hear.

Minimally invasive cochlear implantation is one representative case of microsurgical
navigation technologies, that reduces the potential surgical trauma of the conventional
cochlear implant surgery. The drill passes through the facial recess to the round window via
a tiny trajectory, instead of milling a big hole. It is crucial that the drill does not hurt any
critical structures, especially the facial nerve, which has the highest priority for protection. If
the facial nerve is damaged, the patient will lose facial movement. Therefore, it is important
to accurately segment the facial nerve in surgical planning for computing an optimal drill
trajectory.

In addition, Computed Tomography (CT) or Cone-beam computed tomography (CBCT)
used for surgical planning, features a low image resolution in relation to the small structure
of interest, as well as patient motion artefacts. For these two main reasons, the CT or
CBCT images are often blurred and visualizing the border of anatomical structures becomes
difficult, which make it extremely challenge to do the surgical planning in a precise way. It is
hypothesised in this thesis that an advanced CT based image analysis of the ear can lead to a
highly accurate facial nerve segmentation for micro-IGS cochlear implantation.

This thesis presents two main works for personalized planning of cochlear implantation
in robotic image guided system, which is developed at the University of Bern. The first task
is related to motion detection. In order to estimate patient head movement, we developed
an image-based pipeline. Experimental results demonstrate that the proposed approach to
estimate head motion is feasible.
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The second task is related to highly accurate facial segmentation from CT/CBCT images.
A super-resolution strategy was developed and applied for image enhancement and sub-pixel
classification. For image enhancement, facial nerve image enhancement was developed
using supervised learning based on multi-output ExtraTree regressor. The enhanced image is
passed to a surgical planning software, OtoPlan, and facial nerve is segmented from OtoPlan.
Segmentation from the enhanced CBCT and the original CBCT showed the enhanced CBCT
with the proposed approach improves the segmentation. For sub-pixel classification, an
automatic random forest based super resolution classification (SRC) framework is proposed
for facial nerve segmentation refinement. In order to reduce computational time, a band-
based region of interest selection (ROI) segmentation results from initial segmentation is
selected. Then, SRC works on these ROI segmentation results for facial nerve segmentation.
Preliminary results on 3D CBCT and CT ex-vivo datasets achieved a segmentation accuracy
with a Dice coefficient of 0.818± 0.052, surface-to-surface distance of 0.121± 0.030mm
and Hausdorff distance of 0.715± 0.169mm. Compared with two other semi-automated
segmentation software tools, ITK-SNAP and GeoS, the proposed method shows accurate
segmentations at sub-voxel accuracy.

Keywords: Cochlear implantation, Image guidance, Surgical planning, Head movement,
Motion detection, Facial nerve segmentation, Refinement, Super resolution classification,
Band-based region, Sub-voxel.
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Chapter 1

Introduction

1.1 Clinical Background

To fully comprehend cochlear implantation, a brief description of the anatomy of
the ear and how hearing works is provided below. This section is derived from
[97][58][59][60][61][57][158][157].

1.1.1 Anatomy of the Ear

The human ear is the organ of hearing and balance. It contains three main parts: the outer
ear, the middle ear and the inner ear (see Figure 1.1). The outer ear captures the sound waves
and directs them into the middle ear. The middle ear modifies sound waves into vibrations
that pass to the inner ear. The inner ear converts vibrations into nerve impulses, which the
brain then interprets.

Outer Ear

The outer ear consists of the pinna and an external auditory canal.

• Pinna is also named auricle. It is the outside part of the ear, which collects sound and
funnels it into the ear canal [97][60][158].

• External auditory canal is also called ear canal. It has a tube-like shape that joins
the outer ear to the middle ear and delivers sound to the middle ear [97][60][158].
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Figure 1.1: Ear anatomy. It includes the outer ear, the middle ear and the inner ear. In the
outer ear, there are the pinna and the external auditory canal. In the middle ear, there are the
tympanic membrane and the ossicles including the malleus, the incus and the stapes. In the
inner ear, there are the cochlea, the vestibular system, the auditory nerve, and the emicircular
canals. Source: [96]

Middle Ear

The middle ear is located between the outer ear and the inner ear. It comprises the tympanic
membrane and ossicles.

• Tympanic membrane is also called eardrum and it converts sound into vibrations
[97][61][158].

• Ossicles comprise a chain of three small bones called malleus, incus and stapes that
transmit the vibrations to the inner ear [97][61][158].

Inner Ear

The inner ear includes the cochlea, vestibular system, auditory nerve and the semicircular
canals.

• Cochlea: a spiral-shaped chamber bone that looks like a snail shell. It contains the
hearing nerves, fluid and hair cells. Once the sound vibrations stimulate the hair cells,
these hair-like structures move [97][59][158][157].

• Vestibular system: It contains cells that are used to control balance [97][59][158].
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• Auditory nerve: transmits impulses about hearing from the inner ear to the brain
[97][59][158].

• Semicircular canals: perform a balance function and contain three semicircular tubes
which are the lateral semicircular canal, the anterior semicircular canal and the
inferior semicircular canal [57][158].

1.1.2 How hearing works

Ears catch sound waves and convert them into signals that the brain can comprehend, such as
a song or a conversation. How hearing works are described [98] [42] [99] as follows:

The sound enters the ear canal from the pinna, and makes the ear drum vibrate. The
vibrations arrive at the ossicular chain, which contains malleus, incus and stapes, and from
there to the inner ear. Next, the vibrations result in the movement of the liquid inside the
cochlea, which in turn pushes hair cells inside the cochlea. Then, these hair cells produce
electrical impulses. The auditory nerves receive these impulses and send signals to the brain.
At the end, the auditory cortex of the brain interprets this information as sounds, for instance,
a song or a conversation.

Hair cells, which lie in the whole length of the cochlear, play an important role in the
conversion process from the sound vibration to the electrical impulse. These hair cells have
various degrees of sensitivity, associated to different frequencies. Therefore, the ear has the
ability of recognizing a large range of sounds. Along the whole length of the cochlea, the
hair cells are arranged in order, resembling like the keys in a piano. As shown in Figure
1.2, hair cells located at the base, or lower region of the cochlear, are responsible for high
frequencies. On the contrary, hair cells at the apex are responsible for low frequencies.

1.1.3 Cochlear Implant

The function of hair cells is to transmit the electrical impulses to the auditory cortex. If the
hair cells are impaired (e.g. trauma, congenital defect, etc.), then they cannot produce the
necessary impulses to stimulate the auditory nerves.

Hence, in order to recover hearing loss caused by disfunctional hair cells, a cochlear
implant (CI) is chosen for the patient who has hearing loss [99]. A cochlear implant is an
electrical device, which uses the electrical signal to pulse the auditory nerve, in order to
transfer the sound signal to the brain.

The decibel (dB) is an unit for measuring the loudness or the volume of sound [100].
The amount of hearing loss can be classified into 5 different scales from the least to the
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Figure 1.2: Illustration of how hearing works within cochlea. Hair cells at the base are
responsible for high frequencies. On the contrary, hair cells at the apex are responsible for
the low frequencies. Modified from: [24] and [101]

most important loss: minimal, mild, moderate, severe or profound [95][139] [62]. Cochlear
implants support people who have a severe-to-profound sensorineural hearing loss (i.e. 70 to
120dB) [62].

Figure 1.3: Cochlear implant system. The implanted electrode array is used to simulate the
function of the hair cell, which pass the electrical impulse to nerve. Source: [68]
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1.1.4 Facial Nerve Preservation in Cochlear Implant Surgery

In cochlear implant surgery (see Section 1.3), the facial nerve is given the highest rating
in preservation. In order to rescue the facial nerve, which lies in the narrow facial recess,
during the CI surgery, the chorda tympani nerve is allowed to be sacrificed. Bhatia et. al [11]
summarized 300 consecutive pediatric cochlear implantations and informed that the chorda
tympani was destroyed in 20% of these cases (59 children). On the contrary, the aim of our
CI surgery is to save the facial nerve and the chorda tympani.

The facial nerve is one out of twelve cranial nerves [159][56][17][102]. It is often
abbreviated as cranial nerve (CN) VII [159][56][17]. There are two facial nerves on each
side of the face[102]. As shown in Figure 1.4, the facial nerve distributes throughout the face.
The facial nerve controls the muscles on the face and manages facial expressions [56]. If the
facial nerve is damaged, it will cause temporal or permanent facial paralysis [44]. The facial
nerve also delivers the taste-feeling information from the anterior two-thirds of the tongue
and the mouth [17] [159][56].

The facial nerve is a thin tubular structure inside the facial nerve canal (see section 1.1.4),
which is located in the temporal bone and features a winding path (see Fig. 1.4). The three
segments of the facial nerve within the temporal bone, include the labyrinthine, tympanic and
mastoid, and are considered in cochlear implantation [52]. The diameter of the facial nerve
is in the range of 0.8−1.7mm [126]. In the second-genu region, the facial nerve makes a
turn and goes through between the lateral semicircular canal and the stapes [126]. Its size
and shape are different from person to person, especially between adults and children [126].
The facial nerve has a sharper bend in children than in adults [126].

There are three different types of facial nerve fibers [71]. Motor fibers control the
superficial muscles of the face, neck and scalp, and manage the facial expression of these
muscles [71]. Sensory fibers pass impulses from taste sensors which are located in the
anterior two-thirds of the tongue Sensory fibers [71]. They also carry general sensory
impulses from tissues close to the tongue [71]. Parasympathetic fibers rule the lacrimal
glands and certain salivary glands [71].

In order to fully understand the facial nerve, other related medical terminologies are
briefly describes hereafter.

Facial Nerve Canal

In the temporal bone, the facial nerve canal (synonym: fallopian canal [71]) stop growing
after the baby was born [52]. It is a bony canal wrapped the facial nerve in the temporal bone
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Figure 1.4: Facial Nerve. Left: overview of the facial nerve distribution from one side of the
face. Right: Zoomed facial nerve range considered in CI surgery. Source: [122] and [124]

region. And it is divided into three segments: the labyrinthine segment (S1), the tympanic
segment (S2), and the mastoid segment (S3) [70] [52][71].

Facial Nerve Dehiscence

Facial nerve dehiscence (FND) is discontinuity in the bony structure wall of the facial nerve
canal around the facial nerve [7]. Moreover, it is a common anatomic variant that normally
occurs around the oval window in the tympanic segment of the facial nerve [26]. FND is
attributed to abnormalities of the ossification of the facial nerve canal, such as cholesteatoma,
trauma, and the pressure effect of tumorous lesions [26] [7].

Facial Nerve Disorders

Infection, injury and other conditions can cause facial nerve disorders, which result in
paralysis, twitch or weakness on one side or both sides of the face [65]. Those harmful
effects may lead to facial expression loss, as well as make eating, drinking and speaking
difficult [65]. In addition, closing and blinking the eyes will be effected but will also damage
the cornea [65].
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1.2 Background on Medical Imaging

Medical images are used for disease diagnosis via computer-assisted approaches nowadays.
In this section imaging techniques, used in this thesis work, is discussed. Firstly, CT imaging
is introduced, then Cone-beam Computed Tomography and Micro-computed Tomography are
described. Finally, the facial nerve images, which are used in the experiments, are described.

1.2.1 Cone-beam Computed Tomography

X-rays were discovered by Whilhelm Conrad Röentgen in 1895. He detected an unknown
ray which easily goes through paper and many other materials except a lead plate [149].
X-ray imaging is a transmission-based projection technique, which visualizes the inside of
human body without any intervention [1]. X-ray beams from an X-rays source travel through
a patient and are collected by the detector (an ionization chamber or film) [1]. When X-ray
beams pass through the patient, they are attenuated by the tissues of the body which absorb
X-ray beams. Because different tissues absorb various amounts of X-ray beams, which
radiographic images show different intensity levels, corresponding different tissues [1]. For
instance, calcium contained in bones absorbs most X-rays, soft tissue and fat absorb less, air
absorbs the least. Consequently, bone appears white, while soft tissue and fat tissue appears
black on the image.

Computed Tomography (CT) uses X-rays to produce images. Tomography comes from
the Geek "tomos", which means cut or slice [149]. Tomography tries to produce an image of
one or more slices through the body [149]. CT was invented by Godfrey N. Housefield in
1970, which stresses that images are computed from projection measurements [149]. The
source beams and detectors rotate together around the patient, producing a large number
of projections at different angles of view [1]. CT images provide a fairly sensible contrast
between soft tissues and a high spatial resolution [1].

The image quality of any medical imaging device is based on four factors: image contrast,
spatial resolution, image noise and artifacts [49]. The higher spatial resolution is, the stronger
the ability of distinguishing very small adjoining structures.

Here I enumerate four types of artifact that might happen when the image is created
[149][2].

• Noise. It is effected from scatter at the detector and in the patient’s body. The bright
and dark streaks will appear along the direction of greatest attenuation.

• Partial volume effect (PVE). Each voxel in a CT image is described as the attenuation
of a specific material volume. If the volume contains more than one different tissue,
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the CT value will be an average value of these tissues. Moreover, due to the resolution
limitation of CT, the tissue boundary might be blurred.

• Metal artifacts. They are the result of the extreme different attenuation between the
metal and tissue. Metal streak artifacts appear in the CT image [149].

• Motion artifacts. They are caused by conscious or unconscious patient movement
such as breathing or the heartbeats during the scanning process.

The serious downside of X-ray based images is the ionizing radiation effect of the
technique [1]. Ionizing radiation can cause physical harm to tissue, damage DNA and speed
up cell death [1]. There is a radiation dose limitation per year for a patient. Specially, young
patients are more sensitive to radiation, as tissues are more easily damaged via radiation
exposure [20][75][66].

Cone-beam computed tomography (CBCT), also called digital volume tomography
(DVT) [119], provides a three dimensional (3D) image by a cone shaped X-ray beam [4].
When comparing with the conventional CT, there are several advantages of CBCT. CBCT
imaging has a lower X-radiation dose, costless, less scanning time and fewer metal artifacts
[150][51][28][144][64].

The first CBCT system was designed for the dental and maxillo-facial imaging, especially
for implant planning in 1998 [104]. Nowadays, CBCT is widely used in clinical practice,
especially in surgical planning, dental applications, skeletal fracture evaluation [32] and post-
operative assessment of cochlear implantation [127]. It is highly regarded as an alternative to
CT in the head region [37]. For instance, CBCT images are often chosen to plan a cochlear
implantation procedure [168][34][25] [123][147][125].

However, there still remains some disadvantages of the CBCT images. Firstly, the CBCT
is sensitive to artifacts, noise, and soft tissue contrast [129]. Secondly, the lower X-radiation
dose causes the image quality of CBCT to be of lower quality than CT [162]. Hence, CBCT
images are typically blurred at the border of anatomical structures.

1.2.2 Micro-computed Tomography

Micro-computed tomography (micro-CT or µCT) generates high resolution 3D images.
Micro-CT was developed in early 1990s [18] and shows the internal structure images of
various materials including bone, tissue, and medical implants at a high resolution at the cost
of higher radiation fields than CT and CBCT image [14][106][19][161][78].
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Figure 1.5 shows an example of a cochlea image, showing different image qualities from
standard CT, high resolution CBCT and non-clinical micro-CT, where the border of the
cochlea can be easily recognized.

Figure 1.5: Cochlea image obtained from standard CT (left), high resolution CBCT (middle)
and non-clinical micro-CT (right). The image quality increases from left to right. The border
of the cochlea can be easily recognized on the highest resolution, micro-CT image. Source:
[160]

1.2.3 Imaging the Facial Nerve

Imaging plays an important role in providing information about the facial nerve in surgical
planning (see Section 1.3.3). The facial nerve has a complicated anatomical shape [52].
Moreover, the facial nerve might have an abnormal pattern because of a congenital defect,
infection, inflammation, trauma and cancer [52]. Computed tomography (CT) is used to
image the facial nerve that is located inside the bony facial nerve canal of the temporal bone
region [52]. In contrast, magnetic resonance imaging (MRI) is used to check the soft tissue
and evaluate facial nerve abnormalities in these areas outside the bony facial nerve canal
(fallopian canal) (see Section 1.1.4), which could not be seen in the CT image[52].

Although all the above presented techniques can be used to identify and evaluate the
facial nerve, the choice of the imaging modality should be based on the goal of the surgical
planning and patient’s symptoms [52]. In our experiments, pairs of CBCT and micro-CT
image, and pairs of CT and micro-CT image are used for the analysis of facial nerve.

Figure 1.6 shows one example of the three segments of the facial nerve canal in a CT
image, which are required in the surgical planning for cochlear implant surgery. Figure 1.7
shows one example of a manually segmented facial nerve from micro-CT images, which
shows the course of the facial nerve considered in the surgical planning. In fact, a facial
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nerve segmentation demonstrates the facial nerve canal segmentation, which wraps the facial
nerve.

(a) (b)

(c)

Figure 1.6: One example of the three segments of the facial nerve canal in a CT image. These
segments are used when planning a cochlear implantation. (a) The labyrinthine segment (S1),
(b) The tympanic segment (S2), and (C) The mastoid segment (S3).

1.3 Minimally Invasive Cochlear Implant Surgery

1.3.1 Conventional Cochlear Implant Surgery

Cochlear implants (CI), for deaf people who obtain artificial hearing, have come a long way
since 1960s [133] [131]. Nowadays, more than 300,000 people in the world have received
CI surgery [69].
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Figure 1.7: One example of manually segmented facial nerve from micro-CT. It shows
the course of the facial nerve considered in the surgical planning. In fact, facial nerve
segmentation demonstrate the facial nerve canal segmentation, which wraps the facial nerve.

A mastoidectomy represents the current common technology for inner ear access, which
removes the mastoid region behind the ear in the skull [154]. During the mastoidectomy,
the surgeon must drill a large hole in the mastoid region of the temporal bone between
the skull surface and the inner ear, and expose the facial recess, which is an anatomic area
covered by the facial nerve, chorda tympani nerve and the incus buttress [82] [154] [153].
The mastoidectomy allows the surgeon to see and protect the vital anatomical structures
during the drill process. The main challenge of the surgery is to access the cochlea, which
locates at approximately 35mm inside the temporal bone [83]. During the drilling process,
the facial nerve, the chorda tympani, the sigmoid sinus, the carotid artery and the labyrinth
must be avoided [91]. As described in section 1.1.4, the highest priority is given to the
facial nerve [91]. The space between the facial nerve and the chorda tympani is around 2mm
[83] [91]. In addition, the carotid artery brings needed blood to the brain and face [91]. It
results in patient’s death if this part of the carotid artery is damaged [91]. The sigmoid sinus
are venous sinuses that receives blood from the posterior aspect of the temporal bone [91].
Puncture sigmoid sinus will lead to a considerable amount of blood loss and haemodynamic
disturbance [91]. The labyrinth is responsible for hearing and balance. In order to prevent
hearing changes and dizziness or vertigo, the labyrinth should not be damaged as well.
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To avoid damaging the facial nerve or any other vital anatomical structure, the surgeon
must be totally confident about the drilling position [154]. A mastoidectomy is highly
dependent on the surgeon’s experience and skills, and is the most important and time-
consuming part of the cochlear implant surgery.

1.3.2 Image-Guided Procedures in Otological Surgery

To minimize the invasiveness of the procedure, image guided surgical techniques are in-
creasingly applied in various surgical specialties such as neurosurgery, otolaryngology, spine
surgery, and orthopedic surgery. Compared with the traditional open surgery, image-guide
surgery has more advantages including reduced surgical risk and surgical time, more visual
insight into the human body and reduced invasiveness [121].

Image-Guided Procedures consist of 6 key components: image acquisition, data visualiza-
tion, segmentation, image-to-physical-space registration, three-dimensional tracking systems
and human computer interaction (HCI) [43][163]. In a timeline view, the image-guided
procedure contains three phases: pre-operative planning, intra-operative plan execution, and
post-operative assessment [163]. The aim of pre-operative planning is to make a surgical
plan based on pre-operative medical images and anatomical geometry information [163].
In this phase, the image acquisition requires the following techniques: medical images and
image processing and data visualization.

Although image-guided techniques are widely applied in different surgical special-
ties, a few surgical cases in otology utilize image guidance [80]. This is because the
otological surgery requires much higher accuracy than other surgical specialties, such as
neurosurgery[44]. The image-guided surgical system makes the successful CI surgery less
dependent on the surgeon’s surgical experience, which compensates for the loss of visual
control during the drill process [131][91]. Moreover, the image-guided surgical system for
CI surgery is expected to assist the surgeon to find the optimal drill trajectory and insert the
electrode array into the human cochlea. Schipper made an assessment of the image guided
surgical procedure on CI surgery on a cadaver head in 2004 [131]. Later, the direct cochlear
access (DCA), a minimal invasive method, was developed. More detailed information about
DCA is given in Section 1.3.3.

1.3.3 Robotic Cochlear Implant Surgery

Microsurgical procedures require surgeons to perform operations on body structure, smaller
than 1mm [39]. Minimally invasive cochlear implantation is one delegate example of micro-
surgical navigation technologies [39].
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Direct cochlear access (DCA) is a minimally invasive method for drilling a trajectory
to access the inner ear, which differs from the traditional mastoidectomy, as it uses a small-
diameter trajectory [154]. The trajectory is within the mastoid and passes through the facial
recess and reaches the round window [154]. Considering the diameter of a cochlear implant
electrode, which is less than 1.5mm, the size of the drilling hole is close to the size of the
electrode, which is 1.5−2mm in tunnel diameter [154]. Hence, it is challenging to reach an
acceptable accuracy in DCA.

A surgical robotic image guided system (see Figure1.8) was designed for DCA surgery
by the Univerisity of Bern [8][10][154]. In this system, a force torque sensor at the robot
wrist can do haptic control, registration and evaluate drilling process [154]. This system
needs a highly precise surgical planning to ensure a save minimal invasive cochlear implanta-
tion. Fiducial screws markers and critical anatomical structures are segmentation with the
associated planning software tool, OtoPlan [44][45]. After all the required structures are
segmented, the surgeon can plan a drill trajectory. As shown in Figure 1.10, the minimal
distance of 0.3mm is required between the drill path and the critical structure facial nerve.

Figure 1.8: A minimally invasive robotic image guided system for cochlear implant surgery.
The surgical planning guides the surgeon to do cochlear implant surgery. The robot drills
a small hole in the mastoid. During the drill process, the camera tracks the drill position.
Source: [10]
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Figure 1.9: The personalize surgical planning software OtoPlan for minimal invasive
cochlear implant surgery developed from Bern University, Switzerland. Left: User interface
of OtoPlan software. Right: Semi-automatic segmentation for the facial nerve and chorda
tympani. Source: [45]

Figure 1.10: Segmented anatomical structures and the drill trajectory. The drill trajectory
passes through the facial recess, which is covered by the facial nerve, the chorda tympani
and the external auditory canal, and reaches the round window. At least 0.3mm is required
between the drill trajectory and the facial nerve. Source: [45]
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Surgical Planning

Surgical planning uses patient specific medical imaging and computer programs to visualize
the anatomical structures of interest to yield a surgical plan [44]. In addition, in robotic
image guided system, the surgical planning is used for controlling the robotic equipment,
which is loaded in the robotic system [44].

Surgical planning involves the segmentation of critical anatomical structures as well as
the identification of vulnerable structures [44]. Various image modalities are employed in
surgical planning, such as a pre-operative CT or CBCT images providing the geometric
information among the surrounding tissues and structures.

In surgical planning, segmentation plays a critical important. Segmentation is defined as
the boundary delineation of anatomical structures within the medical image data. There are
different segmentation methods, such as manual segmentation, semi-automatic segmentation
and automatic segmentation. Manual segmentation requires the experts, such as surgeon,
radiologist, to mark the borders of the anatomical structure on the images slice by slice.
This method is a time-consuming and error-prone process. For this reason, it is necessary to
develop semi-automatic or automatic segmentation methods for surgical planning.

In [91], the surgical planning software iPlan 2.6 BrainLAB AG, Feldkirchen, Germany)
was proposed, which defines registration fiducial markers and segments essential anatomical
structures. The facial nerve, chorda tympani and sigmoid sinus are manually segmented,
while the cochlea, semicircular canals and the middle-ear ossicles are segmented semi-
automatically. According to the 3D segmented anatomical models, the planning of the drill
trajectory is automatically decided via a software.

The automatic segmentation of anatomical structures in a temporal bone CT scan is
demonstrated in [109] for cochlear implant surgery. The labyrinth, ossicles, and the external
auditory canal are automatically segmented based on atlas-based registration techniques. The
facial nerve and the chorda tympani are segmented via a navigated optimal medial axis and a
deformable-model algorithm. Furthermore, the study in [110] shows a method of designing
a drill path for percutaneous cochlear implant surgery, which calculates an optimal safety
drill patch automatically (see Figure 1.12). Figure 1.12 shows the spatial orientation between
the drill path and ear structures.

Moreover, atlas-based approaches combined with level-set segmentation have been
proposed to segment the facial nerve and chorda tympani in CT images in adults [108]
and pediatric patients [126] for percutaneous cochlear implant surgery. In [126], the study
stressed that the anatomical structures of the children and adults are different, and hence a
statistical model created from adult data could not handle pediatric cases.
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Figure 1.11: The surgical planning software iPlan 2.6 for cochlear implant surgery. Left: the
position of the registration fuduial marker in the image space. Right: segmented anatomical
structures and the drill trajectory. Source: [91]

Figure 1.12: Surgical planning of drilling trajectory and anatomical structure of the left ear.
Source: [110]
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There is great potential in the surgical planning, which is an important part of a successful
treatment. Until now, many surgical planning software were able to solve several specific
clinic tasks. To date, there is no commercial image guided system incorporate surgical plan-
ning for a complete cochlear implant surgery, due to the limitation of the required accuracy
in planning and navigation system [44]. Cochlear implant surgery requires submillimeter
precision because very tiny anatomical structures, such as facial nerve and chorda tympani,
should not be hurt.

1.4 Challenges

1.4.1 Imaging Data

Considering the patient’s safety, the facial nerve imaging is performed by low dose CBCT
or CT imaging. Nevertheless, CBCT and CT imaging cannot image the facial nerve very
clearly, which influences the surgical planning. There are two main disadvantages of CBCT
and CT imaging. One is the partial volume effects (PVE) and the tiny facial nerve and the
surrounding structures. The other one is that the structures surrounding the facial nerve have
similar intensity values. Furthermore, due to their low resolution, CT/CBCT image cannot
recognize temporal bone fractures, which exists in some cases. This fracture leads to the
facial nerve canal and the bone air cell being visualized together.

1.4.2 Manual Segmentation

The segmentation of the facial nerve plays the most critical role in surgical planning. In order
to obtain an accurate segmentation, the expert manually segments the facial nerve and verifies
the segmented facial nerve. Manual segmentation is a time consuming, tiring and tedious task.
Moreover, different experts have different segmentation results based on the same data (inter-
observer variability). Furthermore, even the same expert might give different segmentation
results if the expert segments the same data several times (intra-observer variability). On the
other hand, semi- or fully automated segmentation are not precise enough.

1.4.3 Patient Movement

Patient could not keep still during the CBCT scanning process, especially children. Patient
head movement is the main reason for blurred images, which might happen during scanning.
The blurred CBCT image may lead to suboptimal surgical planning, which leads to the
cochlear trauma and damage any critical structure.
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1.5 Thesis Hypothesis, Objective and Contributions

1.5.1 Hypothesis

We hypothesize that an advanced CT based image analysis of the ear can lead to a highly
accurate facial nerve segmentation for micro-IGS cochlear implantation.

1.5.2 Objective

The objective of this thesis was to develop approaches for motion detection and accurate
image segmentation of the facial nerve, which can improve the performance of the surgical
planning.

1.5.3 Contributions

There are three main contributions of the thesis, which are organized as follows:

• Motion Detection. We propose a practical method for motion detection in medical
scanning image can be accepted in the surgical planning. We register the center-lines of
the phantom data with motion and without motion, and then we calculate the Hausdorff
distance which measured the maximum distance between phantoms’ surface. Next,
the Geometric distance and the Hausdorff distance are compared. The method and the
preliminary evaluation are explained in Chapter 3.

• Facial Nerve Image Enhancement. We present a supervised-learning approach to
enhance facial nerve imaging information from Cone-beam Computed Tomography
(CBCT). A multi-class random forest is employed to learn the mapping between pairs
of image patches from CBCT and micro-CT images of the facial nerve. The mapping
is performed by learning the relationship between texture features and the intensities.
The method and its performance are reported in Chapter 4.

• Facial Nerve Segmentation. We propose a super-resolution classification method, to
refine the facial nerve segmentation to a sub-voxel classification level from CBCT
images. The super-resolution classification method learns the mapping from low-
resolution CBCT images to high-resolution facial nerve label images, obtained from
manual segmentation on micro-CT images. The mapping is performed by learning
the relationship between imaging features, such as first order statistic, percentiles,
texture, and label information, such as facial nerve and background. The method and
the experimental design are explained in Chapter 5.
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1.6 Outline of the Thesis

In Chapter 2, the theoretical background of machine learning is introduced. In our work, the
image enhancement and the image segmentation are based on one type of machine learning
method called supervised learning. The detail of the supervised learning method is given
in this chapter. The three main contributions are then presented, and divided into three
chapters: In Chapter 3, the method of motion detection for the scanning image, which is
accepted for the surgical planning, is presented. In Chapter 4, a supervised learning method
is given, which deals with facial nerve image enhancement. In Chapter 5, a supervised
learning method, referred to super-resolution classification method, is presented for facial
nerve segmentation, which reconstructs the high resolution of facial nerve image from the
low resolution image. In Chapter 6, the general results and the outcomes of the contribution
work are summarized. Furthermore, the potential of future work is discussed.





Chapter 2

Technical Background

2.1 Introduction

This chapter summarizes the technical concepts used in the following chapters. The main
technique used in this thesis is machine learning applied to facial nerve image enhancement
(Chapter 4) and facial nerve image classification (Chapter 5). This chapter will firstly
introduce machine learning in general, and then concentrate on the specific technique used in
Chapter 5 – extremely randomized trees. Since chapters 3, 4 and 5 require registration as
preprocesing, registration will be introduced at the end of this chapter.

2.2 Machine Learning

Machine learning is an essential branch of Artificial Intelligence (AI), which provides the
algorithms that mimic the ability of humans to learn from previous experiences and deal
with new observations [130]. The key factor of machine learning is its automation, which
is required to design a learning algorithm that automatically completes a learning process
without any human intervention [130]. Instead of solving a task directly via the computer
program, a given machine learning method is designed to solve a task via producing its own
program based on previously provided examples [130].

2.2.1 Machine Learning in Medical Imaging

Machine Learning (ML) has seen an explosion of interest in many various fields such as
weather forecast, detection of e-mail spam, genetics, computer vision, stock market analysis,
language processing and search engines as Google [156]. In the last decade, machine learning
has been applied to the medical imaging field and plays an important role in medical image
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analysis, computer aided diagnosis, image registration, image fusion, image-guided therapy,
medical image categorization and retrieval [90][145][81]. Medical imaging applications of
machine learning are very similar to the traditional works in computer vision. Examples
of these include object detection, object segmentation and object tracking in computer
vision, and anatomical structure detection, segmentation and tracking in medical imaging
[31]. Furthermore, machine learning applied in medical imaging follows a growing trend
[118]. In addition, workshops on machine learning in medical imaging appear on medical
imaging conferences such as Medical Image Computing and Computer Assisted Intervention
(MICCAI) [118].

Applying machine learning techniques in medical imaging is very challenging [31][118].
The reasons for this challenge include [31][118],

1. Medical images are very large, and often they have three or more dimensions.
Medical image may have various resolutions and a certain amount of noise stemming
from different imaging systems [118]. For this reason, machine learning approaches
are expected to be capable of handling large data sets and noise.

2. Machine learning algorithms need lots of training data to tune parameters of
the predictive model avoiding overfitting or overgeneralization. The number of
medical images is often limited, as it is a long process to obtain medical images [31].
This curation step includes feature selection, anonymization, data annotation, etc.
Hence, building sufficiently large training data sets is a difficult task.

3. Training data is difficult to obtain. Most machine learning tasks in medical imaging
are based on supervised learning [118]. It needs experts to annotate medical data
for building a reliable ground truth. However, producing ground truth data is tiring
and tedious, and requires experts’ experience in the anatomical structures of interest.
Building ground truth data via multiple experts can lower inter-observer effects. A
high intra- or inter-observer variability indicates that the cognition of anatomical data
is not clear enough, or cannot easily be employed [148]. Even if the same expert works
on the same anatomical data, he or she might have different judgments at different time
intervals [15]. Therefore, generating high quality ground truth data, typically considers
multiple judgments of each data, followed by their combination [118]. An ideal result
of a medical image analysis method should be close to a result on which experts agree,
and which is within the acceptable variation range among experts.

4. It requires highly reliable learning methods. As the target are patients, machine
learning approaches in medical image analysis need to feature high accuracy and
robustness.
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Machine learning contains a broad range of techniques which are very helpful in medical
applications, including classification, regression, clustering and dimensionality reduction
[16]. For instance, automatic disease detection and anatomical structure segmentation can be
used in any type of images for surgical planning.

Medical Image Segmentation

Medical image segmentation is a popular topic that can be handled with machine learning-
based approaches. As explained in Figure 2.1, the facial nerve is segmented from a CBCT
image with a supervised learning method. This method learns the mapping from extracted
features in the CBCT image to labels in the manually segmented facial nerve image. Many
other examples can be mentioned. For instance, in [48], a supervised learning method of
joint classification-regression is proposed to handle multi-organ segmentation in 3D medical
CT scans. In [93], extremely randomized trees is employed as a supervised method for
biomedical image classification. In [152], random forest is applied to the 2D segmentation
of placenta from fetal MRI, and lung segmentation from radiographic images.

-

Figure 2.1: One example of facial nerve segmentation with a supervised learning classification
approach. From left to right: an original CBCT image, a segmented facial nerve highlighted
in green, 3D view of the segmented facial nerve. Details in Chapter 5.

2.2.2 Types of Machine Learning

Machine learning can be divided into three categories: supervised learning, unsupervised
learning and semi-supervised learning [21]. The difference among these three methods lies
in the training data. In supervised learning, the training data includes the input data along
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with the output labeled data. In unsupervised learning, the training data includes the input
data without any corresponding output data. In semi-supervised learning, the training data
contains a large number of input data but only some of the input data has output labeled data
[21].

In the presented work, supervised learning method was used to enhance and segment a
medical image for the facial nerve. Hence, the supervised learning method will be introduced
in the following paragraph.

Supervised Learning

Supervised learning is a type of learning in which input and output data, called labeled data
is available, and an algorithm is used to learn the mapping from input data to output labeled
data [21]. Once the mapping has been learned, the model can be used on new unseen data.

Why is it called supervised learning? The mapping process can be regarded as a process
in which a teacher is in charge of the students’ learning process and is responsible for making
sure the students learn properly [21]. Given the correct answers (the related labeled data),
the algorithm makes predictions on the training data and it is corrected via the teacher’s
instructions. The learning process will stop when the algorithm achieves a satisfactory
performance [21].

Supervised learning can be divided into classification and regression.

• Classification If the output data is a category, such as "agree" or "disagree", the task
is called classification.

• Regression When the output data is one or more continuous variables, such as
"height=1.60cm" or "weight=45.33kg", the task is called regression.

Most of the practical applications are based on supervised learning. Popular supervised
learning algorithms include random forest and support vector machines. In order to build
a supervised learning algorithm, the following components should be considered: building
a dataset, defining a model, defining a objective function, and defining an optimization
procedure [40] (see Section 2.3). In the following, random forest is described.

2.3 Random Forest

Random forest is a machine learning approach, which is widely used in the medical field. The
main concepts to understand this approach are decision trees, randomization and ensembling.
Therefore, in this section, the basic definitions and concepts of the tree will be introduced.
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Next, the split function of the decision tree will be described. At last, the way of combining
decision trees into a forest ensemble will be described.

This section is based from the book of Criminisi et al.[29]. There is a large amount of
literature related to random forest. As a result, some concepts have different definitions. For
instance, random forest is also known as decision forest, randomized forest, or random-
ized decision forest. Decision tree is also called randomized tree, randomized decision
tree. Split node is also named internal node, decision node, or branch node. Lead node
is also called terminal node.

2.3.1 Basic Definitions

Tree Data Structure

Binary trees have one internal node with two outgoing edges. There are two types of nodes
in a binary tree: internal nodes (also called as split nodes) and terminal nodes (also called
leaf nodes). Each internal node has a split function, which tests the incoming data. Each
terminal leaf leads to the final prediction.

Data Point and Features

Considering a data point as a vector v = (x1,x2, ...,xd) ∈ Rd , each component xi holds an
the attribute of the data point, which is named as feature. The number of features depends
on the attribute of the data point (e.g. voxel intensity, patient’s age, etc.) and the application.
While in theory, the dimension d of the feature space can be very large, even infinite, in
practice, a smaller feature vector is preferred to comply with computational limitations such
as memory and speed, and to avoid the curse of dimensionality [50] [74]. A subset of features
is represented as φ (v) = (xφ1,xφ2 , ...,xφ

d′
) ∈ Rd ′ , where d

′
stands for the dimension of the

subspace, and φi ∈ [1,d] stands for the extracted dimensions. Here, the dimension d
′
of the

subspace is typically much smaller than d(d
′
<< d).

Split Functions

The split function is also called as test function or weak learner. Each node stores a
different split function. The data point v arrives at the split node and then it goes to its left
or right child node depending on the result of the split function. The split function at a split
node j, has a function with binary outputs, denoted as

h(v,θ j) : Rd×T →{0,1}, (2.1)



26 Technical Background

where 0 and 1 could be understood as "yes" and "no" respectively, θ j describes the split
parameters related with the jth node, and T means the space of all split parameters.

Training Points and Training Sets

A training point is a data point. Its attributes are already known and used to calculate the tree
parameters. In supervised learning, a training point is a pair (v,y), where v is the input data
point (feature vector), and y is a known label. 1

Regarding training sets, they are seen as subsets of training points related with different
tree branches. For example, S j represents the subset of the training points arriving at the
node j, and SL

j , SR
j correspond to the subset going to the left and the right child node of the

node j, respectively.

2.3.2 Decision Tree

Training Phase

The split functions in the internal nodes are learned from the training data, which are very
important for the correct functioning of the tree. Therefore, the training phase focuses on
choosing the parameters of the split functions h(v,θ) for each internal node via optimizing
the objective function, which defines a training set. The objective function is also called
loss function or cost function.

At each node j, the optimal split function splits S j into SL
j and SR

j . This split function can
be described as the maximization of an objective function I at the jth split node

θ j = argmax
θ∈T

I(S j,θ). (2.2)

The objective function can be defined as an information gain. Training starts at the root node,
j = 0. Then, two child nodes receive a different subset of the training set. This process works
on all the newly built internal nodes. Furthermore, the training phase will stop when the
stopping criterion is met.

Testing Phase

During testing phase, an internal node applies its related split function h(., .) to the input data
v, and sends it to the left or right child node. This process starts at the root, and it is repeated

1 In contrast, in an unsupervised learning method, the training point only contains the feature vector, which
does not have a related label.
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until the data point v reaches a leaf node. The leaf node has a predictor, which produces an
output y for the input data v.

In the following, details on the energy model, leaf prediction model, and randomness in
decision tree are provided.

Energy Model

Usually the information gain is chosen as the objective function. During training phase, the
objective function is used for building decision trees. Moreover, the optimization of the
objective function influences the parameters of the split functions, which decides the path of
a data point and its prediction. In sum, the energy model affects on the prediction ability of a
decision tree.

Information gain is related to a tree split node and describes the reduction in uncertainty,
which is represented by splitting the training data into different child nodes. The information
gain is defined as

I = H(S)− ∑
i∈{L,R}

|Si|
|S|

H(Si), (2.3)

where the dataset S is split into two subsets SL and SR (binary trees), and |S
i|
|S| stands for the

weight of the ith partition. In (2.3), H is the entropy, which measures the uncertainty related
to the random variable that is expected to predict.

Entropy is a common way to tell the level of impurity in a data group. For discrete
probabilities, the Shannon entropy is defined as,

H(S) =−∑
c∈C

p(c) log(p(c)). (2.4)

Here S is the set of training sets, c corresponds to the class label, belonging to C, and p(c)
corresponds to the probability of class c from the training points.

The aim of choosing the split parameters is to maximize the information gain, which
produces the lowest uncertainty in the final distribution. After splitting, the children distribu-
tions become purer, their entropy decreases and their information content increases. Hence,
to build a tree, the split function reduces uncertainty via maximizing the information gain
and minimizing the entropy.

Along with information gain, there are some popular objective functions such as gain
ratio and gini index. Gini index is a way to measure the impurity in a data group. It is
defined as,

Gini(S) = 1−∑
c∈C

p(c)2. (2.5)
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The reduction in impurity is defined as

∆Gini = Gini(S)− ∑
i∈{L,R}

|Si|
|S|

Gini(Si). (2.6)

Here the selected split parameter should maximize the reduction in impurity and minimum
Gini index. In our work, the extra-trees classifier in Chapter 5 chooses gini as a criterion to
measure the split quality for building trees.

Leaf Prediction Model

The training phase not only estimates the optimal split function in the internal nodes, but
also learns good prediction models which are to be stored at the leaf nodes. In supervised
learning, each leaf node contains a subset of training data. Through the split function, the
input test data will reach a leaf node related to training points which are very similar to itself.

The leaf statistics can be presented as the conditional distributions p(c|v) or p(y|v), where
c corresponds to categorical labels, and y corresponds to continuous labels (i.e. regression), v
is the test data point, and the conditioning corresponds to the probability distributions of each
label class. Different leaf predictors can be applied. For example, a Maximum A-Posteriori
(MAP) estimate is chosen as,

c∗ = argmax
c

p(c|v) or p∗ = argmax
p

p(y|v) (2.7)

for the categorical and continuous case, respectively.

Randomness

There are two main methods to add randomness into trees during the training phase, bagging
and randomized node optimization [29].

• Bagging In bagging, each single tree in a forest is trained on a various training subset,
which are sampled randomly from the same dataset. There are two advantages from
this strategy. First, it helps to avoid specialization in parameters selection and improves
generalization. Second, the training is faster than using the whole training data.

• Randomized Node Optimization

At each node, the optimization (2.2) works on the whole parameter space τ . The size
of τ might be extremely large, if the data has large dimensions. Hence, optimizing
(2.2) over the whole parameter space τ is intractable. In practice, only a small random
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subset τ j ∈ τ of parameter values are selected for training of the jth internal node.
Therefore, training a tree results in optimizing each internal j node as,

θ j = argmax
θ∈T j

I(S j,θ). (2.8)

A parameter ρ = T j is defined. The parameter ρ ∈ {1, ..., |T |} controls the random-
ness degree ρ in a tree. Moreover, the value of randomness degree is fixed for all nodes.
If ρ = |T |, all the internal nodes use all the information from the data point. Hence,
there is no randomness in the training phrase. If ρ = 1, each internal node only has a
single value in the parameter θ . Hence, there is no optimization at all, and a maximum
randomness is employed.

2.3.3 Forest Ensemble

Ensemble methods are learning models that combine several models’ prediction results
(instead of a single prediction) to get better predictive performance. Like a human, a better
decision comes from a group opinion instead of a personal one. Furthermore, ensembles
are parallel and independent, which can be more efficient during the training and testing
phase. There are many different methods to combine basic learning models into ensembles.
Commonly they are classified into two kinds of ensemble methods, averaging methods and
boosting methods [135].

In boosting methods, estimators are built in a sequence and one estimator reduces the
bias of the combined estimator. For instance, AdaBoost is a boosting method. An AdaBoost
classifier starts by fitting a classifier on the original dataset. Next it fits additional copies of
the classifier on the same dataset and weights of the wrong classified examples are adjusted
in order to concentrate on the wrong cases [135].

In averaging methods, several estimators are built independently, and their prediction
are averaged. After averaging, the combined estimators typically perform better than any of
the single estimators, because they reduce their variance. In essence, bagging methods and
ensembles of decision trees are averaging methods.

The following provides details regarding random forest and extremely randomized trees,
which were used in this work.

Random Forest

A random forest is an ensemble of random decision trees. Each single tree is randomly
different from other trees in the forest model. This leads to de-correlation among tree
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predictions. Therefore, a random forest is expected to be more general and robust than a
single tree prediction. The prediction of the forest is effected from the type of split function,
energy model, leaf predictors and the type of randomness. In addition, the randomness degree
parameter ρ controls the randomness degree in each tree and the correlation degree among
different trees in the forest. The lower the randomness, the higher the tree correlation will
be. If ρ = T , all trees are the same as one another. If ρ declines, the trees become more
de-correlated (different from each other).

In a forest with T trees, the variable t ∈ {1, ...,T} is defined as the index of each single
component tree. All trees are trained independently and in parallel. During the testing phase,
each test data point v goes through each tree, and arrives at the leaves. Similarly, during
testing all trees run in parallel. A single forest prediction is then obtained from a combination
of all tree predictions via an averaging operation. For example, in classification, the forest
prediction is obtained as,

p(c|v) = 1
T

T

∑
t=1

pt(c|v), (2.9)

where pt(c|v) represents the posterior distribution obtained by the tth tree. As shown in
Figure 2.2, in the classification testing phase, the same test input data v passes through each
single tree in the forest, until it reaches the leaf node. The forest class prediction is obtained
as the average of all tree posteriors.

Random forest features high accuracy on unknown data and is very efficient. The main
limitation of random forest is the risk of overfit when training models via deep trees [63].

Figure 2.2: Classification forest testing. The same test input data v passes through each
single tree in the forest, until it reaches the leaf node, which stores the posterior pt(c|v). The
forest class prediction is obtained as the average of all tree posteriors. Source: Criminisi et
al.[29]
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2.4 Extremely Randomized Trees

In this section a special type of random forest, called extremely randomized trees, is presented,
and which forms the basic of the work presentation in Chapter 4 and Chapter 5. This section
is based from Criminisi et al.[29] and [46] [74] [155] [155] [134].

2.4.1 Algorithm

Extremely randomized trees (Extra-Trees) [46] is a type of random forest (see Appendix
7.1). The aim of Extra-Trees is to increase randomization during the splitting of internal
nodes, in order to improve accuracy via reducing variance and reduce training time. There
are two main differences between Extra-Trees and other tree-based ensemble methods. First,
Extra-Trees use all training data to build trees without random sampling and replacement.
Second, Extra-Trees randomly select features to split a node. A random split is picked at
each node based on a random cut point of a feature in the [min,max] range of the feature.

The stop splitting criteria is as follows: all features are constant (i.e. no change from
previous iteration) in the node, or the output is constant in the node, or the number of training
data points in the node is smaller than a specified minimum data nmin.

2.4.2 Split function in Extra-Tree

Any objective function can be chosen with the Extra-Tree to optimize splits at internal nodes.
To select a split s, the score measurement is used. The following criteria are used in Chapter
4 and Chapter 5, respectively.

In classification, the score measurement is based on gini index (see Equation 2.5 ). In
regression, the score measurement is defined as

Score(s,S) =Var(y|S)− |S
L|
|S|

Var(y|SL)− |S
R|
|S|

Var(y|SR), (2.10)

where SL and SR represent the two subsets of S according to a split which makes two outputs.
Var(y|S) stands for the variance of the output y in the data sample S, and it is computed as,

Var(y|S) = 1
|S|

|S|

∑
i=1

(y− ȳ)2. (2.11)

Where ȳ stands for the mean of y.
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2.4.3 Model Parameters

The parameters that influence an Extra-Tree [46] model are as follows: the forest size (the
number of trees T ); the number of features randomly selected at each node ρ ; the minimum
sample size to split a node nmin. The parameters T , ρ and nmin have different effects for
building trees: ρ reflects the strength of the feature selection process, nmin determines the
strength of averaging output noise, and T stresses the strength of the variance reduction of
the ensemble model aggregation. Usually, these parameters could be tuned into a manual or
automatic way for specific problems.

• Feature selection strength ρ

The smaller the ρ is, the stronger the randomization of the trees is. The default setting
values of ρ are ρ =

√
d and ρ = d, for classification and regression, respectively,

where d is the feature dimensionality. When ρ = 1, only one random split is chosen at
each split node. Then, the tree growing is completely independently from the output in
the training data. Therefore, this kind of tree is called totally randomized trees. It is
fast to build such trees, but the trees are very prone to noise .

• Smoothing strength nmin

The number nmin is required for splitting a node. The larger value of nmin makes smaller
trees, with higher bias and smaller variance.

• Averaging strength T

The parameter T is the number of trees in the ensemble. Higher value of T tends to
yield a better accuracy.

The balance between bias and variance is different between classification and regression.
Classification can accept high levels of bias of class probability without making high classifi-
cation error rates. To build good randomized models, the rule of thumb is to keep a low bias
on the training data and merge several randomized models for a low variance.

2.4.4 Multiple Output Trees

In supervised learning methods, classification and regression trees can be extended to predict
several outputs instead of a single output. For instance, in regression, a vectorial output
y = (y1,y2, ...,yY ) ∈ Rn, or in classification, y ∈Cn, where C = {c1,c2, ...,cC} is a set of all
classes. There is no correlation between the outputs, but these outputs are related to the same
input data. Ultimately, more than one value is stored in the leaves. Comparising with single
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output trees, there are two advantages of the multiple output trees. It reduces the training
time, and it increases generalization accuracy. In our work, multiple output regression is used
(see Chapter 4).

2.5 Registration

This section is based from the ITK software guide [72] and [167] [89]. Image registration is
a process that aligns a moving image Im(x) to the fixed image I f (x) with the optimal spatial
mapping, in which x stands for the position in the n dimensional space. The elements of
the registration framework are two input images Im(x) and I f (x), a transform T (x), a metric
S(I f , Im ◦T ), an interpolator and an optimizer (see Figure 2.4). Here T (x) stands for the
spatial mapping of points x from I f to points x in Im, and S(I f , Im ◦T ) represents a estimation
to what extent I f (x) is matched by the transformed Im(x). The interpolator measures voxel
intensity values at non-grid positions. The optimizer searches the optimal parameters of
T (x).

There are different transformation models such as rigid transformation and affine trans-
formation. The work presented in Chapter 3, Chapter 4 and Chapter 5 employed rigid
transformation. For each point (x1,x2,x3) in the moving image, a mapping is defined into the
coordinate of another space (y1,y2,y3), expressed as,

y1 = m11x1 +m12x2 +m13x3

y2 = m21x1 +m22x2 +m23x3

y3 = m31x1 +m32x2 +m33x3

The rigid transformation matrix is defined as,

Trigid =


m11 m12 m13 tx
m21 m22 m23 ty
m31 m32 m33 tz

0 0 0 1

 (2.12)

where tx, tx, tx represent the translation along each axis of the coordinate system, and the mi, j

are the rotation parameters.
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Figure 2.3: The aim of image registration is to find a transform that maps points from the
fixed image to points in the moving image.

Figure 2.4: The Registration framework. The basic components of the registration are two
input images (fixed image and moving image), a transform, a metric, an interpolator and an
optimizer. Modified from: [72]



Chapter 3

Motion Detection

3.1 Abstract

Patient head movement is the main reason for blurred images, which might happen during the
Cone-beam Computed Tomography (CBCT) scanning process. A blurred CBCT image may
lead to suboptimal surgical planning, which in turn can lead to cochlear trauma and damage of
critical structures. Therefore, it is important to know the maximum acceptable blurring in the
CBCT image for image guided surgery (IGS). In this chapter, we propose a practical and ac-
curate motion detection method in CBCT imaging. A simulated motion scanning system was
set up, then a phantom study with different types of robot-controlled motion were obtained.
Simulated motion was: rotation at various degree (0.75degree,1.25degree,2.50degree) with
sudden and continuous modes. The demonstrated motion detection method is based on a
registration framework and Hausdorff distance. The motion detection method is evaluated by
geometric distance. Our preliminary study shows that this practical solution is promising for
head motion detection in CBCT imaging and it is the first step towards clinical use.

Keywords blurred CBCT, head movement, Hausdorff distance, rod-phantom, motion
detection.

3.2 Introduction

In the clinical workflow, human motions cannot be avoided completely during the medical
imaging process (e.g. heart beat, breath, intestinal peristalsis and unconscious movement
[85]). In particular, patient head movement (see Figure 3.1) has a big impact on the quality
of Cone-beam Computed Tomography (CBCT) images for surgical planning of cochlear
implantations. As shown in Figure 3.2, head motion artifacts degenerate the image quality.
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The low quality image hinders an optimal surgical planning, which may increase surgical
risks for cochlear trauma and damaging of critical structures, such as the facial nerve.

Figure 3.1: Example of head motion artifacts in CT image. It appears as shadowed and
streaked. This type of motion is impossible to avoid in most cases, because the patient can
not keep still during the CT scanning process. Source: [6]

Figure 3.2: Motion comparison in CBCT for surgical planning of cochlear implantation.
Compared with the no motion CBCT, the simulated motion CBCT image is blurred. Further-
more, the anatomical structures could not be recognized easily. It might lead to high risk for
surgical trauma. Modified from: [136] and [94]
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While most of previous techniques have focused on motion correction, few solutions
have been proposed for motion detection. In [86], motion correction for respiratory motion
blurring in PET/CT with internal-external motion correlation was proposed. In [166], a
correction method for motion artifacts in CBCT has been suggested, which uses a patient-
specific respiratory motion model. In [77], head motion correction in helical x-ray CT
has been achieved by reconstruction from a modified source-detector orbit. Motion has
been tracked from volunteers with four types of motion. In [76], a rigid motion correction
method for helical CT was performed by motion estimations during the CT scan, and a three
dimensional (3D) reconstruction algorithm called likelihood transmission reconstruction
(MLTR). In [13], a motion correction method has been proposed based on 3D reconstruction
and 2D/3D registration. In [12], motion artifacts in 3D brain CBCT has been detected via
a marker based system. In [113] [112] [114] [115], markerless head tracking systems in
3D brain imaging were presented. These approached employ fixed markers attached on the
patient’s head, such as helmet, headband and goggles. Nevertheless, artifacts on positron
emission tomography (PET) images may still occur. In a markerless tracking system [113]
[112] [114] [115], structured light projects patterns on the face of a mannequim phantom
head, and cameras capture these patterns. Then 3D face surfaces are reconstructed for motion
correction. Hence, to the best of our knowledge, no direct method for head motion detection
in CBCT image has been proposed before and evaluated a first prototype on phantom CBCT
data and robot-controlled motion patterns.

As we known, registration plays a substantial role in robotic image guided system for
cochlear implant surgery (see Section 1.3.3), but the fiducial localization error (FLE) is
a significant factor for influencing the registration accuracy [44] [41]. Target registration
error (TRE) measures the registration error in the image guided system. In [41], a statistical
correlation was reported between FLE and TRE, based on their root mean square (RMS)
values. It is defined as,
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Where N is the fiducial number, dk is the distance of a point of interest from principal axis
k of the fiducial configuration, and f 2

k is the mean of the squared distances of the fiducials
from that axis of the fiducial configuration. Due to the small tolerance of the robotic cochlear
implant surgery, FLE is an important measurement for a successful surgery.

The purpose of our work is to develop a head motion detection method which can
potentially work on CBCT imaging without any tracking device in order to find the correlation
between the quantity of motion and the fiducial localization error (FLE) (see Figure 3.3). The
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requirements of the proposed method are as follows. On the one hand, the method should be
robust enough for CBCT imaging. On the other hand, it should easily and quickly filter out
the unqualified (i.e. excessive) CBCT for surgical planning in the clinical workfolw.

Figure 3.3: Sketch of the correlation between the quantity of motion and the fiducial local-
ization error (FLE). The aim is to find the threshold that can evaluate if the blurred CBCT
imaging is suitable for the surgical planning.

In this work, we started with phantom experiments using small rods of known densities
in order to estimate the degree of motion. Later on, we will embed them into a wearable ear
device during the pre-operative scanning. This chapter is organized as follows. Section 3.3
presents the simulated motion scanning system and the proposed method for head motion
detection based on the phantom data. Section 3.4 describes the experimental evaluation, and
section 3.5 ends with conclusions and discussion of results.

3.3 Materials and Methods

To detect patient head movement, we have developed an image-based registration pipeline,
and tested it on experimental data, as shown in Figure 3.4. First, we extract the center line
from the phantom block with and without motion. Then, we register the center line from
these images and compute the Hausdorff distance, which describes the maximum distance
between the surfaces of the rod phantoms with and without motion.
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Figure 3.4: The experimental pipeline of CBCT movement detection. Center lines of rod
phantoms are extracted, which are regarded as the input data for registration. The center line
of the rod-phantom in the motion image is defined as the fixed image, and the center line of
the rod-phantom in the no-motion image is considered as moving image. Next, the Hausdorff
distance is employed to compute the maximum surface distance between the surface of rod
phantoms with and without motion. The simulated head motion is quantified via Hausdorff
distance calculation.
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3.3.1 Phantom data sets

In order to simulate potential patient head movement during the CBCT scanning process, the
following devices were employed to acquire experimental data: an imaging phantom (90×
90×35mm3) with implanted fiducial screws and three implanted rod-phantoms, Planmeca
3D CBCT max imaging system, and the ARTORG Image Guided System (IGS) drilling
robot [45]. As shown in Figure 3.5, a transparent block is attached to the drill robot arm.

Figure 3.5: Simulated motion scanning system. From left to right: Planmeca 3D CBCT max
imaging system and a phantom with the drilling robot, zoomed area for the scanned block,
three tiny rod-phantoms attached on the scanned block.

In our study, we have compared three degrees of simulated motion including "slight
motion", "moderate motion" and "severe motion". These motions are obtained from the
rotation of the drilling robot at 0.75degree, 1.25degree and 2.50degree, respectively. We
have combined them with two motion patterns such as, sudden motion and continuous motion.
Both robot and phantom block rotate simultaneously. The robot arm holds the phantom block
horizontally, and then it returns to the original position. Figure 3.6 describes the sudden and
continuous motion pattern at 1.25degree. In sudden motion, there is no motion in the first 5
seconds. Suddenly, the phantom moves 1.25degree and remains still for 5 seconds. Then the
phantom moves back to its initial position (i.e. −1.25degree). Then, the phantom further
moves by −1.25degree for 5 seconds. Finally, the phantom returns to the original place and
holds the position. In continuous motion, the phantom moves constantly in the first 5 seconds
and in 1.25 degrees. The phantom moves back to the original position at a constant speed.
Then the phantom then further moves by −1.25degree for 5 seconds at a constant speed. At
last, the phantom moves to the original position at a constant speed in the 20th second.
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Figure 3.6: One example of motion types at 1.25degree. Left: sudden motion every 5
minutes to the left or the right, and return to the original position, then towards the opposite
direction. Right: continuous motion in the same back-and-forth routine as the sudden motion.

We have first scanned the stationary phantom block without motion (i.e. 0degree) as
reference. The different rotation modes of the phantom block are evaluated in relation to
this position. We then scanned the moving phantom driven by the drill robot arm. Motion
patterns (see Figure 3.7) are summarized as follows:

• No motion as reference for other motion patterns

• Sudden motion (in degrees): 0.75,1.25,2.50

• Continuous motion (in degrees): 0.75,1.25,2.50

The CBCT images were obtained with a Planmeca ProMax 3D Max scanner with
100× 90mm2FOV . For each set of data, a CBCT scan (0.15× 0.15× 0.15mm3) with a
volume size of 668×668×668 voxels was performed. Figure 3.8 shows one example of
the scanned phantom block, which highlights two rod-phantoms that will be tested in the
proposed approach. The zoomed area shows phantom B with and without motion artifacts.
The zoomed area also shows three screws inside the block, and how they look like with and
without motion.

3.3.2 Preprocessing

To detect motion in the simulated data, we have rigidly aligned the "no-motion" image to
the "motion" image. In this work, we define the "motion" image as the fixed image, and the
"no-motion" image as the moving image. Registration then brings the moving image into the
alignment with the fixed image.
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Figure 3.7: The motion patterns we have scanned. The no motion pattern image is the least
blurred image. The outline of the rod-phantom can be easily recognized. When the rotation
increases, the length of the rod-phantom appears longer.

Figure 3.8: One example of the scanned phantom block. From left to right: the scanned
block within two rod-phantoms (A and B), zoomed area showing the phantom block with
motion artifacts, and zoomed area showing the phantom block without motion.
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Pre-processing of CBCT Image with Motion

First, the highest image intensity is employed to represent the center pixel of the phantom
with motion. I = 0.95max(Iimage), in which 0.95 is a parameter obtained heuristically. This
follows the assumption that the center of the object shows the least image distortion. The
second step is to represent the original data through the center line of the rod-phantom. In
this work, we chose a low-dimensional representation of the center line information. We
used singular value decomposition (SVD) as a simple and effective way to fit a line in 3D
space via eigenanalysis [138] [5][50]. It is defined as,

Amn =UmmSmnV T
nn. (3.2)

In SVD, a rectangular (m×n) matrix A is decomposed into the product of three matrices,
which includes an (m×m) orthogonal matrix U of eigen vectors (UUT = UTU = I), a

diagonal (m× n) metric S of eigenvalues (S =


σ0 0 ... 0
0 σ1 ... 0
...

... . . . ...
0 0 ... σn

, the singular values

σ0 > σ1 > ...> σn > 0, where all the values in the diagonal S are positive and sorted from
the largest value to the smallest) [40], and the transpose of an (n×n) orthogonal matrix V
(VV T =V TV = I) [5][50]. The eigenvectors correspond to a set of orthogonal axes. Each
eigenvector stands for one direction of variation. Moreover, each direction has a various
scale which is provided by the eigenvalues [146]. Eigenvalues stand for the variance of the
data points in each direction [146].

Pre-processing of CBCT Image without Motion

As the density of the four rod-phantoms is known, a simple image threshold [128] was
used. The threshold chooses a range value of voxels as foreground, and defines the rest of
voxels as the background. In this work, the thresholds correspond to the intensity of the rods
(0,400,800,1200). Manual corrections were performed if needed. Three rod-phantoms were
attached on the block (400,800,1200). After obtaining binary images from the threshold
method, a distance map [128] was computed for each thresholded rod phantom to extract
its center line (i.e. skeletonization). The distance map is a method for generating a gray scale
image from a binary digital image [128]. It defines the pixel values of the foreground as
the value of the distance to the nearest background. In this work, the Chamfer distance is
employed for computing the distance map. The Chamfer distance is similar to the Euclidean
distance, but it computes faster than the Euclidean distance [22].
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3.3.3 Alignments of Center Line

Once the center lines of rod-phantoms are extracted from the preprocessing step, they are
regarded as the input data for registration. The registration method brings the center lines of
rod phantoms into alignment (see Appendix 7.2), allowing the following step of measuring
Hausdorff distance (see Figure 3.9). In this step, point set to point set registration method is
applied at the center line of of rod-phantoms from the "motion" image and the "no-motion"
image. It uses the fixed point set from the "motion" image as a reference and looks for a
transformation that maps points from the space of the fixed point set to the space of the
moving point set [72].

Figure 3.9: Sketch of fitting the center line of the rod-phantom for registration. During the
registration, the moving point set of the center line of the rod-phantom from the "no-motion"
image aligns to the fixed point set from the "motion" image.

3.3.4 Hausdorff Distance Calculation

To find the largest distance from the boundary of the phantom without motion to the boundary
of the phantom with motion, the Hausdorff Distance (HSD) is employed. The following
metric measures the Hausdorff distance [67] from the ground truth surface to its nearest
neighbor in the segmented surface.
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H(A,B) = max(h(A,B),h(B,A)), (3.3)

where
h(A,B) = max

a∈A
{min

b∈B
||a−b||}. (3.4)

The function h(A,B) is the Hausdorff distance between two surfaces A (no motion image)
and B (motion image). The term ||a−b|| is the distance between point a and b (in our case
the Euclidean distance). The underlying assumption is that the smaller the Hausdorff distance
value, the smaller the amount of detected motion.

3.4 Experimental Design

Three rod-phantoms, with intensities 400, 800 and 1200, were attached to the rotating block
and imaged with Planmeca CBCT. The rod-phantom with intensities 800 was positioned
parallel to the x-ray beam, making it nearly imperceptible. Therefore, in our experiments,
rod-phantoms with intensities 400 (Phantom B) and 1200 (Phantom A) were used. The no-
motion images are used as a reference image during registration. Registration, singular value
decomposition (SVD) and distance map were performed with the Insight-Toolkit version
4.4.1 [73]. The detail of the implementation is described in Appendix 7.2.

3.4.1 Evaluating detected motion with a geometrically generated
Ground Truth

As ground truth data, we calculated the geometric distance, since the geometry of the phantom
block is known. Figure 3.10 shows the geometric distance that can be calculated analytically,
as follows,

L2 = R2 +R2−2RRcosθ , (3.5)

where R is the length of the block, θ is the rotated degree that is controlled by the robot arm,
L is the geometric distance.

3.4.2 Evaluation

In this section we present motion detection results for the two rod-phantoms we measured.
The geometric distance was used to verify the proposed approach. Figure 3.15 shows the
obtained measurement results.
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Figure 3.10: The phantom block used to simulate controlled motion patterns. The amount of
motion can be calculated analytically as the dimensions of the rods and the magnitude of the
motion are known.

1) Sudden Motion Study: We checked the quality of simulated sudden motion. We
observed that "illusory" rod-phantoms of Phantom A appear on the CBCT in the sudden
motion mode (see Figure 3.11). It is impossible to measure the amount of motion in these
images, as multiple objects then appear on the image. The "0.75degree" sudden motion
resulted in largest distances between two illusory rod-phantoms. Because the position has a
big effect on Phantom A, it can not be measured by our proposed method. Nevertheless, the
sudden motion patterns of Phantom B were the same as we expected (see Figure 3.12). They
are able to be quantified by the proposed method. For the sudden motion experiments, we
found that the positioning of the rod-phantom influences the CBCT scanning. Due to these
issues for sudden motion patterns, we mainly concentrate on continuous motion experiments.

2) Continuous Motion Study: The performance of the simulated continuous motion
patterns in Phantom A and Phantom B are consistent, as shown in Figure 3.13 and Figure
3.14. Figure 3.15 shows the blurred distances of Phantom A and B are larger than 2mm
in 0.75degree continuous motion. As we know, at least 0.3mm distance between the drill
and the facial nerve is needed in cochlear implant surgery. Therefore, motion blurred from
0.75degree exceeds the acceptable range of motion artifacts. Overall, and as expected the
larger the amount of motion, the larger the Hausdorff distance. From the experiments, both
the Hausdorff distance and the geometric distance are positively correlated, indicating the
feasibility of using the Hausdorff distance as a metric for motion estimation.
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(a) "no-motion" of Phantom A (b) 0.75degree sudden motion

(c) 1.25degree sudden motion (d) 2.50degree sudden motion

Figure 3.11: One example of sudden motion of the Phantom A. "Illusory" rod-phantoms
appear on the CBCT in the "0.75degree", "1.25degree", "2.50degree" sudden motion images,
respectively. The distances among illusory rod-phantoms in the "0.75degree" sudden motion
images are larger than the "2.50degree" one. The smallest distances are in the "1.25degree"
sudden motion image.
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(a) "no-motion" of Phantom B (b) 0.75degree sudden motion

(c) 1.25degree sudden motion (d) 2.50degree sudden motion

Figure 3.12: One example of sudden motion of the Phantom B. "no-motion" pattern of
Phantom B is easily distinguished. Different degrees sudden motion make phantom B blurred
in various levels.
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(a) "no-motion" of Phantom A (b) 0.75degree continuous motion

(c) 1.25degree continuous motion (d) 2.50degree continuous motion

Figure 3.13: One example of continuous motion of the Phantom A. "no-motion" pattern
of Phantom A is the brightest among the rest of continuous motion pattern images. The
continuous motion results in the uneven distributed intensities of Phantom A.
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(a) "no-motion" of Phantom B (b) 0.75degree continuous motion

(c) 1.25degree continuous motion (d) 2.50degree continuous motion

Figure 3.14: One example of continuous motion of the Phantom B. "no-motion" of Phantom
B has the sharpest boundary among the continous motion patterns of the Phantom B. The
larger motion rotation leads to the longer length of the Phantom B in the CBCT image.
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Figure 3.15: Correlation between ground truth (computed analytically) and estimated motion
using the proposed image-based pipeline. First experiments on two phantom experiments
show a good correlation, indicating the feasibility of the proposed approach to estimate head
motion.
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3.5 Discussions

In this preliminary study we have developed a practical motion detection method for CBCT
image via Hausdorff distances based on image registration framework. We have simulated
two different motion modes, sudden motion and continuous motion. In general, preliminary
results indicate that the proposed method is able to reliably quantify motion. An acceptable
degree of correlation between real motion (as calculated analytically) and amount of blurri-
ness, quantified by the Hausdorff distance, has been found, suggesting the potential of this
practical solution to detected motion in CBCT imaging.

In sudden motion study, we have observed that placing rod-phantoms with different
orientation within the block have a major impact on the motion pattern. The reason is that
the instant change at the exit angle between the rod-phantom and beam source from the
Planmeca imaging system results in the detector receiving different amount of X-ray beams
in the desired region. Two unexpected illusory rod-phantom shadows lead to conclude that
the proposed method cannot be applied for sudden motions. In next step, we will explore the
relationship between the phantom position and motion patterns, in order to find the optimal
posture of the patient’s head for CBCT scanning and correlate our measurements directly
with FLE measurements.

In continuous motion study, the 2.50degree robot-controlled motion has produced much
more blurred image. The Hausdorff distance exceeded 5mm in both rod-phantoms, and
it even reached around 8.3mm in one rod-phantom. Moreover, the smallest 0.75degeree
rotation produce a Hausdorff distance of more than 2mm. It means that the patient head
movement cannot rotate more than 0.75degree in the cochlear implant surgery. However,
this depends on the location of the rotation center.

The next step will be to improve the experimental setup by correlating Fiducial Local-
ization Error (FLE), and Hausdorff distance, in order to determine an acceptable "blur"
threshold, and create a template (i.e. wearable phantom) that the patient can wear during
scanning. As second evaluation, we will choose digital cameras to capture head motion,
similar to [113] [112] [114] [115]. Next, we will analyze the degree of motion in each
direction and check if the detected motion is acceptable for cochlear imaging.

3.6 Conclusions

We have presented a practical and reliable motion detection method for estimating the
degree of motion in simulated blurred CBCT images. This is the first step towards the
clinical routine. In clinical workflow, it will be used to assess the degree of motion, deemed



3.6 Conclusions 53

acceptable for surgical planning of cochlear imaging. A simulated motion scanning system
has been arranged, in which a robot controls the rotation modes for three rod-phantoms
within a phantom block. The motion detection method is based on image registration and
Hausdorff distance measurements. The results show that the proposed method is able to
calculate the degree of motion approximately, and can be integrated in clinical practice.





Chapter 4

Facial Nerve Image Enhancement

This Chapter has been submitted as a conference article.1

4.1 Abstract

Facial nerve segmentation plays an important role in surgical planning of cochlear implanta-
tion. Clinically available CBCT images are used for surgical planning. However, its relatively
low resolution renders the identification of the facial nerve difficult. In this work, we present
a supervised learning approach to enhance facial nerve image information from CBCT. A
supervised learning approach based on multi-output random forest was employed to learn
the mapping between CBCT and micro-CT images. Evaluation was performed qualitatively
and quantitatively by using the predicted image as input for a previously published dedicated
facial nerve segmentation, and cochlear implantation surgical planning software, OtoPlan.
Results show the potential of the proposed approach to improve facial nerve image quality as
imaged by CBCT and to leverage its segmentation using OtoPlan.

4.2 Introduction

Cochlear implantation is a conventional treatment for patients suffering from profound
hearing loss. The surgical operation for cochlear implant requires mastoidectomy, to access

1Ping Lu, Livia Barazzetti, Vimal Chandran, Kate Gavaghan, Stefan Weber, Nicolas Gerber, Mauricio
Reyes, "Facial nerve image enhancement from CBCT using supervised learning technique", In Engineering in
Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, pp. 2964-2967.
IEEE, 2015. © © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works.
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the cochlea and avoid critical anatomical structures. To minimize the invasiveness of the
surgical operation, a surgical robot system with an associated planning tool, OtoPlan [45],
has been developed. OtoPlan assists the robotic system to perform drilling for direct cochlear
access [9]. One of the main challenges of this procedure is to avoid the facial nerve with a
margin of at least 0.5mm. Any damage of the facial nerve causes temporary or permanent
paralysis in the ipsilateral face. Hence, an accurate facial nerve segmentation is a critical step
for an effective surgical plan.

The surgical planning is performed on cone-beam computed tomography (CBCT) images.
In clinical practice, CBCT images are acquired with reduced radiation dose to patients, which
may result in low image quality and less clear structure border. The diameter of the facial
nerve lies in the range of 0.8−1.7mm [126]. Accurate segmentation of the facial nerve from
the acquired CBCT images is challenging, mainly in the border region. Image enhancement
is hypothesized to enhance the overall image quality and thereby to improve facial nerve
segmentation.

In recent years, several CBCT image enhancement algorithms based on deterministic
models has been proposed [88] [92] [107]. However, they were built from a priori knowledge
of the imaged anatomy or imaging process. Alternatively, supervised learning approach has
been proposed to learn the relationship between the acquired low-resolution and correspond-
ing high-resolution image [3]. In this work, we propose to apply supervised learning based
on multi-output random regression forest to enhance the image quality, in order to obtain a
faster and more reliable facial nerve segmentation in the framework of pre-operative cochlear
planning.

Below, the proposed approach is described and a detailed description of the image
enhancement process for facial nerve segmentation is presented. An initial evaluation of the
approach performed on CBCT images of cadaveric specimen and segmentation results, as
compared to ground truth micro-CT images, is presented.

4.3 Methods

In supervised learning, image features x = (x1, ....xn) ∈ Rn computed on clinical CBCT are
mapped to the corresponding output response y = (y1, ....ym) ∈ Rm computed on micro-CT.
The mapping is cast as a regression problem. Given a training set {⟨Xi,Yi⟩|i = 1, ...,N} of
CBCT and micro-CT aligned pairs of images, we extract from each ith image, a feature
vector Xi = (x1, ....xC) ∈ X and responses Yi = (y1, ....yC) ∈ Y over a grid of C voxels. Then,
a function ŷ : X 7→ Y from a space of features X to the space of responses Y that predicts the
response for any new test image feature Xtest ∈ X is constructed.
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The complete pipeline is presented in Fig. 1, and is described below.

4.3.1 Feature Extraction

Input Features

For feature extraction, the CBCT image was rigidly registered and resampled to the micro-CT
image, in order to capture the image mapping from low to high- resolution at the same spatial
locations. A uniform sampling grid with isotropic grid spacing is defined over the CBCT
and micro-CT images. At each node c j of the grid j = {1, ...C}, a volume of interest (VOI)
5×5×5 is extracted on which feature descriptors are computed.

We propose to use two family of features, intensity- and texture-based. The intensity-
based features includes all the intensity values. The texture-based features includes first order
statistical measures and the gray-level co-occurrence matrix (GLCM) [53] [116]. The list
of texture features is presented in Table 4.1. For texture based features, a feature pooling
was performed, followed by principle component analysis (PCA) to reduce dimensionality
and redundancy of feature sets. This reduces the feature space from R214 to R34. Hence, the
input feature set x = (x1, ....xn) includes all the image intensities, first order statistics and
mean and variance of all the pooled GLCM features (i.e. n ∈ {R125 +R34 = R159} )

Table 4.1: List of texture - based features computed at each grid node.

Texture Features
1st Order Statistics GLCM

Mean Energy
Std.Dev Entropy

Skewness Correlation
Kurtosis Inertia

Minimum Cluster Shade
Maximum Cluster Prominance

Inverse Difference Moment
Haralick Correlation

Output Response

A VOI of 3× 3× 3 is extracted at each corresponding grid node c j from micro-CT. The
output response set y = (y1, ....yd2) includes all the intensity information (d2 ∈ R9).
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4.3.2 Multi-Output Regression Model

Decision forests are a group of learning methods widely used for classification and regression
tasks in machine learning and computer vision. An extension of decision forest with extra
trees algorithm has been proposed to handle multi-ouput image classification [36, 93]. We
adopted this technique as a regression approach for its ability to preserve local intensity
patterns. During supervised learning, the algorithm randomly selects without replacement
K input variables {v1, ....vk} from the training data D := {⟨Xi,Yi⟩|i = 1, ...,N}. For each
selected input variable, within the interval [vmin

i ,vmax
i ] a cutpoint si was randomly defined,

followed by spliting [vi < si]. Among the K candidate splits, the best split was chosen via
optimizating the L2 mean square error [93].

During testing, image features were extracted and passed through the regression random
forest. The computed output corresponds to the intensity of the central voxel of the designed
3×3×3 voxels window. No further post-processing was performed on the resulting image.

4.4 Results

We report in this study preliminary results obtained on a database of right and left ears from
4 cadaver heads following an approved clinical study. Pairs of CBCT isotropic (0.15× 0.15
×0.15mm3) and micro-CT (0.018×0.018×0.018mm3) images were acquired from the four
heads. The images were rigidly aligned using a rigid registration transform, normalized
cross-correlation and gradient descent optimization. For rigid registration, we defined CBCT
as the moving image and micro-CT as the fixed one. Then we resampled CBCT with the
micro-CT voxel spacing. From the resulting rigidly aligned images, image patches were
extracted and used for the training phase.

For evaluation, we manually segmented the facial nerve from the micro-CT image (re-
ferred hereafter as groundtruth). We used the software OtoPlan [45] to perform segmentation
of the facial nerve from the original CBCT image and its corresponding enhanced version.
OtoPlan is a dedicated state-of-the-art software for cochlear implantation surgical planning.

We performed qualitative visual assessment of the resulting segmented facial nerve as well
as a quantitative analysis of surface-to-surface distances to the ground-truth segmentation. For
implementation, we use the scikit-learn package [120] and its ExtraTreesRegressor, which
implements a multi output random forest regression algorithm. For model parameterization
(i.e. number of estimators, number of trees, etc.) we adopted a leave-one-out strategy.
Additionally, we investigated the influence of the window size on the prediction accuracy.
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Figure 4.2 shows the results obtained after regression forest application to a CBCT image.
Compared to the input CBCT image, the resulting enhanced image is much sharper and able
to characterize image details not completely discernible from the CBCT image.

Following the recent findings from [3], we further explored the importance of the window
size used to extract feature information during the training phase, Our results showed that
using short range features (i.e. window size in our application smaller than 0.018mm) yields

Figure 4.1: The complete pipeline of the proposed approach for enhancing CBCT image.
During training, the original CBCT image is aligned to its related micro-CT image. Features
are extracted from the CBCT by image patches, and intensities from related image patches
from the micro-CT are provide. The mapping from image features to intensities is learned
during the training phase.
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(a) original CBCT (b) original micro-CT

(c) "short range" prediction (d) enhanced CBCT

Figure 4.2: Results of supervised-learning based CBCT image enhancement. Image features
are extracted from (a) original CBCT image, and used to produce an enhanced version (d),
that presents sharper and more clear structures, as compared to the original high-resolution
micro-CT image (b). For demonstration purposes, we report results obtained using features
extracted from a short range (i.e. small window size) (c), indicating the ability of the model
to learn and utilize local structural information for the prediction process.
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suboptimal prediction results. Conversely, employing an excessively large window size yields
smoother but inaccurate prediction results. This result reflects the ability of the prediction
model to learn local structural information that leverages the prediction of the image content
at lower resolution scales. In the next section, we present preliminary results of segmentation
of the facial nerve in the framework of minimally invasive cochlear implantation surgical
planning, using the enhanced CBCT as input for the dedicated software tool OtoPlan.

4.4.1 Facial Nerve Segmentation

OtoPlan features a semi-automatic segmentation of the facial nerve. Based on a GUI-based
tool, the user selects landmarks that approximately lie on the facial nerve’s midline. A
panoramic visualization is then constructed and displayed to the user, which corresponds to
an “unfolding” of the facial nerve into one single view. The selected landmarks are displayed
and used to cast intensity sampling lines that are perpendicular to the approximate midline
of the facial nerve. A threshold based scheme is then used by OtoPlan to find the facial
nerve wall as initialization prior to manual adjustments. Figure 4.3 illustrates this part of the
segmentation process.

As the image contrast from CBCT is relatively poor, this process can be daunting and
prone to errors, which in turn necessitates manual corrections. We performed a preliminary
evaluation by comparing segmentation results obtained using the original and the enhanced
CBCT image. OtoPlan can then generate and export a mesh representation of the segmented
facial nerve. We measured surface-tosurface distances between each generated mesh and the
corresponding ground-truth generated mesh. Figure 4.4 shows a particular example result
where distances are color-coded to visualize deviations from the ground-truth segmentation.
Employing the enhanced CBCT image provides OtoPlan with a sharper and better delineated
facial nerve wall that yields a more precise segmentation of the facial nerve (i.e. lower
surface-to-surface distances with respect to the groundtruth).

4.5 Conclusions

Good characterization of the facial nerve is of crucial importance for a safe planning of
cochlear implantation interventions. Although CBCT-based imaging provides means to
image the facial nerve in patients, its relatively low image contrast hinders a precisely
definition of the facial nerve wall. In this work we proposed a machine-learning based
approach that uses a supervised learning paradigm to learn the mapping between low-,
and high-resolution imaging of the facial nerve. The approach relies on a multi-output
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Figure 4.3: Panoramic view for semi-automatic segmentation of the facial nerve. The user
selects a set of landmarks that approximately correspond to the middle line of the facial
nerve. A threshold based scheme is then used to cast sampling perpendicular in order to find
the facial nerve wall (above and below the middle line). Due to the low contrast quality of
the CBCT image, manual correction of each point is commonly required. In this example,
we illustrate the enhanced CBCT image.
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(a) Original CBCT (b) Enhanced CT

Figure 4.4: Surface-to-surface distances from the ground-truth segmentation to OtoPlan
segmentations generated using the original and enhanced CBCT image. Colormap encodes
distances and best viewed in electronic version.
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regression forest and image features, extracted from the clinically available CBCT image,
to perform voxel intensity prediction at the micro-CT image resolution level. Preliminary
results on CBCT images of the facial nerve show the ability of the proposed approach to
enhance the imaging information by performing a prediction of voxel intensity information
at the equivalent micro-CT resolution level. These first results also show the potential of
the proposed approach to assist state-of-the-art cochlear surgical planing software, such as
OtoPlan, to segment the facial nerve more precisely.

We report similar findings aligning with the literature on supervised-learning based image
quality transfer [3], where local structural information from the low-resolution image was
shown to convey information that can be used to predict localised voxel intensity information
at the high-resolution image level. Our experiments also suggest the advantage of using a
multi-output regression forest, in contrast to a single-output regression forest, in order to
promote the learned local structural information.

The proposed approach presents some limitations. As for other supervised-learning based
approaches, it is important to have a database of samples that characterises the expected
variability of a population. Secondly, the mapping learned between low-, and high-resolution
is specific to the imaging parameters used for the training database, and therefore a new
model is potentially needed in case these parameters are modified. This can be circumvented,
for instance, by designing imaging features that are independent of the energy parameters
used for CT devices, or by designing compensation strategies based on an imaging phantom.

Further comprehensive evaluations and comparisons are needed, especially against other
previously proposed super resolution approaches, as well as a more comprehensive quanti-
tative evaluation on a larger dataset. Other future work will include an attempt to combine
this approach with a fully automatic segmentation of the facial nerve that uses shape priors,
as proposed by others [108], but that does not employ computationally expensive non-rigid
registration techniques.



Chapter 5

Facial Nerve Segmentation

This Chapter has been submitted as a journal article.1

5.1 Abstract

Facial nerve segmentation is of considerable importance for pre-operative planning of
cochlear implantation. However, it is strongly influenced by the relatively low resolu-
tion of the cone-beam computed tomography (CBCT) images used in clinical practice. In
this paper, we propose a super-resolution classification method, which refines a given initial
segmentation of the facial nerve to a sub-voxel classification level from CBCT/CT images.
The super-resolution classification method learns the mapping from low-resolution CBCT/CT
images to high-resolution facial nerve label images, obtained from manual segmentation on
micro-CT images. We present preliminary results on dataset, 15 ex-vivo samples scanned
including pairs of CBCT/CT scans and high-resolution micro-CT scans, with a Leave-One-
Out (LOO) evaluation, and manual segmentations on micro-CT images as ground truth. Our
experiments achieved a segmentation accuracy with a Dice coefficient of 0.818± 0.052,
surface-to-surface distance of 0.121±0.030mm and Hausdorff distance of 0.715±0.169mm.
We compared the proposed technique to two other semi-automated segmentation software
tools, ITK-SNAP and GeoS, and show the ability of the proposed approach to yield sub-voxel
levels of accuracy in delineating the facial nerve.

1Ping Lu, Livia Barazzetti, Vimal Chandran, Kate Gavaghan, Stefan Weber, Nicolas Gerber, Mauricio
Reyes, "Highly accurate Facial Nerve Segmentation Refinement from CBCT/CT Imaging using a Super
Resolution Classification Approach", IEEE Transactions on Biomedical Engineering. 2017 Apr 25. doi:
10.1109/TBME.2017.2697916. © © 20xx IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.
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5.2 Introduction

Cochlear implantation is a conventional treatment that helps patients with severe to profound
hearing loss. The surgical procedure requires drilling of the temporal bone to access the
cochlea. In the traditional surgical approach, a wide mastoidectomy is performed in the
skull to allow the surgeon to identify and avoid the facial nerve, whose damage can cause
temporal or permanent ipsilateral facial paralysis. In order to minimize invasiveness, a
surgical robot system has been developed to perform highly accurate and minimally invasive
drilling for direct cochlear access [9]. The associated planning software tool, OtoPlan [45],
allows the user to semiautomatically segment structures of interest and define a safe drilling
trajectory. The software incorporates a semiautomatic and dedicated method for facial nerve
segmentation using interactive centerline delineation and curved planar reformation [45].

The surgical planning for minimally invasive cochlear implantation is affected by the
relatively low resolution of the patient images. Imaging of the facial nerve is typically
performed using CT or CBCT imaging with a resolution in the range of 0.15−0.3mm slice
thickness, and a small field of view 80−100mm temporal bone protocol. This resolution is
comparatively low in regards to the diameter of the facial nerve, which lies in the range of
0.8−1.7mm.

Atlas-based approaches combined with level-set segmentation have been proposed before
to segment the facial nerve in adults [108] and pediatric patients [126]. These methods
automatically segment the facial nerve, with reported average and hausdorff accuracies in the
ranges of 0.13−0.24mm and 0.8−1.2mm, respectively. This reported accuracy is similar
to other approaches, such as OtoPlan [45] or NerveClick [151], where a semi-automatic
statistical model of shape and intensity patterns was developed with a reported RMSE
accuracy of 0.28±0.17mm . Since for the facial nerve a margin of up to 1.0mm is available
and an accuracy of at least 0.3mm (depending on the accuracy of the navigation system)
is required [131], an accurate facial nerve segmentation is crucial for an effective cochlear
implantation surgical plan.

Super-resolution methods have been presented in computer vision related tasks to reach
sub-voxel accuracy in regression problems, where the goal is to reconstruct a high-resolution
image from low-resolution imaging information. Most of such methods employ linear or
cubic interpolation [140], but are sub optimal for CBCT/CT images of the facial nerve,
due to their SNR and local structural variability. In a recent study [132], a Random Forest
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based regression model was used to perform upsampling of natural images. Similarly,
in [3] a supervised learning algorithm was used to generate diffusion tensor images at super-
resolution (i.e. upscaling from 2×2×2mm to 1.25×1.25×1.25mm resolution). Recently,
in [35], a super-resolution convolutional neural network (SRCNN) learns an end-to-end
mapping between the low- and high-resolution images. In [111] a super-resolution (SR)
approach reconstructs high resolution 3D images from 2D image stacks for cardiac MR
imaging, based on a convolutional neural network (CNN) model.

In the present clinical problem, we are concerned with the delineation of the facial nerve
for cochlear implantation planning. Hence, as opposed to other super-resolution schemes,
here we propose a super-resolution classification method for accurate segmentation refinment
of the facial nerve.

We adopted a supervised learning scheme to learn the mapping between CBCT/CT images
to high-resolution facial nerve label images, obtained from manual segmentations on micro-
CT images. Here we coin the method super-resolution classification (SRC). The proposed
approach then employs SRC to refine an initial segmentation provided by OtoPlan [45] to
generate accurate facial nerve delineations.

In the following sections we present a description of the image data and the proposed
algorithm, followed by segmentation results on test cases, and a comparison with two
other general-purpose segmentation (ITK-SNAP, GeoS) software tools used to perform
segmentation refinement.

5.3 Materials and Methods

This section describes the image data used to train and test the proposed SRC algorithm.
Figure 5.1 shows an overview of the complete pipeline, composed of two phases for training
and testing. During training, image upsampling, image preprocessing, registration to micro-
CT images, and building of a classification model based on extracted features, are performed.
During testing, the input CBCT image is upsampled, preprocessed, and features are extracted
to perform super-resolution classification.

5.3.1 Image Data

We developed and tested our approach on a database of 15 patient cases, comprising 7 pairs of
CBCT and micro-CT images, and 8 pairs of CT and micro-CT images of temporal bones. The
CBCT temporal bones were extracted from four cadaver heads in the context of an approved
clinical study on cochlear implantation [161]. The CBCT were obtained with a Planmeca
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ProMax 3D Max with 100×90mm2FOV . Micro-CT was performed with a Scanco Medical
µCT 40 with 36.9×80mm2FOV . For each sample, a CBCT (0.15×0.15×0.15mm3) and
micro-CT ( 0.018×0.018×0.018mm3) scan was performed. The set of 8 pairs of CT and
Xtreme CT images of temporal bones were obtained with a CT imaging (Siemens SOMATOM
Definition Edge) and a temporal bone imaging protocol with parameters: 120kV p, 26mA,
80mmFOV . The spatial resolution of the scanned CT images was 0.156×0.156×0.2mm3.
The Xtreme CT ( 0.0607×0.0607×0.0607mm3 ) scans were obtained with a Xtreme CT
imaging (SCANCO Medical). We note that cadaver images are similar to clinical images
of the facial nerve, enabling the evaluation of our method with cadaver images. The image
volume size ranges around 70×80×110 voxels from CBCT and 60×55×60 voxels from
CT .

To create ground truth datasets, manual segmentations of the facial nerve on micro-
CT images was performed following the segmentation protocol presented in [45], and were
verified by experts using Amira 3D Software for Life Sciences version 5.4.4 (FEI, USA) [142].
The experts verifying the manual ground-truth are two senior biomedical engineers trained in
the cochlear anatomy and with years of experience in manual segmentation of the cochlear
structures.

5.3.2 Preprocessing

To create the supervised based machine learning model and to evaluate the approach on
ground truth data, derived from micro-CT images, we rigidly aligned the pairs of CBCT and
CT and micro-CT images using Amira (version 5.4.4) via the normalized mutual information
method [143] and elastix [79] [137] with the advanced normalized correlation metric (see
Appendix 7.3). For the sake of clarity, we refer for the rest of the paper to both CBCT and
CT as CBCT/CT to indicate that the operations are applied to both.

Intensity normalization

We normalize the intensities of the CBCT/CT images by histogram matching, with a common
histogram as a reference. Since we are computing the histogram only on a ROI (described
below in section 5.3.2) to match the range of intensities being targeted for the facial nerve,
we avoid the effect of background voxels and hence, there is no need to set an intensity
threshold for the histogram matching.
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CBCT/CT and micro-CT image alignment (only training phase)

In order to learn the mapping between CBCT/CT and micro-CT images we rigidly aligned the
pairs of CBCT/CT and micro-CT images. Due to the fact that the diameter of the facial nerve
lies in the range of 0.8−1.7mm and the facial nerve is only imaged across approximately
at 5− 11 slices of CBCT/CT (0.15× 0.15× 0.15mm3), we manually initialized a rigid
registration based on landmarks defined by screws implanted in the specimens for patient-to-
image registration, as presented in [161], followed by an automated rigid registration in Amira
(version 5.4.4) using normalized mutual information metric. A second rigid registration was
performed between the transformed micro-CT image and the CBCT image, using elastix with
advanced normalized correlation metric. We observed that in practice this pipeline resulted
in an improved robustness and accuracy, as opposed to performing a single registration. We
also remark that no change of resolution is performed when registering the micro-CT image
to the CBCT image (as typically is the case for image registration tasks). The set of sought
transformations are then applied to the ground truth image in order to map them onto the
CBCT image space.

Region of interest selection (ROI)

Since the main focus of the method is to obtain sub-voxel accuracy of the facial nerve border,
and to reduce computational costs, we adopted a band-based region of interest selection
strategy. Here we use the segmentation results from OtoPlan as initial segmentation to be
refined through Super Resolution Classification. From the preliminary OtoPlan segmentation
of the CBCT/CT image, a region-of-interest is created via a combination of erosion and
dilation morphological operations. The region of interest, on which the super-resolution
classification takes place, corresponds to the arithmetic difference between the dilated and
eroded label images. In practice, a 16 and 24 voxel structuring element (0.3mm and 0.4mm
respectively on each side, which effectively translates as an additional two times magnitude
of the accuracy error reported by other approaches) ) was tested on the upsampled CBCT/CT
images.

5.3.3 Super-Resolution Classification (SRC)

This section describes the steps for CBCT/CT upsampling, the feature extraction and the
classification model building.
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CBCT/CT upsampling

Similar to [132], we perform an upsampling of the CBCT/CT image to the target resolution
in order to combine features extracted from the upsampled and the original image. In this
study we employed a B-spline upsampling scheme. However, other interpolation schemes,
such as linear or cubic, can be used since as classification results were not sensitive to this
choice.

Feature Extraction

We employ texture-based features derived from first-order statistics, percentiles and Grey
Level Co-occurrences Matrix (GLCM) [54] [117] [27], which are only extracted on the
computed region of interest. First-order statistics [141] and percentile features [38] [47]
are computed at original and upsampled resolutions, while GLCM features are computed
only on patches from the upsampled image. This is supported by direct testing of GLCM
features derived from both the original and upsampled images with poorer results (in terms
of all evaluated metrics) than using only GCLM features extracted from the upsampled
image. This can also be explained by the fact that the much larger size of voxel-wise GLCM
features (in comparison to the other imaging features). We remark that through direct testing
of GLCM features derived from both original and upsampled CBCT/CT images, GLCM
features extracted from the original CBCT/CT image do not contribute as much as those
extracted from the upsampled image.

First-order statistics Mean, standard deviation, minimum, maximum, skewness and kur-
tosis of voxel intensities are computed for each image patch of the CBCT/CT and upsampled
CBCT/CT image.

Percentiles From each image patch of the CBCT/CT and upsampled CBCT/CT image,
the 10th percentile, 25th percentile, 50th percentile, 75th percentile, 80th percentile, 95th
percentile of the intensity distribution, are used as features.

The Grey Level Co-occurrences Matrix (GLCM) The Grey Level Co-occurrences Ma-
trix (GLCM) is a second-order statistical texture that considers two-voxels relationship in an
image. Following [27], we adopted 8 GLCM features: inertia, correlation, energy, entropy,
inverse difference moment, cluster shade, cluster prominence, haralick correlation. Mean
and variance of each feature with 13 independent directions in the center voxel of each
image patch are calculated. Hence, 16 features of GLCM were calculated in the upsampled
CBCT/CT image.
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Classification model – Training phase

Given a training set {⟨Xi,Yi⟩|i = 1, ...,N} of CBCT/CT and micro-CT aligned pairs of images,
we extract from each ith image patch, a feature vector Xi = (v1, ....vn) ∈ X and responses
y ∈ {0,1}, which describes the background/foreground label of the center voxel over a grid
of C voxels. Then, a function ŷ : X 7→ y from a space of features X to a space of responses y
is constructed. The mapping is cast as a classification problem.

As classification model, we adopted extremely randomized trees (Extra-Trees) [46],
which is an ensemble method that combines the predictions of several randomized decision
trees to improve robustness over a single estimator. Extra-Trees have shown to be slightly
more accurate than Random Forests (RF) and other tree-based ensemble methods [46].
During the training phase of Extra-Trees, multiple trees are trained and each tree is trained
on all training data. Extra-Trees randomly selects without replacement, K input variables
{v1, ....vk} from the training data. Then, a cutpoint si is randomly selected, ruled by a splitting
criteria [vi < si], for each selected feature within the interval [vmin

i ,vmax
i ] . Among the K

candidate splits, the best split is chosen via normalization of the information gain [93]. We
note that in our experiments, and in order to reduce irrelevant features [46], the number of
input variables K is set to the size of the input feature vector n.

Classification model – Prediction phase

During testing, the CBCT/CT image is pre-processed through image intensity normalization
(using the same reference image as for the training phase). Image features in a band of
interest (results reported using a band size of 16 and 24 voxels) are extracted from the original
and upsampled CBCT/CT image, and passed through the Extra-Trees classification model.
The computed output corresponds to the label of the central voxel from the extracted patch.

Postprocessing

The refined segmentation is regularized in order to remove spurious and isolated segmented
regions. In this study we adopted a basic regularization scheme based on erosion (kernel
size=16 or 24) and dilation (kernel size=16 or 24) morphological operations.

5.4 Experimental Design

A Leave-One-Out (LOO) cross-validation study was carried out to evaluate the accuracy of
the proposed super-resolution segmentation approach. The idea of LOO is to split data into
train and test sets. One image data is chosen as a test set while the remaining data are used
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(a) Training phase

(b) Testing phase

Figure 5.1: Proposed super-resolution classification (SRC) approach, described for the
training (a), and testing phase (b). During training, the original CBCT/CT image is aligned
to its corresponding micro-CT image. OtoPlan [45] is used to create an initial segmentation,
from where a region-of-interest (ROI) band is created. From the original and upsampled
CBCT/CT images, features are extracted from the ROI-band to build a classification model,
which is used during testing to produce a final super-resolution segmented image. The zoomed
square on the segmented super-resolution image shows on one voxel of the CBCT/CT image,
the more accurate segmentation yielded by SRC.
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for training. This method is repeated until every image data has been tested and evaluated
using the following evaluation metrics.

5.4.1 Experimental detail

The upsampling of the CBCT/CT images was performed in Amira with a B-spline interpo-
lation kernel. For computation of features, patches of size 5×5×5 were extracted on the
original and upsampled CBCT/CT images. Feature extraction, morphological operations
to create the ROI, and intensity normalization was performed with the Insight-Toolkit ver-
sion 4.4.1 [73], and classification was completed with Scikit-learn: Machine Learning in
Python [120]. Default parameters were used for the Extra-Trees classifier (see Appendix
7.4).

5.4.2 Segmentation initialization with OtoPlan

As input to the segmentation refinement step with SRC we utilized OtoPlan [45] to obtain an
initial segmentation from where the ROI bands are extracted, and then classified.

In OtoPlan, the centerline of the facial nerve is manually drawn and the borders are
automatically defined by the tool. After this step, the facial nerve border can be manually
modified by dragging contours of the facial nerve.

Based on this initial segmentation we extracted a ROI with two different sizes (sec-
tion 5.3.2), referred as to band 16 and band 24, to indicate 16 and 24 voxels band size. The
rationale behind is to analyze the sensitivity of SRC to different band sizes, as well as to
analyze a potential dependency between the accuracy of the initial segmentation and the
performance of SRC.

5.4.3 Evaluation metrics

1. Hausdorff Distance (HSD)
This metric measures the Hausdorff distance [67] from the ground truth surface to its
nearest neighbor in the segmented surface.

H(A,B) = max(h(A,B),h(B,A)), (5.1)

where
h(A,B) = max

a∈A
{min

b∈B
||a−b||}. (5.2)
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The function h(A,B) is the Hausdorff distance between two surfaces A (manually
segmented ground truth image) and B (automatically segmented image). The term
||a−b|| is the distance between point a and b (in our case the Euclidean distance). The
smaller the Hausdorff distance value, the more accurate the segmentation performs
in terms of facial nerve border definition. The Hausdorff distance is useful as an
indicative of worst case scenario of the delineation.

2. Root Mean Squared Error (RMSE)
The RMSE is calculated by the square root of the Mean Squared Error (MSE).

RMSE =

√
∑

n
i=1(a−b)2

m
, (5.3)

where a ∈ A, b = min
b∗∈B
||a−b∗||, and m corresponds to the number of surface points

used to compute RMSE.

3. Average Distance (AveDist)

AveDist(A,B) = max(d(A,B),d(B,A)), (5.4)

where
d(A,B) =

1
m ∑

a∈A
min
b∈B
||a−b||. (5.5)

The smaller the value of the average distance the better the accuracy of the facial nerve
segmentation is.

4. Positive Predictive Value (PPV)

PPV =
T P

(T P+FP)
, (5.6)

where TP stands for true positive — the number of correctly segmented facial nerve
voxels— and FP stands for false positive, the number of wrong segmented voxels (i.e.
segmenting background voxels as facial nerve voxels).

5. Sensitivity (SEN)
SEN =

T P
(T P+FN)

, (5.7)

where FN stands for the number of wrong labeled background voxels (i.e., segmenting
facial nerve voxels as background).
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6. Specificity (SPC)
SPC =

T N
(T N +FP)

, (5.8)

where TN stands for the number of correctly segmented background voxels.

7. Dice Similarity Coefficients (DSC)
This validation metric measures the accuracy of segmentation in spatial overlap. The
DSC [33] is calculated via

DSC(A,B) =
2|A∩B|
|A|+ |B|

. (5.9)

A DSC value of 1 indicates the segmentation fully overlaps with the ground truth
(i.e. perfect segmentation), while a DSC value of 0 indicates no overlap beween the
segmentation and the ground truth segmentation.

5.4.4 Evaluation

In this section we present segmentation results separately for CBCT and CT images with the
intention to show the performance of the proposed approach on two different scan types. We
remark that the adopted LOO evaluation strategy employs the entire set of clinical CBCT/CT
scans for the training phase.

Experiment 1: Segmentation results on CBCT(training and testing with LOO)

We compared the proposed SRC method with the segmentation software GeoS and ITK-
SNAP. We employed ITK-SNAP (version 3.4.0) [164] and its Random-Forest-based genera-
tion of speed images, which relies on defining brushes on the foreground and background
areas of the facial nerve. The number of brushes was found empirically via trial-and-error
with the main criteria of yielding robust segmentation results. In practice this resulted in
approximately four brush strokes per image, and eight bubbles for contour initialization.
No extensive search of optimal placement of brushes was conducted in order to keep the
experiments to the typical usage scenario of the tool. Similar procedure was conducted for
the GeoS tool (version 2.3.6) [30], a semi-automatic tool based on brush strokes and Random
Forest supervised learning. On average over fifteen brush strokes were used for GeoS, with
no further improvements observed beyond this number.

For both software tools, brush strokes were defined on the ROI-band (16 or 24 voxels) on
background and foreground areas (c.f. section 5.3.2).
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In order to compare DSC values among segmentation results and the ground truth
(produced at micro-CT resolution), we resampled the results from the tools to the resolution
of the ground truth using nearest interpolation. Second, we converted the segmentation
results to surfaces [87] and computed average and Hausdorff distances.

Figure 5.2 shows the facial nerve segmentation results for each sample of the CBCT
dataset for the proposed SRC method, and ITK-Snap and GeoS. From the DSC values and
the Hausdorff distances (Figures 5.2a and 5.2b), it can be observed that the proposed method
is robust and provides a higher average DSC and a lower Hausdorff distance than the other
methods. From Figure 5.2d and Figure 5.2e it can be observed that that overall ITK-SNAP
and GeoS tend to undersegment the CBCT cases. Conversely, SRC did not show a potential
bias towards over-, or under-segmentation.

Table 5.1 summarizes the comparative results between the proposed approach and GeoS
and ITK-SNAP, with two different band-based region of interest. It can be observed that in
comparison to ITK-SNAP and GeoS, the proposed SRC method is more accurate and robust
to an increase of the band size. Particularly, GeoS resulted to be less robust to an increase of
the band size, as described by the increase variance of the metrics. The proposed SRC method
achieved an average DSC value of 0.843, a mean Hausdorff distance of 0.689mm, and a
sub-voxel average distance accuracy of 0.156mm. Regarding the tested segmentation tools,
GeoS yielded the lowest DSC value among the evaluated approaches (average DSC of 0.686),
followed by ITK-SNAP with an average DSC value of 0.765. In terms of distance metrics, the
average Hausdorff metric for GeoS and ITK-SNAP was 0.951mm and 0.819mm, respectively.
Using a two-tailed t-test and Wilcoxon signed ranks tests, statistically significantly greater
results than GeoS and ITK-SNAP were obtained (p < 0.05, Bonferroni corrected) for the
dice, average distance and RMSE metrics. Figure 5.3 shows an example result, put in the
context of the original and high-resolution ground-truth, while Figure 5.4 shows example
results for all tested approaches. It can be observed that the proposed approach yields a more
precise delineation than the other tested methods. Particularly, the postprocessing step based
on simple morphological removes any potential holes and isolated small regions.

Experiment 2: Segmentation results on CT

Figure 5.5 and Table 5.2 summarize the comparative results on the CT database, between the
proposed approach and GeoS and ITK-SNAP for two different band-based sizes. Similar
to the results on CBCT cases, it is observed that the proposed SRC method is superior to
ITK-SNAP and GeoS, and is more robust to the band size. The proposed method achieved
an average DSC value of 0.797, a mean Hausdorff distance of 0.739mm, and a sub-voxel
average distance accuracy of 0.129mm. GeoS yielded the lowest DSC value among the
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(a) Dice Similarity Coefficients (b) Hausdorff Distance

(c)

(d) Positive Predictive Value (e) Sensitivity

Figure 5.2: Evaluation on CBCT cases between the proposed super-resolution segmentation
method and GeoS (version 2.3.6) and ITK-SNAP (version 3.4.0). Average values for DSC
(a), Hausdorff (b), Positive Predictive Value (d), and Sensitivity (e). Case number 7 could
not be segmented via GeoS. Note: best seen in colors.
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CBCT dataset with band16 CBCT dataset with band24
Method Proposed method

(SRC)
GeoS ITK-SNAP Proposed method

(SRC)
GeoS ITK-SNAP

Dice 0.843±0.055(0.866)∗ 0.686±0.037(0.686) 0.765±0.058(0.795) 0.822±0.062(0.847) 0.578±0.123(0.547) 0.732±0.099(0.777)

AveDist 0.112±0.034(0.100)∗ 0.296±0.058(0.193) 0.196±0.052(0.205) 0.131±0.032(0.121) 0.436±0.137(0.461) 0.197±0.064(0.164)

RMSE 0.156±0.038(0.144)∗ 0.345±0.062(0.367) 0.247±0.063(0.248) 0.186±0.034(0.180) 0.493±0.134(0.526) 0.237±0.062(0.212)

Hausdorff 0.689±0.163(0.670)∗ 0.951±0.253(0.886) 0.819±0.185(0.760) 0.747±0.117(0.736) 1.309±0.207(1.364) 0.744±0.090(0.708)

Table 5.1: Quantitative comparison on CBCT cases between our method and GeoS and
ITK-SNAP, for band sizes 16 (left) and 24 (right). Dice and surface distance errors (in mm).
The measurements are given as mean ± standard deviation (median). The best performance
is indicated in boldface. The ‘∗’ indicates that SRC results are statistically significantly
greater (p < 0.05) than GeoS and ITK-SNAP using a two-tailed t-test and Wilcoxon signed
ranks tests.

Figure 5.3: Example results for the proposed super-resolution segmentation approach. From
left to right: Original CBCT image with highlighted (in blue) facial nerve, resulting seg-
mentation and ground truth delineation (orange contour), and zoomed area describing SRC
results on four corresponding CBCT voxels.
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Figure 5.4: The facial nerve segmentation comparison on the original CBCT image between
the proposed SRC method and other segmentation software — ITK-SNAP and GeoS. The
ROI selection via band 16 from OtoPlan initial segmentation.
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(a) Dice Similarity Coefficients (b) Hausdorff Distance

(c)

(d) Positive Predictive Value (e) Sensitivity

Figure 5.5: Evaluation on CT cases between the proposed super-resolution segmentation
method and GeoS (version 2.3.6) and ITK-SNAP (version 3.4.0). Average values for DSC
(a), Hausdorff (b), Positive Predictive Value (d), and Sensitivity (e). Case number 8 could
not be segmented via GeoS. Note: best seen in colors.
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CT dataset with band16 CT dataset with band24
Method Proposed method

(SRC)
GeoS ITK-SNAP Proposed method

(SRC)
GeoS ITK-SNAP

Dice 0.797±0.036(0.802)∗ 0.666±0.109(0.685) 0.731±0.041(0.738) 0.749±0.048(0.759) 0.549±0.084(0.545) 0.744±0.049(0.734)

AveDist 0.129±0.023(0.125)∗ 0.292±0.021(0.292) 0.194±0.036(0.204) 0.156±0.027(0.155) 0.484±0.181(0.433) 0.176±0.061(0.163)

RMSE 0.177±0.033(0.178)∗ 0.353±0.030(0.341) 0.243±0.045(0.251) 0.216±0.037(0.226) 0.593±0.247(0.477) 0.229±0.073(0.229)

Hausdorff 0.739±0.171(0.758)∗ 0.954±0.264(0.883) 0.829±0.162(0.746) 0.854±0.168(0.901) 1.524±0.732(1.087) 0.812±0.221(0.848)

Table 5.2: Quantitative comparison on CT cases between our method and GeoS and ITK-
SNAP, for band sizes 16 (left) and 24 (right). Dice and surface distance errors (in mm). The
measurements are given as mean ± standard deviation (median). The best performance is
indicated in boldface. The ‘∗’ indicates that SRC results are statistically significantly greater
(p < 0.05) than GeoS and ITK-SNAP using a two-tailed t-test and Wilcoxon signed ranks
tests.

evaluated approaches, followed by ITK-SNAP with an average DSC value of 0.731. In terms
of distance metrics, the average Hausdorff metric for GeoS and ITK-SNAP was 0.954mm and
0.829mm, respectively. Using a two-tailed t-test and Wilcoxon signed ranks tests, statistically
significantly greater results than GeoS and ITK-SNAP were obtained (p < 0.05, Bonferroni
corrected) for the dice, average distance and RMSE metrics, see Table 5.2

5.5 Discussions

In this study we developed an automatic super-resolution facial nerve segmentation via a
random forest Extra-Trees based classification framework that refines an initial segmentation
of the facial nerve to sub-voxel accuracy. To our knowledge, this is the first attempt to
perform super-resolution classification for facial nerve segmentation in CBCT/CT images by
exploting imaging modalities featuring different resolution levels. Preliminary results, based
on a leave-one-out evaluation on fifteen ex-vivo cases, suggest that the proposed method is
able to classify the facial nerve with high accuracy and robustness. On a standard desktop
computer, the learning phase is the most time-consuming part, requiring for our set-up around
2 hours. The testing phase (running on a new case) takes only 9 minutes. Given an input
CBCT or CT image, the proposed pipeline start with an initial segmentation of the facial
nerve region, which in this study was obtained via OtoPlan [45]. However, we remark that
other approaches can be used to yield the initial segmentation (e.g. [108], ITK-SNAP [164]).
A band ROI is then created from this initial segmentation and used by SRC to attain a
highly accurate segmentation of the facial nerve in an automated fashion. Comparison with
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other available segmentation tools, ITK-SNAP and GeoS, confirms the higher accuracy and
robustness of the proposed SRC approach.

According to our experiments, better segmentation results are obtained when the features
computed on both the original and upsampled CBCT images than with features extracted only
from the original CBCT image. This is in agreement with recent findings in semi-supervised
regression based image upscaling where features extracted from an initial upsampling has
shown to yield better estimates of the sought high-resolution image [132]. This is motivated
by the fact that the training phase is enriched by including model samples that stem from
micro-CT labels (i.e. from the micro-CT ground-truth image) and corresponding imaging
features approximated at micro-CT level by the upsampling step on the CBCT/CT images.

As described, GLCM features extracted from the original CBCT/CT image do not
contribute as much as those extracted from the upsampled image. This behavior can be
conceptually explained since GLCM features computed on the upsampled image describe
textural patterns on a much localized 53 patch size that better correlates to the label of the
central voxel, extracted from the micro-CT image. Conversely, GLCM features computed on
the original CBCT/CT image covers a much larger spatial extent, and hence the described
textural information correlates less to the label of the central voxel at micro-CT resolution.
Interestingly, the role of features from first-order statistics and percentiles provide benefits
on both original and upsampled CBCT/CT images. First-order statistics and percentiles
computed on the original CBCT/CT image improve the positive predictive value, but yields
to a blocky effect in the segmentation result when not used in combination with first-order
statistics and percentiles computed on the upsampled CBCT/CT image. We also checked
(not reported here) the accuracy of the general-purpose segmentation tools on the upsampled
CBCT images. Obtained results suggests that these general-purpose tools do not benefit
from an upsampling of the CBCT image. On the contrary, worse results were obtained, with
an average worsening on the dice scores of 80.1% and 62.3% for ITK-SNAP and GeoS,
respectively. We refrained from further investigating the reasons as to why of this behavior
due to the lack of implementation details of the tools.

The proposed SRC approach can also be used on pathological anatomies as it does not
rely on shape priors. For instance, in case of bony dehiscence of the fallopian canal. In facial
nerve dehiscence the nerve is uncovered in the middle ear cavity, leading to proximity of
air voxels to the facial nerve. As the proposed approach uses a band surrounding the facial
nerve, it already includes air voxels labeled as background to train the model. Therefore, it
is expected that the proposed method can handle these cases. However, due to the absence
of this type of cases in our database, we were not able to test this point in this study. In the
context of the required accuracy for an effective and safe cochlear implantation planning of
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at least 0.3mm [131], analysis of the RMSE error (suitable for this clinical scenario as large
errors are to be penalized), the proposed SRC approach is the only one yielding RMSE errors
with ranges not surpassing the required accuracy for the tested CBCT/CT cases (Table 5.1 &
5.2).

There are some limitations in this study. First, the approach relies on aligned pairs of
CBCT/CT and micro-CT images, which are not readily available on all centers. A potential
solution to this limitation, is the use of synthetically-generated images from a phantom of
known geometry. Similarly, our short-term goal is to prepare a data descriptor in order
to make the datasets in this study available for research purposes. Secondly, the learned
mapping between clinical and high resolution imaging is specific for the corresponding
imaging devices used to generate training data. However, as technical specifications of
CBCT/CT imaging devices among different vendors do not differ substantially for facial nerve
imaging of cochlear patients, we hypothesize that utilization of an existing super-resolution
classification model to a different CBCT/CT vendor might require slight adaptations related to
straightforward intensity normalization and histogram matching operations. In this direction,
future work includes evaluation of the approach on a large dataset including images from
different CBCT/CT devices in order to produce a more generally applicable algorithm. Future
work also consider a larger dataset of cochlear image datasets including pathological cases
to further validate the approach. The segmentation method was made specific to the task
of super-resolution segmentation of the facial nerve. Our next step is to extend it to the
segmentation of the chorda tympani by creating a dedicated model for it. In order to share
the data with the scientific community and to foster future research in this and other related
research lines, a data descriptor and open repository will be released.

Another limitation is the computational cost needed to extract features on the upsampled
CBCT/CT image (hour range depending on the length of the facial nerve), which is expected
to be improved through a pyramidal upsampling scheme, on which features are progressively
extracted on each resolution level and concatenated, similar to the pyramid approach recently
proposed in [165].

In this study we employed an ad-hoc regularization post-processing of the resulting
segmentation based on morphological operations, aiming at removing isolated small regions
and holes in the segmentation. Future work includes the use of a regularization component
based on a conditional random field, similar to [103]. In practice, the postprocessing step
had a larger impact on the Hausdorff distance metric, as single and isolated voxels outside of
the facial nerve region would be used to compute it.

We anticipate that the proposed approach can be seamlessly applied as well to pediatric
cases, because it does not rely on shape priors as it is the case of atlas-based methods.
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Moreover, as demonstrated, this approach can be applied to other image modalities for
super-resolution image segmentation, particularly for CT, which is an imaging modality often
employed for bone imaging.

5.6 Conclusions

We have presented an automatic random forest based super-resolution classification (SRC)
framework for facial nerve segmentation from CBCT/CT images, which refines a given
initial segmentation of the facial nerve to sub-voxel accuracy. Preliminary results on seven
3D CBCT and eight 3D CT ex-vivo datasets suggests that the proposed method achieves
accurate segmentations at sub-voxel accuracy.



Chapter 6

Conclusion and Outlook

6.1 Conclusion

In this thesis, an approach for motion detection and two approaches for accurate image
segmentation of the facial nerve have been presented. For motion detection, a practical
solution is not required external devices or access to projected data, enabling its use in the
work flow. For facial nerve segmentation, two approaches are proposed. The first one aims to
enhance the facial nerve image based on a supervised learning method, and then segment the
facial nerve image with the surgical planning software, OtoPlan. The second approach aims
to segment the facial nerve based on a supervised learning method at sub-voxel accuracy.

The following will summarize key assessments of the proposed method from a bird’s eye
view.

6.1.1 Motion Detection: a registration based approach

The motion detection approach, discussed in Chapter 3, is a practical solution to evaluate
the amount of motion in a CBCT image. As a first proof-of-concept, we have tested it on
the simulated motion using a scanning system, and a robot arm to produce known motion
patterns. The proposed motion detection approach is based on the expected correlation
between motion and image blurriness. In the experiments, we have investigated two different
simulated motion modes, sudden motion and continuous motion. Moreover, we have explored
three rod-phantom with different intensities which were attached to the rotating block. We
found out that positioning of rods in a phantom for sudden motion, with respect to x-ray
beams, is very important to obtain appropriate phantom images. Due to the "illusory"
phantom pattern produced in sudden motion study, we primarily focused on a continuous
motion study. Preliminary results show that the proposed method is able to detect subtle
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sudden, as well as continuous motion patterns. Results also confirm the hypothesis relating
motion and image blurriness, through the Hausdorff distance metric. To our knowledge, this
is the first direct method for head motion detection in CBCT image and the first prototype is
estimated on phantom CBCT data, and robot-controlled motion patterns.

6.1.2 Facial Nerve Image Enhancement: a machine learning based ap-
proach

The facial nerve image enhancement approach presented in Chapter 4, has been developed
based on supervised regression using multiple output extremely randomized trees. This
approach learns the mapping between the low resolution CBCT image and the high resolution
micro-CT image through features extraction from the CBCT image. Compared to single
output trees, we have observed that multiple output trees reduce the computational time and
consider the correlation among voxels in each output image response. In addition, the size
of image patches have been investigated for the effects of mapping in the training phase.
We found that excessively large size of image patches produce smoother but inaccurate
prediction results. On the contrary, the relatively small size of image patch cannot capture
enough information. We also observed that 5×5×5 is the optimal size of image patches for
image features. The experimental results show that the proposed method can enhance image
information, which can then also be used to obtain an improved segmentation of the facial
nerve, applied in the cochlear surgical planning software, OtoPlan. Using OtoPlan, the facial
nerve segmentation highly depends on the user interaction. Therefore, segmentation results
suffer from the inter- and intra- observer variability and could not be standardized. However,
due to a lack of sufficient robustness of the regression, we moved on to a classification
strategy so to focus on directly delineating the facial nerve, which is described in Chapter 5.

6.1.3 Facial Nerve Segmentation: a Super-Resolution Classification
(SRC) machine learning based approach

The facial nerve segmentation approach, presented in Chapter 5, has been developed based
on supervised classification using extremely randomized trees. The band-based region of
interest speeds up the mapping process. Our implementation has achieved subvoxel level.
Compared to other segmentation tools, the proposed SRC approach yield higher accuracy
and robustness. This general approach can be applied to other clinical cases where the super
resolution is required for a safe preoperative planning. The following three points should
be mentioned, which have significant effects on the final prediction results of the proposed
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method. First, the facial nerve is a very tiny structure, therefore the ratio of the foreground
(facial nerve) and the background samples is considerable small. In the experiments, we
selected the ratio to be 1 : 1, in order to compensate the bias of the training data. Secondly,
the intensity normalization is an important step. Because its absence might lead to poor
model’s performance. Thirdly, the proposed method works on aligned image pairs. The
registration error influences the mapping process in the training phase. If the registration
error is large, the resulting classification model will include noise and lose predictive power.
Registration is time consuming. However, it is performed off-line only once. Once the
images are aligned, we do not need registration any more. To our knowledge, this is the first
attempt to perform super-resolution classification for facial nerve segmentation in CBCT/CT
images by exploring imaging modalities featuring different resolution levels.

6.2 Limitations of the Work

6.2.1 Motion Detection

In this work, three rod-phantoms have been prepared for motion detection. One rod-phantom
could not be calculated due to the position at the block phantom. Therefore, only two
rod-phantoms were evaluated. An optimal positioning of the rods for a wearable phantom
needs to be integrated in the future. With the best position of the wearable phantom for the
patient, the acceptable motion can be easily estimated for the surgical planning. The second
limitation lies in the simulated motion patterns. Although we have simulated two motion
patterns, they are only approximate of the patient’s motion patterns. Head movements of
the patient might produce different motion patterns. This preliminary study did not consider
motion patterns from a real patient or subject. Up to now, it only roughly estimates motion
patterns and measures the degree of the motion.

6.2.2 Facial Nerve Image Enhancement

In this thesis, a large database is expected to contain different kinds of ear images, including
facial nerve dehiscence and facial nerve disorder (see section 1.1.4). The various image
information of different facial nerve cases, which will provide more diverse patterns in
the training data. It results in highly accurate and more robust machine learning model.
This work is based on a registration framework. It requires CBCT and micro-CT be well
registered.
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6.2.3 Facial Nerve Segmentation

In this work, in order to obtain a more accurate predictive model, large volume of training
date is required to ensure a good performance. Hence, more image data are expected to
be evaluated. Besides, one needs to analyze some pathological cases such as facial nerve
dehiscence and facial nerve disorder (see section 1.1.4). The second limitation lies in
the computational cost of extracting features from the upsampled CBCT/CT image. The
consuming time depends on the length of the facial nerve. The fourth limitation is that the
prediction results rely on the registration of the CBCT and micro-CT at the preprocessing
step.

6.3 Outlook

This research has contributed to the fields of motion detection and a highly accurate facial
nerve segmentation for surgical planning. The final goal of the surgical planning is to obtain
an optimal drill trajectory for cochlear implant surgery without damaging the facial nerve.
Such surgical planning will lead a robotic image guided system to carry out a minimally
invasive implantation.

6.3.1 Motion Detection

For motion detection, future research will involve evaluating the relationship between the
position and pattern with more test samples. The aim is to find the optimal posture of the
patient’s head for CBCT scanning. In order to find the acceptable degree of the image blurring
and measure Fiducial Local Error (FLE), we need to measure a large number of simulated
motion images with different degrees, especially with the degree less than 0.75degree in our
cases. For measuring the real motion patterns of patients, we will capture a head motion with
digital camera, similar to [113] [112] [114] [115]. After that, the improved simulated motion
will be tested based on the proposed motion detection strategy. The future work will also
include testing of the proposed approach on ex-vivo or in-vivo CBCT datasets. Finally, a
motion protocol needs to be created and validated. Such protocol could include a 3D setup to
quantify motion.

6.3.2 Facial Nerve Image Enhancement

The idea of the image enhancement is to obtain higher quality of the ear image and then
segment facial nerve on the enhanced image. The final goal is facial nerve segmentation. We
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will segment facial nerve directly without an enhancement step. Therefore, our following
research concentrates on facial nerve segmentation.

6.3.3 Facial Nerve Segmentation

For facial nerve segmentation, future work will consider a more robust and general approach,
which will be tested on a large medical image dataset from different CBCT/CT vendors. The
cochlear image data should contain pathological cases to further evaluate this approach. This
segmentation method can be applied to delineation of chorda tympani. In order to remove the
small isolated regions and holes in the segmentation, future work can employ a regularization
component based on a conditional random field, similar to [103]. The proposed method in
this thesis can also be applied to other nerves and in general to any microscopic structure of
the human body (e.g. blood vessels), provided that pair of high- and low- image resolution
dataset are available . In a next step, deep learning approaches can be tested and compared to
the proposed Super-Resolution Classification (SRC) method. Convolutional Neural Networks
(CNN), also named as Convolutional Networks, have been very popular in recent years for
image classification [23] [55] [84] and other computer vision applications. The advantages of
CNN [35] are as followed: the training phase works on powerful GPUs; the Rectified Linear
Units(ReLU) produces much faster training results and still maintain the accuracy [105].
A CNN model could be employed to carry out facial nerve segmentation in the sub-voxel
resolution as the SRC. To our knowledge, there is no neural network method applicable to
facial nerve segmentation for cochlear implantation.





Chapter 7

Appendices

7.1 Pseudo-code of the Extra-tree algorithm 1

Build an extra tree ensemble (S).
Input: a training set S.
Output: a tree ensemble T = {t1, ..., tM};
for i← 1 to M

do Generate a tree: ti = Build an extra tree (S);
return (T ).

Build an extra tree (S).
Input: a training set S.
Output: a tree t.
if |S|< nmin, or

all candidate attributes are constant in S, or
the output variable is constant in S

then Return a leaf labeled by class frequencies (or average output, in regression) in S
else

1. Select randomly K attributes, {a1, ...,ak}, without replacement, among all candidate
attributes.
2. Generate K splits {s1, ...,sk}, where si = Pick a random split (S,ai),∀i = 1, ...,K;
3. Select a split s∗ such that Score(s∗,S) = maxi=1,...,KScore(si,S);
4. Split S into subsets Sl and Sr according to the test s∗;
5. Build tl = Build an extra tree (Sl) and tl = Build an extra tree (Sr) from these subsets;

1Modified from [46]
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6. Create a node with the split s∗, attach tl and tr as left and right subtrees of this node and
return the resulting tree t.

Pick a random split(S,a).
Input: a training set S and an attribute a.
Output: a split.
if the attribute a is numerical:

then


Compute the maximal and minimal value of a in S, denoted respectively by aS

min and aS
max;

Draw a cut-point ac uniformly in [aS
min, aS

max];
return the split [a < ac];

if the attribute a is categorical (denote by A its set of possible values):

then


Compute As the subset of A of values of a that appear in S;
Randomly draw a proper non empty subset A1 of AS and a subset A2 of A/AS;
Return the split [a ∈ A1∪ A2].
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7.2 Point Set to Point Set Registration Method

We provide a short C++ code for the point set to point set registration method, which brings
the center lines of rod phantoms into alignment.

1 / / r e g i s t r a t i o n
2 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 / / S e t up t h e M e t r i c
4 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 t y p e d e f itk : : EuclideanDistancePointMetric<
6 PointSetType ,
7 PointSetType>
8 MetricType ;
9 t y p e d e f MetricType : : TransformType TransformBaseType ;

10 t y p e d e f TransformBaseType : : ParametersType ParametersType ;
11 t y p e d e f TransformBaseType : : JacobianType JacobianType ;
12 MetricType : : Pointer metric = MetricType : : New ( ) ;
13 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 / / S e t up a Trans fo rm
15 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 t y p e d e f itk : : Euler3DTransform< d ou b l e > TransformType ;
17 TransformType : : Pointer transform = TransformType : : New ( ) ;
18 / / O p t i m i z e r Type
19 t y p e d e f itk : : LevenbergMarquardtOptimizer OptimizerType ;
20 OptimizerType : : Pointer optimizer = OptimizerType : : New ( ) ;
21 optimizer−>SetUseCostFunctionGradient ( f a l s e ) ;
22 / / R e g i s t r a t i o n Method
23 t y p e d e f itk : : PointSetToPointSetRegistrationMethod<
24 PointSetType ,
25 PointSetType >
26 RegistrationType ;
27 RegistrationType : : Pointer registration = RegistrationType : : New ( ) ;
28 / / S c a l e t h e t r a n s l a t i o n components o f t h e Trans fo rm i n t h e O p t i m i z e r
29 OptimizerType : : ScalesType scales ( transform−>GetNumberOfParameters ( ) ) ;
30 c o n s t d ou b l e translationScale = 1 0 0 0 . 0 ; / / dynamic r a n g e of ←↩

t r a n s l a t i o n s
31 c o n s t d ou b l e rotationScale = 1 . 0 ; / / dynamic r a n g e of r o t a t i o n s
32 scales [ 0 ] = 1 . 0 / rotationScale ;
33 scales [ 1 ] = 1 . 0 / rotationScale ;
34 scales [ 2 ] = 1 . 0 / rotationScale ;
35 scales [ 3 ] = 1 . 0 / translationScale ;
36 scales [ 4 ] = 1 . 0 / translationScale ;
37 scales [ 5 ] = 1 . 0 / translationScale ;
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38 u n s i g n e d long numberOfIterations = 200 ;
39 do ub l e gradientTolerance = 1e−4; / / c o n v e r g e n c e c r i t e r i o n
40 do ub l e valueTolerance = 1e−4; / / c o n v e r g e n c e c r i t e r i o n
41 do ub l e epsilonFunction = 1e−5; / / c o n v e r g e n c e c r i t e r i o n
42 optimizer−>SetScales ( scales ) ;
43 optimizer−>SetNumberOfIterations ( numberOfIterations ) ;
44 optimizer−>SetValueTolerance ( valueTolerance ) ;
45 optimizer−>SetGradientTolerance ( gradientTolerance ) ;
46 optimizer−>SetEpsilonFunction ( epsilonFunction ) ;
47 / / S t a r t from an I d e n t i t y t r a n s f o r m ( i n a normal case , t h e u s e r
48 / / can p r o b a b l y p r o v i d e a b e t t e r g u e s s t h a n t h e i d e n t i t y . . .
49 transform−>SetIdentity ( ) ;
50 registration−>SetInitialTransformParameters ( transform−>GetParameters ( )←↩

) ;
51 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 / / Connect a l l t h e components r e q u i r e d f o r R e g i s t r a t i o n
53 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 registration−>SetMetric ( metric ) ;
55 registration−>SetOptimizer ( optimizer ) ;
56 registration−>SetTransform ( transform ) ;
57 registration−>SetFixedPointSet ( fixedPointSet ) ;
58 registration−>SetMovingPointSet ( movingPointSet ) ;
59 t r y
60 {
61 registration−>Update ( ) ;
62 }
63 c a t c h ( itk : : ExceptionObject & e )
64 {
65 std : : cout << e << std : : endl ;
66 r e t u r n EXIT_FAILURE ;
67 }
68 std : : cout << " S o l u t i o n = " << transform−>GetParameters ( ) << std : : endl ;

Listing 7.1: Point set to point set registration method
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1 c o n s t u n s i g n e d i n t Dimension = 3 ;
2 t y p e d e f u n s i g n e d c h a r PixelType ;
3 t y p e d e f itk : : Image<PixelType , Dimension > FixedImageType ;
4 t y p e d e f itk : : Image<PixelType , Dimension > MovingImageType ;
5 t y p e d e f itk : : ImageFileReader<FixedImageType> resampleReaderType ;
6 t y p e d e f itk : : ResampleImageFilter< MovingImageType ,
7 FixedImageType > ResampleFilterType ;
8

9 resampleReaderType : : Pointer fixedReader=resampleReaderType : : New ( ) ;
10 fixedReader−>SetFileName ( "D : \ \ Programming Task 2 0 1 4 \ \←↩

P h a n t o m R e g i s t r a t i o n 5 _05_2014 \ \ PhantomNoMotion11_gblur . n i i " ) ;
11 fixedReader−>Update ( ) ;
12

13 resampleReaderType : : Pointer movingImageReader =resampleReaderType : : New←↩
( ) ;

14 movingImageReader−>SetFileName ( "D : \ \ Programming Task 2 0 1 4 \ \←↩
P h a n t o m R e g i s t r a t i o n 5 _05_2014 \ \ P h a n t o m N o M o t i o n _ i n t e n s i t y . mhd" ) ;

15 movingImageReader−>Update ( ) ;
16

17 ResampleFilterType : : Pointer resampler = ResampleFilterType : : New ( ) ;
18 resampler−>SetInput ( movingImageReader−>GetOutput ( ) ) ;
19 resampler−>SetTransform ( transform−>GetInverseTransform ( ) ) ;
20 FixedImageType : : Pointer fixedImage = fixedReader−>GetOutput ( ) ;
21 resampler−>SetSize ( fixedImage−>GetLargestPossibleRegion ( ) . GetSize ( ) ) ;
22 resampler−>SetOutputOrigin ( fixedImage−>GetOrigin ( ) ) ;
23 resampler−>SetOutputSpacing ( fixedImage−>GetSpacing ( ) ) ;
24 resampler−>SetOutputDirection ( fixedImage−>GetDirection ( ) ) ;
25 resampler−>SetDefaultPixelValue ( 0 ) ;
26 resampler−>Update ( ) ;

Listing 7.2: Interpolated moving image with the optimal transform matric
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7.3 A Protocol Description of the Registration Pipeline

1. Registration with Amira:

First, manual alignment of the CBCT/CT image and the corresponding micro-CT
image based on manually placed landmarks (from 4 landmarks). Second, first rigid
registration with normalized mutual information in Amira (version 5.4.4).

2. Registration with elastix:

First, the rigidly transformed micro-CT image is defined as the moving image, and
the CBCT/CT image is defined as the fixed image. In order to preserve the resolution
of the micro-CT image and transform it to the CBCT/CT image space, the CBCT/CT
image is resampled to micro-CT resolution. Default registration parameters taken from
http://elastix.bigr.nl/wiki/index.php/Default0.

The resulting non-rigid trasnform parameters is used to transform the ground-truth
label image using nearest interpolation. The resulting trasnformed ground-truth image
is then used during training of the SRC approach.

7.4 Employed parameters of the ExtraTreesClassifier

Parameters
n_estimators 10 the number of tress
criterion default=’gini’ the Gini impurity
max_feature default=’auto’ sqrt(the number of features)
max_depth default=’None’ nodes are expanded until all leaves

are pure or until all leaves contain
less than min_samples_split sam-
ples.

Table 7.1: Employed parameters of the ExtraTreesClassifier in sklearn.
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